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Abstract

Let C[x1, . . . , xn]d+1 be the vector space of homogeneous forms of degree d+1

on Cn, with n, d ≥ 2. In earlier articles by J. Alper, M. Eastwood and the author,

we introduced a morphism, called A, that assigns to every nondegenerate form the

so-called associated form lying in the space C[y1, . . . , yn]n(d−1). One of the reasons

for our interest in A is the conjecture—motivated by the well-known Mather-Yau

theorem on complex isolated hypersurface singularities—asserting that all regular

GLn-invariant functions on the affine open subvariety C[x1, . . . , xn]d+1,Δ of forms

with nonvanishing discriminant can be obtained as the pull-backs by means of A

of the rational GLn-invariant functions on C[y1, . . . , yn]n(d−1) defined on im(A).

The morphism A factors as A = A ◦ grad, where grad is the gradient morphism

and A assigns to every n-tuple of forms of degree d with nonvanishing resultant a

form in C[y1, . . . , yn]n(d−1) defined analogously to A(f) for a nondegenerate f . In

order to establish the conjecture, it is important to study the image of A. In the

present paper, we show that im(A) is an open subset of an irreducible component

of each of the so-called catalecticant varieties V , Gor(T ) and describe the closed

complement to im(A), at the same time clarifying and extending known results on

these varieties. Furthermore, for n = 3, d = 2 we give a description of the com-

plement to im(A) via the zero locus of the Aronhold invariant of degree 4, which

establishes an analogy with the case n = 2 where this complement is known to be

the vanishing locus of the catalecticant for any d ≥ 2.

1. Introduction

This paper is motivated by a new construction in classical invariant theory

that originated in article [EI] and was further explored in [AI1], [AI2], [AIK]. Fix

integers n ≥ 2 and d ≥ 2 and let C[x1, . . . , xn]d+1,Δ be the complex affine open

subvariety of the space C[x1, . . . , xn]d+1 of homogeneous forms of degree d+1 in n

variables where the discriminant Δ does not vanish. Consider the Milnor algebra

M(f) := C[x1, . . . , xn]/(fx
1
, . . . , fxn

) of the isolated singularity at the origin of

the hypersurface in C
n defined by f ∈ C[x1, . . . , xn]d+1,Δ and let m ⊂ M(f) be

the maximal ideal. One can then introduce a form on the n-dimensional quotient

m/m2 with values in the one-dimensional socle Soc(M(f)) of M(f) as follows:
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m/m2 → Soc(M(f)), z �→ ẑ n(d−1),

where ẑ is any element of m that projects to z ∈ m/m2. There is a canonical

isomorphism m/m2 ∼= C
n and, since the Hessian of f generates the socle, there is

also a canonical isomorphism Soc(M(f)) ∼= C. Hence, one obtains a form A(f)

of degree n(d− 1) on C
n, which is called the associated form of f . This form is

very natural; in particular, it is a Macaulay inverse system for the Milnor algebra

M(f).

The main object of our study in [AI1], [AI2], [AIK] was the morphism

A : C[x1, . . . , xn]d+1,Δ → C[y1, . . . , yn]n(d−1), f �→ A(f)

of affine varieties. As first observed in [EI], for certain values of n and d one can

recover all GLn-invariant rational functions on forms of degree d+ 1 from those

on forms of degree n(d− 1) by evaluating the latter on associated forms, i.e., by

composing them with A. Motivated by the above fact, in [AI1] we proposed a

conjecture asserting that an analogous statement holds for all n and d (cf. [EI,

Conjecture 3.2]):

Conjecture 1.1. For any regular GLn-invariant function J on C[x1, . . . , xn]d+1,Δ

there exists a rational GLn-invariant function J̃ on C[y1, . . . , yn]n(d−1) defined

on the image of A such that J = J̃ ◦A.
In other words, the conjecture asserts that the invariant theory of forms of

degree d + 1 can be extracted, in a canonical way, from that of forms of degree

n(d−1) at least at the level of rational invariant functions. While this statement

is quite intriguing from the purely invariant-theoretic viewpoint, it was originally

motivated—as explained in [EI], [AI1]—by complex singularity theory, specif-

ically, by the well-known Mather-Yau theorem (see [MY] and also [Be], [Sh],

[GLS, Theorem 2.26]). In [AI2], Conjecture 1.1 was shown to hold for binary

forms of any degree, and in [AI1] its weaker variant was established for arbitrary

n, d.

