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Abstract

In the early eighties T.-C. Kuo introduced the blow-analytic equivalence in

order to obtain a classification of real analytic function germs with no continuous

moduli.

This new notion has been subsequently extensively investigated. In particular it

led to the blow-Nash equivalence of G. Fichou and more recently to the arc-analytic

equivalence. These notions may be seen as algebraic versions of the blow-analytic

equivalence in order to classify Nash function germs with no continuous moduli.

This survey aims to give a self-contained introduction to this topic. It focuses

on the construction of invariants of the above cited relations. In order to introduce

some of these invariants, it is necessary to briefly recall some notions of motivic

integration.

0. Introduction

The Whitney family

ft(x, y) = xy(y − x)(y − tx), t ∈ (0, 1)

highlights the fact that the C1-equivalence has moduli even for isolated singu-

larities. This led T.-C. Kuo to introduce in the early eighties a new notion in

order to classify real analytic function germs which are singular. The purpose of

the first section of this survey is to introduce this notion called the blow-analytic

equivalence. In particular we present some results showing that the blow-analytic

equivalence behaves well with isolated singularities: it has no continuous moduli

for such singularities.

The blow-analytic equivalence involves the notion of blow-analytic maps.

One may show that these maps send real analytic arcs to real analytic arcs by

composition. The second section of this survey is devoted to such maps, called

arc-analytic maps. It is a notion introduced by K. Kurdyka. The close rela-

tion between blow-analyticity and arc-analyticity led T. Fukui to construct an

invariant of the blow-analytic equivalence from which one may derive that the

multiplicity is also an invariant.
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Then S. Koike and A. Parusiński continued in this direction by borrowing ar-

guments coming from motivic integration in order to construct new invariants of

the blow-analytic equivalence. The previous invariants, together with the Fukui

ones, allowed them to classify entirely Brieskorn polynomials of two variables up

to the blow-analytic equivalence. One main point of motivic integration consists

in defining a measure on the space of arcs of an algebraic variety and hence the

link with arc-analyticity led naturally to focus on this theory. The third section

of this survey briefly introduces motivic integration in the non-singular case and

the fourth section presents the invariants of S. Koike and A. Parusiński.

The motivic measure lies in a Grothendieck group which encodes all additive

invariants of algebraic varieties. In order to construct their invariants, S. Koike

and A. Parusiński realized this motivic measure through the Euler characteristic

with compact support. Then G. Fichou brought a richer structure thanks to

the virtual Poincaré polynomial, an additive invariant which encodes more infor-

mation than the Euler characteristic with compact support. It is presented in

section 5. For technical reasons G. Fichou had to restrict to Nash function germs

(i.e. real analytic function germs with semialgebraic graphs) and to define the

blow-Nash equivalence which is an algebraic version of the blow-analytic equiva-

lence with no continuous moduli for Nash germs with isolated singularities. The

sixth section is devoted to the blow-Nash equivalence and to the invariants in-

troduced by G. Fichou. Thanks to these invariants, G. Fichou classified entirely

Brieskorn polynomials in three variables up to the blow-Nash equivalence. More

recently G. Fichou and T. Fukui used these invariants to prove that the weights

of a non-degenerate (with respect to its Newton polyhedron) convenient weighted

homogeneous polynomial is determined by its blow-Nash class.

Initially it was not obvious that the blow-Nash equivalence was an equivalence

relation. The last section focuses on a characterization of the blow-Nash equiva-

lence in terms of arc-analytic maps. This new definition, called the arc-analytic

equivalence, allows one to prove that the blow-Nash equivalence is an equiva-

lence relation as expected. A recent preprint by A. Parusiński and L. Paunescu

announces that the arc-analytic equivalence admits no continuous moduli even

for families of non-isolated singularities. We also present a motivic invariant of

the arc-analytic equivalence which is based on an adaptation of a Grothendieck

group defined by G. Guibert, F. Loeser and M. Merle. This invariant encodes

the previous invariants of T. Fukui, of S. Koike and A. Parusiński and of G. Fi-

chou. Moreover it has a convolution formula which allows one to show that the

arc-analytic class of a Brieskorn polynomial determines its exponents.

1. The blow-analytic equivalence

The blow-analytic equivalence was introduced in the early eighties by T.-C.

Kuo [51], [54], [52], [53] in order to get a classification of real analytic singularities
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with no moduli.

This new notion was necessary since the C0-equivalence is too naive whereas

the C1-equivalence is already too fine to get a classification with no moduli for a

family of isolated singularities. These phenomena are highlighted in the following

examples.

In addition to the cited articles throughout this section, we refer the reader

to the surveys [35] and [37] concerning the blow-analytic equivalence.

Definition 1.1. Let f, g : (Rd, 0) → (R, 0) be two real analytic function germs.

We say that f and g are Ck-equivalent if there exists h : (Rd, 0) → (Rd, 0) a

Ck-diffeomorphism such that f = gh (Here gh denotes the composition of g and

h).

Example 1.2. Let f(x, y) = x3 − y2, whose zero set is a cusp. Then f is

C0-equivalent to g(x, y) = x which is non-singular.

Example 1.3 ([73, Example 13.1]). We consider the Whitney family

ft : (R2, 0)→ (R, 0), t ∈ (0, 1)

defined by

ft(x, y) = xy(y − x)(y − tx)

Then ft and ft′ are C1-equivalent if and only if t = t′.

Let F : R2 × I → R be defined by F (x, y, t) = xy(y − x)(y − tx) where

I = (0, 1). We denote by π : M → R2 the blowing-up of R2 at the origin, and

by Π : M × I → R2 × I the induced projection, Π(p, t) = (π(p), t). Suppose that

Φ : U1 → U2 is a real analytic isomorphism between two open neighborhoods

of π−1(0) × I in M × I. Suppose, moreover, that π−1(0) × I is invariant by Φ

and that, for all (p, t) ∈ U1, prI Φ(p, t) = t. Then Φ induces a homeomorphism

ϕ : V1 → V2 between two open neighborhoods Vi = Π(Ui), i = 1, 2, of {0} × I in

R2 × I that satisfies prI ϕ(p, t) = t, for all (p, t) ∈ V1, and ϕ(0, t) = (0, t), for all

t ∈ I.

T.-C. Kuo noticed in [52] that there exists such a Φ with the additional

property that is F (ϕ(p, t)) is independent of t.

The concept of blow-analytic equivalence generalizes the previous observa-

tion. But, before defining it, we need to introduce the following notions.

Definition 1.4 ([74]). A complexification of an n-dimensional real analytic man-

ifold M is given by an n-dimensional complex analytic manifold MC and a real

analytic isomorphism ϕ from M to a real analytic submanifold of MC such that,

for every x ∈MC, there is an open neighborhood UC of x, an open subset U ′ of

Cn and a complex analytic isomorphism ψ : UC → U ′ mapping ϕ(M) ∩ UC to

Rn ∩ U ′.
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Proposition 1.5 ([74, Proposition 1]). A real analytic manifold M admits a

complexification. Moreover, if (MC
1 , ϕ1) and (MC

2 , ϕ2) are two complexifications

of M , then there exist an open neighborhood U1 of ϕ1(M), an open neighbor-

hood U2 of ϕ2(M) and a complex analytic isomorphism ψ : U1 → U2 such that

ψ(x) = ϕ2ϕ
−1
1 (x) for every x ∈ ϕ1(M).

Let μ : M → N be a proper real analytic map between two real analytic

manifolds. Then μ extends to a complex analytic map μC : U(M) → U(N)

where U(M) (resp. U(N)) is an open neighborhood in a complexification of M

(resp. N). From the previous proposition, we deduce that the complexification

μC of μ is unique as a germ at M up to a complex analytic isomorphism.

Definition 1.6 ([53]). Let μ : M → N be a proper and surjective real analytic

map between two real analytic manifolds. We say that μ is a real modification if

there exists a complexification μC : U(M) → U(N) that is proper and bimero-

morphic.

Remark 1.7. Some authors (e.g. [37]) don’t assume that μC is proper in the

previous definition. We add this assumption, as in [53], in order to work with

global blowings-up (instead of local ones) in Lemma 1.11.

Example 1.8. Notice that μ(x) = x3 is not a real modification.

Definition 1.9 ([53]). A map f : M → N between real analytic manifolds

is blow-analytic� if there exists a real modification μ : M̃ → M such that

fμ : M̃ → N is real analytic.

We can define the blowing-up of a real analytic manifold along a closed

submanifold using local coordinates. It consists in locally straightening the sub-

manifold in order to use the classical definition of the blowing-up of the Euclidean

space at the origin.

Let M be a real analytic manifold and C a closed submanifold of M . Up to

real analytic isomorphism over M , there exists a unique proper map π : M̃ →M

with M̃ a real analytic manifold and such that :

1. The restriction π|M\C : M̃ \ π−1(C)→M \ C is an isomorphism.

2. Let U be a local coordinate chart given by ϕ : U → V ×W , where V ⊂ Rm

and W ⊂ Rd−m are open neighborhoods of their respective origin such

that ϕ(C ∩ U) = {0} ×W . Let π0 : Ṽ → V be the blowing-up of V at the

origin. Then there is an isomorphism ϕ̃ : π−1(U)→ Ṽ ×W such that the

following diagram commutes

� The origin of the name seems to come from the fact that the modifications originally consid-
ered in [52] were just blowings-up.
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π−1(U)
ϕ̃ ��

π

��

Ṽ ×W
(π0,idW )

��
U

ϕ
�� V ×W .

Definition 1.10. We say that π : M̃ →M is the blowing-up of M along C.

Lemma 1.11 (A real version of Chow-Hironaka lemma [45, Corollary 2]). Let

μ : M → N be a real modification. Then there exists a real analytic manifold M̃

and a real analytic map Ψ : M̃ → M such that ψ = μΨ : M̃ → N is a locally

finite sequence of blowings-up along non-singular centers.

The following proposition is a direct consequence of the previous lemma.

Proposition 1.12 ([53]). A map f : M → N between two real analytic manifolds

is blow-analytic if and only if there is a locally finite sequence of blowings-up with

non-singular centers σ : M̃ →M such that fσ : M̃ → N is real analytic.

Example 1.13 ([53]). The function defined by f(x, y) = x2y
x2+y2 and f(0, 0) = 0 is

continuous but no C1. It is blow-analytic via the blowing-up of R2 at the origin.

Example 1.14. The function defined on R2 \ {0} by f(x, y) = xy
x2+y2 doesn’t

continuously extend through the origin. However it extends to a real analytic

map after being composed with the blowing-up of R2 at the origin.

We can now give the definition of the blow-analytic equivalence.

Definition 1.15 ([53]). Two real analytic function germs f, g : (Rd, 0) → (R, 0)

are blow-analytic equivalent if there exists a homeomorphism h : (Rd, 0)→ (Rd, 0)

such that h and h−1 are blow-analytic and satisfies f = gh.

Remark 1.16. Some authors call blow-analytic homeomorphism a homeomor-

phism h such that h and h−1 are blow-analytic. We prefer to avoid this name since

there is a confusion with a homeomorphism h such that only h is blow-analytic.

In order to prove that it is an equivalence relation, T.-C. Kuo gave the fol-

lowing characterization.

