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Abstract

We introduce the notion of multiplicity for a singular C∞ (resp. analytic)

curve. When the multiplicity is m, we show (Theorem 1.1) that the m-th root of

the arc length parameter is a C∞ (resp. analytic) parameter. We show a closed

formula (Theorem 2.1) for curvatures in arbitrary parameterizations, which enable

us to investigate the asymptotic behavior of curvatures at a singular point. As an

application, we obtain a version of the fundamental theorem of curves at a singular

point.

As pointed out at the beginning of [2], the singular points of analytic space

curves have been investigated by various authors. An abstract of [2] was pub-

lished in 1916 (Bull. Amer. Math. Soc. 22 (1916), page 268), and this research

topic has a history of more than 100 years. Talking about regular space curves,

the fundamental theorem of curves says that curvatures of curves decide their

shapes. This was generalized by T. Sasai ([3, 4]) for analytic space curves with

singularities. We show a version of the fundamental theorem of C∞-curves at a

singular point (Theorem 2.8) for curves with multiplicity m, as a byproduct of

our approach. Since the author is not able to find any literature which claims

Theorem 2.8, it is probably new. But the author is not able to distinguish the

known things (including forgotten things and folklore) and new things in the re-

sults of this article. The author feels that it is impossible to be aware about all

important results in this field. Since the author is not an expert on history, he

decides to prepare the paper in this form.

The paper is organized as follows: In the first section, we define the notion of

multiplicity for space curves and, when the multiplicity is m, we show (Theorem

1.1) that the m-th root of the arc length parameter is a C∞ (resp. analytic)

parameter. We next show a closed formula (Theorem 2.1) for curvatures in arbi-

trary parameterizations, and show a version of the fundamental theorem on C∞

space curves with a singularity of multiplicity m. We present a proof of Theorem

2.1 in the third section.

2010 Mathematics Subject Classification. 53A04
Key words and phrases. curves, multiplicity, arc length parameter, curvatures.
Dedicated to the memory of Professor Takao Sasai who told the author the problem to

extend the fundamental theorem of curves to a singular point



80 T. Fukui

1. Multiplicity and arc length parameter

Let f : [0, ε) → R
n be a C∞-map with f(0) = 0. We say that f is of mul-

tiplicity m at t = 0 if there is a C∞-map f̃ : [0, ε) → R
n with the following

property:

f(t) =
tm

m
f̃(t), f̃(0) �= 0.

We denote this number m by ord f .

We say that f is of finite multiplicity at t = 0, if f is of multiplicity m at

t = 0 for some positive integer m. We say that f is flat at t = 0 if there are no

such positive integer m.

We consider a non-constant C∞-map γ : [0, ε) → R
n, γ(0) = 0, as a curve

in the Euclidean space R
n. We denote elements of Rn as vertical vectors. The

following lemma implies that the multiplicity m is an intrinsic invariant.

Theorem 1.1. If γ is of multiplicity m at t = 0, then there is a C∞-

parameter u = u(t) so that um/m is an arc length parameter. Moreover, we

have
∣∣ dγ
du

∣∣ = um−1.

Proof. We have dγ/dt = tm−1T (t) where T (t) = γ̃ + (t/m)γ̃t. We remark that

T (0) �= 0. The arc length parameter s satisfies that

ds

dt
=

∣∣∣dγ
dt

∣∣∣ = tm−1|T (t)|.

Define a parameter u by um/m = s, that is,

(1.1)
um

m
= s =

∫ t

0

τm−1|T (τ)|dτ.

We remark that when we express the right hand side by ϕ(t), dϕ/dt has order

m − 1 in t. This implies that ϕ(t) = tmφ(t) for some C∞-function φ(t) with

φ(0) > 0. So we take a parameter u by u = t(mφ(t))1/m. Remark that u is a

C∞-function in t. We also remark that∣∣∣dγ
du

∣∣∣ = ∣∣∣ ds
du

∣∣∣∣∣∣dγ
ds

∣∣∣ = ∣∣∣ ds
du

∣∣∣ = um−1.