In this paper, we obtain results towards settling the conjecture in full general-

ity, which are at the same time of interest in a broader algebraic context. The mor-

phism A factors as A = A◦grad, where grad : C[x1, . . . , xn]d+1 → C[x1, . . . , xn]
⊕n
d

is the gradient morphism and A : (C[x1, . . . , xn]
⊕n
d )Res → C[y1, . . . , yn]n(d−1) as-

signs to every n-tuple f = (f1, . . . , fn) of forms of degree d with nonvanishing

resultant the associated form of f defined analogously to A(f), with the partial

derivative fx
j
replaced by fj for all j. Note that for every f the form A(f) is a

Macaulay inverse system for the zero-dimensional complete intersection algebra

M(f) := C[x1, . . . , xn]/(f1, . . . , fn). As explained in [AI2, Section 3], in order

to establish Conjecture 1.1 for all n, d, it is important to study the image of A.

In this paper we show that im(A) ⊂ C[y1, . . . , yn]n(d−1) is an open subset of an
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irreducible component of each of the catalecticant varieties V and Gor(T ) (see

Section 3 for the definitions) and give a description of the closed complement to

im(A). We note that a number of other properties of the morphism A (as well

as the gradient morphism) essential for confirming Conjecture 1.1 were obtained

in the recent paper [F].

The irreducible components of catalecticant varieties are of general interest

and have been studied regardless of Conjecture 1.1 (see [IK, Chapter 4] and refer-

ences therein for details). In particular, in [IK, Theorem 4.17] it was shown that

Gor(T ) has an irreducible component containing im(A) as a dense subset and

the dimension of this component was found. On the other hand, an analogous

fact for V (which is the catalecticant variety most relevant to our study of the

morphism A) appears to be only known in the cases (i) n = 3, d ≥ 3, (ii) n = 4,

d = 2, 3, (iii) n = 5, d = 2 (see [IK, Theorem 4.19 and Corollary 4.18]), and one

of our aims is to bring the results on V in line with those on Gor(T ).

In this paper, we, first of all, refine and extend Theorems 4.17 and 4.19 of

[IK]. Namely, in Section 3 we show that the set im(A) is open (not just dense) in

an irreducible component of each of V , Gor(T ) for all n, d and explicitly describe

the closed complement to im(A) (see Theorem 3.3). Note that finding a suitable

characterization of this complement is important for resolving Conjecture 1.1 (see

Remark 3.5). As the proof of Theorem 4.17 in [IK] is quite brief, we also pro-

vide an alternative derivation—with full details—of the dimension formula for

im(A). Note that, although we assume the base field to be C, our arguments

work for any algebraically closed field k of characteristic zero and even apply to

the case char(k) > n(d− 1), with n(d− 1) being the socle degree of M(f) for all

f = (f1, . . . , fn) ∈ (k[x1, . . . , xn]
⊕n
d )Res. We also stress that our clarifications and

extensions of results of [IK] only apply in the case of zero-dimensional complete

intersections with homogeneous ideal generators of equal degrees.

In fact, ideally, one would like to have a better description of the complement

to im(A) than the one provided by Theorem 3.3. Namely, it would be desirable

to represent it as the intersection of the relevant irreducible component of V with

the zero locus of an SLn-invariant form on C[y1, . . . , yn]n(d−1). This is indeed

possible for n = 2, in which case the SL2-invariant in question is the catalecti-

cant (see [AI2, Proposition 4.3]). In Section 4 we show that such a representation

is also valid for n = 3, d = 2, with the corresponding SL3-invariant being the

Aronhold invariant of degree 4 (see Proposition 4.1).

