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Abstract

A family of plane curves with three parameters related with the Valentiner

reflection group is constructed and the family gives an answer to Arnold’s Problem

proposed in [1], 1974-5 for the case of the Valentiner reflection group.

1. Introduction

In this paper G always denotes the No.27 group in the list of Shephard-Todd

[7]. The group G is called Valentiner reflection group. Since 6,12,30 are the de-

grees of basic invariants of G, I write such basic invariants as x1, x2, x5 in this

introduction and assume that 1,2,5 are their weights. Then the polynomial Δ

defined below is regarded as the discriminant of G (cf. [6], [4]):

Δ=65536x11
1 x2

2 − 1765376x9
1x

3
2 + 17406016x7

1x
4
2 − 73887360x5

1x
5
2

+107371008x3
1x

6
2 + 34338816x1x

7
2 − 4096x8

1x2x5 + 96640x6
1x

2
2x5

−707952x4
1x

3
2x5 + 1622592x2

1x
4
2x5 + 186624x5

2x5 + 64x5
1x

2
5

−1584x3
1x2x

2
5 + 7128x1x

2
2x

2
5 + 9x3

5.

It is shown by direct calculation (cf. [6]) that Δ2 is the discriminant of the

polynomial Pa(u) of u:

Pa(u)=u6 + x1u
5 + 5(9+c1)

16 x2u
4 + 5(11+3c1)

64 x1x2u
3 + 5(37+45c1)

512 x2
2u

2

+
{

(−61−5c1)
192 x3

1x2 +
(5407+695c1)

3072 x1x
2
2 +

(61+5c1)
6144 x5

}
u

+ 179(−279+145c1)
221184 x2

1x
2
2+

5(−45+11c1)
1152 x3

2+
(−279+145c1)

221184 x1x5+
279−145c1

6912 x4
1x2

(c1 =
√
15i). It is easy to show that Pb(v) = Pa

(
v + 3−5c1

72 x1

)
is of the form
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Pb(v) = v6 − 5(−3+c1)
12 x1v

5 − 5
288

{
(49 + 25c1)x

2
1 − 18(9 + c1)x2

}
v4

+ 5
15552

{
2(−1377 + 55c1)x

2
1 − 81(−101 + 19c1)x2

}
x1v

3

+ 5
124416

{
(−559+1465c1)x

4
1−54(87+175c1)x

2
1x2+243(37+45c1)x

2
2)
}
v2

+ 1
4478976

{
2(64137 + 5425c1)x

5
1 − 54(52007 + 4095c1)x

3
1x2

+3888(3117 + 245c1)x1x
2
2 + 729(61 + 5c1)x5

}
v

+ 5(−45+11c1)
11609505792

{
(−39 + c1)x

2
1 + 216x2

}3
.

I note here that the constant term of Pb(v) is a cubic power of a polynomial.

The purpose of this report is to show the existence of a family of plane curves

with three parameters related with the group G. This is an answer to the long-

standing problem by Arnol’d [1], p.20 for the group G and it makes clear the

reason why the constant term of Pb(v) is a cubic power of a polynomial.

I shall explain the contents of this report briefly. Section 2 is devoted to a

survey of the results of Crass [2] which are useful for our considerations. Section

3 is devoted to a construction of a family of plane curves which is defined in a way

similar to the case of the versal family of D6-singularity. After these preparations,

I shall construct a family of plane curves which gives an answer to Arnold’s Prob-

lem [1], 1974-5 in section 4. In section 5, I shall explain an observation on the

existence of a G-equivariant correspondence between the set of reflections of the

Valentiner reflection group and that of the complex reflection group G(3, 3, 6).

2. Some consequences of the paper by S. Crass

There are many interesting results in [2] which help our investigation. I will

explain some of the results stated in [2] and their consequences which are needed

for our purpose.