Proposition 1.17 ([53, Proposition 2]). Let ϕ : (Rd, 0) → (Rd, 0) be a homeo-

morphism. Then ϕ and ϕ−1 are blow-analytic if and only if there are two real

modifications μ1, μ2 and a real analytic isomorphism Φ such that the following

diagram commutes

(M1, μ
−1
1 (0))

Φ ��

μ1

��

(M2, μ
−1
2 (0))

μ2

��
(Rd, 0)

ϕ
�� (Rd, 0) .
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Corollary 1.18. The blow-analytic equivalence for real function germs (Rd, 0)→
(R, 0) is an equivalence relation.

Two questions arise naturally:

1. How to construct homeomorphisms satisfying the conditions in Definition

1.15 in order to prove that two germs are in the same blow-analytic equiv-

alence class?

The main way consists in putting the germs in a family and then to

trivialize it by integrating a well chosen analytic vector field on an

(equi)resolution space as for the results presented later in this section.

2. How to construct blow-analytic invariants in order to distinguish germs

not in the same blow-analytic class?

That will be the main subject of this article.

The blow-analytic equivalence has no continuous moduli for isolated singu-

larities as shown in the following theorem.

Theorem 1.19 ([53, Theorem 1]). A family of isolated singularities has only a fi-

nite number of blow-analytic classes, i.e. let F : (Rd×I, {0}×I)→ (R, 0) be a real

analytic function germ such that for every t ∈ I, ft(x) = F (t, x) : (Rd, 0)→ (R, 0)

has an isolated singularity at the origin then the germs (ft)t∈I define a finite num-

ber of blow-analytic classes.

The results stated below show that with additional conditions a family of

isolated singularities may define only one blow-analytic class.

Definition 1.20 (Blow-analytic triviality). Let I be an interval and let F : Rd×
I → R be a family of real analytic function germs such that ft(0) = F (0, t) = 0

for all t ∈ I.

Let μ : M → Rd be a real modification. We say that the family (ft)t∈I is

blow-analytically trivial via μ if there exist a real analytic isomorphism

Φ : (M × I, μ−1(0)× I)→ (M × I, μ−1(0)× I)

and a homeomorphism

ϕ : (Rd × I, {0} × I)→ (Rd × I, {0} × I)

such that the following diagram commutes
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M × I Φ ��

μ×idI

��

���
��

��
��

��
M × I

μ×idI

��

����
��
��
��
�

I

Rd × I

����������

ϕ
��

F0 ���
��

��
��

��
Rd × I

����������

F
����
��
��
��
�

R

where there is t0 ∈ I such that for all t ∈ I, F0(x, t) = F (x, t0).

In particular Fϕ(x, t) doesn’t depend on t and the maps Φ and ϕ preserve

the t-levels.

A family of real analytic function germs is blow-analytically trivial if it is via

some real modification μ.

Remark 1.21. If a family is blow-analytically trivial then its members are pair-

wise blow-analytically equivalent.

The strategy to prove the following results consists in integrating a well cho-

sen vector field in order to construct the isomorphism of Definition 1.20.

Theorem 1.22 ([52]). Let F (x, t) : (Rd, 0) × I → (R, 0) be real analytic.

We use the following expansion F (x, t) =
∑

ν cν(t)xν and we set Hj(x, t) =∑
|ν|=j cν(t)xν . Let k = min {j, Hj �≡ 0}.

If for every t ∈ I, the origin is the only singular point of Hk(·, t), then the family

defined by F is blow-analytically trivial via the blowing-up of Rd at the origin.

Example 1.23. The Whitney family is blow-analytically trivial.

Theorem 1.24 ([38, Theorem B]). Let ft : (Rd, 0) → (R, 0), t ∈ I, be a fam-

ily of real analytic function germs which are non-degenerate with respect to their

Newton polyhedra�. Assume furthermore that the Newton polyhedron of ft doesn’t

depend on t. If, moreover, for each non-compact face γ which is not a coordi-

nate face, the polynomial† ftγ doesn’t depend on t, then the family (ft) is blow-

analytically trivial via a toric resolution � induced by the Newton polyhedron of

ft.

Remark 1.25 ([38, Corollary 6.1]). If d = 2 then the assumption “for each

non-compact non-coordinate face γ, ftγ doesn’t depend on t” is superfluous.

If we assume that ft is convenient‡ for all t ∈ I, then every non-compact

� See [4, §8].
† ftγ is the polynomial composed by the monomials on the face γ.
‡ i.e. for each i, some power of xi appears in the expansion of ft.
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face is a coordinate face. Thus, we get the following corollary.

Corollary 1.26 ([38, Corollary 6.2]). Let ft : (Rd, 0) → (R, 0), t ∈ I, be a fam-

ily of real analytic function germs which are non-degenerate with respect to their

Newton polyhedra. If the Newton polyhedron of ft doesn’t depend on t and inter-

sects coordinate axes then the family (ft) is blow-analytically trivial via a toric

resolution induced by the Newton polyhedron of ft.

Theorem 1.27 ([36, Theorem (0.2)]). Let ft : (Rd, 0)→ (R, 0), t ∈ I, be a family

of real analytic function germs. Set F (x, t) = ft(x) =
∑

ν cν(t)xν . Fix the weight

system w = (w1, . . . , wd) ∈ (N>0)d. Let

k = min

⎧⎨⎩j, Hj(x, t) =
∑

ν,ν·w=j

cν(t)xν �≡ 0

⎫⎬⎭ .

If, for every t ∈ I, the origin is the only singular point of Hk(·, t) then the family

ft is blow-analytically trivial via a toric resolution.

Example 1.28 ([33, Example 1]). The Briançon–Speder family

ft(x, y, z) = z5 + ty6z + xy7 + x15

is blow-analytically trivial as soon as I doesn’t contain t0 = − 15
1
7 ( 7

2 )
4
5

3 . Indeed,

ft is weighted homogeneous for the weights (1, 2, 3) and defines an isolated sin-

gularity at the origin when t �= t0.

O. M. Abderrahmane [1, Théorème 3.3.1. & §3.2.] proved that if the leading

term of F (x, t) with respect to some convenient Newton polyhedron satisfies a

special uniform �Lojasiewicz condition then the family is blow-analytically trivial

via a toric resolution. This generalizes Theorems 1.22, 1.26 and 1.27.

2. Arc-analytic maps

Proposition 2.1. If μ : M → N is a real modification and if γ : (−ε, ε) → N

is a real analytic arc, then there exists a real analytic arc γ̃ : (−ε, ε) → M such

that γ = μγ̃.

Proof. Let fC : MC → NC be a complexification of f . It suffices to prove that

there is a complexification of γ, γC : DC → NC, where DC is a neighborhood of

(−ε, ε) in C, that admits a holomorphic lift by fC.

Recall that a meromorphic map (in the sense of Remmert) of complex man-

ifolds F : X → Y is a multivalued map such that its graph ΓF is an analytic

subset of X × Y , which is mapped properly on X by the projection on the first

coordinate, and off a nowehere dense analytic subset P ⊂ Y (called the polar
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set or indeterminacy locus) this projection is a biholomorphic map, see for in-

stance [27]. If G : Z → X is another meromorphic map such that G−1(P ) is

nowhere dense in Z then the composition map FG is meromorphic. We use this

description for the inverse of fC.

Suppose first that (γC)−1(P ) = {0}. Then ηC = (fC)−1γC : DC → MC, is

a meromorphic arc. Its graph ΓηC , the closure of
{

(t, γ̃C(t)); t ∈ DC \ {0}}, is an

irreducible analytic curve in DC×MC. Thus ηC(t) admits a unique accumulation

point p ∈MC as t→ 0, and by Riemann removable singularity theorem, is holo-

morphic in DC as required. A similar argument works if (γC)−1(P ) is discrete or

empty.

Let γ be a real analytic arc whose complexification is entirely included in P .

Since P ∩N is nowhere dense in N , there exists a real analytic map

ϕ(t, u) : V → N,

where V is a neighborhood of (−ε, ε) × {0} in R2, such that γ(t) = ϕ(t, 0) and

such that the image of ϕ is not entirely included in P . Let ϕC(t, u) : V C → NC be

a complexification of ϕ. Then ΦC = (fC)−1ϕC is meromorphic and, by Riemann

removable singularity theorem, holomorphic except at a discrete subset of V C.

Thus ΓΦC over D = V C∩{u = 0} is an analytic curve in V C×MC. Its irreducible

component that projects submersively onto D is the graph of a holomorphic lift

of γC as required. �

Remark 2.2. Using Lemma 1.11, we may assume that μ is a locally finite se-

quence of blowings-up and then use the universal property of blowings-up to prove

that a real analytic arc non-entirely included in the center may be lifted.

Let f : M → N be a blow-analytic map then there is a real modification μ

such that μ̃ = fμ is real analytic. Let γ : (−ε, ε)→ N be a real analytic arc, then

there exists a real analytic arc γ̃ : (−ε, ε) → M such that the following diagram

commutes

M̃

μ̃

���
��

��
��

��
μ

		��
��
��
��

(−ε, ε)
γ

��

γ̃




M
f

�� N .

Hence fγ = μ̃γ̃. Thus a blow-analytic map sends real analytic arcs to real ana-

lytic arcs by composition. Such maps were first studied by K. Kurdyka [55].

Definition 2.3 ([55, Définition 4.1]). A map f : M → N between two real an-

alytic varieties is arc-analytic if for every real analytic arc γ : (−ε, ε) → M , the

composition fγ is also real analytic.

We proved the following proposition.
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Proposition 2.4. A blow-analytic map is arc-analytic.

Thanks to the following remark, the previous proposition can be derived from

the fact that a real analytic arc germ admits a lifting by a real modification. Such

a property is weaker than Proposition 2.1 and is shown in [37, §5].

Remark 2.5. A map f : M → N is arc-analytic if and only if for every real

analytic arc germ γ : (R, 0)→M , the composition germ fγ is also real analytic.

Example 2.6 ([55, Exemple 6.1]). The function defined by f(x, y) = x3

x2+y2 and

f(0, 0) = 0 is arc-analytic whereas it is not C1.

We may notice that the Zariski closure of the graph of f is the Cartan um-

brella defined by x3 = z(x2 + y2) [55, Exemples 1.2].

It is natural to ask whether the converse is true: is an arc-analytic map

blow-analytic? E. Bierstone, P. D. Milman and A. Parusiński [11] gave a counter-

example with no additional assumption.

K. Kurdyka conjectured that a map is blow-analytic if and only if it is arc-

analytic and subanalytic. It is still open, but the following results of E. Bierstone

and P. D. Milman and of A. Parusiński are very close to the expected result.

Theorem 2.7 ([10, Theorem 1.4], [64, Theorem 3.1]). A function f : M → R
defined on a non-singular real analytic variety is arc-analytic and subanalytic if

and only if there exists a locally finite sequence σ : M̃ → M of local blowings-up

along non-singular centers such that fσ is real analytic.

Theorem 2.8 ([10, Theorem 1.1] Analytic version). Let f : M → R be an arc-

analytic function defined on a non-singular real analytic variety. Assume there

exists

G(x, y) =

p∑
i=0

Gi(x)yi

a non-zero polynomial whose coefficients are real analytic functions on M such

that

G(x, f(x)) = 0, x ∈M.

Then f is blow-analytic.

Theorem 2.9 ([10, Theorem 1.1] Algebraic version). Let f : M → R be an arc-

analytic function defined on a non-singular real algebraic variety. Assume there

exists

G(x, y) =

p∑
i=0

Gi(x)yi

a non-zero polynomial whose coefficients are regular functions on M such that
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G(x, f(x)) = 0, x ∈M

Then f is blow-analytic via a finite sequence of algebraic blowings-up with non-

singular centers�.