Acknowledgements. This work is supported by the Australian Research

Council.

2. Preliminaries on associated forms and the morphism A

In this section we introduce the main object of our study. What follows is

an abridged version of the exposition given in [AI2, Section 2].
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Fix n ≥ 2 and for any nonnegative integer j define C[x1, . . . , xn]j to be the

vector space of homogeneous forms of degree j in x1, . . . , xn over C. Clearly, one

has C[x1, . . . , xn] = ⊕∞
j=0C[x1, . . . , xn]j . Next, fix d ≥ 2 and consider the vector

space C[x1, . . . , xn]
⊕n
d of n-tuples f = (f1, . . . , fn) of forms of degree d. Recall

that the resultant Res on the space C[x1, . . . , xn]
⊕n
d is a form with the property

that Res(f) 
= 0 if and only if f1, . . . , fn have no common zeroes away from the

origin (see, e.g., [GKZ, Chapter 13]).

For f = (f1, . . . , fn) ∈ C[x1, . . . , xn]
⊕n
d , we now introduce the algebra

M(f) := C[x1, . . . , xn]/(f1, . . . , fn)

and recall a well-known lemma (see, e.g., [AI2, Lemma 2.4] and [SS, p. 187]):

Lemma 2.1. The following statements are equivalent:

(1) the resultant Res(f) is nonzero;

(2) the algebra M(f) has finite vector space dimension;

(3) the morphism f : An(C) → A
n(C) is finite;

(4) the n-tuple f is a homogeneous system of parameters of C[x1, . . . , xn], i.e.,

the Krull dimension of M(f) is 0.

If the above conditions are satisfied, then M(f) is a local standard graded com-

plete intersection algebra whose socle Soc(M(f)) is generated in degree n(d − 1)

by the image jac(f) ∈ M(f) of the Jacobian jac(f) := det Jac(f), where Jac(f) is

the Jacobian matrix
(
∂fi/∂xj

)
i,j
.

Remark 2.2. As we pointed out in Lemma 2.1, the algebra M(f) has a nat-

ural standard grading: M(f) =
⊕∞

i=0 M(f)i. It is well-known (see, e.g., [St,

Corollary 3.3]) that the corresponding Hilbert function H(x) :=
∑∞

i=0 ti x
i, with

ti := dimC M(f)i, is given by

(2.1) H(x) = (xd−1 + · · ·+ x+ 1)n.

Next, we let (C[x1, . . . , xn]
⊕n
d )Res be the affine open subvariety of

C[x1, . . . , xn]
⊕n
d that consists of all n-tuples of forms with nonzero resultant. We

now define the associated form A(f) ∈ C[y1, . . . , yn]n(d−1) of f = (f1, . . . , fn) ∈
(C[x1, . . . , xn]

⊕n
d )Res by the formula

(y1x1 + y2x2 + · · ·+ ynxn)
n(d−1) = A(f)(y1, . . . , yn) · jac(f) ∈ M(f),

where xi ∈ M(f) is the image of xi. It is not hard to see that the induced map

A : (C[x1, . . . , xn]
⊕n
d )Res → C[y1, . . . , yn]n(d−1), f �→ A(f)

is a morphism of affine varieties. This morphism is quite natural; in particular, it
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has an important equivariance property (see [AI2, Lemma 2.7]). In article [AI2]

we studied A in relation to Conjecture 1.1 stated in the introduction.