We remark that u is an analytic parameter when γ is analytic.

In the notation in the proof above, we have

du

dt
=
( t

u

)m−1

|T (t)|,(1.2)

um−1du =tm−1|T (t)|dt,(1.3)

um−1Ti(t)|T (t)|−1du =tm−1Ti(t)dt,(1.4)
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∫ u

0

υm−1Ti(t)|T (t)|−1dυ =

∫ t

0

τm−1Ti(τ)dτ = xi(1.5)

where T (t) = t(T1(t), . . . , Tn(t)). Here ta denotes the transpose of a. The

(m+ k)-jet of γ determines (k− 1)-jet of T (t). If u = u(t) denote the function of

t with (1.2), then the equation (1.3) implies (k − 1)-jet of T (t) determines k-jet

of u(t). In fact, setting u =
∑

i≥1 uit
i, we have

∑
j1, ..., jm≥1

j1uj1 · · ·ujmtj1+···+jm = tm|T (t)|

and (k − 1)-jet of T (t) determines u1, . . . , uk.

For a C∞-map γ : (−ε, ε) → R
n, we say that γ is of multiplicity m (resp. of

finite multiplicity, flat) at t = 0 if the following two maps [0, ε) → R
n defined

by t → γ(t) and t �→ γ(−t) are of multiplicity m (resp. of finite multiplicity, flat)

at t = 0.

Example 1.2. Let α, β : R → R
n be two analytic maps. Then the the image of

C∞-map γ : R → R
n, t �→ α(g(t)) + β(g(−t)), is

{α(t) : t ≥ 0} ∪ {β(t) : t ≥ 0}

where g(t) = e−1/t, t > 0; 0, t ≤ 0. We remark that γ is flat at t = 0.

Example 1.3. For a C∞-curve defined by s �→ γ(s) = s√
2

(cos log s/
√
2

sin log s/
√
2

)
, s > 0,

s is an arc length parameter. Setting s = e−1/t, this curve is expressed by

t �→ e−1/t
(

cos 1/t
− sin 1/t

)
, which extends to a C∞-function at t = 0. This is flat at

t = 0.

Consider a C∞-map

μ : [0, ε) → R
n, t �→ 1

m

⎛
⎜⎜⎜⎝
φ1(t)

φ2(t)
...

φn(t)

⎞
⎟⎟⎟⎠ ,

φ1(t) = tm,

lim
t→0

φi+1(t)

φi(t)
= 0, i = 1, 2, . . . , n− 1.

Here ε is a small positive number. The image of a C∞-map γ : [0, ε) → R
n with

multiplicity m is represented by the image of the map in this form, up to suitable

rotation. The functions φ2(t), . . . , φn(t) are differential geometric invariants. We

call this expression Monge normal form, since this is classical Monge normal

form when (n,m) = (2, 1).

For arbitrary C∞-map γ : [0, ε) → R
n of multiplicity m, there is a diffeomor-

phism germ τ : [0, ε) → [0, ε) at 0 so that γ(τ(t)) is in Monge normal form, that

is,



82 T. Fukui

γ(τ(t)) =
1

m

⎛
⎜⎜⎜⎝

tm

φ2(t)
...

φn(t)

⎞
⎟⎟⎟⎠ .

We remark that (m+ j)-jet of γ determines (m+ j)-jets of φ2(t), . . . , φm(t).

If we take a parameter u so that tm/m is an arc length parameter, we can

express the curve by

(1.6) γ(u) =

⎛
⎜⎝
ϕ1(u)

...

ϕn(t)

⎞
⎟⎠ , m = ordϕ1(u), lim

t→0

ϕi+1(u)

ϕi(u)
= 0, i = 1, . . . , n− 1.

composing a suitable rotation, if necessary. This is also a normal form of a curve

with multiplicity m. We remark that (m+j)-jet of Monge normal form determine

the (m+ j)-jet of the normal form (1.6) and vice versa.