The two previous results allow one to construct examples of blow-analytic

functions.

Example 2.10 ([55, Exemple 6.1], [10, Examples 1.2]). The function defined by

f(x, y) = x3

x2+y2 and f(0, 0) = 0 is arc-analytic and satisfies G(x, y, f(x, y)) = 0

where

G(x, y, z) = x3 − z(x2 + y2)

Thus f is blow-analytic.

Example 2.11 ([10, Examples 1.2]). The function defined by f(x, y) =
√
x4 + y4

is arc-analytic and satisfies G(x, y, f(x, y)) = 0 where

G(x, y, z) = x4 + y4 − z2

Thus f is blow-analytic.

It is known that a semialgebraic function† defined on a semialgebraic set

satisfies a non-trivial polynomial equation [14, Lemma 2.5.2]. Following this fact

and the statement of Theorem 2.9, it is natural to introduce the following notion.

Definition 2.12. A semialgebraic function defined on a real algebraic set is said

to be blow-Nash if there exists a finite sequence of algebraic blowings-up with

non-singular centers such that the composition is Nash‡.

Then, we may deduce the following result from Theorem 2.9.

Theorem 2.13. A semialgebraic map defined on a non-singular real algebraic

set is blow-Nash if and only if it is arc-analytic.

The previous theorem admits a generalization to possibly singular real alge-

braic sets.

Theorem 2.14 ([17, Proposition 2.27]). A continuous§ semialgebraic map de-

fined on a real algebraic set is blow-Nash if and only if it is generically arc-analytic

(i.e., there exists a nowhere dense algebraic subset such that every real analytic

arc non entirely included in this subset is mapped to a real analytic arc by com-

position).

� We will see below that f is actually blow-Nash.
† i.e. a function whose graph is semialgebraic.
‡ i.e. real analytic and semialgebraic, see Definition 6.1.
§ Actually continuous on the closure of the non-singular locus.
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Remark 2.15. We will see in Proposition 5.9 that a semialgebraic arc-analytic

map defined on a real algebraic set is continuous. This is actually true for a

subanalytic arc-analytic map [10, Remark 1.5.(2) & Lemma 6.8.]. The function

given in [11] is arc-analytic but not continuous.

As pointed out in this section, blow-analyticity and arc-analyticity are very

close notions. The constructions of the known invariants of the blow-analytic

equivalence all rely on this fact. The next statement introduces the Fukui invari-

ant and in Section 4 we will present the Koike–Parusiński zeta functions which

are other invariants.

Theorem 2.16 ([34, Theorem 3.1]). To a real analytic function germ f :

(Rd, 0) → (R, 0), we associate the set of orders of f restricted to real analytic

arcs germs at the origin. This is the Fukui invariant whose formal definition is

below:

A(f) =
{

ordt fγ, γ : (R, 0)→ (Rd, 0) real analytic
}
.

It is an invariant of the blow-analytic equivalence

i.e., if f, g : (Rd, 0)→ (R, 0) are blow-analytically equivalent then A(f) = A(g).

Proof. Let f, g : (Rd, 0) → (R, 0) be two blow-analytically equivalent real ana-

lytic function germs. Hence there exists h : (Rd, 0) → (Rd, 0) a homeomorphism

with h and h−1 blow-analytic such that f = gh.

Let γ : (R, 0) → (Rd, 0) be a real analytic arc. By Proposition 2.4, η = hγ

is a real analytic arc. Since gη = fγ, we get A(f) ⊂ A(g). The proof of the

converse inclusion is exactly the same. �

The following corollary is a direct consequence of the previous theorem.

Corollary 2.17. If f and g are two real analytic function germs which are blow-

analytic equivalent, then mult f = mult g.

Remark 2.18 ([46, §7]). S. Izumi, S. Koike and T.-C. Kuo formulated versions

with signs of the Fukui invariant which are also blow-analytic invariants:

A+(f) =
{

ordt fγ, γ : (R, 0)→ (Rd, 0), ∃δ > 0, ∀t ∈ [0, δ), fγ(t) ≥ 0
}
,

A−(f) =
{

ordt fγ, γ : (R, 0)→ (Rd, 0), ∃δ > 0, ∀t ∈ [0, δ), fγ(t) ≤ 0
}
.

3. Classical motivic integration

For more complete surveys concerning classical motivic integration, we refer

the reader to [24], [58] and [57]. The surveys [18], [72] and [13] introduce the

machinery of motivic integration in the non-singular case (or with only “nice”
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singularities for the first one).

In this section, an algebraic variety is a reduced and separated scheme of

finite type over a characteristic zero field k. This is the only section of this article

which uses the language of schemes.

3.1 A brief overview of the theory in the non-singular case

Using tools coming from p-adic integration, V. V. Batyrev [8] proved that two

birational Calabi–Yau varieties share the same Betti numbers. During a talk in

Orsay in 1995, M. Kontsevich [50] introduced a “motivic” analogue of the p-adic

integration which allows him to prove that two birational Calabi–Yau varieties

share the same Hodge numbers. That’s the beginning of motivic integration.

Then we got a deeper comprehension of this new theory, in particular it was

generalized to possibly singular varieties, thanks to the works of J. Denef and F.

Loeser [22], [26], V. V. Batyrev [7], [9] and E. Looijenga [58].

Definition 3.1. We denote by K0(Vark) the Grothendieck group of algebraic

varieties over k. It is the free abelian group spanned by isomorphism classes [X]

of algebraic varieties over k modulo the following additivity relation:

(i) If Y is a closed subvariety of X then [X] = [X \ Y ] + [Y ].

Moreover the fiber product over Spec k induces a ring structure:

(ii) [X][Y ] = [X ×k Y ].

Notations 3.2. Let fix some notations:

• We denote by 0 = [∅] the class of the empty variety, it is the unit of the

addition.

• We denote by 1 = [pt] = [Spec k] the class of the point, it is the unit of the

product.

• We denote by L = [A1
k] = [Spec k[x]] the class of the affine line.

• We denote by Mk = K0(Vark)[L−1] the localization of K0(Vark) in

{1,L,L2, . . .} so that we can divide by the class of the affine line.

Remark 3.3. It is known that K0(Vark) is not an integral domain for a zero

characteristic field k [67].

When k is a characteristic zero field, L. A. Borisov [15] recently proved that

the class of the affine line L is a zero divisor, in particular the morphism

K0(Vark)→Mk is not injective (see also [59]).

Remark 3.4. A Zariski-constructible set induces a well-defined class in

K0(Vark).

Remark 3.5. If p : E → B is a Zariski piecewise trivial fibration� with fiber F

� i.e. we may split B = �Bi as a finite disjoint union of locally closed sets for the Zariski
topology such that p−1(Bi) is locally closed and isomorphic to Bi × F .
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then [E] = [B][F ] in K0(Vark).

We refer the reader to [39] and [40] for the basic properties of jet spaces and

arc spaces that we are going to briefly introduce. Notice also that the study of

singularities via the arc space was first studied by J. Nash [63] in 1968.

Definition 3.6. For X an algebraic variety and n ∈ N, we denote by Ln(X) the

set of n-jets on X, it is the k[t]/tn+1 -rational points of X, i.e.,

Ln(X) = X (k[t]/tn+1 ) = Homk−sch(Spec k[t]/tn+1 , X).

These sets have a natural structure of schemes. Indeed, up to working locally, we

may assume that X = Spec (k[x1, . . . , xd]/I ) where I = (f1, . . . , fm). Then an

n-jet is just a morphism γ : k[x1, . . . , xd]/I → k[t]/tn+1 . By setting ui = γ(xi)

and by interpreting it as a vector of kn+1, we notice that Ln(X) is the subvari-

ety of kd(n+1) given by the equations fi(u1, . . . , ud) = 0 ∈ k[t]/tn+1 modulo the

previous identification. We may check that this construction doesn’t depend on

the choice of the generators of I. �

The following example highlights the natural scheme structure of the set of

n-jets.

Example 3.7. Consider the cusp

X = Spec (k[x, y]/y2 − x3 )

then

L1(X)(k)

=
{

(a0 + a1t, b0 + b1t) ∈ (k[t]/t2 )
2
, (b0 + b1t)

2 − (a0 + a1t)
3 ≡ 0 mod t2

}
=
{

(a0 + a1t, b0 + b1t) ∈ (k[t]/t2 )
2
, a30 = b20, 3a1a

2
0 = 2b0b1

}
.

L2(X)(k)

=

{
(a0 + a1t+ a2t

2, b0 + b1t+ b2t
2) ∈ (k[t]/t3 )

2
,

(b0 + b1t+ b2t
2)2 − (a0 + a1t+ a2t

2)3 ≡ 0 mod t3

}

=

⎧⎨⎩(a0 + a1t+ a2t
2, b0 + b1t+ b2t

2)∈(k[t]/t3 )
2
,

a30 = b20,

3a1a
2
0 = 2b0b1,

3a20a2+3a0a
2
1 =2b0b2+b21

⎫⎬⎭ .

Definition 3.8. Let m,n ∈ N with m ≥ n, then the morphism

� There is a more functorial construction in the beginning of [22].
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k[t]/tm+1 → k[t]/tn+1

induces a truncation morphism

πm
n : Lm(X)→ Ln(X).

Definition 3.9. The scheme of (formal) arcs on X is, by definition, the projec-

tive limit

L(X) = lim←−Ln(X).

Hence, for n ∈ N, we have a natural truncation morphism

πn : L(X)→ Ln(X).

Remark 3.10. The functorial construction allows one to check that the k-

rational points of L(X) are the k�t�-rational points of X.

Remark 3.11. The space of n-jets, for a fixed n, is an algebraic variety. How-

ever, the space of arcs is a reduced and separated scheme but which is not of

finite type, hence it can be seen as a “infinite dimensional algebraic variety”.

Remark 3.12. Given an algebraic variety X, a theorem of Greenberg [41] en-

sures there exists c > 0 such that for all n ∈ N we have πn(L(X)) = πcn
n (Lcn(X)).

Then, using Chevalley theorem for schemes [42, Chapitre IV,Théorème 1.8.4],

we may deduce that πn(L(X)) is Zariski-constructible as the image of a variety

by a morphism.

The main concern of motivic integration consists in defining a measure on

the arc space L(X) which maps a “measurable set” to an element in K0(Vark).

We are now going to focus on the construction of these “measurable subsets”

of L(X). The main idea consists in using the truncation morphisms� in order

to work with subsets of the jet spaces which are easier to use than the infinite

dimensional scheme of arc.

Definition 3.13. Let X be a d-dimensional algebraic variety. We say that a

subset A of L(X) is stable at the level k ∈ N if it satisfies the following conditions

for n ≥ k :

1. πn(A) is Zariski-constructible,

2. A = π−1
n πn(A),

3. πn+1
n : πn+1(A)→ πn(A) is a piecewise trivial fibration with fiber Ad

k.

A stable set is a set which is stable at some level.

Proposition 3.14. If a subset A of L(X) is stable then

� Truncation to order n is the motivic analogue of reduction modulo pn in p-adic integration.
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μ̃(A) = [πn(A)] L−(n+1)d ∈Mk

doesn’t depend on n for n big enough.

This allows one to define a first family of measurable sets.