We will now interpret A in different terms. Recall that the algebra

C[y1, . . . , yn] is a C[x1, . . . , xn]-module via differentiation:

(2.2) (h � F )(y1, . . . , yn) := h

(
∂

∂y1
, . . . ,

∂

∂yn

)
F (y1, . . . , yn),

where h ∈ C[x1, . . . , xn] and F ∈ C[y1, . . . , yn]. For a positive integer j, differen-

tiation induces a perfect pairing

C[x1, . . . , xn]j × C[y1, . . . , yn]j → C, (h, F ) �→ h � F ;

it is often referred to as the polar pairing. For F ∈ C[y1, . . . , yn]j , we now intro-

duce the homogenous ideal, called the annihilator of F ,

F⊥ := {h ∈ C[x1, . . . , xn] | h � F = 0} ⊂ C[x1, . . . , xn],

which is clearly independent of scaling and thus is well-defined for F in the projec-

tive space P(C[y1, . . . , yn]j). It is well-known that the quotient C[x1, . . . , xn]/F
⊥

is a standard graded local Artinian Gorenstein algebra of socle degree j and the

following holds (cf. [IK, Lemma 2.12]):

Proposition 2.3. The correspondence F �→ C[x1, . . . , xn]/F
⊥ induces a bijec-

tion

P(C[y1, . . . , yn]j) →
{

local Artinian Gorenstein algebras C[x1, . . . , xn]/I

of socle degree j, where the ideal I is homogeneous

}
.

Remark 2.4. Given a homogenous ideal I ⊂ C[x1, . . . , xn] such that

C[x1, . . . , xn]/I is a local Artinian Gorenstein algebra of socle degree j, Proposi-

tion 2.3 implies that there is a form F ∈ C[y1, . . . , yn]j , unique up to scaling, such

that I = F⊥. In fact, the uniqueness part of this statement can be strengthened:

if I ⊂ F⊥, then I = F⊥ and all forms with this property are mutually propor-

tional. Indeed, I ⊂ F⊥ implies Ij ⊂ F⊥, where Ij := I ∩ C[x1, . . . , xn]j , and the

claim follows from the fact that Ij has codimension 1 in C[x1, . . . , xn]j . Any such

form F is called a (homogeneous) Macaulay inverse system for C[x1, . . . , xn]/I

and its image in P(C[y1, . . . , yn]j) is called the (homogeneous) Macaulay inverse

system for C[x1, . . . , xn]/I.

We have (see [AI2, Proposition 2.11]):

Proposition 2.5. For any f ∈ (C[x1, . . . , xn]
⊕n
d )Res, the form A(f) is a Macau-

lay inverse system for the algebra M(f).

By Proposition 2.5, the morphism A can be thought of as a map assigning to
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every element f ∈ (C[x1, . . . , xn]
⊕n
d )Res a particular Macaulay inverse system for

the algebra M(f).

We now let URes ⊂ C[y1, . . . , yn]n(d−1) be the locus of forms F such that the

subspace F⊥ ∩ C[x1, . . . , xn]d is n-dimensional and has a basis with nonvanish-

ing resultant. It is easy to see that URes is locally closed in C[y1, . . . , yn]n(d−1),

hence is a variety (see, e.g., Proposition 3.2 below for details). By Proposition

2.5, the image of A is contained in URes. Moreover, if F ∈ URes, then for the

ideal I ⊂ C[x1, . . . , xn] generated by F⊥ ∩ C[x1, . . . , xn]d, we have the inclusion

I ⊂ F⊥. By Remark 2.4, the form F is the inverse system for C[x1, . . . , xn]/I,

and therefore F = A(f) for some basis f = (f1, . . . , fn) of F⊥ ∩ C[x1, . . . , xn]d.

Thus, we have proved:

Proposition 2.6. im(A) = URes.

The constructions of the morphism A can be projectivized. Indeed, denote

by Gr(n,C[x1, . . . , xn]d) the Grassmannian of n-dimensional subspaces of the

space C[x1, . . . , xn]d. The resultant Res on C[x1, . . . , xn]
⊕n
d descends to a sec-

tion, also denoted by Res, of a power of the very ample generator of the Picard

group of Gr(n,C[x1, . . . , xn]d). Let Gr(n,C[x1, . . . , xn]d)Res be the affine open

subvariety where Res does not vanish; it consists of all n-dimensional subspaces

of C[x1, . . . , xn]d having a basis with nonzero resultant. Consider the morphism

(C[x1, . . . , xn]
⊕n
d )Res→Gr(n,C[x1, . . . , xn]d)Res, f = (f1, . . . , fn) �→〈f1, . . . , fn〉,

where 〈 · 〉 denotes linear span. Then, by the equivariance property (see [AI2,

Lemma 2.7]), the morphism A composed with the projection C[y1, . . . , yn]n(d−1)\
{0} → P(C[y1, . . . , yn]n(d−1)) factors as

(C[x1, . . . , xn]
⊕n
d )Res → Gr(n,C[x1, . . . , xn]d)Res

̂A−→ P(C[y1, . . . , yn]n(d−1)).