First of all, I introduce three reflections which generate the group G (cf. [7],

p.296):

R1 =

⎛
⎝−1 0 0

0 1 0

0 0 1

⎞
⎠, R2 =

1

2

⎛
⎝ 1 −ωτ −ω2τ−1

−ω2τ −τ−1 −ω
−ωτ−1 −ω2 τ

⎞
⎠, R3 =

⎛
⎝ 0 −ω2 0

−ω 0 0

0 0 1

⎞
⎠,

where τ = 1+
√
5

2 , ω = −1+
√
3i

2 . Let t = (t1, t2, t3) be a linear coordinate of C3

and each Ri operates on t as follows: t→ t · tRi.

Following [2], I introduce two matrices P, Q by

P =
1

2

⎛
⎝ 1 τ − 1 −τ

τ − 1 τ 1

τ −1 τ − 1

⎞
⎠ , Q =

⎛
⎝ 1 0 0

0 0 ω2

0 −ω 0

⎞
⎠ ,

It is easy to show that
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P 5 = P · tP = I, QtQ = Q4 = I.

I define C1̄(t) = t21 + t22 + t23 and

C2̄(t) = C1̄(tQ), Ck̄(t) = C2̄(tP
2−k) (k = 3, 4, 5, 6)

as in [2]. Then

C2̄(t) = t21 + ω2t22 + ωt23,

C3̄(t) = η
{

η
3 (t

2
1 + ωt22 + ω2t23) + ω2t1t2 + ωt1t3 − t2t3

}
,

C4̄(t) = η
{

η
3 (ωt

2
1 + ω2t22 + t23)− t1t2 + ω2t1t3 + ωt2t3

}
,

C5̄(t) = η
{

η
3 (ωt

2
1 + ω2t22 + t23)− t1t2 − ω2t1t3 − ωt2t3

}
,

C6̄(t) = η
{

η
3 (t

2
1 + ωt22 + ω2t23) + ω2t1t2 − ωt1t3 + t2t3

}
,

where η = 3+
√
15i

4 .

Each Ri induces a transformation among the six polynomials Cī(t) (i =

1, 2, · · · , 6). Indeed, by direct computation, we find that

(1)

R1 : C1̄ → C1̄, C2̄ → C2̄, C3̄ ↔ ω2C5̄, C4̄ ↔ ωC6̄

R2 : C1̄ ↔ C6̄, C2̄ → C2̄, C3̄ ↔ ωC5̄, C4̄ → C4̄,

R3 : C1̄ ↔ ω2C2̄, C3̄ → C3̄, C4̄ ↔ C5̄, C6̄ → C6̄.

As a direct consequence,

PV (u) =

6∏
k=1

(u− Ck̄(t)
3)

is a sextic polynomial of u whose coefficients are G-invariant polynomials of t. I

introduce G-invariants Xi(t) (i = 1, 2, · · · , 5) and Y (t) =
∏6

k=1 Ck̄(t) by expand-

ing PV (u):

PV (u) = u6 +X1(t)u
5 +X2(t)u

4 +X3(t)u
3 +X4(t)u

2 +X5(t)u+ Y (t)3.

We are going to construct basic G-invariants I1(t), I2(t), I5(t) and express

Xi(t), Y (t) as polynomials of I1(t), I2(t), I5(t). Note that the degrees of basic

invariants are 6, 12, 30 We first introduce a homogeneous polynomial I1(t) by

I1(t) = t61 + t62 + t63 + 3(5− c1)t
2
1t

2
2t

2
3

− 3
4 (5 + c1)

{
ω(t41t

2
2 + t42t

2
3 + t43t

2
1) + ω2(t41t

2
3 + t42t

2
1 + t43t

2
2)
}
,

where c1 =
√
15i. Note that I1 is same as the polynomial F in [2], p.221. It is

standard to introduce the polynomials I2(t), I5(t) (cf. [2]) by

I2(t) = − 1

20250

∣∣∣∣∣∣
∂t1∂t1I1 ∂t1∂t2I1 ∂t1∂t3I1
∂t2∂t1I1 ∂t2∂t2I1 ∂t2∂t3I1
∂t3∂t1I1 ∂t3∂t2I1 ∂t3∂t3I1

∣∣∣∣∣∣ ,
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I5(t) =

∣∣∣∣∣∣∣∣
∂t1∂t1I2 ∂t1∂t2I2 ∂t1∂t3I2 ∂t1I1
∂t2∂t1I2 ∂t2∂t2I2 ∂t2∂t3I2 ∂t2I1
∂t3∂t1I2 ∂t3∂t2I2 ∂t3∂t3I2 ∂t3I1
∂t1I1 ∂t2I1 ∂t3I1 0

∣∣∣∣∣∣∣∣
.