Remark 1.4. S. Shiba and M.Umehara ([5]) has analyzed 3/2-cusp in the plane

R
2 using the square root of an arc length parameter as a parameter (they call it

the half-arclength parameter).

2. Curvatures

Let us consider a curve γ : [0, ε) → R
n, t �→ γ(t), with multiplicity m at

t = 0. We have a parameter u so that um/m is an arc length parameter. Set

wk = dkγ/dtk, k = 1, . . . , n. We consider an orthogonal frame a1,a2, . . . ,an so

that

〈a1,a2, . . . ,ak〉R = 〈w1,w2, . . . ,wk〉R, k = 1, . . . , n− 1, for 0 < t < ε.

Define Vk, k = 1, . . . , n− 1, by

Vk =

∣∣∣∣∣∣∣
〈w1,w1〉 . . . 〈w1,wk〉

...
. . .

...

〈wk,w1〉 . . . 〈wk,wk〉

∣∣∣∣∣∣∣
1/2

, and Vn = |w1 · · · wn|.

Recall that the curvatures κi, i = 1, . . . , n− 1, are defined by the formula

d

ds

⎛
⎜⎝
a1

...

an

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 κ1 0 . . . 0

−κ1 0 κ2
. . .

...

0 −κ2 0
. . . 0

...
. . .

. . .
. . . κn−1

0 . . . 0 −κn−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝
a1

...

an

⎞
⎟⎠
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where s is an arc length parameter. The curvatures κi in arbitrary parametariza-

tion are given by the following

Theorem 2.1. κi =
Vi−1Vi+1

V1V 2
i

, i = 1, . . . , n− 1.

This formula enables us to analyse the asymptotic behaviour of the curvatures

at a singular point. When the author first showed this formula, he did not know

any such a closed formula for curvatures in terms of Gram determinants. After

he showed this, he has found the paper [1], which showed the formula for curva-

tures using Gram-Schmidt process. Before Theorem 4.2 on page 702 loc. cite.,

H. Gluck said “Looking carefully at the chain rule formulas for the derivatives of

F in terms of those of F ∗ leads one to the following conclusions”, and stated the

formulas for curvatures for arbitrary parameterization. So some details were not

presented. We present a proof of Theorem 2.1 in the next section, since our proof

gives an explicit expression of the orthonormal projection, and looks different to

that in [1].

Let us assume that there are C∞-functions g(t) and T = T (t) ∈ R
n with

dγ

dt
= g(t)T (t), T (0) �= 0.

We consider a C∞-map

γ̂ : [0, ε) → R
n with

dγ̂

dt
= T (t).

Since T (0) �= 0, γ̂ is regular at t = 0. It is clear that t is an arc length parameter

of γ̂, i.e., |T | = 1, if and only if
∫ t

0
g(τ)dτ is an arc length parameter of γ.

Let κ̂k (k = 1, . . . , n− 1) denote the curvatures of γ̂.

Theorem 2.2. |g(t)|κk = κ̂k for k = 1, . . . , n− 1.

Corollary 2.3. If tm/m is an arc length parameter of γ, then tm−1κk = κ̂k for

k = 1, . . . , n− 1.

Proof. Assume that |T | = 1 and set g(t) = tm−1 in the previous Theorem.

Definition 2.4. Define V̂k (k = 1, . . . , n− 1) by

V̂k =

∣∣∣∣∣∣∣∣∣∣

〈T ,T 〉 〈T ,T t〉 . . . 〈T ,T (k−1)〉
〈T t,T 〉 〈T t,T t〉 . . . 〈T t,T

(k−1)〉
...

...
. . .

...

〈T (k−1),T 〉 〈T (k−1),T t〉 . . . 〈T (k−1),T (k−1)〉

∣∣∣∣∣∣∣∣∣∣

1/2

,

and V̂n = |T T t · · · T (n−1)|. By convention, we set V̂0 = 1.
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By Theorem 2.1, we have κ̂k = V̂k−1V̂k+1/(V̂1V̂
2
k ). So Theorem 2.2 is a

consequence of the following

Theorem 2.5. κk =
V̂k−1V̂k+1

|g(t)|V̂1V̂ 2
k

, k = 1, 2, . . . , n− 1.