By Proposition 2.5, the morphism Â can be thought of as a map assigning to

every subspace W ∈ Gr(n,C[x1, . . . , xn]d)Res the Macaulay inverse system for

the algebra M(f), where f = (f1, . . . , fn) is any basis of W .

Proposition 2.6 implies

Proposition 2.7. im(Â) = P(URes), where P(URes) is the image of URes in the

projective space P(C[y1, . . . , yn]n(d−1)).

It turns out that Â : Gr(n,C[x1, . . . , xn]d)Res → P(URes) is in fact an isomorphism

(see [AI2, Proposition 2.13]). This last result will be utilized in our considerations

of the relevant catalecticant varieties in the next section.
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3. The catalecticant varieties and a description of im(A)

Let

K := dimC C[x1, . . . , xn]d =

(
d+ n− 1

n− 1

)
.

Consider the quasiaffine variety

U := UK−n(n(d− 1)− d, d;n) ⊂ C[y1, . . . , yn]n(d−1)

and the affine subvariety

V := VK−n(n(d− 1)− d, d;n) ⊂ C[y1, . . . , yn]n(d−1)

as defined in [IK, p. 5]. Specifically, set

L := dimC C[y1, . . . , yn]n(d−1)−d =

(
n(d− 1)− d+ n− 1

n− 1

)

and let {m1, . . . , mK}, {m1, . . . ,mL} be the standard monomial bases in the spaces

C[x1, . . . , xn]d and C[y1, . . . , yn]n(d−1)−d, respectively, with the monomials num-

bered in accordance with some orders, which we will fix from now on. For a form

F ∈ C[y1, . . . , yn]n(d−1) let Fj := mj � F ∈ C[y1, . . . , yn]n(d−1)−d, j = 1, . . . ,K,

where � is defined in (2.2). Expanding F1, . . . , FK with respect to {m1, . . . ,mL},
we obtain an L×K-matrix D(F ) called the catalecticant matrix. Then the vari-

eties U and V are described as

U = {F ∈ C[y1, . . . , yn]n(d−1) | rankD(F ) = K − n},
V = {F ∈ C[y1, . . . , yn]n(d−1) | rankD(F ) ≤ K − n}.

Note that U is a dense open subset of V (see [IK, Lemma 3.5]).

Clearly, V ⊂ C[y1, . . . , yn]n(d−1) is the affine subvariety given by the condi-

tion of the vanishing of all (K−n+1)-minors of D(F ). Observe that for n = 2 one

has K = d+1, L = d− 1, and therefore the matrix D(F ) has no (K− 1)-minors,

hence V = C[y1, y2]2(d−1). Similarly, for n = 3, d = 2, we have K = 6, L = 3,

therefore D(F ) has no (K − 2)-minors, hence V = C[y1, y2, y3]3. Notice that in

all other cases one has L ≥ K, and therefore V is a proper affine subvariety of

C[y1, . . . , yn]n(d−1) unless n = 2 or n = 3, d = 2.

