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Abstract

For quasihomogeneous polynomials with isolated singularity, V.I.Arnold intro-

duced the notion of inner modality and classified them with inner modality = 0, 1.

The next works were done for inner modality = 2, 3, 4, 5 by E.Yoshinaga, M.Suzuki

in [11], [17] and further for inner modality = 6 by J. Estrada Sarlabous, J. Arocha

and A. Fuentes in [4]. Recently the classification is developed for inner modality

= 7, 8, 9 in [14]. In this article we will classify quasihomogeneous polynomials of

corank = 3 with inner modality ≤ 14.

1. Introduction

In the classification of local analytic hypersurface singularities with isolated

singularity, there is a fact that singularities with low complexity are (semi-) quasi-

homogeneous (see [2], [3], [10]). Even if complexities of singularities increase a

little, it seems that they are the majority in singularities. In this sense, it is

important to classify quasihomogeneous singularities. V. I. Arnold introduced

the notion of “inner modality” for (semi-) quasihomogeneous singularities and

classified them with inner modality = 0, 1.

V. I. Arnold introduced the notion of “modality” for more generic hyper-

surface singularities and he classified all singularities of modality 0, 1 and 2. He

named the singularities with modality = 0, 1 and 2 simple one, unimodal one

and bimodal one respectively. Here “modality” means the moduli of singularities

in their small perturbations (see [5]). It is no doubt that this concept has very

important meaning for singularities. This work of him has a great influence in

various areas of mathematics. But enormous calculation is necessary for further

classification of singularities by modality, and it is difficult to execute any more

classification. Many of singularities (simple, unimodal and bimodal) classified are
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(semi-) quasihomogeneous. So he introduced the notion of inner modality, which

can be calculate algebraically, into quasihomogeneous singularities and classified

them of inner modality 0,1 actually, and find out these classification to coincide

with classification by modality, and he conjectured that modality=inner modality

in general. His conjecture is shown affirmatively in [12] for the one-dimensional

singularities and in [15] in general.

After V. I. Arnol’d, the classification of quasihomogeneous singularities was

developed to inner modality ≤ 9 by E. Yoshinaga, M. Suzuki, J. Estrada Sar-

labous, J. Arocha and A. Fuentes (see [17], [11], [4] and [14]). They classified

singularities by using the formula that for inner modality ≤ 9 inner modality =

“arithmetic inner modality”, which is a notion introduced in the next section.

This formula is not always true, but fortunately, the quasihomogeneous singu-

larities with inner modality ≤ 9 satisfied it. Moreover for quasihomogeneous

polynomials f , it was shown in [14] that 9 is the upper limit of μ which satisfies

“If the inner modality of f ≤ μ, then the inner modality of f = the arithmetic

inner modality of f”.

The purpose of this article is to find out the upper limit of inner modal-

ity which satisfies this formula in the case corank = 3 and to classify all the

quasihomogeneous singularities of corank = 3 with inner modality less than or

equal to the upper limit. As a result we find out it to be 14 and we obtain all

quasihomogeneous singularities with inner modality = 10, 11, 12, 13 and 14.

2. Preliminaries

In this article, we will investigate a classification of “quasihomogeneous” iso-

lated singularities defined by analytic functions of three variables. In this section

we explain the terms and the results used in this article. The details of our results

will be stated in §3.
A local analytic function f : (Cn, O) → (C, 0), that is f ∈ M ⊂

C{x1, · · · , xn}, has an isolated singularity if

{
x

∣∣∣∣ ∂f

∂x1
(x) = · · · = ∂f

∂xn
(x) = 0

}
= {0}

locally, where M is the maximal ideal of the local ring C{x1, · · · , xn}. It is well

known that a local analytic function with isolated singularity is a polynomial

up to a suitable local coordinate transformation (see [6], [16]) and hence we will

study “quasihomogeneous” polynomials with isolated singularity at the origin.

For positive rational numbers r1, . . . , rn ∈ Q+, a monomial

m = xi1
1 · · ·xin

n ∈ C[x1, . . . , xn] (i1, . . . , in ∈ N ∪ {0})

has generalized degree d if r1i1 + · · · + rnin = d and we denote the generalized
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degree of m by gdeg(m). A polynomial f ∈ C[x1, . . . , xn] is quasihomogeneous

of type (d; r1, . . . , rn) if each monomial term of f with non-zero coefficient has

generalized degree d. Then we call the number d the generalized degree of f and

call ri’s the weights of f .

A local analytic function f : (Cn, O)→ (C, 0) has a quasihomogeneous singu-

larity at the origin if f becomes a quasihomogeneous polynomial after a suitable

local coordinate transformation.

Theorem 2.1 ([9]). Suppose that f ∈ M ⊂ C{x1, . . . , xn} has a quasihomoge-

neous isolated singularity. Then there exist a coordinate system (y1, . . . , yn) in

which f has the form

f = h(y1, . . . , yk) + y2k+1 + · · ·+ y2n

with a quasihomogeneous polynomial h ∈ C[y1, . . . , yk] of type

(1; s1, . . . , sk) (0 < si <
1
2 , i = 1, . . . , k). The natural number k and (s1, . . . , sk)

are uniquely determined up to permutations of components.

We call the number k the corank of f and call the polynomial h the residual

part of f . We denote the corank of f by corank(f). In order to classify them, it

is sufficient to classify their residual parts.

We denote the ideal
(

∂f
∂x1

, . . . , ∂f
∂xn

)
of the ring C{x1, . . . , xn} by Δ(f) and

denote the quotient ring C{x1, . . . , xn}/Δ(f) by Rf . Note that if f has an iso-

lated singularity at the origin, then by Hilbert’s Nullstellensatz, Mp ⊂ Δ(f) ⊂
C{x1, . . . , xn} for some p ∈ N. Then the dimension of Rf over C is finite.

From now on let f be a quasihomogeneous polynomial of type

(1; r1, . . . , rn) with isolated singularity at the origin. V.I. Arnol’d showed in [1]

that the number of basis monomials of Rf with given generalized degree (for

given (r1, . . . , rn)) is the same for all quasihomogeneous polynomials f of the

same type as follows.