Then I1, I2, I5 are homogeneous basic G-invariants and deg Ij = 6j (j = 1, 2, 5).

Since X1, X2, X3, X4, X5, Y are G-invariant, they are expressed as polynomials

of I1, I2, I5. It is straightforward to show that

X1(t) =
3

32
(−25 + c1)I1,

and their concrete forms are given below:

(2)

X1 = 3
32 (−25 + c1)I1,

X2 = − 3
214 {45(−237 + 53c1)I2 + 176(−61 + 5c1)I

2
1},

X3 = 1
219·5I1{8(−224305 + 27417c1)I

2
1 + 135(−45615 + 10823c1)I2},

X4 = − 3
229·5

⎧⎨
⎩
64(−1178831 + 173543c1)I

4
1

+2160(−300339 + 78571c1)I
2
1I2

+6075(71987 + 43285c1)I
2
2

⎫⎬
⎭ ,

X5 = − 3
237·52·112

⎧⎪⎪⎨
⎪⎪⎩
22528(18558655 + 1150633c1)I

5
1

−11520(−1015846575 + 227173063c1)I
3
1I2

−17107200(930805 + 686467c1)I1I
2
2

+675(−2003265 + 85673c1)I5

⎫⎪⎪⎬
⎪⎪⎭ ,

Y = ω2
{
− 9(495−7c1)

8192 I2 +
115−43c1
10240 I21

}
.

Let

D =

∣∣∣∣∣∣
∂t1I1 ∂t2I1 ∂t3I1
∂t1I2 ∂t2I2 ∂t3I2
∂t1I3 ∂t2I3 ∂t3I3

∣∣∣∣∣∣
be the Jacobian of the map t → (I1, I2, I5). Then D2 is the discriminant of G
and is a polynomial of I1, I2, I5:

D2 =− 3970695168(−781+171c1)
15625

I151 − 95293145088(223+119c1)
3125

I131 I2+
6679855890432(−251+13c1)

6875
I111 I22

+
36165234917376(−7+33c1)

3025
I91 I

3
2− 2934756458496(61+5c1)

55
I71 I

4
2+

19622017622016(−17+7c1)
5

I51 I
5
2

+18022306553856(11 + 3c1)I31 I
6
2 + 376648647598080(−7 + c1)I1I72

+
{

7778304(−7+33c1)
625

I101 +
333379584(61+5c1)

275
I81 I2 − 5066136576(−17+7c1)

121
I61 I

2
2

− 2592705024(11+3c1)
11

I41 I
3
2 − 5861859840(−7 + c1)I21 I

4
2 − 18291018240(1 + c1)I52

}
I5

+
{
− 18432(11+3c1)

55
I51 +

2980800(−7+c1)
121

I31 I2 +
1749600(1+c1)

11
I1I22

}
I25 + 900

121
I35

To compare the polynomial defined by the right side of the above equation
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with the polynomial of [2], p.222, (2-1), we define

J1 = I1,

J2 = − 15(−1+c1)
16 I2,

J5 = 1
4460544

{
811008I51 − 8133120(−1 + c1)I

3
1I2 − 12355200(7 + c1)I1I

2
2

+125(−11 + 3c1)I5} .
Then it is straightforward to show

78125(781+171c1)
9055096730025984

D2 = 4J1J2(J
4
1+10J2

1J2+52J2
2 )(J

8
1+10J6

1J2+52J4
1J

2
2+54J2

1J
3
2+27J4

2 )

+18J5(J
10
1 + 11J8

1J2 + 53J6
1J

2
2 − 11J4

1J
3
2 − 306J2

1J
4
2 − 108J5

2 )

−162J1J
2
5 (J

4
1 + 12J2

1J2 + 9J2
2 ) + 729J3

5 .

