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Abstract

A family of plane curves with three parameters related with the Valentiner
reflection group is constructed and the family gives an answer to Arnold’s Problem
proposed in [1], 1974-5 for the case of the Valentiner reflection group.

1. Introduction

In this paper G always denotes the No.27 group in the list of Shephard-Todd
[7]. The group G is called Valentiner reflection group. Since 6,12,30 are the de-
grees of basic invariants of G, I write such basic invariants as z1, 2, x5 in this
introduction and assume that 1,2,5 are their weights. Then the polynomial A
defined below is regarded as the discriminant of G (cf. [6], [4]):

A =6553621123 — 17653762 23 + 1740601627 x5 — 7388736025 x5
+107371008x3 25 + 343388162125 — 409625 w275 + 9664022325
—707952xtx3xs + 1622592021575 + 1866242575 + 64af 02

—1584a3 w922 + 7128z 2322 + 923.

It is shown by direct calculation (cf. [6]) that A? is the discriminant of the
polynomial P,(u) of u:

59+ 5(11+3 5(37+45
P,(u) =u® + zqu’ + 5Ote1) 16cl)z2u4 + 5A1+3el) o 1) g poud + 2ETH45e) =15 Cl)z%uz

(=61-5¢1) 3 (54074695¢1) o | (6145¢1)
+{ 2 L1722+ sorz L1+ Taiag Tsp U

179(=279+145¢1) 2.2 | 5(—45+11e1) (3 (~279+145c)
2

279—145¢; , 4
+ 221184 TIT3+ ~ 1152 1182 L1251+ T go12

T1T2

(c1 = V15i). It is easy to show that P,(v) = P, (v + 223%21) is of the form
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Py(v) =08 — Wwﬂﬁ — 5oz {(49 + 25¢1 )2} — 18(9 + c1)wa } v*
525 {2(—1377 + 55cy )x? — 81(—101 + 19¢y )22 } 2103
+ 15rms L (—559+1465¢1 ) —54(87+175cy )wfwa +243(37+45¢1 )x3) } v?
+ 175576 12(64137 + 5425¢1 )af — 54(52007 + 4095¢1 )x5ao
+3888(3117 + 245¢1 )1 23 + 729(61 + 5ey)as } v
43S (39 4 ¢1)a? + 2162, ) .

I note here that the constant term of P,(v) is a cubic power of a polynomial.
The purpose of this report is to show the existence of a family of plane curves
with three parameters related with the group G. This is an answer to the long-
standing problem by Arnol’d [1], p.20 for the group G and it makes clear the
reason why the constant term of P,(v) is a cubic power of a polynomial.

I shall explain the contents of this report briefly. Section 2 is devoted to a
survey of the results of Crass [2] which are useful for our considerations. Section
3 is devoted to a construction of a family of plane curves which is defined in a way
similar to the case of the versal family of Dg-singularity. After these preparations,
I shall construct a family of plane curves which gives an answer to Arnold’s Prob-
lem [1], 1974-5 in section 4. In section 5, I shall explain an observation on the
existence of a G-equivariant correspondence between the set of reflections of the
Valentiner reflection group and that of the complex reflection group G(3,3,6).

2. Some consequences of the paper by S. Crass

There are many interesting results in [2] which help our investigation. I will
explain some of the results stated in [2] and their consequences which are needed
for our purpose.

First of all, I introduce three reflections which generate the group G (cf. [7],
p.296):

-1 00 1 1 —wr  —w?rt 0 —w?2 0
Ri=|0 10|, R, = 3 —w?r -1 —w , Rs=1—-w 0 0],

0 01 —wrl —w? T 0 0 1
where 7 = 1+2‘/5, w = *HT‘/S’ Let t = (t1,t2,t3) be a linear coordinate of c?

and each R; operates on t as follows: ¢t — t - 'R;.
Following [2], T introduce two matrices P, Q by