Next, let T := (t0, t1, . . . , tn(d−1)) = (1, n, . . . , n, 1) be the Gorenstein

sequence from the Hilbert function (2.1), which is symmetric about n(d −
1)/2. Consider the quasiaffine variety Gor(T ) that consists of all forms F ∈
C[y1, . . . , yn]n(d−1) such that the Hilbert function of the standard graded local

Artinian Gorenstein algebra C[x1, . . . , xn]/F
⊥ is T . Clearly, Gor(T ) is an open

subset of the affine subvariety Gor≤(T ) ⊂ C[y1, . . . , yn]n(d−1) consisting of all

forms F for which the Gorenstein sequence of C[x1, . . . , xn]/F
⊥ does not exceed
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T . Analogously to V , the variety Gor≤(T ) is defined by the vanishing of all

(ti + 1)-minors of the corresponding matrices constructed analogously to D(F ),

for i = 1, . . . , n(d−1)−1. Following [IK], we call V and Gor(T ) the catalecticant

varieties.

Remark 3.1. We note that [IK] introduces more general catalecticant varieties

(and even schemes), but V and Gor(T ) are the ones most relevant to our study

of the morphism A, thus in the present paper only these two varieties are con-

sidered.

We have the obvious inclusions

(3.1) URes ⊂ Gor(T ) ⊂ U ⊂ V,

where URes ⊂ C[y1, . . . , yn]n(d−1) was defined in Section 2. To better understand

the relationship between URes, Gor(T ), U and V , we will now introduce a certain

closed subset of U .

Cover U by open subsets Uα, each of which is given by the condition of the

nonvanishing of a particular (K − n)-minor of the catalecticant matrix D(F ). In

what follows, on each Uα we will define a regular function Rα. Let, for instance,

Uα0
be the subset of U described by the nonvanishing of the principal (K − n)-

minor of D(F ). For F ∈ Uα
0
we will now find a canonical basis of the solution

set S(F ) of the homogeneous system D(F )γ = 0, where γ is a column-vector in

C
K . Since rankD(F ) = K − n, one has dimC S(F ) = n. Split D(F ) into blocks

as follows:

D(F ) =

⎛
⎝ A(F ) B(F )

C(F )

⎞
⎠ ,

where A(F ) has size (K−n)× (K−n) (recall that detA(F ) 
= 0), B(F ) has size

(K−n)×n, and C(F ) has size (L−K+n)×K. We also split the column-vector

γ as γ =

(
γ′

γ′′

)
, where γ is in C

K−n and γ′′ is in C
n. Then S(F ) is given by

the condition γ′ = −A(F )−1B(F )γ′′. Therefore, the vectors

γj(F ) :=

( −A(F )−1B(F )ej
ej

)
, j = 1, . . . , n,

form a basis of S(F ) for every F ∈ Uα0
, where ej is the jth standard basis vector

in C
n.

Clearly, the components γ1
j , . . . , γ

K
j of γj are regular functions on Uα

0
for

each j, and we define rj,α
0

:=
∑K

i=1 γ
i
j mi, j = 1, . . . , n, where, as before,

{m1, . . . , mK} is the standard monomial basis in C[x1, . . . , xn]d. Then the d-forms

r1,α
0
(F ), . . . , rn,α

0
(F ) constitute a basis of the intersection F⊥ ∩ C[x1, . . . , xn]d

for every F ∈ Uα
0
. Set Rα

0
:= Res(r1,α

0
, . . . , rn,α

0
). Clearly, Rα

0
is a regular
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function on Uα
0
, and we define Zα

0
to be its zero locus.

Arguing as above for every Uα, we introduce a regular function Rα on Uα and

its zero locus Zα. Notice that if for some α, α′ the intersection Uα,α′ := Uα∩Uα′

is nonempty, then Zα ∩ Uα,α′ = Zα′ ∩ Uα,α′ . Thus, the loci Zα glue together

into a closed subset Z of U . If U ′ is an irreducible component of U , then the

intersection Z ∩ U ′ is either a hypersurface in U ′, or all of U ′, or empty. Notice

also that Z is GLn-invariant, which follows from the general formula

(CF )⊥ ∩ C[x1, . . . , xn]j = C−t (F⊥ ∩ C[x1, . . . , xn]j), j = 0, . . . , n(d− 1),

for all C ∈ GLn, F ∈ C[y1, . . . , yn]n(d−1).

We will now establish:

Proposition 3.2. One has URes = Gor(T ) \ Z = U \ Z = V \ Z.