Theorem 2.2 ([1], [8]). Let r1, . . . , rn be positive rational numbers for which

ri = Ai/N (i = 1, . . . , n), where N and Ai’s are positive natural numbers. If f

is a quasihomogeneous polynomial of type (1; r1, . . . , rn) with isolated singularity

at the origin, then

∑
μjz

j =

n∏
j=1

zN−Aj − 1

zAj − 1
,

where μi is the number of basis monomials in Rf with generalized degree i/N .

We denote the right side of the equation in the above theorem by χf (z) and

we call it the characteristic function of f , and when it becomes a polynomial, it

is especially called the characteristic polynomial of f . By the above theorem we

can define the following.
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Definition 2.1 ([1]). The number of basis monomials of Rf with generalized

degree ≥ 1 is called the inner modality of f and it is denoted by m(f).

We see that the highest degree of generalized degrees of basis monomials of

Rf is n− 2
∑

ri and it is denoted by df . The coefficients of χf (z) are symmetric

because it is the product of cyclotomic polynomials. Hence we have

m(f) =
∑
j≥N

μj =
∑

j≤D−N

μj ,

where D = nN −2
∑

Aj = N
(
n− 2

∑
rj

)
= Ndf . Hence m(f) is the number

of basis monomials of Rf with generalized degree ≤ df − 1.

For a quasihomogeneous polynomial f of type (1; r1, . . . , rn), we define the

following invariant expressed in terms of their weights.

Definition 2.2. We define m0(f) to be

� {m | m is a monomial in C[x1, . . . , xk], gdeg(m) ≤ df − 1}
and we call it the arithmetic inner modality of f , where # denotes the number

of elements of a set.

By the definition, we have m(f) ≤ m0(f) in general. If the images of mono-

mials in Rf with gdeg ≤ df −1 are linearly independent, we have m(f) = m0(f).

In [14] the following result about m(f) and m0(f) is given.

Proposition 2.3. We have m(f) = m0(f) if and only if

gdeg

(
∂f

∂xi

)
> df − 1

for any i (i = 1, . . . , k).

The following theorem is a key to perform the classification of quasihomoge-

neous singularities in the series of articles ([4], [11], [17] and [14]).

Theorem 2.4. For every quasihomogeneous polynomial f with isolated singular-

ity at the origin, if m(f) ≤ 9, then m(f) = m0(f).

Our purpose of this article is to find out the upper limit μ of inner modal-

ity m(f) which m(f) = m0(f) holds in the case corank = 3 and to classify all

quasihomogeneous polynomials of corank = 3 with inner modality ≤ μ.

3. Main results

In this section, we state our main results. In what follows we consider quasi-

homogeneous polynomials with isolated singularity at the origin. The following
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theorem is shown in [14].

Theorem 3.1. Let f be a quasihomogeneous polynomial. Then

(1) if m(f) ≤ 9, then m(f) = m0(f),

(2) there exist some f such that 10 = m(f) < m0(f) = 11.

The above theorem shows that 9 is the upper limit of m(f) which satisfies

m(f) = m0(f). Moreover in [14] all quasihomogeneous polynomials with inner

modality ≤ 9 are classified. The following proposition is also shown there to

prove this theorem.

Proposition 3.2. For every quasihomogeneous polynomial f ,

if m(f) ≤ 9, then corank(f) ≤ 4.

According to the results of [14], if corank(f) = 2, then we have always

m(f) = m0(f) and if corank(f) = 4 and m(f) ≤ 9, then we have m(f) = m0(f)

and we have some examples of quasihomogeneous polynomials f with m(f) =

10 < m0(f) = 11. But in the case of corank(f) = 3 no upper bounds are indi-

cated there. In the case of corank = 3, what is the upper limit of numbers μ such

that m(f) ≤ μ implies m(f) = m0(f)? The following is an answer.

Theorem 3.3. Let f be a quasihomogeneous polynomial of corank = 3. Then

(1) if m(f) ≤ 14, then m(f) = m0(f),

(2) there exist some f such that 15 = m(f) < m0(f) = 16.

The above theorem shows the upper limit in the case corank = 3 is 14. A

proof of this theorem is given in §4.
By using this theorem, we obtain the list of all quasihomogeneous polynomials

of corank = 3 of inner modality = 10, 11, 12, 13 and 14. In the following theorem,

the classification is done up to right-equivalence, where f, g : (C3, O) → (C, O)

are right-equivalent if there exist a local biholomorphism φ : (C3, O) → (C3, O)

such that f = g ◦ φ.
Theorem 3.4. In the tables below, x, y and z are variables and p, q, r, s, t, u

and v are parameters.

(1) Residual parts of quasihomogeneous polynomials of corank = 3 with inner

modality = 10 are equivalent to one of the following polynomials:

Type Normal Form(
1;

1

11
,
1

3
,
1

3

)
z3 + y3 + x11

(
1;

1

15
,
4

15
,
7

15

)
z2x+ y2z + x15 + sx8z + tx11y



176 M. Suzuki

(
1;

3

49
,
13

49
,
23

49

)
z2x+ y2z + x12y

(
1;

1

16
,
17

64
,
15

32

)
z2x+ y2z + x16

(
1;

2

21
,
1

3
,
1

3

)
z3 + y3 + x7z + tz2y

(
1;

1

31
,
1

3
,
15

31

)
z2x+ y3 + x31

(
1;

1

30
,
1

3
,
29

60

)
z2x+ y3 + x30 + tx10y2

(
1;

2

63
,
1

3
,
61

126

)
z2x+ y3 + x21y

(
1;

1

4
,
1

4
,
1

4

)
z4 + y4 + x4 + pxz2y

+qxy2z + rx2yz + sx2z2 + ty2z2 + ux2y2(
1;

1

9
,
8

27
,
1

3

)
z3 + y3x+ x9 + tx3z2

(
1;

1

32
,
1

3
,
31

64

)
z2x+ y3 + x32

(
1;

1

7
,
1

4
,
1

3

)
z3 + y4 + x7

(
1;

1

14
,
1

4
,
13

28

)
z2x+ y4 + x14 + tx7y2

(
1;

1

15
,
1

4
,
7

15

)
z2x+ y4 + x15

(
1;

3

44
,
1

4
,
41

88

)
z2x+ y4 + x11y

(
1;

1

5
,
1

4
,
4

15

)
z3x+ y4 + x5

(
1;

1

9
,
1

5
,
4

9

)
z2x+ y5 + x9

(
1;

4

35
,
1

5
,
31

70

)
z2x+ y5 + x7y

(
1;