Definition 3.15. If A ⊂ L(X) is stable then we define its measure by μ̃(A).

The first part of the following result relies on Hensel lemma.

Lemma 3.16. If X is a d-dimensional non-singular algebraic variety then the

morphisms πm
n and πn are surjective. Moreover

πm
n : Lm(X)→ Ln(X)

is a piecewise trivial fibration with fiber A(m−n)d
k .

Remark 3.17. The previous result doesn’t hold in the singular case� . Indeed,

using the notations of Example 3.7, the preimage of the jet (0, t) ∈ L1(X) by

π2
1 : L2(X)→ L1(X) is empty.

Definition 3.18. A subset A ⊂ L(X) is a cylinder if A = π−1
k (C) for some k ∈ N

and some Zariski-constructible subset C of Lk(X).

Corollary 3.19. If X is a d-dimensional non-singular algebraic variety then a

cylinder is stable. Moreover if A = π−1
k (C), with C a Zariski-constructible subset

of Lk(X), then

μ̃(A) = [C]L−(k+1)d.

Example 3.20. If X is a d-dimensional non-singular algebraic variety then L(X)

is stable and

μ̃(L(X)) = [X]L−d.

In order to define the motivic integral, we are going to work with a completion

of the ring Mk. This will give us a notion of convergence.

Definition 3.21. For m ∈ Z, we denote by FmMk the subgroup ofMk spanned

by the elements of the form [S]L−i where i− dimS ≥ m. It defines a filtration†

and we denote by M̂k the completion ofMk with respect to this filtration‡, i.e.,

M̂k = lim←−Mk/FmMk .

� i.e. in this case, it is necessary to avoid confusion between the set Ln(X) of n-jets and the
set πn(L(X)) of truncated arcs at order n.

† i.e. Fm+1Mk ⊂ FmMk and FmMkFnMk ⊂ Fm+nMk.
‡ E. Looijenga [58] calls it the completion with respect to the virtual dimension. V. V. Batyrev

[7] [9] gives an equivalent description using a “non-archimedean norm”.
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Remark 3.22. It is not known whether the morphism Mk → M̂k is injective,

however the Euler characteristic and the Hodge polynomial factorise through the

image of Mk in M̂k (see [22, (6.1)]), which is enough to prove the Kontsevich

theorem concerning birational Calabi–Yau varieties.

Example 3.23. A sequence inMk converges to 0 in M̂k if and only if the virtual

dimension� of its elements converges to −∞.

Example 3.24. A series
∑
an converges in M̂k if and only if an converges to 0

in M̂k.

Example 3.25. In M̂k,
∑

i≥0 L−ki converges and its limit is the multiplicative

inverse of 1− L−k.

Definition 3.26. Let A ⊂ L(X) be a stable set and α : A → N ∪ {∞} be a

function whose each fiber is stable and such that μ̃(α−1(∞)) = 0. We say that

L−α is integrable if the following sequence converges in M̂k :∫
A

L−αdμ̃ =
∑
n

μ̃(α−1(n))L−n.

Example 3.27. Let I be an ideal sheaf then L− ordI is integrable† .

Theorem 3.28 (Kontsevich transformation rule). Let A ⊂ L(X) be a stable

set, h : Y → X be a proper birational map between two non-singular algebraic

varieties and α : L(X)→ N ∪ {∞} be such that L−α is integrable. Then∫
A

L−αdμ̃ =

∫
h−1
∗ (A)

L−(αh∗+ordJach
)dμ̃

where h∗ : L(Y )→ L(X) is induced by h and where Jach is the ideal sheaf locally

spanned by the jacobian determinant of h.

We are now able to prove Kontsevich theorem.

Corollary 3.29 ([50]). Two birational Calabi–Yau varieties share the same

Hodge numbers.

Proof. Let X and Y be two birational Calabi–Yau varieties. Since they are bira-

tional, there exists a non-singular algebraic variety Z and two proper birational

maps such that the following diagram commutes

� We define the virtual dimension of α ∈ Mk as the only integer m such that
α ∈ F−mMk \ F−m+1Mk.

† ordI is the contact order along I: an arc induces a morphism γ : OX → k�t� and then we
denote ordI(γ) = sup{e, γ(I) ⊂ (te)}
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Z
πY

���
��

��
��

�
πX

����
��
��
�

X �� Y .

Then

L−d[X] =

∫
L(X)

L−0dμ̃ =

∫
L(Z)

L− ordJacπX dμ̃ =

∫
L(Z)

L− ordJacπY dμ̃

=

∫
L(Y )

L−0dμ̃ = L−d[Y ].

Indeed div(JacπX
) = KZ

/
X

= KZ − π∗
XKX = KZ since X is Calabi–Yau.

We get exactly the same equality for Y .

Hence [X] = [Y ] in M̂k.

We conclude thanks to Remark 3.22. �

Whereas stable sets are enough for our purpose (and usually they suffice in

the non-singular case), in general a bigger family of measurable sets is necessary.

Indeed, for example, L(X) is not stable if X is singular. It is possible to define

such a larger set of measurable sets. A first attempt appears in [22, Definition-

Proposition 3.2]. A second and even larger notion of measurable sets is defined

in [7, Definition 2.16], [9], [58, Proposition 2.2] and [25, Appendix].

3.2 Denef–Loeser motivic zeta functions

3.2.1 The naive motivic zeta function

Definition 3.30. Let f : X → A1
k be a non-constant morphism where X is a

d-dimensional non-singular algebraic variety. For n ∈ N>0, we set

Xn(f) = {γ ∈ Ln(X), ordt fnγ = n} ,

where fn : Ln(X)→ Ln(A1
k) is induced by f and where

ordt : Ln(A1
k)→ {0, . . . , n,∞}

is defined as follows. To an n-jet γ ∈ Ln(A1
k) there is a natural associated mor-

phism γ̃ : k[x]→ k[t]/tn+1 and we denote ordt γ = sup {e, te|γ̃(x)(t)}.
Then we define the naive motivic zeta function of f by

Znaive
f (T ) =

∑
n≥1

[Xn(f)] L−ndTn ∈Mk�T �.

Remark 3.31. In M̂k�T �, the naive motivic zeta function may be defined as a

motivic integral as follows.
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Let s be a formal variable and T = L−s. For A ⊂ L(X) a stable set and

α, β : A → N ∪ {∞} two functions whose each fiber is stable and such that β is

integrable when restricted to each fiber of α, we set∫
A

L−(α·s+β)dμ̃ : =
∑
i,j

μ̃
(
α−1(i) ∩ β−1(j)

)
L−(is+j)

=
∑
i

(∫
α−1(i)

L−β|α−1(i)dμ̃

)
L−is ∈ M̂k�T �.

Define ordt : L(A1
k) → {0, 1, . . . ,∞} using the morphism γ̃ : k[x] → k�t�

naturally associated to an arc γ ∈ L(A1
k).

Set

Z int
f (T ) =

∫
L(X)

L− ordt f ·sdμ̃ ∈ M̂k�T �

where f : L(X)→ L(A1
k) is induced by f .

Then Znaive
f (T ) = LdZ int

f (T )− [X \ f−1(0)
] ∈ M̂k�T �.

This construction points out the analogy with the Igusa (p-adic) zeta func-

tion.

The following rationality formula is a direct consequence of Denef–Loeser

Key Lemma [22, Lemma 3.4] used to generalize the motivic change of variables

formula to the singular case.

Theorem 3.32 ([21, Theorem 2.2.1]). Let f : X → A1
k be as in the previous defi-

nition. Let h : Y → X be a resolution of (X,X0(f) = f−1(0)). Denote by (Ei)i∈J

the irreducible components of h−1(X0(f)). For i ∈ J , we denote by Ni the multi-

plicity of Ei along the divisor associated to fh and by νi−1 the multiplicity of Ei

along the divisor associated to Jach. For I ⊂ J , we set E•
I = ∩i∈IEi \ ∪j /∈IEj.

Then

Znaive
f (T ) =

∑
∅ �=I⊂J

[E•
I ](L− 1)|I|

∏
i∈I

L−νiTNi

1− L−νiTNi
.

Remark 3.33.

Z int
f (T ) = L−d

∑
I⊂J

[E•
I ](L− 1)|I|

∏
i∈I

L−νiTNi

1− L−νiTNi
.

3.2.2 The equivariant motivic zeta function following Guibert–

Loeser–Merle

We denote by Gm = Spec (k[x, y]/xy − 1) the multiplicative algebraic group

over k. It may be identified with the affine line without the origin.
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The following Grothendieck ring is defined in [44].

Definition 3.34. Let S be an algebraic variety over a field k. Let n ∈ N>0.

We define K0(VarnS×Gm
) as the free abelian group spanned by equivariant iso-

morphism classes of varieties of the form Y → S ×Gm over S ×Gm where Y

is equipped with a good action� of Gm such that each fiber of π1 : Y → S is

invariant by the action and such that π2 : Y → Gm satisfies π2(λ · x) = λnπ2(x)

modulo the following relations:

(i) If Z is a closed Gm-invariant subvariety of Y then [Y \ Z] + [Z] = [Y ],

(ii) Let f : Y ×Am
k → Y → S×Gm equipped with two actions σ and σ′ which

are liftings† of the same action τ on Y then‡

[f : Y × Am
k → S ×Gm, σ] = [f : Y × Am

k → S ×Gm, σ
′].

The fiber product over S ×Gm induces a ring structure:

(iii) [X][Y ] = [X ×S×Gm
Y ] where the Gm-action on X ×S×Gm

Y is diagonal.

The product unit is given by the identity map 1 = [S ×Gm → S ×Gm]

where the Gm-action is trivial on S and given by λ · x = λnx on the first

Gm.

Finally, the cartesian product induces a structure of K0(Vark)-module.

(iv) If [X] ∈ K0(Vark) and [Y → S ×Gm] ∈ K0(VarnS×Gm
) then

[X][Y ] = [X × Y → Y → S ×Gm]

where the Gm-action is trivial on X.

Notation 3.35. The class L ∈ K0(Vark) induces, via the scalar product, a class

L = L · 1 = [A1
k × S ×Gm → S ×Gm]

where λ · (x, s, r) = (x, s, λnr).

Then we set

Mn
S×Gm

= K0(VarnS×Gm
)
[
L−1

]
.

Notation 3.36. For n = km with k ∈ N>0 we define the morphism θmn :

VarmS×Gm
→ VarnS×Gm

which only changes the action by λ · x = λk · x. This

morphism is compatible with the Grothendieck module and with the localization

by L so that we can construct K0(VarS×Gm
) andMS×Gm

using inductive limits.

Definition 3.37. Let f : X → A1
k be a non-constant morphism where X is a

non-singular algebraic variety. For n ∈ N>0, we set

� i.e. the orbits are included in open affine parts in order to be able to work locally.
† i.e. pr1(λ ·σ (y, x)) = pr1(λ ·σ′ (y, x)) = λ ·τ y.
‡ This relation is purely technical, it allows one to factorise terms of the zeta function whose

actions are not exactly the same.
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Xn(f) = {γ ∈ Ln(X), ordt fnγ = n} .

We define a Gm-action on Xn(f) by λ · γ(t) = γ(λt).

We define the angular component morphism acf,n : Xn(f) → Gm by

acf,n(γ) = ac(fγ) where ac : Ln(A1
k) → A1

k associates to γ the first non-zero

coefficient of γ̃(x)(t) (or 0 if γ̃(x) = 0) where γ̃ : k[x]→ k�t� is induced by γ.