Proof. It is clear that URes = U \ Z, thus inclusions (3.1) imply URes =

Gor(T ) \ Z = U \ Z. Further, to see that U \ Z = V \ Z, we need to prove

that V \ U ⊂ Z. As shown in the proof of [IK, Lemma 3.5], in every neigh-

borhood of every form F ∈ V \ U there exists F̂ ∈ U such that all elements of

F̂⊥ ∩ C[x1, . . . , xn]d have a common zero away from the origin. Thus, F ∈ Z as

required.

Next, by Proposition 2.7, the morphism Â : Gr(n,C[x1, . . . , xn]d)Res →
P(URes) is surjective. In fact, by [AI2, Proposition 2.13], the map Â is an iso-

morphism, therefore we have

dimC P(URes) = dimC Gr(n,C[x1, . . . , xn]d) = Kn− n2,

which implies

(3.2) dimC URes = Kn− n2 + 1 =: N.

As URes is irreducible, we obtain the following result:

THEOREM 3.3. There exist irreducible components Gor(T )◦, U◦, V ◦ of the

varieties Gor(T ), U , V , respectively, such that URes = Gor(T )◦ \ Z = U◦ \ Z =

V ◦ \ Z, with dimC Gor(T )◦ = dimC U◦ = dimC V ◦ = N, where N is defined in

(3.2).

As by Proposition 2.6 we have im(A) = URes, Theorem 3.3 yields a descrip-

tion of the image of the morphism A in terms of Gor(T ), U , V and Z.

Remark 3.4. Theorem 4.17 of [IK] shows that Gor(T ) has an irreducible com-

ponent containing URes as a dense subset and the dimension of this component

is equal to N . The proof given in [IK] does not explicitly utilize the morphism

A and is somewhat brief overall. Also, Theorem 4.19 of [IK] (cf. Corollary 4.18
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therein) yields that URes is dense in an irreducible component of V in the follow-

ing cases: (i) n = 3, d ≥ 3, (ii) n = 4, d = 2, 3, (iii) n = 5, d = 2. In comparison

with these results, Theorem 3.3 stated above is more precise because:

• it treats both Gor(T ) and V simultaneously for all n, d;

• it shows that URes is in fact open (not just dense) in an irreducible compo-

nent of each of Gor(T ) and V and explicitly describes the closed complement

to URes in terms of the subset Z;

• its proof gives a complete argument for the formula for dimC URes.

Remark 3.5. Describing the complement to im(A) = URes in V ◦ is of partic-

ular importance for settling Conjecture 1.1. Theorem 3.3 offers a description

in terms of the set Z, but, ideally, one would like to show that there exists

an SLn-invariant form on C[y1, . . . , yn]n(d−1) whose zero locus intersects V ◦ in

V ◦ \ im(A). This indeed holds for n = 2, in which case V ◦ = V = C[y1, y2]2(d−1)

and C[y1, y2]2(d−1) \ im(A) is the zero locus of the catalecticant (see [AI2, Propo-

sition 4.3]). The above fact was instrumental for establishing Conjecture 1.1 in

the binary case in [AI2]. In the next section we will show that an analogous

statement is also valid for n = 3, d = 2. Notice that, by [EI], the conjecture holds

in this situation as well.

4. The case n = 3, d = 2

In this section we set n = 3, d = 2. Notice that the associated form of any el-

ement of (C[x1, x2, x3]
⊕3
2 )Res is a ternary cubic and that V ◦ = V = C[y1, y2, y3]3.

Let S be the degree four Aronhold invariant. An explicit formula for S can be

found, for example, in [DK, p. 250]. Namely, for a ternary cubic

c(y1, y2, y3) = ay31 + by32 + cy33 + 3dy21y2 + 3ey21y3 + 3fy1y
2
2+

3gy22y3 + 3hy1y
2
3 + 3iy2y

2
3 + 6jy1y2y3

one has

(4.1)

S(c) = abcj − bcde− cafg − abhi− j(agi+ bhe+ cdf)+

afi2 + ahg2 + bdh2 + bie2 + cgd2 + cef2 − j4+

2j2(fh+ id+ eg)− 3j(dgh+ efi)− f2h2 − i2d2−
e2g2 + ideg + egfh+ fhid.