1

5
,
11

45
,
4

15

)
z3x+ y3z + x5
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(2) Residual parts of quasihomogeneous polynomials of corank = 3 with inner

modality = 11 are equivalent to one of the following polynomials:

Type NormalForm(
1;

1

10
,
3

10
,
7

20

)
z2y + y3x+ x10 + sx3z2 + tx4y2

(
1;

1

11
,
10

33
,
23

66

)
z2y + y3x+ x11

(
1;

3

53
,
14

53
,
25

53

)
z2x+ y2z + x13y

(
1;

1

17
,
9

34
,
8

17

)
z2x+ y2z + x17 + tx8y2

(
1;

1

18
,
19

72
,
17

36

)
z2x+ y2z + x18

(
1;

4

43
,
13

43
,
15

43

)
z2y + y3x+ x7z

(
1;

5

41
,
9

41
,
16

41

)
z2y + y4x+ x5z

(
1;

6

41
,
7

41
,
17

41

)
z2y + y5x+ x4z

(
1;

5

43
,
8

43
,
19

43

)
z2x+ y3z + x7y

(
1;

1

33
,
1

3
,
16

33

)
z2x+ y3 + x33 + tx11y2

(
1;

1

35
,
1

3
,
17

35

)
z2x+ y3 + x35

(
1;

2

69
,
1

3
,
67

138

)
z2x+ y3 + x23y

(
1;

1

6
,
2

9
,
1

3

)
z3 + y3z + x6 + sx2z2 + tx2y3

(
1;

7

37
,
9

37
,
10

37

)
z3x+ y3z + x4y

(
1;

1

34
,
1

3
,
33

68

)
z2x+ y3 + x34

(
1;

7

45
,
2

9
,
1

3

)
z3 + y3z + x5y
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(
1;

1

8
,
1

4
,
3

8

)
z2y + y4 + x8 + qx2z2 + rx2y3 + sx3yz + tx4y2

(
1;

2

11
,
1

4
,
3

11

)
z3x+ y4 + x4z

(
1;

3

16
,
1

4
,
13

48

)
z3x+ y4 + x4y

(
1;

2

15
,
1

4
,
1

3

)
z3 + y4 + x5z

(
1;

1

5
,
1

4
,
1

4

)
z4 + y4 + x5 + ty2z2

(
1;

1

6
,
1

6
,
5

12

)
z2x+ y6 + x6 + py5x+ qx2y4 + rx3y3 + sx4y2

(
1;

1

7
,
1

6
,
3

7

)
z2x+ y6 + x7

(
1;

5

36
,
1

6
,
31

72

)
z2x+ y6 + x6y

(
1;

7

48
,
1

6
,
5

12

)
z2y + y6 + x4z

(
1;

1

7
,
6

35
,
29

70

)
z2y + y5x+ x7

(
1;

1

7
,
1

6
,
5

12

)
z2y + y6 + x7

(
1;

1

8
,
7

32
,
25

64

)
z2y + y4x+ x8

(
1;

1

8
,
3

16
,
7

16

)
z2x+ y3z + x8 + sx2y4 + tx5y2

(
1;

1

9
,
1

4
,
3

8

)
z2y + y4 + x9

(3) Residual parts of quasihomogeneous polynomials of corank = 3 with inner

modality = 12 are equivalent to one of the following polynomials:

Type NormalForm(
1;

1

9
,
5

27
,
4

9

)
z2x+ y3z + x9 + tx4y3

(
1;

1

10
,
3

10
,
1

3

)
z3 + y3x+ x10 + tx4y2



CLASSIFICATION OF QUASIHOMOGENEOUS POLYNOMIALS 179

(
1;

1

37
,
1

3
,
18

37

)
z2x+ y3 + x37

(
1;

1

36
,
1

3
,
35

72

)
z2x+ y3 + x36 + tx12y2

(
1;

2

75
,
1

3
,
73

150

)
z2x+ y3 + x25y

(
1;

2

21
,
19

63
,
1

3

)
z3 + y3x+ x7z

(
1;

1

38
,
1

3
,
37

76

)
z2x+ y3 + x38

(
1;

1

6
,
5

24
,
1

3

)
z3 + y4x+ x6 + tx2z2

(
1;

3

19
,
4

19
,
1

3

)
z3 + y4x+ x5y

(
1;

1

16
,
1

4
,
15

32

)
z2x+ y4 + x16 + sx4y3 + tx8y2

(
1;

1

17
,
1

4
,
8

17

)
z2x+ y4 + x17

(
1;

3

52
,
1

4
,
49

104

)
z2x+ y4 + x13y

(
1;

5

48
,
1

4
,
3

8

)
z2y + y4 + x6z

(
1;

1

8
,
1

5
,
2

5

)
z2y + y5 + x8

(4) Residual parts of quasihomogeneous polynomials of corank = 3 with inner

modality = 13 are equivalent to one of the following polynomials:

Type NormalForm(
1;

1

10
,
11

60
,
9

20

)
z2x+ y3z + x10

(
1;

1

10
,
1

4
,
3

8

)
z2y + y4 + x10 + tx5y2

(
1;

1

12
,
1

3
,
1

3

)
z3 + y3 + x12 + ryz2 + sx4z2 + tx4y2

(
1;

1

12
,
11

36
,
25

72

)
z2y + y3x+ x12
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(
1;

1

13
,
1

3
,
1

3

)
z3 + y3 + x13

(
1;

1

19
,
5

19
,
9

19

)
z2x+ y2z + x19 + sx5yz + tx9y2

(
1;

3

61
,
16

61
,
29

61

)
z2x+ y2z + x15y

(
1;

3

25
,
1

5
,
2

5

)
z2y + y5 + x5z + tx5y2

(
1;

4

49
,
15

49
,
17

49

)
z2y + y3x+ x8z

(
1;

5

49
,
9

49
,
22

49

)
z2x+ y3z + x8y

(
1;

1

20
,
21

80
,
19

40

)
z2x+ y2z + x20

(
1;

1

11
,
10

33
,
1

3

)
z3 + y3x+ x11 + tx4yz

(
1;

1

39
,
1

3
,
19

39

)
z2x+ y3 + x39 + tx13y2

(
1;

1

41
,
1

3
,
20

41

)
z2x+ y3 + x41

(
1;