Finally we define f̃n : Xn(f)→ X0(f) which maps γ to its origin.

Hence the class[
(f̃n, acf,n) : Xn(f)→ X0(f)×Gm

]
∈ K0(VarnX0(f)×Gm

)

is well-defined.

Then the equivariant motivic zeta function of f is defined by

Zf (T ) =
∑
n≥1

[Xn(f)]L−ndTn ∈MX0(f)×Gm
�T �.

Similarly to the naive case, we have a rationality formula in terms of resolu-

tion. We refer the reader to [44, §3.6] for the construction of [UI ].

Theorem 3.38 ([25, §3.3], [44, §3.6]).

Zf (T ) =
∑

∅ �=I⊂J

[UI ]
∏
i∈I

L−νiTNi

1− L−νiTNi
.

Definition 3.39 (Motivic Milnor fiber). We denote by

Sf = − lim
T∞

Zf (T ) ∈MX0(f)×Gm

the motivic Milnor fiber of f .

Theorem 3.40 ([44, Theorem 5.18]). We have the following relation

Sf1⊕f2 = −Sf1 ∗Sf2 + Sf1 + Sf2

for some product

∗ :MX0(f)×Gm
×MX0(f)×Gm

→MX0(f)×Gm
.

We may notice that in [23, Definition 4.2.2], J. Denef and F. Loeser work with

slightly different settings. They not only consider arcs such that ordt fγ = n but

also arcs with ordt fγ > n (with no action in this last case). This allows them to

get a convolution formula for this “modified equivariant zeta function”. Particu-

larly, this allows one to recover Theorem 3.40.

This is the strategy used in what follows when we introduce some modified

zeta function Z̃f (T ) satisfying
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Z̃f1⊕f2(T ) = Z̃f1(T ) � Z̃f2(T )

where � consists in applying coefficientwise some convolution product.

4. Koike–Parusiński zeta functions

As noted before, blow-analyticity and arc-analyticity are closely related. And

since motivic integration is an “integration theory” on arc spaces, it is natural to

try using it in order to study the blow-analytic equivalence. Such a strategy was

first initiated by S. Koike and A. Parusiński [47].

They define a naive zeta function and two zeta functions with signs (which

play the role of the motivic equivariant zeta function) in a way similar to the

ones of Denef–Loeser but they realized the motivic measure through the Euler

characteristic with compact support.

Notice that we are going to work with real analytic arcs (and not formal

arcs).

Definition 4.1. We define the space of arcs mapping the origin to the origin

L(Rd, 0) =
{
γ : (R, 0)→ (Rd, 0), γ real analytic

}
and the space of n-jets mapping the origin to the origin�

Ln(Rd, 0) =
{
a1t+ a2t

2 + · · ·+ ant
n, ai ∈ Rd

}
.

Definition 4.2 ([47, §1.1]). Let f : (Rd, 0) → (R, 0) be a real analytic function.

For n ∈ N>0, we set

Xn(f) =
{
γ ∈ Ln(Rd, 0), fγ(t) = ctn + · · · , c �= 0

}
,

X>
n (f) =

{
γ ∈ Ln(Rd, 0), fγ(t) = ctn + · · · , c > 0

}
,

X<
n (f) =

{
γ ∈ Ln(Rd, 0), fγ(t) = ctn + · · · , c < 0

}
and we define Koike–Parusiński zeta functions by

Zχc,naive
f (T ) =

∑
n≥1

χc (Xn(f)) (−1)ndTn ∈ Z�T �,

� Since Rd is non-singular, we may assume that n-jets are just truncated arcs. We may first use
Hensel lemma, as in the algebraic classical motivic case, to lift an n-jet to a formal arc, and
then apply Artin approximation theorem [5] to find a real analytic arc whose expansion
coincides with the previous formal arc up to degree n. This allows one to prove that an
n-jet may be lifted to a real analytic arc.
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Zχc,>
f (T ) =

∑
n≥1

χc

(
X>

n (f)
)

(−1)ndTn ∈ Z�T �,

Zχc,<
f (T ) =

∑
n≥1

χc

(
X<

n (f)
)

(−1)ndTn ∈ Z�T �.

Remark 4.3 ([47, §1.1]). Zχc,naive
f (T ) = Zχc,>

f (T ) + Zχc,<
f (T ).

Remark 4.4. Contrary to Denef–Loeser motivic zeta functions, these zeta func-

tions are local since we restrict to arcs mapping the origin to the origin.

S. Koike and A. Parusiński [47, Lemma 4.2] proved a first adaptation to the

real case of Denef–Loeser key lemma for the motivic change of variables formula.

This allows them to get the following rationality formulas.

Theorem 4.5 ([47, §1.2]). Let f : (Rd, 0) → (R, 0) be a real analytic func-

tion germ. There exists σ : (M,σ−1(0)) → (Rd, 0) a locally finite sequence of

blowings-up with non-singular centers such that fσ and the jacobian determinant

Jacσ simultaneously have only normal crossings and such that σ is an isomor-

phism outside the zero set of f . We denote by (Ei)i∈J the irreducible components

of (fσ)−1(0) and, for i ∈ J ,

Ni = multEi
fσ and νi − 1 = multEi

Jacσ.

We consider the following natural stratification of M given, for I ⊂ J , by

E•
I =

⋂
i∈I

Ei \
⋃
j /∈I

Ej .

Then

Zχc,naive
f (T ) =

∑
∅ �=I⊂J

(−2)|I|χc

(
E•

I ∩ σ−1(0)
)∏
i∈I

(−1)νiTNi

1− (−1)νiTNi

and, for ε ∈ {<,>},

Zχc,ε
f (T ) =

∑
∅ �=I⊂J

(−1)|I|Kε
I

∏
i∈I

(−1)νiTNi

1− (−1)νiTNi
.

We refer the reader to [47, §1.2] for the definition of Kε
I .

The previous rationality formulas allow one to prove that the Koike–

Parusiński zeta functions are invariants of the blow-analytic equivalence.

Theorem 4.6 ([47, Theorem 4.5]). If f, g : (Rd, 0) → (R, 0) are two blow-

analytically equivalent real analytic function germs then
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Zχc,naive
f = Zχc,naive

g , Zχc,>
f = Zχc,>

g , Zχc,<
f = Zχc,<

g .

Definition 4.7 ([47, §2]). For ε ∈ {<,>}, we define the modified Koike–

Parusiński zeta function with sign ε by

Z̃χc,ε
f (T ) =

1− Zχc,naive
f (T )

1− T − 1 + Zχc,ε
f (T ).

Theorem 4.8 ([47, Theorem 2.3]). For ε ∈ {<,>}, the following formula holds

Z̃χc,ε
f1⊕f2

(T ) = Z̃χc,ε
f1

(T )� Z̃χc,ε
f2

(T )

where the product � is the Hadamard product which consists in applying coeffi-

cientwise the classical product of Z.

Remark 4.9. The couples (Zχc,>
f (T ), Zχc,<

f (T )) and (Z̃χc,>
f (T ), Z̃χc,<

f (T )) are

equivalent. Indeed, we have the following formula [47, (2.5)]:

Zχc,ε
f (T ) =

1 + Z̃χc,>
f (T ) + Z̃χc,<

f (T )

1 + T
+ 1 + Z̃χc,ε

f (T ).

Using Koike–Parusiński zeta functions and Fukui invariants, S. Koike and

A. Parusiński [47, Theorem 6.1] classified entirely Brieskorn polynomials� in two

variables up to the blow-analytic equivalence.

However, Koike–Parusiński zeta functions alone are not enough to distin-

guish some blow-analytic equivalence classes of such Brieskorn polynomials, see

[47, Remark 6.3].

Using these invariants, O. M. Abderrahmane [2] proved that the blow-

analytic type of a singular weigthed homogeneous polynomial in two variables

non-degenerate with respect to its Newton polyhedron determines its weights.

5. The virtual Poincaré polynomial of AS-sets
Most of the material of this section is covered by the survey [56].

5.1 Arc-symmetric sets

In the article [55], where K. Kurdyka introduces arc-analytic maps, he also

introduces arc-symmetric sets. An arc-symmetric set is a semialgebraic subset of

Rd such that given a real analytic arc on Rd, either this arc is entirely included

in the subset or it meets it at isolated points only.

Definition 5.1 ([55, Définition 1.1]). A semialgebraic subset S of Rd is arc-

symmetric if it satisfies the following equivalent conditions:

� i.e. polynomials of the form ±xp ± yq .
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(i) For γ : (−1, 1) → Rd a real analytic arc, if Int(γ−1(S)) �= ∅ then

γ−1(S) = (−1, 1),

(ii) For γ : (−1, 1) → Rd a real analytic arc, if γ((−1, 0)) ⊂ S then

γ((−1, 1)) ⊂ S,

(iii) For γ : (−1, 1) → Rd an injective real analytic arc, if γ((−1, 0)) ⊂ S then

γ((−1, 1)) ⊂ S,

(iv) For γ : (−1, 1)→ Rd a Nash arc� , if γ((−1, 0)) ⊂ S then γ((−1, 1)) ⊂ S.

Example 5.2. The unicity of the analytic continuation ensures that real alge-

braic sets (resp. real analytic and semialgebraic sets) are arc-symmetric.

The following example highlights the usefulness of arc-symmetric sets.

Example 5.3 ([55, Exemple 1.2]). Let V = {z(x2 + y2) = x3} ⊂ R3 be the

Cartan umbrella. Then V is irreducible as an algebraic (or analytic) set but

can be decomposed non-trivially into the union of two arc-symmetric sets: the

handle, that is the z-axis, and the canopy, that is the (Euclidean) closure of

V \ {(0, 0, z), z �= 0}.
Hence arc-symmetric sets are finer than analytic components of a real alge-

braic set.

The following remark is a direct consequence of the curve selection lemma

[14, Proposition 8.1.13].

Remark 5.4 ([55, Remarque 1.3]). An arc-symmetric set is closed for the Eu-

clidean topology.

Theorem 5.5 ([55, Théorème 1.4]). Arc-symmetric subsets of Rd are exactly the

closed sets of a noetherian topology on Rd that we will denote by AR.
Definition 5.6 ([55, Définition 2.10]). The AR-topology being noetherian, we

may associate to X its Krull dimension dimARX defined as the length of the

longest strictly increasing sequence of AR-irreducible subsets ending at X.

Proposition 5.7 ([55, Proposition 2.11]). Let S be a semialgebraic subset, then

the following dimensions coincide:

• The AR-dimension dimAR S
AR

,

• The Zariski dimension dimZar S
Zar

,

• The geometric dimension dimS defined as the greatest dimension of real ana-

lytic submanifolds included in S.

5.2 More properties of arc-analytic maps

The notion of arc-analytic map can be extended naturally to maps between

� i.e. a real analytic arc whose graph is semialgebraic, see Definition 6.1.
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arc-symmetric sets.

Definition 5.8 ([55, Définition 4.1]). A map f : X → Y between two arc-

symmetric sets is arc-analytic if it maps by composition real analytic arcs on X

to real analytic arcs on Y .