1 1 T—1 -7 1 0 0
P:5 rT—1 7 1 , Q=10 0 |,
T -1 7-1 0 —w O

It is easy to show that
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Po=pP.P=1 QQ=Q*=1.
I define C7(t) =2 +t2 + t2 and
Os(t) = C1(1Q), Cx(t) = C3(tP*™*) (k = 3,4,5,6)
as in [2]. Then

Cs(t) = 13 + w23 + wi?,

C3(t) = n {213 + wi3 + w?t3) + w’tits + wtits — tats ),

Ci(t) = n{F(wt] + w3 +13) — t1ty + w?t1ts + wists ),

Cs(t) = n{%(wt} + w?t3 +13) — t1ts — w?t1ts — wiats},

Cs(t) = n {213 + wt} + w?t3) + w?t1ty — wtits + tats},
where 1 = 3+‘4/ﬁi.

Each R; induces a transformation among the six polynomials C5(t) (i =
1,2,---,6). Indeed, by direct computation, we find that

Ry: Cj _>CL CQ-)CQ, Cg(—>w2Cg7 C;1<—>ng
(1) Ry: Cij 4+ Cg C3 — C5, C5 4 wCs, C; — Cf,

Rs: C7 <—>0J2CQ,C§,*>C§, C@(—)Cg, Cg %C’g.
As a direct consequence,

6

Py(u) = [J(u-Cr(®)?)

k=1

is a sextic polynomial of u whose coefficients are G-invariant polynomials of ¢. 1
introduce G-invariants X;(¢) (i = 1,2,---,5) and Y'(¢) = szl Cr(t) by expand-
ing Py (u):

Py (u) = ub + X1(t)u® + Xo(t)u* + Xs(t)u® + Xy(t)u? + X5(t)u + Y (¢)3.

We are going to construct basic G-invariants I (t), I2(t), Is(t) and express
X;(t),Y(t) as polynomials of I1(t), I2(t), Is(t). Note that the degrees of basic
invariants are 6, 12, 30 We first introduce a homogeneous polynomial I;(¢) by

L(t) = t§ 4+ 15 +t§ + 3(5 — c1)t3t513
—3(54 c1) {w(t1t3 + 363 + t53¢3) + W2 (¢143 + 1363 + 1343) }

where ¢; = v/15i. Note that I; is same as the polynomial F in [2], p.221. It is
standard to introduce the polynomials I5(t), I5(t) (cf. [2]) by

N A
8t28t1-[1 atgatzll atzatgll 9
at3at1]1 3t30t211 8t33t3I1

1
L(t) = =555
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3t18t1[2 8t18t212 3t18t312 8t1[1

6t28t112 6t28t212 6t26t312 8t2]1

8t38t112 81538752]2 8t38t312 8,53[1
(9t111 8t211 6t311 0

I5(t) =

Then I, I5, I5 are homogeneous basic G-invariants and degl; = 65 (j = 1,2,5).
Since Xi, Xo, X3, X4, X5,Y are G-invariant, they are expressed as polynomials
of I, I5, I5. It is straightforward to show that

3
Xl(t) = @(—25 + 01)11,

and their concrete forms are given below:

X1 = (=254 1),
Xy = —53:{45(—237 + 53c1) I + 176(—61 + 5¢1) 12},

X3 = 55 11{8(—224305 4 27417¢1 ) I} + 135(—45615 + 10823c1 )12},

64(—1178831 + 173543¢; ) I
Xy = — 5= { +2160(—300339 + 78571c1 ) I215 ¢ ,
(2) +6075(71987 + 43285¢, ) 12

22528(18558655 + 1150633¢; ) I}
Yo — 3 —11520(—1015846575 + 227173063¢; ) I3 1
T TYTEEI | 17107200(930805 + 686467¢; ) I 12 ’
+675(—2003265 + 85673¢1 ) I5

_ 2 ) 9(495-7cr) 115—43c; 72
Y _W{ g0z 12+ “ioma0 Ligf-

Let
8,51[1 8t211 8t3[1
D = 6151_[2 (9252[2 8t312
at1]3 atQIB at3I3

be the Jacobian of the map t — (I1, Iz, I5). Then D? is the discriminant of G
and is a polynomial of I, I, I5:

D2 — _ 3970695168(~7814171cy) 115 _ 95203145088(223+119¢)) 137 6679855890432(~251413c1) 1172
= 15625 1 3125 112 6375 142
36165234917376(—7+33¢c1) 7073 2934756458496(61+5¢1) 774 , 19622017622016(—17+7c1) 15 75

+ 3025 LI - 55 15+ = 313

+18022306553856(11 + 3¢1) I3 IS + 376648647598080(—7 + c1)I113

7778304(—7433¢c1) 710 | 333379584(61+5c1) 787 _ 5066136576(—17+7c1) 76 12
+{ 625 7+ 275 171> 121 b

— 269270502411 53¢1) 7473 _ 5861859840(—7 + c1) 1214 — 18291018240(1 + c1)125} Is

18432(11+3cq) 75, 2980800(—7+cy) 73 1749600(1+c1) 7. 72\ 72 4 900 73
+{7 55 I+ 121 il + 11 1112}I5+ﬁl5

To compare the polynomial defined by the right side of the above equation
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with the polynomial of [2], p.222, (2-1), we define
J1 =1,
J2 - 15(_116+C1)127
Js = reasas 181100817 — 8133120(—1 + ¢1)I$ 1> — 12355200(7 + ¢1) 1113
+125(—11 + 301)[5} .

Then it is straightforward to show

Al D? = 41 Ja(JE +10J7 T2 +52J3 ) (J5 + 105 Jo+52J1 J3 + 547 J3 +27.J3)
+18J5(Ji0 + 1178 Jy + 53J8J2 — 11J¢J5 — 306J2J5 — 108J3)
—162J1J2(Jt 4+ 12J2J2 4+ 9J2) + 729J3.

The polynomial of the right side of the above equality coincides with the poly-
nomial of [2], p.222, (2-1) under the correspondence J; — F, Jo — @, J; — U.

3. The versal family of Dg-singularity and its modification

I begin this section with recalling the Dg-singularity. We introduce a poly-
nomial of (u,v) defined by

5

Ppg (u,v) = u® — uv? + z1u* + 2ou® + w30 + 240 + 25 + 290,

where x1, 2, -+ , x5,y are parameters. Then Pp,(u,v) = 0 defines a plane curve
and in the case 1 = -+ = x5 = y = 0, Pp,(u,v) = v’ — uv? = 0 is known to
have Dg-singularity at the origin. There is a relationship between Pp,(u,v) and
the Weyl group W (Dg) of type Dg, which we are going to explain. Let V be a
6-dimensional real vector space and let & = (£1,&2, -+ , &) be its standard coor-
dinate. We naturally regard &;,--- , & as complex variables. The group W (D)

is the totality of the actions on ¢ defined by

(615 527 o 556) - (5150(1)75250(2)7 o ’5660(6))3

where o are permutations among the six letters 1,2,--- 6 and g; = £1 (i =
1,2,---,6) and e1e9 - - -6 = 1. Let 5;(&1,&2, -+ , &) be the i-th fundamental sym-
metric polynomial of (£1,&s,--+,&). Then putting z; = (—1)%s;(£3,€3,- -+ ,&2)
and y = s6(&1,&2, -+ , &), we find that

6

Ppg(u,v) = % {H(“_fzz) - (UU—€1§2"'56)2}~

i=1

This expression of Pp,(u,v) suggests to introduce the polynomial

6
Pr(u,v) = % {H(“_ﬁ?)—(UU+§1§2"'§6)3}~

i=1
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Then G(3,3,6) is the group which plays the role of W(Dg) for Pp,(u,v) in this
case. The complex reflection group denoted by G(3,3,6) is the totality of the
actions on (£1,&2,- -+, &) of the forms