The polynomial of the right side of the above equality coincides with the poly-

nomial of [2], p.222, (2-1) under the correspondence J1 → F, J2 → Φ, J5 → Ψ.

3. The versal family of D6-singularity and its modification

I begin this section with recalling the D6-singularity. We introduce a poly-

nomial of (u, v) defined by

PD6
(u, v) = u5 − uv2 + x1u

4 + x2u
3 + x3u

2 + x4u+ x5 + 2yv,

where x1, x2, · · · , x5, y are parameters. Then PD6
(u, v) = 0 defines a plane curve

and in the case x1 = · · · = x5 = y = 0, PD6
(u, v) = u5 − uv2 = 0 is known to

have D6-singularity at the origin. There is a relationship between PD6
(u, v) and

the Weyl group W (D6) of type D6, which we are going to explain. Let V be a

6-dimensional real vector space and let ξ = (ξ1, ξ2, · · · , ξ6) be its standard coor-

dinate. We naturally regard ξ1, · · · , ξ6 as complex variables. The group W (D6)

is the totality of the actions on ξ defined by

(ξ1, ξ2, · · · , ξ6)→ (ε1ξσ(1), ε2ξσ(2), · · · , ε6ξσ(6)),
where σ are permutations among the six letters 1, 2, · · · , 6 and εi = ±1 (i =

1, 2, · · · , 6) and ε1ε2 · · · ε6 = 1. Let si(ξ1, ξ2, · · · , ξ6) be the i-th fundamental sym-

metric polynomial of (ξ1, ξ2, · · · , ξ6). Then putting xi = (−1)isi(ξ21 , ξ22 , · · · , ξ26)
and y = s6(ξ1, ξ2, · · · , ξ6), we find that

PD6
(u, v) =

1

u

{
6∏

i=1

(u− ξ2i )− (uv − ξ1ξ2 · · · ξ6)2
}
.

This expression of PD6
(u, v) suggests to introduce the polynomial

PT (u, v) =
1

u

{
6∏

i=1

(u− ξ3i )− (uv + ξ1ξ2 · · · ξ6)3
}
.
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Then G(3, 3, 6) is the group which plays the role of W (D6) for PD6
(u, v) in this

case. The complex reflection group denoted by G(3, 3, 6) is the totality of the

actions on (ξ1, ξ2, · · · , ξ6) of the forms

(ξ1, ξ2, · · · , ξ6)→ (ε1ξσ(1), ε2ξσ(2), · · · , ε6ξσ(6)),

where σ are permutations among the six letters 1, 2, · · · , 6 and ε3i = 1 (i =

1, 2, · · · , 6) and ε1ε2 · · · ε6 = 1. The basic invariants of G(3, 3, 6) are

x̃1, x̃2, · · · , x̃5, ỹ, where

x̃i = (−1)isi(ξ31 , ξ32 , · · · , ξ36), ỹ = s6(ξ1, ξ2, · · · , ξ6).

Using x̃1, · · · , x̃5, ỹ, we obtain

PT (u, v) = u5 − u2v3 + x̃1u
4 + x̃2u

3 + x̃3u
2 + x̃4u+ x̃5 − 3ỹuv2 − 3ỹ2v.

It follows from the definition that

∂vPT = −3(uv + ỹ)2.

Erasing v on the definition of PT (u, v) by the condition ∂vPT = 0, we obtain

uPT (u,−ỹ/u) = u6 + x̃1u
5 + x̃2u

4 + x̃3u
3 + x̃4u

2 + x̃5u+ ỹ3.

4. An answer to one of Arnold’s Problems for the group G

Let e1, · · · , e6 be a standard basis of the vector space Vc = V ⊗C = C6 Let

R̃1, R̃2, R̃3 be linear transformations of Vc defined by

R̃1 : (e1, e2, e3, e4, e5, e6) −→ (e1, e2, ω
2e5, ωe6, ωe3, ω

2e4),

R̃2 : (e1, e2, e3, e4, e5, e6) −→ (e6, e2, ωe5, e4, ω
2e3, e1),

R̃3 : (e1, e2, e3, e4, e5, e6) −→ (ω2e2, ωe1, e3, e5, e4, e6).