2

81
,
1

3
,
79

162

)
z2x+ y3 + x27y

(
1;

3

16
,
1

4
,
1

4

)
z4 + y4 + x4z + sy2z2 + ty3z

(
1;

2

23
,
7

23
,
1

3

)
z3 + y3x+ x8y

(
1;

1

8
,
1

4
,
1

3

)
z3 + y4 + x8 + sx2y3 + tx4y2

(
1;

1

40
,
1

3
,
39

80

)
z2x+ y3 + x40

(
1;

4

25
,
1

5
,
1

3

)
z3 + y5 + x5y

(
1;

1

6
,
1

5
,
1

3

)
z3 + y5 + x6 + tx2z2

(
1;

1

19
,
1

4
,
9

19

)
z2x+ y4 + x19
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(
1;

1

18
,
1

4
,
17

36

)
z2x+ y4 + x18 + tx9y2

(
1;

3

56
,
1

4
,
53

112

)
z2x+ y4 + x14y

(
1;

1

6
,
1

4
,
5

18

)
z3x+ y4 + x6 + tx3y2

(
1;

1

10
,
1

5
,
9

20

)
z2x+ y5 + x10 + rx2y4 + sx4y3 + tx6y2

(
1;

1

11
,
1

5
,
5

11

)
z2x+ y5 + x11

(
1;

4

45
,
1

5
,
41

90

)
z2x+ y5 + x9y

(
1;

5

42
,
1

6
,
37

84

)
z2x+ y6 + x7y

(
1;

1

6
,
13

54
,
5

18

)
z3x+ y3z + x6

(
1;

1

8
,
1

6
,
7

16

)
z2x+ y6 + x8 + tx4y3

(
1;

1

7
,
2

9
,
1

3

)
z3 + y3z + x7

(5) Residual parts of quasihomogeneous polynomials of corank = 3 with inner

modality = 14 are equivalent to one of the following polynomials:

Type NormalForm(
1;

1

10
,
9

40
,
31

80

)
z2y + y4x+ x10

(
1;

1

14
,
1

3
,
1

3

)
z3 + y2z + x14

(
1;

3

65
,
17

65
,
31

65

)
z2x+ y2z + x16y

(
1;

1

21
,
11

42
,
10

21

)
z2x+ y2z + x21 + tx10y2

(
1;

2

27
,
1

3
,
1

3

)
z3 + y3 + x9z + tz2y

(
1;

5

49
,
11

49
,
19

49

)
z2y + y4x+ x6z
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(
1;

1

22
,
23

88
,
21

44

)
z2x+ y2z + x22

(
1;

1

12
,
11

36
,
1

3

)
z3 + y3x+ x12 + tx4z2

(
1;

1

43
,
1

3
,
21

43

)
z2x+ y3 + x43

(
1;

1

42
,
1

3
,
41

84

)
z2x+ y3 + x42 + tx14y2

(
1;

2

87
,
1

3
,
85

174

)
z2x+ y3 + x29y

(
1;

1

44
,
1

3
,
43

88

)
z2x+ y3 + x44

(
1;

1

7
,
3

14
,
1

3

)
z3 + y4x+ x7 + tx4y2

(
1;

3

20
,
1

4
,
17

60

)
z3x+ y4 + x5y

(
1;

1

9
,
2

9
,
7

18

)
z2y + y4x+ x9 + rx2z2 + sx3y3 + tx5y2

(
1;

1

12
,
1

5
,
11

24

)
z2x+ y5 + x12

(
1;

1

8
,
7

40
,
33

80

)
z2y + y5x+ x8

(
1;

1

9
,
1

5
,
2

5

)
z2y + y5 + x9

In the above tables, for each normal form ft with parameters there exist some

proper algebraic subset Δ of Cσ (σ = 1, 2, 3, 4, 5) such that ft has an isolated

singularity at the origin for any t ∈ Cσ −Δ.

The existence of Δ in the above theorem is guaranteed by Proposition 2.2 in

[11] (see also [7]). A proof of this theorem is given in the following section.

4. Proofs of Theorems

4.1 Estimation of exponents

In this subsection we consider quasihomogeneous polynomials of corank = 3

with isolated singularity at the origin. Quasihomogeneous polynomials of three

variables are covered by seven class (see Proposition 11.1 in [1] and [9]).
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Proposition 4.1. For every quasihomogeneous polynomial of corank = 3, its

residual part contains at least one of the seven systems of monomials with non-

zero coefficients in the following table with a suitable numbering of variables.

Class monomials r1 r2 r3

I xa, yb, zc 1
a

1
b

1
c (a, b, c ≥ 3)

II xa, yb, yzc 1
a

1
b

b−1
bc (a, b ≥ 3, c ≥ 2)

III xa, ybx, zcx 1
a

a−1
ab

a−1
ac (a ≥ 3, b, c ≥ 2)

IV xa, ybz, zcy 1
a

c−1
bc−1

b−1
bc−1 (a ≥ 3, b, c ≥ 2)

V xa, ybz, zcx 1
a

ac−a+1
abc

a−1
ac (a ≥ 3, b, c ≥ 2)

VI xay, ybx, zcx b−1
ab−1

a−1
ab−1

(a−1)b
(ab−1)c (a, b, c ≥ 2)

VII xay, ybz, zcx bc−c+1
abc+1

ac−a+1
abc+1

ab−b+1
abc+1 (a, b, c ≥ 2)

In order to classify quasihomogeneous polynomials f of corank = 3 with

m(f) ≤ 14, we have to know upper bounds of the exponents a, b, c of each set of

monomials in Proposition 4.1 which f contains with non-zero coefficients.

Lemma 4.2. For every quasihomogeneous polynomial f , if m(f) ≤ 14, then we

have a, b, c ≤ 195 for the exponents a, b, c in Proposition 4.1.

Proof. Let f be quasihomogeneous of type (1; r1, r2, r3) and let rmin =

min{r1, r2, r3}. We divide the proof into the following two cases.

Case 1. 14rmin > df − 1.

Let f be one of seven classes in Proposition 4.1. Then note that r1 ≤ 1
a ,

r2 ≤ 1
b , r3 ≤ 1

c for any class.