We will now state the result of this section, which for n = 3, d = 2 provides

a more explicit description of the complement C[y1, y2, y3]3 \ im(A) than the one

given by Theorem 3.3.
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Proposition 4.1. One has C[y1, y2, y3]3 \ im(A) = {S = 0}.
Proof. We utilize canonical forms of ternary cubics. Namely, every nonzero

ternary cubic is linearly equivalent to one of the following:

c1,t := y31 + y32 + y33 + ty1y2y3, t3 
= −27,

c2 := y31 + y22y3 (cuspidal cubic),

c3 := y31 + y21y3 + y22y3 (nodal cubic),

c4 := y21y3 + y2y
2
3 ,

c5 := y31 + y1y2y3,

c6 := y1y2y3,

c7 := y21y2 + y1y
2
2 ,

c8 := y21y2,

c9 := y31

(see, e.g., [K, p. 44]). Using formula (4.1) it is now easy to deduce

{S = 0} = {0} ∪O(c1,0) ∪O(c2) ∪O(c4) ∪O(c7) ∪O(c8) ∪O(c9),

where for a ternary cubic c we denote by O(c) its GL3-orbit. In particular, we

have {S = 0} = O(c1,0), which is the closure of the locus of ternary forms rep-

resentable as the sum of the cubes of three linear forms (cf. [Ba, Theorems 2.1,

2.2] and [DK, Proposition 5.13.2]).

To see that im(A) does not intersect the zero locus of S, we find the degree

two component of the annihilator of each of the cubics c1,0, c2, c4, c7, c8, c9:

c⊥1,0 ∩ C[x1, x2, x3]2 = 〈x1x2, x1x3, x2x3〉,
c⊥2 ∩ C[x1, x2, x3]2 = 〈x1x2, x1x3, x

2
3〉,

c⊥4 ∩ C[x1, x2, x3]2 = 〈x2
1 − x2x3, x1x2, x

2
2〉,

c⊥7 ∩ C[x1, x2, x3]2 = 〈x2
1 + x2

2 − x1x2, x1x3, x2x3, x
2
3〉,

c⊥8 ∩ C[x1, x2, x3]2 = 〈x1x3, x
2
2, x2x3, x

2
3〉,

c⊥9 ∩ C[x1, x2, x3]2 = 〈x1x2, x1x3, x
2
2, x2x3, x

2
3〉.

We thus see that for the cubics c7, c8, c9 the corresponding annihilator compo-

nents have dimension greater than 3 and that in the remaining situations they

have zeroes away from the origin. It then follows that

im(A) ⊂ C[y1, y2, y3]3 \ {S = 0}.

In order to show thatAmaps (C[x1, x2, x3]
⊕3
2 )Res onto C[y1, y2, y3]3\{S = 0},
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we need to prove that each of the cubics c1,t, c3, c5, c6 lies in im(A), where t 
= 0,

t3 
= 216 (notice that c1,0 and c1,τ with τ3 = 216 are linearly equivalent—see,

e.g., [AIK, p. 603]). First of all, c1,t, with t 
= 0, t3 
= 216, is proportional to the

associated form of the nondegenerate cubic c1,−18/t and c6 to the associated form

of the nondegenerate cubic c1,0 (see, e.g., [AIK, Section 2.2]). Next, we calculate

the degree two component of the annihilator of each of the cubics c3, c5:

c⊥3 ∩ C[x1, x2, x3]2 = 〈x2
1 − x2

2 − 3x1x3, x1x2, x
2
3〉,

c⊥5 ∩ C[x1, x2, x3]2 = 〈x2
1 − 6x2x3, x

2
2, x

2
3〉.

This shows that c3, c5 lie in URes hence in im(A).

The proof is now complete.
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