Then clearly R̃1, R̃2, R̃3 ∈ G(3, 3, 6) and the relation (1) shows that the corre-

spondence

ϕ(Ri) = R̃i (i = 1, 2, 3)

induces a group homomorphism of G into G(3, 3, 6).

It is known that there is a group homomorphism of the real reflection group

W (H3) of type H3 into the Weyl group W (D6) of type D6. This implies a free

deformation of the D6-singularity related to W (H3) in the sense of T. Yano [8].

I briefly explain the result on the W (H3) case in [8]. Let PD6
(u, v) be the poly-

nomial introduced before. By definition, PD6
(u, v) has parameters x1, · · · , x5, y.

Let z2, z6, z10 be variables and substitute

x1 = 10z2, x2 = 35z22 , x3 = 5z6 + 50z32 , x4 = 15z2z6 + 25z42 ,
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x5 = 5z10 + 5z22z6 + 2z52 , y =
√
5z6/2

in PD6
(u, v). Then we obtain the polynomial QH3

(u, v) by

QH3
(u, v) = u5 − uv2 + 10z2u

4 + 35z22u
3 + 5(z6 + 10z32)u

2 + 5(3z6 + 5z32)z2u

+ 5z10 + 5z22z6 + 2z52 +
√
5z6v.

In this case, under the identification of z2, z6, z10 with basic W (H3)-invariants of

homogeneous degrees 2,6,10, we find that the equation

CH3
(z1, z6, z10) : QH3

(u, v) = 0

defines a curve in (u, v)-plane and the family {CH3
(z2, z6, z10)}) parametrized by

three variables defines a deformation of type H3 (cf. [8]).

Applying the above consideration concerning the pair (W (H3), W (D6)) stud-

ied by T. Yano to the pair (G, G(3, 3, 6)), we construct a family of plane curves

with three papameters related with the group G. To explain the result, we recall

the polynomial PT (u, v) introduced in §3. We have a family of plane curves

(3) CG(3,3,6)(x̃1, · · · , x̃5, ỹ) : PT (u, v) = 0

on (u, v)-plane with parameters (x̃1, · · · , x̃5, ỹ). This family is related with the

complex reflection group G(3, 3, 6). By replacing x̃i with Xi (i = 1, 2, 3, 4, 5) and

ỹ with Y in PT (u, v), where Xi (i = 1, · · · , 5) and Y are polynomials of I1, I2, I5
by the relation (2), we define a polynomial QG(u, v) by

(4) QG(u, v) = u5 − u2v3 +X1u
4 +X2u

3 +X3u
2 +X4u+X5 − 3Y v(uv + Y )

depending on I1, I2, I5. Then the equation

CG(I1, I2, I5) : QG(u, v) = 0

defines a curve in (u, v)-plane and the family {CG(I1, I2, I5)} is parametrized by

I1, I2, I5.

We now mention one of Arnold’s Problems. In the book [1], p.20, it is written

that

“1974-5 Find applications of the (Shephard-Todd) complex reflection groups

to singularity theory.”

There are many studies concerning this problem (cf. comments by V. V.

Goryunov in [1], p.305, [3]). The family of curves {C(I1, I2, I5)} defined above

is an answer to this problem for the group G. It is underlined here that

C(0, 0, 0) : u5 − u2v3 = 0 is not a reduced equation and is not related with a
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simple curve singularity.

Remark 1. Consider the case ∂vQG = 0. Then

uQG(u,−Y/u) = u6 +X1u
5 +X2u

4 +X3u
3 +X4u

2 +X5u+ Y 3.