First we consider the case where two of a, b and c are greater than or

equal to 3. Suppose that r1 = rmin. Then by the assumption, we have

14r1 > df − 1 = 2− 2(r1 + r2 + r3). Hence for any k (k = 1, 2, 3)

16rk ≥ 16r1 > 2− 2(r2 + r3) ≥ 2− 2

(
1

b
+

1

c

)
≥ 2− 2

(
1

2
+

1

3

)
=

1

3
.

Hence 16
a , 16

b ,
16
c > 1

3 and thus a, b, c < 48. Also in the case where r2 or r3 is the

minimum of ri’s (i = 1, 2, 3), we obtain the same result similarly.

Next we consider the case where two of a, b and c are equal to 2. In this case

the class of f must be III, IV, V,VI or VII.

In the case where the class of f is III, we obtain b = c = 2 because a ≥ 3.

Hence 1
a = r1 ≤ r2 = r3 = a−1

2a . Suppose that r1 < r2 = r3. Then for any non
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negative integers m,n (m+ n ≥ 3)

mr2 + nr3 = (m+ n)r2 > 2r2 + r1 = 1.

It means that every term of f contains the variable x and f is reducible. But it

contradicts the assumption that f has an isolated singularity at the origin. Thus

r1 = r2 = r3 = 1
3 from 2r2 + r1 = 2r3 + r1 = 1. Hence we have a = 3.

In the case where the class of f is IV, we obtain b = c = 2 because a ≥ 3.

Hence 1
a = r1 ≤ r2 = r3 = 1

3 . Then by the assumption 14r1 > 2− 2(r1 + r2 + r3)

we have

16

a
≥ 16r1 ≥ 2− 2(r2 + r3) ≥ 2− 2

(
1

3
+

1

3

)
=

2

3
.

Hence a < 24.

In the case where the class of f is V, we obtain b = c = 2 because a ≥ 3 and

thus 1
a = r1 ≤ r2 = a+1

4a ≤ r3 = a−1
2a . Then 14r1 > 2− 2(r1 + r2 + r3). Hence

16

a
≥ 16r1 > 2− 2(r2 + r3) = 2− 2× 3a− 1

4a
> 2− 2× 3

4
=

1

2
.

Thus a < 32.

In the case where the class of f is VI, first we consider the case a = b = 2.

Then 2
3c = r3 ≤ r1 = r2 = 1

3 and 14r3 > 2− 2(r1 + r2 + r3). Hence

32

3c
= 16r3 > 2− 2(r1 + r2) = 2− 2× 2

3
=

2

3
.

It follows that c < 16. Next we consider the case b = c = 2 and then
1

2a−1 = r1 ≤ r2 = r3 = a−1
2a−1 . If r1 < r2 = r3, then for any non negative

integer m,n (m+ n ≥ 3)

mr2 + nr3 = (m+ n)r2 > 2r2 + r1 = 1.

It means that every term of f contains the variable x and f is reducible. But it

contradicts the assumption that f has an isolated singularity at the origin. Thus

r1 = r2 = r3 = 1
3 because 2r2 + r1 = 2r3 + r1 = 1. Hence a = 3. Finally we

consider the case c = a = 2 and then 1
2b−1 = r2 ≤ r3 = b

2(2b−1) ≤ r1 = b−1
2b−1 .

Then 14r2 > 2− 2(r1 + r2 + r3) and thus

16

b
≥ 16r2 > 2− 2(r1 + r3) = 2− 2× 3b− 2

4b− 2
> 2− 2× 3

4
=

1

2
.

Hence b < 32.

In the case where the class of f is VII, because of the symmetry of x, y, z, it

is enough to consider the case b = c = 2. If a ≥ 3, 3
4a+1 = r1 ≤ r2 = a+1

4a+1 ≤ r3 =
2a−1
4a+1 . Then 14r1 > 2− 2(r1 + r2 + r3) and thus
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16

a
≥ 16r1 > 2− 2(r2 + r3) = 2− 2× 3a

4a+ 1
> 2− 2× 3

4
=

1

2
.

Hence a < 32.

Therefore we have a, b, c ≤ 32 for any class.

Next we consider the other case.

Case 2. 14rmin ≤ df − 1.

First we consider the case where rmin = r1 ≤ r2 ≤ r3. Then we have

gdeg(1), gdeg(x1), gdeg(x2
1), . . . , gdeg(x14

1 ) ≤ df − 1.

Hence if M := {1, x1, x
2
1, . . . , x

14
1 } is linearly independent over C in Rf , then

m(f) ≥ 15. But it contradicts the hypothesis and thus M is linearly de-

pendent. Then there exist some scalars λ0, . . . , λ14, not all zero, such that

λ0 · 1 + λ1x1 + λ2x
2
1 + · · ·+ λ14x

14
1 ∈ Δ(f), Since

gdeg

(
∂f

∂x3

)
= 1− r3 >

1

2
> r1 = gdeg(x1)

we have λ0 = λ1 = 0. If λ2, . . . , λ13 or λ14 are not zero, then f contains the

monomial xl
1xi with non-zero coefficient for some integer l (2 ≤ l ≤ 14) and some

i (i = 1, 2, 3). Thus lr1 + ri = 1 and

(l + 1)r3 ≥ lr1 + ri = 1, r3 ≥ 1

l + 1
.

On the other hand, by Proposition 4.1 f contains the monomial xm
3 xj with non-

zero coefficient for some integer m (2 ≤ m) and some j (j = 1, 2, 3). Thus we

have mr3 + rj = 1. Then

lr1 = 1− ri ≥ 1− r3 = (m− 1)r3 + rj ≥ (m− 1)r3 + r1.

Thus for any p (p = 1, 2, 3)

(l − 1)rp ≥ (l − 1)r1 ≥ (m− 1)r3 ≥ m− 1

l + 1
.

Therefore we have

a, b, c ≤ (l − 1)(l + 1)

m− 1
≤ (14− 1)(14 + 1)

2− 1
= 195.

Similarly we obtain the same result regardless of the order of the weights r1, r2,

r3. This completes the proof of the lemma.

4.2 Proofs of Theorem 3.3 (1) and Theorem 3.4

In this subsection, we give proofs of Theorem 3.3 (1) and Theorem 3.4 by
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using a computer. Before proofs of them we prepare the following propositions

in order to increase the efficiency of calculations by a computer.

Let f be a quasihomogeneous polynomial of type (1; r1, r2, r3) (0 < r1 ≤ r2 ≤
r3 < 1

2 ) with isolated singularity at the origin.