Proposition 5.9 ([55, Théorème 4.2, Proposition 5.1]). Let f : X → Rn be an

arc-analytic and semialgebraic map defined on X an arc-symmetric subset of Rd,

then

• The graph of f is an arc-symmetric subset of Rd × Rn,

• The map f is continuous for the Euclidean topology,

• The map f is continuous for the AR-topology (particularly, the inverse image

by f of an arc-symmetric set is arc-symmetric),

• If moreover f is injective and proper then its image is arc-symmetric.

Note that in general the image of a proper injective polynomial map defined

on a real algebraic set is not algebraic. Thus arc-symmetric sets appear naturally

as the images of such maps.

The following theorem states that a semialgebraic and arc-analytic map is

real analytic outside some nowhere dense set.

Theorem 5.10 ([55, Théorème 5.2]). Let f : X → Rn be a semialgebraic and

arc-analytic map defined on an arc-symmetric set. Then

dim Sing f ≤ dimX − 2

where Sing f is the set of points of X where f is not real analytic.

The following result is a direct consequence of Proposition 5.7. It is some

kind of “unicity of the arc-analytic continuation”.

Theorem 5.11 ([55, Proposition 5.3]). Let f, g : X → Rn be two semialgebraic

and arc-analytic maps defined on an irreducible arc-symmetric set X. If f = g

on an open semialgebraic subset U satisfying dimU = dimX then f = g on X.

Finally, there is a Nullstellensatz theorem for semialgebraic and arc-analytic

functions.

Theorem 5.12 ([55, Proposition 6.5]). Let f, g : X → R be two semialgebraic

and arc-analytic functions defined on an arc-symmetric set. If f−1(0) ⊂ g−1(0),

then there exists a semialgebraic and arc-analytic function h : X → R together

with an integer k ∈ N such that gk = f · h.

5.3 Constructible categories

Definition 5.13 ([65, Definition 2.4]). Let C be a collection of semialgebraic

subsets. We say that C is a constructible category if it satisfies the following
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axioms:

A1. C contains real algebraic sets,

A2. C is stable by union, intersection and taking the complement,

A3. a. The inverse image of a C-set by a map between two C-sets whose graph

is in C is a C-set,

b. The image of a C-set by a injective map between two C-sets whose

graph is in C is a C-set,

A4. A locally compact C-set is Euler in codimension 1, i.e. if X is a lo-

cally compact C-set, there exists a semialgebraic subset Y of X satisfying

dimY ≤ dimX − 2 such that X \ Y is Euler� .

Example 5.14 ([65, Theorem 2.8]). Zariski-constructible sets (i.e. sets of the

boolean algebra spanned by real algebraic sets) form a constructible category

denoted by AC. It is the smallest constructible category since it is included in

any other constructible category.

A constructible category admits a closure which is compatible with the di-

mension.

Theorem 5.15 ([65, Theorem 2.5]). Let C be a constructible category and X be

a locally closed C-set. Then for every subset A of X there is a smallest closed

C-subset of X which contains A. It is denoted by A
C
. Thus any other closed

C-subset of X which contains A must contain A
C
.

Remark 5.16 ([65, Remark 2.7]). If A is semialgebraic then dimA = dimA
C
.

Moreover, if A is a C-set then A
C

= A ∪ (A \A)
C
, in particular dim(A

C \ A) <

dimA.

Remark 5.17 ([65, p361]). Notice that the closure of the constructible category

AC is not the Zariski closure. More precisely, if A is a semialgebraic subset of a

real algebraic set, then A ⊂ AAC ⊂ AZar
but these inclusions may be strict.

For example if A is the non-singular part of maximal dimension of the Whit-

ney umbrella {zx2 = y2} ⊂ R3 then A � A
AC

= A
Zar

.

For example if A is the non-singular part of maximal dimension of the Cartan

umbrella {z(x2 + y2) = x3} ⊂ R3 then A = A
AC

� A
Zar

.

5.4 The AS collection

We are going to work with a slightly different framework from arc-symmetric

� i.e. X is Euler if for all x ∈ X the Euler-Poincaré characteristic of X in x, χ(X,X \ x) =∑
(−1)i dimHi(X,X \ x;Z2), is odd. We may prove ([65, Corollary 4.7]) that a locally

compact C-set is actually Euler. The interest of this axiom resides in the fact that a locally
compact semialgebraic set is Euler in codimension 1 if and only if it admits a fundamental
class for its Borel–Moore homology with Z2 coefficients ([65, Remark 1.5]). Hence the sets
of a constructible category share topological properties with real algebraic sets, see [70].
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sets. It is the collection AS which was defined by A. Parusiński [65].

Definition 5.18. The AS collection is the boolean algebra spanned by arc-

symmetric subsets of a real projective space� Pn
R.

We get the following characterization.

Proposition 5.19 ([65, §4.2]). A subset S of Pn
R is an AS-set if and only if

it is semialgebraic and satisfies the following condition: for every real analytic

arc γ : (−1, 1) → Pn
R satisfying γ((−1, 0)) ⊂ S, there exists ε > 0 such that

γ((0, ε)) ⊂ S.
Remark 5.20. Closed† AS-subsets of Pn

R are exactly the arc-symmetric subsets

of Pn
R.

The following example shows that AS-sets have a better behavior at infinity

than arc-symmetric sets.

Example 5.21 ([65, §4.2]). The hyperbola branch {(x, y) ∈ R2, xy = 1, x > 0}
is arc-symmetric but is not AS since if we embed the branch in P2

R, we may find

a real analytic arc going from a branch to the other one.

The following result is an AS version of Theorem 5.5. The proof is quite

similar as we can see in the proof of [65, Theorem 2.5].

Theorem 5.22. The AS-closed‡ subsets of Pn
R are exactly the closed sets of a

noetherian topology on Pn
R.

Another advantage of the AS-collection is that it is a constructible category.

Theorem 5.23 ([65, Theorem 4.5 & Proposition 4.6]).

The AS collection is a constructible category. Moreover it is the biggest one

since every other constructible category is contained in AS. This is also the only

constructible category which contains the connected components of compact real

algebraic sets.

In particular, the image of an AS-set by an injective map whose graph is AS
is an AS-set. Contrary to the arc-symmetric case (See Proposition 5.9), it is not

necessary to assume that the map is proper. The following example shows that

the properness is not a superfluous condition.

Example 5.24 ([56, Remark 3.6]). The image of the hyperbola branch {(x, y) ∈
R2, xy = 1, x > 0} by the projection on the first coordinate is not arc-symmetric.

� By [14, Theorem 3.4.4], Pn
�

is biregularly isomorphic to an algebraic subset of an Euclidean
space RN .

† for the Euclidean topology.
‡ for the Euclidean topology.
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The following result may be easily deduced from [65, Theorem 4.3]. We may

see this result as an analogue of the Chevalley theorem which states that, over

an algebraically closed field, the image of a Zariski-constructible set by a regular

map is Zariski-constructible.

Theorem 5.25. The image of an AS-set by a regular map whose each fiber has

an odd Euler characteristic with compact support is an AS-set.

5.5 The virtual Poincaré polynomial

C. McCrory and A. Parusiński [60] proved there exists a unique additive in-

variant of real algebraic varieties which coincides with the Poincaré polynomial

with Z2 coefficients for compact non-singular algebraic varieties. It is called the

virtual Poincaré polynomial.

This invariant was extended to AS-sets by G. Fichou [28] who also showed

that it is invariant under Nash-isomorphisms�.

These constructions rely on the weak factorization theorem [75, 3] in a way

similar to what has been done by F. Bittner [12] to prove that K0(Vark) is

spanned by the isomorphism classes of projective non-singular algebraic varieties

with the following relations: 0 = [∅] and [BlY X]− [E] = [X]− [Y ] where BlY X

is the blowing-up of X along a non-singular closed subvariety Y with exceptional

divisor E.

Using a new construction, C. McCrory and A. Parusiński proved that the vir-

tual Poincaré polynomial for AS-sets is in fact an invariant up to bijections whose

graph is AS (See the proof of [61, Theorem 4.6] together with [61, Proposition

4.3]).

Theorem 5.26 ([60], [28], [61]). There is a unique map† β : AS → Z[u], called

the virtual Poincaré polynomial, such that

• β(X � Y ) = β(X) + β(Y ),

• β(X × Y ) = β(X)β(Y ),

• If X �= ∅ then deg β(X) = dimX and the leading coefficient of β(X) is posi-

tive‡,
• If X is compact and non-singular then β(X) =

∑
i dimHi(X,Z2)ui,

• If X and Y are two AS-sets such that there is a bijection with AS-graph be-

tween them then β(X) = β(Y ).

Remark 5.27. Notice that if we work with semialgebraic sets with no additional

assumption then every additive invariant of semialgebraic sets up to semialgebraic

� Two AS-sets A and B are Nash-isomorphic if there exist two compact Nash manifolds M and
N such that A ⊂ M and B ⊂ N and a Nash-isomorphism ϕ : M → N such that ϕ(A) = B,
see [28, Definition 2.15 & Theorem 2.16].

† AS is a set since each AS-set is embedded in a projective space.
‡ β(∅) = 0
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homeomorphisms factorises through the Euler characteristic with compact sup-

port�.

This highlights that the virtual Poincaré polynomial, which encodes the di-

mension, is a very powerful additive invariant.

Notice also that we recover the Euler characteristic with compact support by

evaluating the virtual Poincaré polynomial in u = −1.

Example 5.28. Since P1
R is compact and non-singular we have β(P1

R) = u + 1

and so, by additivity, β(R) = β(P1
R)− β(pt) = u.

The following example shows that the virtual Poincaré polynomial is not a

topological invariant.

Example 5.29 ([60]). The strict transform of the blowing-up of the eight curve

H = {y2 = x2 − x4} at the origin is a circle and the inverse image of the origin

consists in two points. Hence β(S1)− 2β(pt) = β(H)− β(pt) and so β(H) = u.

If we blow-up the following union of two circles tangent at the origin

T = {((x + 1)2 + y2 − 1)((x − 1)2 + y2 − 1) = 0}, then the strict transform

consists in two circles and the inverse image of the origin consists in two points.

Hence 2β(S1)− 2β(pt) = β(T )− β(pt) and so β(T ) = 2u+ 1.

6. The blow-Nash equivalence

6.1 Nash maps

Nash maps and Nash manifolds were first studied by J. Nash [62] where

he considered real analytic functions satisfying non trivial polynomial equations.

Thanks to this notion, in the same article, he proves that a connected and com-

pact C∞-manifold is diffeomorphic to a non-singular connected component of a

real algebraic variety. This result was improved by A. Tognoli [71]: a compact

C∞-manifold is diffeomorphic to a non-singular real algebraic set.

M. Artin and B. Mazur [6] gave a characterization of Nash functions in order

to define an abstract notion of Nash manifold.

Nash functions are powerful since they share good algebraic properties with

polynomial maps and good geometric properties with real analytic geometry such

as an implicit function theorem [14, Proposition 2.9.7 & Corollary 2.9.8]. We refer

the reader to [14, §8] and [69] for more details.

� See [68]. More precisely the Grothendieck ring of semialgebraic sets up to semialgebraic home-
omorphisms is isomorphic to Z via the Euler characteristic with compact support. This
is due to the following cell decomposition property of semialgebraic sets: a semialgebraic
set may be splitted as a disjoint union of semialgebraic sets which are semialgebraically
homeomorphic to (0, 1)d. We may conclude by noticing that we can cover (0, 1)d with
two semialgebraic sets that are semialgebraically isomorphic to (0, 1)d and such that the
intersection is semialgebraically isomorphic to (0, 1)d−1.
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Definition 6.1 ([62], [14, §8]). Let U ⊂ Rd be an open semialgebraic set. A

function f : U → R is Nash if it satisfies the following equivalent conditions:

1. f is semialgebraic and C∞,

2. f is real analytic and satisfies a non trivial polynomial equation.