The right hand side of this equality is nothing but the polynomial Pb(u) introduced

in the Introduction. We explain this briefly. For this purpose, we put

(5)

I1 = − 1
36 (7c1 + 15)x1,

I2 = 1
324 (5c1 + 61)(6x2 − x2

1),

I5 = − 1
7290 (2339c1 − 62805)(121x5 + 27984x1x

2
2 − 5012x3

1x2 + 36x5
1),

where x1, x2, x5 mean the G-invariants given in Introduction. Therefore if we

regard {I1, I2, I5} and {x1, x2, x5} as two systems of basic G-invariants, (5) gives

the relationship between {I1, I2, I5} and {x1, x2, x5}. Since X1, · · · , X5, Y are

polynomials of I1, I2, I5, the coefficients of the polynomial u6 + X1u
5 + X2u

4 +

X3u
3 +X4u

2 +X5u + Y 3 are polynomials of x1, x2, x5 by the relation (5). The

polynomial thus obtained coincides with Pb(u) (by replacing c1 with −c1) of the

Introduction. This implies that the constant term of Pb(u) is a cubic power of a

polynomial.

Remark 2. It is easier to show an answer to Arnold’s Problem for the group

No.24 in the list of [7]. Indeed, in this case, the family of curves is related with

that of curves of A6-singularity via the inclusion of the group No.24 into the al-

ternating group on seven letters using quadratic polynomials constructed by F.

Klein. T. Mano studied this case in detail and in particular he clarified a re-

lationship between the family of A6-singularity for the No.24 group and the flat

structure introduced in [4], [5].

Remark 3. The purpose of this report is to construct a family of plane curves

{CG(I1, I2, I5)} which is a deformation of a plane curve u5−u2v3 = 0. The geo-

metric meaning of the family and its properties are postponed by future studies. As

a byproduct, the family of plane curves {CG(3,3,6)(x̃1, · · · , x̃5, ỹ)} is constructed.

The idea of the construction of this family is applicable to the case of the series

of complex reflection groups denoted by G(p, p, n) ([7]).

5. Reflections of G and those of G(3, 3, 6)

In this section, I explain an observation concerning reflections of G. It

is known that there are 45 reflections of G and also there are 45 reflections

of G(3, 3, 6). There is a correspondence between these reflections. The re-

sult is given in Table I below. In the column A, vectors defining reflections

of G(3, 3, 6) are given and in the column B, given are linear forms defining re-

flections of G corresponding to reflections of G(3, 3, 6) in the column A. Let
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Cx = R1R2R3 (Coxeter transformation) be the product of generating reflections

of G. Then Cx5 = αI, where α is a constant such that α6 = 1. There are 9

orbits of the totality of 45 reflections of G by the action of Cx. The notation

r[i, j] (i = 1, 2, · · · , 9, j = 1, 2, · · · , 5) in the column C means reflections of G so

that Cx−1◦r[i, j]◦Cx = r[i, j+1] (j = 1, 2, · · · , 8) and Cx−1◦r[i, 9]◦Cx = r[i, 1].

We may take r[3, 1] as the reflection commutative with R1, R3. On the other

hand, e1 − ω2e2 is the unique vector among 45 vectors which is invariant by

ϕ(R1), ϕ(R3). Then

r[3, 1]←→ e1 − ω2e2

induces a map of the totality of the reflections of G to that of G(3, 3, 6). This

map is G-equivariant.

Table I

A B C

e1 − e2 t1 r[1, 1]

e1 − e3
1
2
(−t1 + t2 − τt2 + τt3) r[8, 3]

e1 − e4
1
2
(t1 − τt1 + τt2 + t3) r[6, 5]

e1 − e5
1
2
(−t1 + τt1 − τt2 + t3) r[9, 4]

e1 − e6
1
2
(t1 − t2 + τt2 + τt3) r[3, 2]

e2 − e3
1
2
(ωt1 + τt2 + ωτt2 − t3 + τt3) r[8, 2]

e2 − e4
1
2
(ωt1 − ωτt1 − t2 − ωt2 + τt3) r[6, 2]

e2 − e5
1
2
(−ωt1 + ωτt1 + t2 + ωt2 + τt3) r[3, 5]

e2 − e6
1
2
(−ωt1 − τt2 − ωτt2 − t3 + τt3) r[9, 5]

e3 − e4
1
2
(−ωt1 + τt1 + ωτt1 + ωt2 + t3) r[8, 5]