Remark 2.6. When t is an arc length parameter of γ̂, or equivalently,
∫ t

0
g(τ)dτ

is an arc length parameter of γ, i.e.,
∫ t

0
|dγ/dt(τ)|dτ , we have

〈T ,T 〉 = 1, 〈T ,T t〉 = 0, 〈T t,T t〉+ 〈T t,T tt〉 = 0, . . . ,

V̂1 = 1, V̂2 = |T t|, V̂3 =
√

|T t|2|T tt|2 − |T t|6 − 〈T t,T tt〉2, and so on.

Set T (t) = (T1(t), T2(t), . . . , Tn(t)). After composing a suitable rotation, we

can assume that limt→0 Tk+1/Tk = 0 for k = 1, 2, . . . , n − 1. If we assume that

ordTn < ∞, then there are non-negative integers e1, . . . , en−1 so that

ordT2 =1 + e1,

ordT3 =2 + e1 + e2,

. . .

ordTn =n− 1 + e1 + e2 + · · ·+ en−1.

Corollary 2.7. We have ordκk = ek −m + 1, k = 1, . . . , n − 1. In particular,

κk is bounded if ek ≥ m− 1.

Proof. Since V̂ 2
k is the sum of squares of k × k minors of the matrix

(T T t T tt . . . T (k−1)),

we have that ordTk − (k − 1) = e1 + · · ·+ ek and

ord V̂k =e1 + (e1 + e2) + · · ·+ (e1 + · · ·+ ek−1)

=(k − 1)e1 + (k − 2)e2 + · · ·+ ek−1.

By Theorem 2.5, we conclude that

m− 1 + ordκk = ord V̂k−1 + ord V̂k+1 − 2 ord V̂k = ek.

Setting V̂k = t(k−1)e1+(k−2)e2+···+ek−1ŵk, we have

tm−ek−1κk =
ŵk−1ŵk+1

ŵ1ŵ2
k

.

The j-jet of T determines (j− k+1)-jet of T (k−1), (j− k+1)-jet of V̂k and thus

(j − k + 1− [(k − 1)e1 + (k − 2)e2 + · · ·+ ek−1])-jet of ŵk. Since
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j − k + 1− [(k − 1)e1 + (k − 2)e2 + · · ·+ ek−1]

>j − (k + 1) + 1− [ke1 + (k − 1)e2 + · · ·+ ek],

the j-jet of T determines (j−k−[ke1+(k−1)e2+· · ·+ek])-jet of ŵk−1ŵk+1/ŵ1ŵ
2
k.

Theorem 2.8. Let k1(t), . . . , kn−1(t) be C∞-functions defined on [0, ε). As-

sume that k1(t) > 0, . . . , kn−2(t) > 0 for t �= 0. Then there exists a curve γ(t)

of multiplicity m so that tm/m is an arc length parameter and the curvatures

are given by κ1(t) = k1(t)/t
m−1, . . . , κn−1(t) = kn−1(t)/t

m−1. Such a curve is

unique up to a motion of Rn.

Proof. The fundamental theorem of space curves shows the existence of a regular

curve γ̂ in R
n so that t is an arc length parameter of γ̂ and that the curvatures

of γ̂ are k1(t), . . . , kn−1(t). This shows the existence of a C∞-map T (t) so that

kk = V̂k−1V̂k+1/(V̂1V̂
2
k ), k = 1, . . . , n − 1, where V̂k are defined in Definition