Proposition 4.3. For any setM of monomials in C[x1, x2, x3],

m(f) ≥ �{m| gdeg(m) ≤ df − 1, gdeg(m) < 1− r3,m ∈M}.

Proof. It follows easily that the set

{m| gdeg(m) ≤ df − 1, gdeg(m) < 1− r3,m ∈M}

is linearly independent in Rf because

1− r3 = gdeg

(
∂f

∂x3

)
≤ gdeg

(
∂f

∂x2

)
≤ gdeg

(
∂f

∂x1

)
.

Hence we have the conclusion.

In order to calculate the arithmetic inner modality m0(f) (≤ 14) in the

case corank = 3 by using a computer we need to find out a finite subset N of

monomials in C[x1, x2, x3] of a suitable size which satisfies

�{m| gdeg(m) ≤ df − 1 m ∈ N}
{

= m0(f) (m0(f) ≤ 14)

> 14 (otherwise).

For this purpose the following diagram of magnitude correlation of generalized

degrees of monomials is helpful.

0

3r１ 4r１ 5r１ 6r１ 7r１

r
1
+r

2
2r
1
+r

2
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+r

2
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+r

2

r
1
+r

3 2r
1
+r

3

2r１r１

r
2

r
3

2r
2

5r
1
+r

2

r
1
+2r

2

r
2
+r

3

2r
1
+2r

2

3r
1
+r

3

r
1
+r

2
+r

3 2r
1
+r

2
+r

3

2r
3

3r2 r
1
+3r2

3r
1
+2r

2

2r
2
+r

3

4r
1
+r

3

r
1
+2r

3

14r１

6r
1
+r

2

15r１

2r
1
+3r

2

4r
2

7r
1
+r

2

8r１

4r
1
+2r

2

3r
1
+r

2
+r

3

r
1
+2r

2
+r

3

5r
1
+r

2

5r
1
+2r

2

6r
1
+r

2

r
1
+4r2

3r
2
+r

3

Figure 1
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where a ←− b means a ≤ b. Let N3 be the sets of the monomials of variables

“x1, x2, x3” which have the generalized degrees surrounded by boxes in Figure 1

and let B3 be the sets of the monomials of variables “x1, x2, x3” which have the

generalized degrees surrounded by ovals in Figure 1. Then N3 is the subset N
we are looking for.

Proposition 4.4. We have

�{m| gdeg(m) ≤ df − 1,m ∈ N3}
{

= m0(f) (m0(f) ≤ 14)

> 14 (otherwise).

Proof. First, note that if all the monomials m ∈ C[x1, x2, x3] with gdeg(m) ≤
df − 1 belong to N3, then we have

�{m| gdeg(m) ≤ df − 1,m ∈ N3} = m0(f).

Now suppose that there exists some monomial m ∈ C[x1, x2, x3] such that

gdeg(m) ≤ df − 1 and m 
∈ N3. Then from Figure 1 it follows that there ex-

ist monomials 1,m1, . . . ,mp, n (p ≥ 14) (1,m1, . . . ,mp ∈ N3, n ∈ B3) such that

gdeg(1), gdeg(m1), · · · , gdeg(mp) ≤ gdeg(n) ≤ gdeg(m) ≤ df − 1.

Thus we have

m0(f) ≥ �{m| gdeg(m) ≤ df − 1,m ∈ N3} > 14.

Hence if m0(f) ≤ 14, there is no such m and we have

�{m| gdeg(m) ≤ df − 1,m ∈ N3} = m0(f).

And if m0(f) > 14, regardless of existence or nonexistence of such m, from the

above arguments, we have

�{m| gdeg(m) ≤ df − 1,m ∈ N3} > 14.

This completes the proof.

A proof of Theorem 3.3 (1) and Theorem 3.4.

We classify quasihomogeneous polynomials of corank = 3 with inner modal-

ity = 10, 11, 12, 13 and 14. By calculation with a computer we prove that if

m(f) ≤ 14 then m(f) = m0(f). And also by calculation we perform the clas-

sification of quasihomogeneous polynomials of corank = 3 with inner modality

= 10, 11, 12, 13 and 14. More precisely the classification is performed as fol-

lows. We know that quasihomogenous polynomials f of three variables contain

at least one of the seven sets of monomials with non-zero coefficients in the ta-

ble of Proposition 4.1. If m(f) ≤ 14, then by Lemma 4.2 we also know upper
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bounds of exponents a, b, c of such monomials. For any a, b, c within the range,

if m(f) ≤ 14, by calculation with a computer, we can verify that m(f) = m0(f)

without exception. And also by calculation, we can obtain all quasihomogeneous

polynomials of corank = 3 with m(f) = 10, 11, 12, 13 and 14. We draw a proce-

dure to perform these calculations in two flowcharts Figure 2 and Figure 3 below

(see also Appendix in the last section for an example code). In the main process

of the flowchart (Figure 3), the following decision procedure based on Proposition

4.4 plays a very important role.

connection 0

Define r1 , r2 , r3 (r1 ≤ r2 ≤ r3 )
n ← # m gdeg(m) ≤ df − 1, gdeg(m) < 1− r3 , m ∈ N3

n ≤ 14

yes

no

We have to calculate 1953 = 7414875 cases to perform our purpose, which

it is a very heavy job even for a computer. Especially it is difficult to calculate

χf (z) for a large data within a reasonable time. However by the above procedure

necessary calculations are reduced to less than 100 cases from 7414875 cases for

each class in Proposition 4.1.

The part of “Main Process” in the above flowchart is as follows. Here we

should note that Theorem 2.2 doesn’t guarantee that χf (z) is a polynomial “only

if” f has an isolated singularity at the origin. Since we just merely check whether

χf (z) is a polynomial in the flowchart above mentioned, it is not guaranteed that f

obtained as a result of calculation has an isolated singularity at the origin. Hence

it is necessary to remove quasihomogeneous polynomials which have non-isolated

singularities around the origin from the calculation result. But we see that all the

quasihomogeneous polynomials which we get as a result of the calculations have

an isolated singularity at the origin. Hence we have all the weights of quasiho-

mogeneous polynomials of corank = 3 with inner modality = 10, 11, 12, 13, and

14. According to the weights we determine quasihomogeneous polynomials up

to right-equivalence and we have the table in Theorem 3.4. This completes the

proof of Theorem 3.3 (1) and Theorem 3.4.