(fla 527 t afG) — (5160(1)7 5250'(2)7 o a€6§0'(6))7

where ¢ are permutations among the six letters 1,2,---,6 and 513 =104 =
1,2,---,6) and e1e9---e¢ = 1. The basic invariants of G(3,3,6) are
-’Elvi'% e ;‘%53:&7 where

S i 3 ¢3 3 ~

Ty = (7]‘) Si(£1a§27 e 756)’ Yy = 56(615627 e 566)'
Using z1,- -+ , &5, Yy, we obtain

Pr(u,v) = u® —u?v® + Frut + Zou® + Zgu? + Tuu + 5 — 3juv® — 35%v.
It follows from the definition that
Oy Pr = —3(uv + 9)*.
Erasing v on the definition of Pr(u,v) by the condition 9, Pr = 0, we obtain
uPr(u,—g/u) = u® + #u® + Fout + Tgu® + Tau® + Fsu + 5.
4. An answer to one of Arnold’s Problems for the group G

~ Let e, -+, e6 be a standard basis of the vector space V, =V @ C = C° Let
Ry, Ry, R3 be linear transformations of V, defined by

D . 2 2

Ry 1 (e1,ez,e3,e4,€5,65) — (€1,€2,w es, weg, wes, wey),
e !

Ry 1 (e1,ea,e3,€eq,€5,65) — (€6, €2,wes, €4, wes, €1),
S 2

Rs : (e1,e2,e3,eq,e5,65) — (wea,wer, e3,es5,€4, €6).

Then clearly Ry, Ry, Rs € G(3,3,6) and the relation (1) shows that the corre-
spondence

@(Ri) = Rz (Z =1, 273)
induces a group homomorphism of G into G(3,3,6).
It is known that there is a group homomorphism of the real reflection group
W (Hs3) of type Hs into the Weyl group W (Dg) of type Dg. This implies a free
deformation of the Dg-singularity related to W (Hjz) in the sense of T. Yano [8].
I briefly explain the result on the W (Hs3) case in [8]. Let Pp,(u,v) be the poly-
nomial introduced before. By definition, Pp,(u,v) has parameters x1,--- , 25, y.
Let 22, zg, 210 be variables and substitute

r1 = 1029, 29 = 3523, T3 = 5z + 5025’, T4 = 152926 + 2523,
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T5 = 5210 + b2aze + 225, y = \/526/2
in Pp,(u,v). Then we obtain the polynomial Qg (u,v) by

Qr, (u,v) = u® — uv? + 10z9u* + 3523u® + 5(26 + 1023)u® + 5(326 + 525 ) zou
+ 5210 + 52’%26 + 22; + \/52:61}.

In this case, under the identification of 29, zg, 210 With basic W (Hj)-invariants of
homogeneous degrees 2,6,10, we find that the equation

Ch, (21,26, 210) : Qr,y(u,v) =0

defines a curve in (u,v)-plane and the family {Cp, (22, 26, 210)}) parametrized by
three variables defines a deformation of type Hs (cf. [8]).

Applying the above consideration concerning the pair (W (Hjs), W(Dg)) stud-
ied by T. Yano to the pair (G, G(3,3,6)), we construct a family of plane curves
with three papameters related with the group G. To explain the result, we recall
the polynomial Pr(u,v) introduced in §3. We have a family of plane curves

(3) Ca.3,6)(Z1,- -+, T5,7) : Pr(u,v) =0

on (u,v)-plane with parameters (Z1,---,Z5,7). This family is related with the
complex reflection group G(3, 3,6). By replacing #; with X; (i = 1,2,3,4,5) and
g with Y in Pr(u,v), where X; (i =1,---,5) and Y are polynomials of Iy, I, I5
by the relation (2), we define a polynomial Q¢ (u,v) by

4) Qag(u,v) = u® — w0 + Xqut 4+ Xou® + Xqu? + Xyu + X5 — 3Yv(uv +Y)
depending on Iy, I5, I5. Then the equation

Ca(ly,I2,15) : Qa(u,v) =0

defines a curve in (u,v)-plane and the family {Cs (I3, I2, I5)} is parametrized by
Il ) IQ ) 15 .