Definition 6.2. A map f : U → Rn defined on an open semialgebraic set is Nash

if so are its component functions.

Definition 6.3. A d-dimensional Nash manifold is a semialgebraic set M of Rp

such that every x ∈M admits a semialgebraic open neighborhood which straight-

ens M , i.e. there exists U a semialgebraic open neighborhood of the origin in Rp,

V a semialgebraic open neighborhood of x in Rp and ϕ : V → U a Nash diffeo-

morphism such that ϕ(x) = 0 and ϕ(M ∩ V ) = Rd × {0}.
Example 6.4. We may derive from the Jacobian criterion and the Nash implicit

function theorem that a non-singular real algebraic set has a natural structure of

Nash manifold.

M. Artin and B. Mazur gave a description of Nash maps as maps which lift

to polynomial maps on irreducible non-singular real algebraic sets.

Theorem 6.5 (Artin-Mazur description [6] [14, Theorem 8.4.4]). Let M ⊂ Rp

be an n-dimensional Nash manifold which is semialgebraically connected. Let

f : M → Rk be a Nash map. Then there exists an n-dimensional irreducible

non-singular real algebraic set V ⊂ Rp+q, an open semialgebraic subset M ′ of V ,

a Nash diffeomorphism σ : M →M ′ and a polynomial map g : V → Rk such that

the following diagram commutes

Rp+q

Π

��

V� ���

g

���
��

��
��

�

M ′�
�





Rk

Rp M�
���

σ





f

��								

where Π is the projection on the first p coordinates.

Moreover M ′ is a connected component of Π−1(M) ∩ V .

6.2 The blow-Nash equivalence

G. Fichou [28] introduces zeta functions similar to the ones of S. Koike and

A. Parusiński but realized through the virtual Poincaré polynomial which is a

richer invariant than the Euler characteristic with compact support.

Whereas his zeta functions are well defined for real analytic function germs,

he has to restrict to Nash function germs in order to ensure that the object



66 Jean-Baptiste Campesato

involved in the rationality formula are AS.

For this technical reason, he introduces an algebraic version of the blow-

analytic equivalence for Nash function germs called the blow-Nash equivalence.

It is not known whether the first definition of the blow-Nash equivalence is an

equivalence relation. For this reason, the definition evolves in [29] to get an equiv-

alence relation. But with this last definition the Fichou zeta functions are not

invariants of the blow-Nash equivalence (but we may still derive from them few

weaker invariants [29, Proposition 2.6, Proposition 3.2 & Theorem 3.4]). Finally

the definition of the blow-Nash equivalence stabilized as a notion which is mid-

way from the previous notions [30, 31, 32]. From now on, the term “blow-Nash

equivalence” will refer to this last notion.

Fichou zeta functions are invariants of the blow-Nash equivalence but it was

still not obvious originally that this notion is an equivalence relation.

Definition 6.6 ([28, Definition 4.1]). Two Nash function germs f, g : (Rd, 0)→
(R, 0) are blow-Nash equivalent if there exist two Nash modifications�

μf : (Mf , μ
−1
f (0))→ (Rd, 0) and μg : (Mg, μ

−1
g (0))→ (Rd, 0)

such that fμf , Jacμf
, gμg and Jacμg

have normal crossings only, a Nash diffeo-

morphism

Φ : (Mf , μ
−1
f (0))→ (Mg, μ

−1
g (0))

which preserves the multiplicies of Jacμf
and Jacμg

along the irreducible compo-

nents of the exceptional loci and which induces a semialgebraic homeomorphism

ϕ : (Rd, 0)→ (Rd, 0) such that the following diagram commutes

(Mf , μ
−1
f (0))

Φ ��

μf

��

(Mg, μ
−1
g (0))

μg

��
(Rd, 0)

ϕ ��

f ��















(Rd, 0)

g
�����

���
���

�

(R, 0) .

The blow-Nash equivalence has properties similar to the ones of the blow-

analytic equivalence concerning the absence of continuous moduli for isolated

singularities.

6.3 Fichou zeta functions

Definition 6.7 ([28, §3.1]). Let f : (Rd, 0) → (R, 0) be a real analytic function

germ. For n ∈ N>0, we set
� A Nash modification is a proper surjective Nash map whose complexification is proper and

bimeromorphic.
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Xn(f) =
{
γ ∈ Ln(Rd, 0), fγ(t) = ctn + · · · , c �= 0

}
,

X+
n (f) =

{
γ ∈ Ln(Rd, 0), fγ(t) = tn + · · ·} ,

X−
n (f) =

{
γ ∈ Ln(Rd, 0), fγ(t) = −tn + · · ·}

and we define the Fichou zeta functions by

Zβ,naive
f (T ) =

∑
n≥1

β (Xn(f))u−ndTn ∈ Z
[
u, u−1

]
�T �,

Zβ,+
f (T ) =

∑
n≥1

β
(
X+

n (f)
)
u−ndTn ∈ Z

[
u, u−1

]
�T �,

Zβ,−
f (T ) =

∑
n≥1

β
(
X−

n (f)
)
u−ndTn ∈ Z

[
u, u−1

]
�T �.

Remark 6.8. Similarly to the Koike–Parusiński zeta functions, the Fichou zeta

functions are local.

We may derive the following rationality formulas from an adaptation of

Denef–Loeser key lemma for the motivic change of variables formula.

Theorem 6.9 ([28, Proposition 3.2 & Proposition 3.5]). Let f : (Rd, 0)→ (R, 0)

be a Nash function germ. There exists σ : (M,σ−1(0))→ (Rd, 0) a finite sequence

of algebraic blowings-up with non-singular centers such that fσ and Jacσ simul-

taneously have normal crossings only and such that σ is an isomorphism outside

the zero set of f . We denote by (Ei)i∈J the irreducible components of (fσ)−1(0)

and, for i ∈ J ,

Ni = multEi
fσ and νi − 1 = multEi

Jacσ.

Then

Zβ,naive
f (T ) =

∑
∅ �=I⊂J

(u− 1)|I|β
(
E•

I ∩ σ−1(0)
)∏
i∈I

u−νiTNi

1− u−νiTNi

and, for ε ∈ {−,+},

Zβ,ε
f (T ) =

∑
∅ �=I⊂J

(u− 1)|I|−1β
(
Ẽ•

I
ε ∩ σ−1(0)

)∏
i∈I

u−νiTNi

1− u−νiTNi
.

We refer the reader to [28, Lemma 3.12] for the definition of Ẽ•
I
ε.

Remark 6.10 ([28, Remark 3.3]). In Theorem 6.9, it is necessary to assume that
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f is Nash in order to ensure that E•
I is AS so that β(E•

I ) is well defined.

The next theorem is a direct consequence of the previous rationality formulas.

Theorem 6.11 ([28, Theorem 4.8]). If f, g : (Rd, 0)→ (R, 0) are two blow-Nash

equivalent Nash function germs then

Zβ,naive
f = Zβ,naive

g , Zβ,+
f = Zβ,+

g , Zβ,−
f = Zβ,−

g .

Remark 6.12 ([28, p. 678]). In the blow-Nash setting, Fichou zeta functions

generalize the Fukui invariants since the virtual Poincaré polynomial is non-zero

for a non-empty AS-set.

Fichou zeta functions allow one to obtain a complete classification of

Brieskorn polynomials up to three variables for the blow-Nash equivalence [28].

More recently they were used by G. Fichou and T. Fukui [32] to prove that the

blow-Nash class of a three variables non-degenerate (with respect to its Newton

polyhedron) convenient weighted homogeneous polynomial determines its weight

system.

No convolution formula is known for Fichou zeta functions.

7. The arc-analytic equivalence

7.1 Definition and first properties

In [16], a characterization of the blow-Nash equivalence is given in terms of

arc-analytic maps. This relation is called the arc-analytic equivalence and allows

one to prove that it is an equivalence relation as expected. Moreover it avoids

using Nash modifications.

Definition 7.1 ([16, Definition 7.5]). Let f, g : (Rd, 0) → (R, 0) be two Nash

function germs. We say that f and g are arc-analytic equivalent if there exists a

semialgebraic homeomorphism h : (Rd, 0)→ (Rd, 0) such that

(i) f = gh,

(ii) h is arc-analytic,

(iii) there exists c > 0 such that | det dh| > c where dh is defined.

Theorem 7.2 ([16, Proposition 7.7]). The arc-analytic equivalence is an equiv-

alence relation.

Theorem 7.3 ([16, Proposition 7.9]). The arc-analytic equivalence coincides

with the blow-Nash equivalence, i.e. two Nash function germs are arc-analytic

equivalent if and only if they are blow-Nash equivalent.

Corollary 7.4 ([16, Corollary 7.10]). The blow-Nash equivalence is an equiva-

lence relation.
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A recent preprint by A. Parusiński and L. Paunescu [66] announces that the

arc-analytic equivalence admits no continuous moduli even for families of non-

isolated singularities. The following result can be deduced from [66, Theorem

8.5] and the proof of [66, Theorem 3.3], see also the formula [66, (3.9)].

Theorem 7.5. Let F : (Rd×I, {0}×I)→ (R, 0) be a Nash germ. Then the germs

ft(x) = F (t, x) : (Rd, 0) → (R, 0), t ∈ I, define a finite number of arc-analytic

classes.

7.2 A new zeta function

7.2.1 A Grothendieck ring

In order to obtain a zeta function with a convolution formula, we are go-

ing to work with an adaptation of Guibert–Loeser–Merle Grothendieck group to

R∗-equivariant AS-sets up to AS-bijections following [16, §3].

Definition 7.6 ([16, Definition 3.1]). Let K0(AS) be the free abelian group

spanned by symbols� [X] with X ∈ AS modulo the following relations

(1) Let X,Y ∈ AS. If there is a bijection X → Y whose graph is AS then

[X] = [Y ],

(2) For X ∈ AS and Y ⊂ X a closed AS-subset we set

[X \ Y ] + [Y ] = [X],

The cartesian product induces a ring structure:

(3) [X][Y ] = [X × Y ].

Remark 7.7. The unit of the addition is the class of the empty set denoted by

0 = [∅].

The one of the multiplication is the class of the point denoted by

1 = [pt].

We denote by LAS = [R] the class of the affine line and we set

MAS = K0(AS)
[
L−1
AS
]
.

Remark 7.8. For A,B ∈ AS we have [A �B] = [A] + [B].

Remark 7.9. The virtual Poincaré polynomial factorises through a ring mor-

phism

� It is well defined since AS is a set.
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β : K0(AS)→ Z[u]

which extends to a ring morphism

β :MAS → Z[u, u−1].

Definition 7.10. For n ∈ N>0, we denote by ASnmon the category whose objects

are of the form

ϕX : R∗ � X → R∗

where X ∈ AS, the graph ΓϕX
∈ AS, the graph of the action ΓR∗×X→X ∈ AS

and finally for all (λ, x) ∈ R∗×X, ϕX(λ · x) = λnϕ(x) and whose morphisms are

equivariant maps� with AS-graph over R∗:

X
f ��

ϕX ���
��

��
��

� Y

ϕY��		
		
		
		

R∗ .