4.3 Calculation example of a quasihomogeneous polynomial of one

type

We explain a process to determine a polynomial of one type from a calculation

results of a computer by an example. In the case corank(f) = 3 and m0(f) = 13,
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start

a ←, min, max ; +1
loop A

b ←, min, max ; +1
loop B

c ←, min, max ; +1
loop C

connection 0

Main Process

connection 1

Loop C

Loop B

loop A

end

Figure 2 Flowchart

we have the type
(
1; 1

12 ,
1
3 ,

1
3

)
as the calculation result. For this type, there are

10 monomials with generalized degree = 1:

z3, y3, x12, z2y, x4z2, x4y2, y2z, x4yz, x8z, x8y.

Hence the quasihomogeneous polynomial of this type is given by the following:

f(x, y, z) = Az3 +By3 + Cx12 +Dz2y + Ex4z2 + Fx4y2 +Gy2z

+Hx4yz + Ix8z + Jx8y.

Then by the local coordinate transformation

x = ax, y = by + cz + dx4, z = ez + fy + gx4 abe 
= 0,

we can reduce f to A = B = C = 1, G = H = I = J = 0 and as a quasihomoge-

neous polynomial corresponding to the type
(
1; 1

12 ,
1
3 ,

1
3

)
we obtain

fr,s,t(x, y, z) = z3 + y3 + x12 + rz2y + sx4z2 + tx4y2.
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connection 0

Define r1 , r2 , r3 (r1 ≤ r2 ≤ r3 );
n ← # gdeg( ) ≤ df − 1, gdeg( ) < 1 − r3 , ∈ N3

n ≤ 14

1 − r3 > df − 1

m0 (f ) ← n

Print r1 , r2 , r3 ;
Print m0 (f );

m0 (f ) gdeg( ) ≤ df − 1, ∈ [x1 , x2 , x3 ] ;
Calculate χf (z), m(f );

m(f ) < m 0 (f )

Print r1 , r2 , r3 ;
Print m(f ), m0 (f );

connection 1

yes

yes
no

yes

no

no

Figure 3 Flowchart for Main Process

When r = s = t = 0, we can see easily that f0,0,0 = z3 + y3 + x12 has an isolated

singularity at the origin. Thus fr,s,t is a normal form of the type
(
1; 1

12 ,
1
3 ,

1
3

)
with inner modality = 13. From Proposition 2.2 in [11] (see also [7]), we know

the existence of a proper algebraic subvariety Δ of C3 such that fr,s,t has an

isolated singularity at the origin for any (r, s, t) ∈ C3 − Δ. Here we will try to

find Δ concretely. The algebraic variety Δ of C3 is the set of (r, s, t) for which

the equations of x, y, z

∂fr,s,t
∂x

= 12x11 + 4tx3y2 + 4sx3z2 = 0,

∂fr,s,t
∂y

= 2tx4y + 3y2 + rz2 = 0,

∂fr,s,t
∂z

= 2sx4z + 2ryz + 3z2 = 0

have non-trivial solutions. If z = 0, then x = y = 0 and thus we may sup-

pose z 
= 0. From the equation
∂fr,s,t

∂z = 0, we have z = − 2
3 (sx

4 + ry) and by
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substituting it for the first and the second 2 equations, we have

∂fr,s,t
∂x

= 12x11 + 4tx3y2 +
16

9
sx3(sx4 + ry)2 = 0,

∂fr,s,t
∂y

= 2tx4y + 3y2 +
4

9
r(sx4 + ry)2 = 0.

Now we consider the branched covering ρ : C2 −→ C2, ρ(x, y) = (x, y4). Then

∂fr,s,t
∂x

◦ ρ(x, y) =

(
12 +

16

9
s3
)
x11 +

32

9
rs2x7y4 +

(
16

9
r2s+ 4t

)
x3y8 = 0,

∂fr,s,t
∂y

◦ ρ(x, y) =
4

9
rs2x8 +

(
8

9
r2s+ 2t

)
x4y4 +

(
3 +

4

9
r3
)
y8 = 0.

If x = 0 then we have y = z = 0 and we may assume that x 
= 0. We have

the following equations by dividing the both sides of two equations by x11, x8

respectively.

(
12 +

16

9
s3
)
+

32

9
rs2

(y
x

)4

+

(
16

9
r2s+ 4t

)(y
x

)8

= 0,

4

9
rs2 +

(
8

9
r2s+ 2t

)(y
x

)4

+

(
3 +

4

9
r3
)(y

x

)8

= 0.

Let h, g be the left-hand side polynomials of
(y
x

)
in the above equations respec-

tively. Then the condition of r, s, t for these equations of y
x to have common

solutions is given by the resultant of h, g as follows.

Res(h, g) =

1

1853020188851841
(8503056 + 2519424r3 + 186624r6 + 2519424s3−

373248r3s3 + 186624s6 − 2519424rs2t+ 373248r4s2t− 373248rs5t+

1679616r2st2 + 186624r2s4t2 + 1259712t3 + 186624s3t3)4 = 0

and it is the defining function of Δ.

In this way we obtain the tables of the quasihomogeneous polynomials in

Theorem 3.3. This completes the proof of Theorem 3.3.

4.4 Proof of Theorem 3.3 (2)

A proof of Theorem 3.3 (2) is given by the following examples (see [13]).

Example 4.5. The first example is f(x, y, z) = yz2 + y6 + x8. Then f is quasi-

homogeneous of type

(
1;

1

8
,
1

6
,
5

12

)
with isolated singularity at the origin and

m(f) = 15, m0(f) = 16.
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Note that df − 1 = 7
12 and

(
1; 1

8 ,
1
6 ,

5
12

)
=

(
1; 3

24 ,
4
24 ,

10
24

)
. Since 1− r3 = 7

12 =

df − 1 we have m(f) < m0(f) by Proposition 2.3. We will calculate m0(f), m(f)

actually.

In order to find monomials of x, y and z which has generalized degree ≤ df−1,
we use the following diagram which shows magnitude correlation of the general-

ized degrees of them.
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Figure 4

where the part enclosed with the square denotes the generalized degree that is

less than or equal to df − 1 =
7

12
. LetM be the set of monomials

1, x, y, z, x2, x3, x4, xy, x2y, x3y, y2, xy2, x2y2, y3, xz, yz.