2.4. Remark that V̂1 = 1 and dγ̂/dt = T (t). Solving the differential equa-

tion dγ/dt = tm−1T (t), we conclude the existence of a curve γ(t) of multiplicity

m so that tm/m is an arc length parameter and the curvatures are given by

κ1(t) = k1(t)/t
m−1, . . . , κn−1(t) = kn−1(t)/t

m−1, as a consequence of Theorem

2.2. Such a curve is unique up to a motion of Rn.

Remark 2.9. We show a flat version of the previous theorem is possible as fol-

lows: Let k1(t), . . . , kn−1(t) be C∞-functions defined on (0, ε) with k1(t) > 0,

. . . , kn−2(t) > 0. Then there is a regular curve γ̂(t), t ∈ (0, ε), in R
n, whose

curvatures are given by

κ̂1(t) = k1(t), . . . , κ̂n−1(t) = kn−1(t), for t ∈ (0, ε)

and t is an arc length parameter of γ̂. Let s(t) is a C∞-function on (0, ε) which is

increasing with s(0) = 0. We assume that s(t) is flat at t = 0. Since T (t) = dγ̂/dt

is unit vectors, st(t)T (t) extends to t = 0 as a C∞-function. Then the inte-

gration of st(t)T (t) provides a curve γ(t) whose curvatures κi(t) are given by

κi(t) = κ̂i(t)/st(t), i = 1, . . . , n− 2, as a consequence of Theorem 2.2.

3. Proof of Theorem 2.1

Let a1, . . . ,an denote the frame defined at the beginning of the previous

section.

Lemma 3.1. We have

ak =
ãk

Vk−1Vk
, ãk =

∣∣∣∣∣∣∣
〈w1,w1〉 . . . 〈w1,wk−1〉 w1

...
. . .

...
...

〈wk,w1〉 . . . 〈wk,wk−1〉 wk

∣∣∣∣∣∣∣ (k = 1, . . . , n− 1)
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and an =
ãn

|ãn| , ãn =

∣∣∣∣∣∣∣
〈e1,w1〉 . . . 〈e1,wn−1〉 e1

...
...

...

〈en,w1〉 . . . 〈en,wn−1〉 en

∣∣∣∣∣∣∣ where ei =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

i-th

row.

Proof. Let πk : Rn → R
n denote the orthogonal projection to the normal space

of the linear span of w1, . . . ,wk. Then

a1 =
w1

|w1| , a2 =
π1(w2)

|π1(w2)| , . . . , ak+1 =
πk(wk+1)

|πk(wk+1)| , k = 2, . . . , n− 2.

We remark that πk is given by

πk(v) =
1

V 2
k

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wk〉 w1

...
. . .

...
...

〈wk,w1〉 . . . 〈wk,wk〉 wk

〈v,w1〉 . . . 〈v,wk〉 v

∣∣∣∣∣∣∣∣∣
.

In fact, if v is normal to the linear span of w1, . . . , wk, then πk(v) = v; and if

v is a linear combination of w1, . . . , wk, then πk(v) = 0.

〈πk(wk+1), πk(wk+1)〉 = 1

V 2
k

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wk〉 〈w1, πk(wk+1)〉
...

. . .
...

...

〈wk,w1〉 . . . 〈wk,wk〉 〈wk, πk(wk+1)〉
〈wk+1,w1〉 . . . 〈wk+1,wk〉 〈wk+1, πk(wk+1)〉

∣∣∣∣∣∣∣∣∣

=
1

V 2
k

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wk〉 0
...

. . .
...

...

〈wk,w1〉 . . . 〈wk,wk〉 0

〈wk+1,w1〉 . . . 〈wk+1,wk〉 〈wk+1, πk(wk+1)〉

∣∣∣∣∣∣∣∣∣
=〈wk+1, πk(wk+1)〉

=
1

V 2
k

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wk〉 〈w1,wk+1〉
...

. . .
...

...

〈wk,w1〉 . . . 〈wk,wk〉 〈wk,wk+1〉
〈wk+1,w1〉 . . . 〈wk+1,wk〉 〈wk+1,wk+1〉

∣∣∣∣∣∣∣∣∣
=

V 2
k+1

V 2
k

.

We then obtain that

πk(wk+1)

|πk(wk+1)| =
1

VkVk+1

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wk〉 w1

...
. . .