We now mention one of Arnold’s Problems. In the book [1], p.20, it is written
that

“1974-5 Find applications of the (Shephard-Todd) complex reflection groups
to singularity theory.”

There are many studies concerning this problem (cf. comments by V. V.
Goryunov in [1], p.305, [3]). The family of curves {C(I1,I2,I5)} defined above
is an answer to this problem for the group G. It is underlined here that
C(0,0,0) : u® — u?v® = 0 is not a reduced equation and is not related with a
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simple curve singularity.
Remark 1. Consider the case 3,Qg = 0. Then
uQa(u, —Y/u) = u® + X u® + Xou* + Xsu® + Xyu? + Xsu + Y3,

The right hand side of this equality is nothing but the polynomial Py(u) introduced
in the Introduction. We explain this briefly. For this purpose, we put

L = —L(701 + 15)£C17

36
(5) .[2 = 3%(501 + 61)(6.’E2 — "E%),
Is = ——5-5(2339¢; — 62805) (12125 + 27984x 23 — 50122320 + 3623),

where x1,x9, x5 mean the G-invariants given in Introduction. Therefore if we
regard {11, Is, Is} and {x1,29,25} as two systems of basic G-invariants, (5) gives
the relationship between {I1,1I5,I5} and {x1,x2,25}. Since Xy, -+ ,X5,Y are
polynomials of I, I, I5, the coefficients of the polynomial u® + X u® + Xou* +
Xzu® + Xyqu? + Xsu + Y3 are polynomials of x1, 12,15 by the relation (5). The
polynomial thus obtained coincides with Py(u) (by replacing ¢; with —cy) of the
Introduction. This implies that the constant term of Py(u) is a cubic power of a
polynomial.

Remark 2. [t is easier to show an answer to Arnold’s Problem for the group
No.24 in the list of [7]. Indeed, in this case, the family of curves is related with
that of curves of Ag-singularity via the inclusion of the group No.24 into the al-
ternating group on seven letters using quadratic polynomials constructed by F.
Klein. T. Mano studied this case in detail and in particular he clarified a re-
lationship between the family of Ag-singularity for the No.2  group and the flat
structure introduced in [4], [5].

Remark 3. The purpose of this report is to construct a family of plane curves
{Cq(I1, Iz, I5)} which is a deformation of a plane curve u® —u*v® = 0. The geo-
metric meaning of the family and its properties are postponed by future studies. As
a byproduct, the family of plane curves {Cg(3,3,6)(%1,- - ,%5,9)} is constructed.
The idea of the construction of this family is applicable to the case of the series
of complex reflection groups denoted by G(p,p,n) ([7]).

5. Reflections of G and those of G(3,3,6)

In this section, I explain an observation concerning reflections of G. It
is known that there are 45 reflections of G and also there are 45 reflections
of G(3,3,6). There is a correspondence between these reflections. The re-
sult is given in Table I below. In the column A, vectors defining reflections
of G(3,3,6) are given and in the column B, given are linear forms defining re-
flections of G corresponding to reflections of G(3,3,6) in the column A. Let
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Cz = R1RyR3 (Coxeter transformation) be the product of generating reflections
of G. Then Cz® = al, where « is a constant such that o® = 1. There are 9
orbits of the totality of 45 reflections of G by the action of C'x. The notation
rlé,j] (6 = 1,2,---,9,5 =1,2,--- ,5) in the column C means reflections of G so
that Cz~tor[i,jloCx =r[i,j+1] (j = 1,2,---,8) and Cz~Lor[i,9]oCx = r[i, 1].
We may take r[3,1] as the reflection commutative with R;, Rs. On the other
hand, e; — w?ey is the unique vector among 45 vectors which is invariant by
#(Ry), o(Rs). Then

r[3,1] «— €1 — wlesy

induces a map of the totality of the reflections of G to that of G(3,3,6). This
map is G-equivariant.