e3 − e5
1
2
(t1 + ωt1 + t2 + ωτt2 + t3) r[4, 2]

e3 − e6
1
2
(−ωt1 − τt1 − t2 + τt2 + ωτt2) r[5, 1]

e4 − e5
1
2
(t1 + ωt1 − ωτt1 + ωt2 + τt2) r[2, 1]

e4 − e6
1
2
(−t1 − ωt1 − t2 − ωτt2 + t3) r[2, 5]

e5 − e6
1
2
(ωt1 − τt1 − ωτt1 − ωt2 + t3) r[9, 2]

e1 − ωe2 (1 + ω)t2 r[2, 3]

e1 − ωe3
1
2
(−t1 + τt1 + τt2 + t3) r[4, 4]

e1 − ωe4
1
2
(−τt1 − t2 − t3 + τt3) r[9, 1]

e1 − ωe5
1
2
(τt1 + t2 − t3 + τt3) r[6, 3]

e1 − ωe6
1
2
(t1 − τt1 − τt2 + t3) r[2, 4]

e2 − ωe3
1
2
(−ωt1 + ωτt1 − t2 − ωt2 + τt3) r[4, 3]

e2 − ωe4
1
2
(ωτt1 − t2 − ωt2 + τt2 + ωτt2 + t3) r[7, 5]

e2 − ωe5
1
2
(−ωτt1 + t2 + ωt2 − τt2 − ωτt2 + t3) r[1, 5]

e2 − ωe6
1
2
(ωt1 − ωτt1 + t2 + ωt2 + τt3) r[7, 2]

e3 − ωe4
1
2
(ωt1 − τt1 − ωτt1 + ωt2 + t3) r[5, 2]

e3 − ωe5
1
2
(t1 + ωt1 − t2 − ωτt2 + t3) r[8, 1]

e3 − ωe6
1
2
(ωt1 − t2 − ωt3 + τt3 + ωτt3) r[4, 5]

e4 − ωe5
1
2
(−ωt1 − t2 − ωt3 + τt3 + ωτt3) r[1, 4]
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e4 − ωe6
1
2
(ωt1 + τt1 + t3 + ωt3 − ωτt3) r[3, 3]

e5 − ωe6
1
2
(−t2 + τt2 + ωτt2 + t3 + ωt3 − ωτt3) r[6, 1]

e1 − ω2e2 t3 r[3, 1]

e1 − ω2e3
1
2
(τt1 − t2 − t3 + τt3) r[5, 5]

e1 − ω2e4
1
2
(t1 + t2 − τt2 + τt3) r[7, 3]

e1 − ω2e5
1
2
(−t1 − t2 + τt2 + τt3) r[7, 1]

e1 − ω2e6
1
2
(−τt1 + t2 − t3 + τt3) r[1, 2]

e2 − ω2e3
1
2
(−ωτt1 − t2 − ωt2 + τt2 + ωτt2 + t3) r[5, 4]

e2 − ω2e4
1
2
(−ωt1 + τt2 + ωτt2 − t3 + τt3) r[9, 3]

e2 − ω2e5
1
2
(ωt1 − τt2 − ωτt2 − t3 + τt3) r[2, 2]

e2 − ω2e6
1
2
(ωτt1 + t2 + ωt2 − τt2 − ωτt2 + t3) r[6, 4]

e3 − ω2e4
1
2
(t2 − τt2 − ωτt2 + t3 + ωt3 − ωτt3) r[4, 1]

e3 − ω2e5
1
2
(−ωt1 − τt1 + t3 + ωt3 − ωτt3) r[5, 3]

e3 − ω2e6
1
2
(−ωt1 + t2 − ωt3 + τt3 + ωτt3) r[8, 4]

e4 − ω2e5
1
2
(ωt1 + t2 − ωt3 + τt3 + ωτt3) r[3, 4]

e4 − ω2e6
1
2
(−t1 − ωt1 + t2 + ωτt2 + t3) r[1, 3]

e5 − ω2e6
1
2
(−ωt1 + τt1 + ωτt1 − ωt2 + t3) r[7, 4]
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