...
...

〈wk,w1〉 . . . 〈wk,wk〉 wk

〈wk+1,w1〉 . . . 〈wk+1,wk〉 wk+1

∣∣∣∣∣∣∣∣∣
.
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It is clear that 〈ai, ãn〉 = 0, i = 1, . . . , n − 1. It is enough to show that

〈ãn, ãn〉 = V 2
n−1.

〈ãn, ãn〉 =

∣∣∣∣∣∣∣
〈e1,w1〉 . . . 〈e1,wn−1〉 〈e1, ãn〉

...
...

...

〈en,w1〉 . . . 〈en,wn−1〉 〈en, ãn〉

∣∣∣∣∣∣∣
=

n∑
i=1

(−1)n+iMi〈ei, ãn〉 =
n∑

i=1

M2
i = V 2

n−1

where Mi = |〈ej ,w1〉 . . . 〈ej ,wn−1〉|j=1,...,i−1,i+1,...,n.

Proof of Theorem 2.1. For i = 1, . . . , n− 2, we have

κi =
〈 d

ds
ai,ai+1

〉
=

〈 d

ds

ãi

Vi−1Vi
,

ãi+1

ViVi+1

〉
=
〈( d

ds

1

Vi−1Vi

)
ãi,

ãi+1

ViVi+1

〉
+
〈 1

Vi−1Vi

d

ds
ãi,

ãi+1

ViVi+1

〉
=

1

Vi−1Vi
2Vi+1

dt

ds

〈 d

dt
ãi, ãi+1

〉
(since 〈ãi, ãi+1〉 = 0)

=
1

Vi−1Vi
2Vi+1

1∣∣∣dγ
dt

∣∣∣

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wi−1〉 0
...

. . .
...

...

〈wi−1,w1〉 . . . 〈wi−1,wi−1〉 0
d
dt 〈wi,w1〉 . . . d

dt 〈wi,wi−1〉 〈wi+1, ãi+1〉

∣∣∣∣∣∣∣∣∣
(since 〈wj , ãi+1〉 = 0, j = 1, 2, . . . , i− 1)

=
1

V1Vi−1Vi
2Vi+1

Vi−1
2Vi+1

2 =
Vi−1Vi+1

V1Vi
2 .

We also have that

κn−1 =
〈 d

ds
an−1,an

〉
=

〈 d

ds

ãn−1

Vn−2Vn−1
,

ãn

Vn−1

〉
=

〈 1

Vn−2Vn−1

d

ds
ãn−1,

ãn

Vn−1

〉

=
1

Vn−2Vn−1
2

1∣∣∣dγ
dt

∣∣∣

∣∣∣∣∣∣∣∣∣

〈w1,w1〉 . . . 〈w1,wn−2〉 0
...

. . .
...

...

〈wn−2,w1〉 . . . 〈wn−2,wn−2〉 0
d
dt 〈wn−1,w1〉 . . . d

dt 〈wn−1,wn−1〉 〈wn, ãn〉

∣∣∣∣∣∣∣∣∣
=

Vn−2Vn

V1Vn−1
2 .

Proof of Theorem 2.5. Since dγ/dt = g(t)T , we have

d2γ

dt2
=(g(t)T )t = gt(t)T + g(t)T t,

d3γ

dt3
=gtt(t)T + 2gt(t)T t + g(t)T tt,
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. . .

dkγ

dtk
=

k∑
i=0

(
k

i

)
g(k−i)(t)T (i).

These imply that

(dγ
dt

. . .
dkγ

dtk

)
=

(
T T t · · · T (k−1)

)
P, P =

⎛
⎜⎜⎝
g(t) . . . ∗

. . .
...

0 g(t)

⎞
⎟⎟⎠

and we conclude that

V 2
k =det

(
tP t

(
T T t · · · T (k−1)

)(
T T t · · · T (k−1)

)
P
)
= g(t)2kV̂ 2

k .

We complete the proof by Theorem 2.1.
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