Then M is the biggest set containing monomials with gdeg ≤ df − 1 and thus

m0(f) = 16.

On the other hand

Δ(f) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (x7, z2 + 6y5, yz),

and also

gdeg

(
∂f

∂x

)
=

21

24
, gdeg

(
∂f

∂y

)
=

20

24
, gdeg

(
∂f

∂z

)
=

14

24
.

The set M is linearly dependent in Rf since yz = 1
2
∂f
∂z = 0 in Rf . Let λi
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(i = 0, . . . , 9) be complex numbers such that

λ01 + λ1x+ λ2y + λ3z + λ4x
2 + λ5x

3 + λ6x
4 + λ7xy + λ8x

2y + λ9x
3y

+ λ10y
2 + λ11xy

2 + λ12x
2y2 + λ13y

3 + λ14xz ∈ Δ(f).

Then there exist some a, b, c ∈ C[x, y, z] such that

λ01 + λ1x+ λ2y + λ3z + λ4x
2 + λ5x

3

+ λ6x
4 + λ7xy + λ8x

2y + λ9x
3y

+ λ10y
2 + λ11xy

2 + λ12x
2y2

+ λ13y
3 + λ14xz = a

∂f

∂x
+ b

∂f

∂y
+ c

∂f

∂z
.

Since the generalized order of the right hand side is greater than or equal to 14
24

we have λ0 = · · · = λ14 = 0. Hence

{1, x, y, z, x2, x3, x4, xy, x2y, x3y, y2, xy2, x2y2, y3, xz}
is linearly independent in Rf and thus m(f) = 15.

Example 4.6. The second example is f(x, y, z) = xz2 + y6 + x9. Then f is

quasihomogeneous of type

(
1;

1

9
,
1

6
,
4

9

)
with isolated singularity at the origin and

m(f) = 15, m0(f) = 16.

The diagram of magnitude correlation of the generalized degrees of monomi-

als is as follows:

0

3r１ 4r１ 5r１ 6r１ 7r１

r
1
+r

2
2r
1
+r

2
3r
1
+r

2
4r
1
+r

2

r
1
+r

3
2r
1
+r

3

2r１r１

r
2

r
3

2r
2

5r
1
+r

2

r
1
+2r

2

r
2
+r

3

2r
1
+2r

2

3r
1
+r

3

r
1
+r

2
+r

3 2r
1
+r

2
+r

3

2r
3

3r2 r
1
+3r2

3r
1
+2r

2

2r
2
+r

3

Figure 5
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where the part enclosed with the square denotes the generalized degree that is

less than or equal to df − 1 =
5

9
. By the same way as the first example we have

m(f) = 15 and m0(f) = 16.

Example 4.7. The third example is f(x, y, z) = xz2 + y6 + x8y. Then f is

quasihomogeneous of type (1;
5

48
,
1

6
,
43

96
) with isolated singularity at the origin

and m(f) = 15, m0(f) = 16.

We have df − 1 =
9

16
. The diagram of magnitude correlation of the gener-

alized degrees of monomials is the same as the one in the previous example. By

the same way as the first example we have m(f) = 15 and m0(f) = 16.
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Appendix: Example of a program code for corank=3 and type I

The following program is written in Mathematica.

(* Var3-type01 *)
Do[

sol=Solve[{a x==1,b y==1,c z==1},{x,y,z}];
weights=Sort[{x/.sol[[1]],y/.sol[[1]],z/.sol[[1]]}];
r1=weights[[1]];r2=weights[[2]];r3=weights[[3]];
d=3-2*(r1+r2+r3);
{q1,q2,q3}={Denominator[r1],Denominator[r2],Denominator[r3]};
{p1,p2,p3}={Numerator[r1],Numerator[r2],Numerator[r3]};
Q=LCM[q1,q2,q3];
{A1,A2,A3}={p1*Quotient[Q,q1],p2*Quotient[Q,q2],p3*Quotient[Q,q3]};
N3={0,r1,r2,r3,2r1,3r1,4r1,5r1,6r1,7r1,8r1,9r1,10r1,11r1,12r1,13r1,14r1

,r1+r2,2r1+r2,3r1+r2,4r1+r2,5r1+r2,6r1+r2
,2r2,r1+2r2,2r1+2r2, 3r1+2r2
,3r2,r1+3r2
,4r2
,r1+r3,2r1+r3,3r1+r3,4r1+r3
,r2+r3,r1+r2+r3
,2r3};

NN=Length[Select[N3, # <= d-1 && # <1-r3 &]];

If[ NN<=14,
CC=CC+1;
CPN=Expand[(z^{Q-A1}-1)(z^{Q-A2}-1)(z^{Q-A3}-1)];
CPD=Expand[(z^{A1}-1)(z^{A2}-1)(z^{A3}-1)];
CP=PolynomialQuotientRemainder[CPN[[1]],CPD[[1]],z];

If[1-r3>d-1,
If[CP[[2]]==0,

AIM=NN;
Print["Corank =3"];
Print["Inner Modality = Arithmetic Inner Modality"];
Print["Inner Modality=",AIM];
Print["Weights=",TeXForm[{r1,r2,r3}]];
EXP={ToRules[Reduce[x r1+y r2+z r3==1&&x>=0&&y>=0 && z>=0 ,{x,y,z},Integers]]};
L=Length[EXP];
Print["Number of terms = ",L];
Do[M=x^{x/.EXP[[i]]}y^{y/.EXP[[i]]}z^{z/.EXP[[i]]};

Print[TeXForm[M[[1]]]],{i,L}
];

Print[";"];
];,

AIM =Length[{ToRules[Reduce[(2+x) A1+(2+y) A2+(2+z) A3-2 Q<=0 && x>=0
&& y>=0 && z>=0 ,{x,y,z},Integers]]}];

If[CP[[2]]==0,
CF=Take[CoefficientList[CP[[1]],z],(d-1) Q+1];
IM=Sum[CF[[i]],{i,1,(d-1) Q+1}];;

If[IM <= 14 && IM < AIM,
Print["Corank=3"];
Print["Inner Modality < Arithmetic Inner Modality"];
Print["Arithmetic Inner Modality=",AIM];
Print["Inner Modality=",IM];
Print["Weights=",TeXForm[{r1,r2,r3}]];
Print[";"];

];
];

];
];

,{a,3,195},{b,3,195},{c,3,195}
]
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