Remark 7.11. One may notice that an isomorphism in ASnmon is just an equiv-

ariant bijection with AS-graph over R∗.

Definition 7.12 ([16, Definition 3.4]). For n ∈ N>0, we denote by K0(ASnmon)

the free abelian group spanned by symbols

[ϕX : R∗ � X → R∗]

where ϕX : R∗ � X → R∗ ∈ ASnmon modulo the relations:

(1) If ϕX : R∗ � X → R∗ and ϕY : R∗ � Y → R∗ are isomorphic in ASnmon then

we set

[ϕX : R∗ � X → R∗] = [ϕY : R∗ � Y → R∗] ,

(2) If Y is a R∗-invariant closed AS-subset of X then

[ϕX : R∗ � X → R∗] =
[
ϕX|Y : R∗ � Y → R∗]+

[
ϕX|X\Y : R∗ � X \ Y → R∗] ,

(3) Let ϕY : R∗ �

τY → R∗ ∈ ASnmon and ψ = ϕY prY : Y × Rm → R∗. Let σ

and σ′ be two actions of R∗ on Y × Rm which are two liftings† of τ then

ψ : R∗ �

σ(Y × Rm)→ R∗ and ψ : R∗ �

σ′(Y × Rm) → R∗ are in ASnmon and

we add the relation

[ψ : R∗ �

σ(Y × Rm)→ R∗] = [ψ : R∗ �

σ′(Y × Rm)→ R∗] .

� i.e. f(λ · x) = λ · f(x).
† i.e. prY (λ ·σ x) = λ ·τ prY (x).
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The fiber product over R∗ induces a ring structure:

(4) We add the relation

[ϕX : R∗ � X → R∗] [ϕY : R∗ � Y → R∗] = [X ×R∗ Y → R∗]

where the action of R∗ on X ×R∗ Y is diagonal from the previous ones.

The cartesian product induces a structure of K0(AS)-algebra� :

(5) Let [A] ∈ K0(AS) and [ϕX : R∗ � X → R∗] ∈ K0(ASnmon) then we set

[A] · [ϕX : R∗ � X → R∗] = [ϕX prX : A×X → R∗]

where the action is trivial on A.

Remark 7.13. The unit of the addition is the class of the empty set

0 = [∅]

and the unit of the product is

1n = [id : R∗ → R∗]

where the action on the first R∗ is λ · r = λnr.

The class of the affine line LAS ∈ K0(AS) induces, by the scalar product, a

class

Ln = LAS · 1n = [prR∗ : R× R∗ → R∗]

where the action is λ · (r, x) = (r, λnx).

We set Mn = K0(ASnmon)
[
L−1
n

]
which has a natural structure of MAS -

algebra.

Definition 7.14. We define a directed partial order on N>0 by

n ≺ m⇔ ∃k ∈ N>0, n = km

and for n ≺ m we define the morphism

θmn : ASmmon → ASnmon

which only changes the action by λ ·n x = λk ·m x.

Then we set ASmon = lim−→AS
n
mon, K0(ASmon) = lim−→K0(ASnmon) and

M = lim−→M
n.

Notation 7.15. • 1 = lim−→ 1n

� Using the notation introduced below, the algebra structure is given by the structural mor-
phism K0(AS) → K0(ASn

mon) defined by [A] → [A] ·1n = [pr�∗ : A× R∗ → R∗] where the
R∗-action is λ · (a, r) = (a, λnr).



72 Jean-Baptiste Campesato

• L = lim−→Ln

Remark 7.16. Notice that K0(ASmon) has a natural structure of K0(AS)-

algebra and that M has a natural structure of MAS -algebra.

Notice also that L = LAS · 1 and that, since the localization commutes with

inductive limit,

M = K0(ASmon)
[
L−1

]
Proposition 7.17 ([16, End of §3]). The map ASnmon → AS defined by

(ϕX : R∗ � X → R∗) �→ X

induces the following forgetful morphisms:

• Morphisms of K0(AS)-modules · : K0(ASnmon)→ K0(AS),

• A morphism of K0(AS)-modules · : K0(ASmon)→ K0(AS),

• Morphisms ofMAS-modules · :Mn →MAS ,
• A morphism ofMAS-modules · :M→MAS .

Proposition 7.18 ([16, §4.2.1]). Let ε ∈ {<,>}. The map ASnmon → AS defined

by

(ϕX : R∗ � X → R∗) �→ ϕ−1
X (Rε0)

induces the following forgetful morphisms

• Morphisms of K0(AS)-modules F ε : K0(ASnmon)→ K0(SA),

• A morphism of K0(AS)-modules F ε : K0(ASmon)→ K0(SA),

• Morphisms ofMAS-modules F ε :Mn →MSA,

• A morphism ofMAS-modules F ε :M→MSA,

where K0(SA) � Z is the Grothendieck ring of semialgebraic sets up to semial-

gebraic homeomorphisms andMSA � Z the localization by the class of the affine

real line.

Remark 7.19. Previous morphisms are morphisms of modules (and not of alge-

bras) since the multiplication comes from the cartesian product in K0(AS) and

from the fiber product in K0(ASmon). It is highlighted in the following example.

Example 7.20. • β(1) = β(R∗) = u− 1 �= 1 = β(pt).

• χc(F
>1) = χc(R>0) = −1 �= 1 = χc(pt).

Proposition 7.21 ([16, §4.2.2]). Let ε ∈ {+,−}. The map ASnmon → AS defined

by

(ϕX : R∗ � X → R∗) �→ ϕ−1
X (ε1)

induces the following forgetful morphisms:

• Morphisms of K0(AS)-algebras F ε : K0(ASnmon)→ K0(AS),
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• A morphism of K0(AS)-algebras F ε : K0(ASmon)→ K0(AS),

• Morphisms ofMAS-algebras F ε :Mn →MAS ,
• A morphism ofMAS-algebras F ε :M→MAS .

Remark 7.22. Previous morphisms are morphisms of algebras since the fiber

product over a point coincides with the cartesian product.

7.2.2 Definition and properties of the zeta function

Definition 7.23 ([16, Definition 4.2]). Let f : (Rd, 0)→ (R, 0) be a Nash function

germ. For n ∈ N>0, we set

Xn(f) =
{
γ ∈ Ln(Rd, 0), fγ(t) = ctn + · · · , c �= 0

}
together with the angular component morphism acnf : Xn(f) → R∗ defined by

acnf (γ) = ac(fγ) = c and with the R∗-action defined by λ · γ(t) = γ(λt). In this

way the class

[Xn(f)] :=
[
acnf : R∗ � Xn(f)→ R∗]

is well defined in K0(ASnmon).

The zeta function of [16] is defined by

Zf (T ) =
∑
n≥1

[Xn(f)] L−ndTn ∈M�T �.

This zeta function encodes the previous ones of Koike–Parusiński and Fichou.

Proposition 7.24 ([16, §4.2]). We recover Koike–Parusiński zeta functions ap-

plying coefficientwise the morphisms χc( · ), χcF
> or χcF

< to Zf (T ).

Proposition 7.25 ([16, §4.2]). We recover Fichou zeta functions applying coef-

ficientwise the morphisms β( · ), βF+ or βF− to Zf (T ).

This zeta function admits a rationality formula (from which we may derive

the rationality formulas of Koike–Parusiński zeta functions and Fichou zeta func-

tions).

Theorem 7.26 ([16, Theorem 4.22]). Let f : (Rd, 0) → (R, 0) be a Nash func-

tion germ. There exists σ : (M,σ−1(0)) → (Rd, 0) a finite sequence of algebraic

blowings-up with non-singular centers such that fσ and Jacσ simultaneously have

normal crossings only and such that σ is an isomorphism outside the zero set of

f . We denote by (Ei)i∈J the irreducible components of (fσ)−1(0) and, for i ∈ J ,

Ni = multEi
fσ and νi − 1 = multEi

Jacσ.

Then
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Zf =
∑

∅ �=I⊂J

[
UI ∩ (σpI)−1(0)

]∏
i∈I

L−νiTNi

1− L−νiTNi
.

We refer the reader to [16, §4.3.2] for the definition of UI and pI .

We derive from the previous rationality formula that the zeta function con-

sidered in this section is an invariant of the arc-analytic equivalence.

Theorem 7.27 ([16, Theorem 7.11]). If f, g : (Rd, 0) → (R, 0) are two arc-

analytic equivalent Nash function germs then Zf = Zg.

7.2.3 A convolution formula

Definition 7.28 ([16, Notation 6.1]). We define the convolution product

∗ : K0(ASmmon)×K0(ASnmon)→ K0(ASmn
mon)

as the unique K0(AS)-bilinear map satisfying

[ϕ1 : R∗ �

σ1
X1 → R∗] ∗ [ϕ2 : R∗ �

σ2
X2 → R∗]

= − [ϕ1 + ϕ2 : R∗ �

τ1((X1 ×X2) \ (ϕ1 + ϕ2)−1(0))→ R∗]
+
[
prR∗ : R∗ �

τ2((ϕ1 + ϕ2)−1(0)× R∗)→ R∗] ,
where λ ·τ1 (x1, x2) = (λn ·σ1

x1, λ
m ·σ2

x2) and λ ·τ2 (x1, x2, r) = (λn ·σ1
x1, λ

m ·σ2

x2, λ
mnr).

Remark 7.29. This induces a K0(AS)-bilinear map ∗ : K0(ASmon) ×
K0(ASmon) → K0(ASmon) (resp. MAS -bilinear map ∗ : M×M →M) which

is associative, commutative and whose unit is 1.

Definition 7.30 ([16, §6]). We define the modified zeta function of f by

Z̃f (T ) = Zf (T )− 1− Znaive
f (T )

1− T + 1

where Znaive
f (T ) is obtained by applying coefficientwise α �→ α · 1 to Zf (T ).

Remark 7.31 ([16, Remark 6.9]). Applying coefficientwise the forgetful mor-

phism (resp. F>, resp. F<) then the Euler characteristic with compact support

we recover the modified zeta functions of Koike–Parusiński.

Remark 7.32 ([16, Corollary 6.14]). Zf (T ) and Z̃f (T ) encode the same infor-

mation. Indeed

Zf (T ) = Z̃f (T ) +
L− Z̃naive

f (T )

L− T − 1.
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We may recover Remark 4.9 from both previous remarks.

Theorem 7.33 ([16, Theorem 6.15]). For i ∈ {1, 2}, let fi : (Rdi , 0) → (R, 0)

be a Nash function germ. We define f1 ⊕ f2 : (Rd1 × Rd2 , 0) → (R, 0) by

f1 ⊕ f2(x1, x2) = f1(x1) + f2(x2). Then

Z̃f1⊕f2(T ) = −Z̃f1(T ) � Z̃f2(T )

where � is the Hadamard product which consists in applying ∗ coefficientwise.

We may recover Theorem 4.8 from the last theorem.

The convolution formula of this section allows one to get a real version of a

result of Yoshinaga–Suzuki [76]: the arc-analytic type of a Brieskorn polynomial

determines its exponents (See [16, Corollary 8.4]).

Notice there exists an effective formula to compute the zeta function of a

polynomial non-degenerate with respect to its Newton polyhedron [16, Theorem

5.15]. Such a formula was already known in the topological case [20, §5], the

p-adic case [19], the classical motivic integration case [43, §2.1] and for Fichou

zeta functions [32].
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