Table I

A | B C

el —en t1 r[1,1]
e —es %( t1+t2—7't2+7't3) 7‘[8,3}
e —eq %(h — Tt +Tt2+t3) 7‘[6,5}
e — es %( t1+Tt1—Tt2+t3) 7‘[9,4}
e| — eg %(tl —t2+Tt2+Tt3) 7“[3,2}
ey — e3 %(wtl + Tto + wTte — t3 + Ti3) (8, 2]
e — €4 %(wtl — wTt1 — t2 — wiz + Tt3) (6, 2]
ey — es5 %( wt1 + wrty + to + wia + Tt3) (3, 5]
ey — eg %( wt1 — Tty — wTty — t3 + Tt3) (9, 5]
e3 — ey %( wt1 + 7t + wrt + wta + t3) (8, 5]
e3 — es %(h + wty + t2 +w7‘t2+t3) 7”[47 2}
e3 — €6 %( wti — Tt — t2 + Tt + wTt2) r[5,1]
ea—es | 2(t1 4wt —wrty +wtz + Tt2) r[2,1]
e4 — €g %( t1 —wti — t2 —th2—|—t3) 7”[2,5}
es — €6 %(wtl — Tt1 — wTt1 — wtz + t3) (9, 2]
e1 —wez | (1+w)ts (2, 3]
e; — wes %( t1+ 7t +7’t2+t3) 7"[4,4}
e1 — weyq %( Ttl—tg—t3+7't3) 7"[9,1}
e] — wes %(Ttl + to —t3+7‘t3) 7"[6,3}
€1 — Wep %(t1 —Ttl —Tt2—|—t3) 7”[2,4}
ey — wes %(—wtl + w1 — t2 — wito + Tt3) r[4, 3]
e2 —wes | 3(wrty —ty — wla + Tty + wrta +t3) | r[7,5]
ey — wes %( wTt1 + t2 + wts — Tt — wTte +t3) | 7[1, 5]
es — weg %(wtl — wTty + t2 + wia + Tt3) r[7,2]
es —wes | 3(wt — Tt — wrty + wty + t3) r[5,2]
e3 — wes %(tl + wt1 — ta 7&)7‘1?24’1‘/3) 7‘[8, 1}
e3 — weg %(wtl — to — wt3 + Tts + wTts) r[4, 5]
e4 — wes %( wt1 — ta fwt3+7't3+w7't3) 7‘[1,4}



170

(4]
(5]

(6]

(7]

(8]

J. Sekiguchi
€4 — weg %(wh + Tt1 + t3 + wtz — wTts) (3, 3]
e5 — weg %(—tg + Tto + wTts + t3 + wts — wtts) | r[6, 1]
er —wes | t3 r[3,1]
e1 —w’es | 2(1t1 — ta — ts + Tt3) r[5, 5]
e1 —w’es | 2t +t2 — Tta + Tt3) r[7, 3]
e1 —w’es | 2(—t1 — ta + Tta + Tt3) r[7,1]
e1 —w2€6 %(—Ttl + to —t3—|—7’t3) 7‘[1,2]
62*&)263 %( wT 1—t2—wt2+7’t2+w7t2+t3) 7‘[5,4]
627&)264 %( wt1+7't2+w7't27t3+7t3) 7“[9,3]
e 70.)265 %(wtl — Tty — wTts 7t3+7't3) 7“[2,2]
e 70.)265 %(WTt1+t2 + witsa 77t27w7t2+t3) 7”[6,4]
es 70.)264 %(tz — Tty — wTte + t3 + wis 7w7't3) 1"[4, 1]
es — w?es %( wt1 — Tt1 + t3 + wts — wTts) r[5, 3]
es 70.)265 %( wty +t27wt3+7't3+w7t3) 1"[8,4]
eq 7&)265 %(wtl + to — wts + Tt3 +w7't3) 1"[3,4]
64—w266 %( t1 — wty +t2—|—w7t2+t3) T[1,3]
es w266 %( wt1 + 7t1 + wrty — wis +t3) T[?, 4]
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