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Abstract

Discrete topological invariants are presented to classify real plane curve singu-

larities or isolated surface singularities by blow-analytic equivalence. A characteri-

zation of basic singularities like nodes are given. An ‘exotic’ blowing up is defined

to factor a contraction of curves in a surface.

1. Introduction

Two germs of embedded real plane curve singularities are blow-analytically

equivalent if there is a homeomorphism between them which can be realized by

some simple blowings up and down. Here, a simple blowing up is a blowing up

of a smooth point in a real surface. This equivalence is first studied in [1] for

the case there is only one analytic branch. They are, suprisingly, shown to be all

equivalent.

As an example we reprise here the so-called ‘Kobayashi-Kuo example’. Take

a cusp ({y2 − x3 = 0}, 0). By usual three blowings up one reaches a good res-

olution. We perform one more blowing up at a smooth point of the exceptional

curve with even self-intersection number. In the complex case, one has two (−3)-

curves, which are, in the real case, isomorphic to (−1)-curves, thus contractible
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Figure 1 the Kobayashi-Kuo example
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to smooth points. The third and the fourth exceptional curves can be contracted

and one gets a smooth line in a plane.

Each compact smooth real analytic curve is diffeomorphic to S1, and has its

parity if it is embedded in a smooth surface. The parity is even or odd according

to the tubular neighborhood is oriented or not, respectively. In Figure 1, the bold

lines are strict transforms of the original curves, dotted lines are odd and real

lines are even. The number n designates that the curve is the exceptional curve

of n-th simple blowing up.

We present in this paper a basic framework to classify germs of real plane

curves. We add some useful invariants to [1] and give a rough classification of

bibranched case. After completing this work, Valle [2] gave a finiteness result

fixing the discrete invariant μ′ here and the number of components. She also

gave a complete classification of tribranched curves with μ′ ≤ 2.

2. An invariant μ and surface singularities

Definition 2.1. Let X be a surface which is a tubular neighborhood of a sum of

compact smooth curves {Ei} (1 ≤ i ≤ n) intersecting normally whose dual graph

is a tree. For (X, {Ei}), or for the dual graph whose vertices are weighted by

the parity of the curve, we define μ to be the corank of the intersection matrix

A, which is independent of the numbering of Ei’s. Note that the intersection

numbers take value in the field Z/2Z.

The surface X is contractible by a deformation retract to a union of S1’s.

Assume furthermore that X is connected for simplicity. Let us denote the number

of connected component of the boundary ∂X by m.

Proposition 2.2. The corank μ is one less than the number of the connected

component m.

Proof. We write a (Z/2Z)-vector space H1(X,Z/2Z) simply as H, which is

spanned by the classes of Ei’s. The matrix A determines a symmetric bilinear

form on H and the number μ is equal to dimkerA.

Consider a standard exact sequence of (Z/2Z)-vector spaces:

0 → H2(X, ∂X,Z/2Z)

→ H1(∂X,Z/2Z) → H1(X,Z/2Z)
α→ H1(X, ∂X,Z/2Z)

→ H0(∂X,Z/2Z) → H0(X,Z/2Z) → 0

where

(1) H0(X,Z/2Z) ∼= Z/2Z, H1(X,Z/2Z) ∼= (Z/2Z)⊕n,

(2) H0(∂X,Z/2Z) ∼= (Z/2Z)⊕m, H1(∂X,Z/2Z) ∼= (Z/2Z)⊕m and

(3) H2(X, ∂X,Z/2Z) ∼= Z/2Z.
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Hence H1(X, ∂X,Z/2Z)∼=(Z/2Z)⊕n. Since H1(X, ∂X,Z/2Z)=H1(X, ∂X,Z)

⊗Z/2Z is isomorphic to H1(X,Z) ⊗ Z/2Z by intersection pairing, for v, w ∈
H1(X,Z/2Z) we have α(v)(w) = tvAw. Hence μ = dimkerα equals to

(m− 1).

Lemma 2.3. The number μ is invariant under simple blowing up and down,

provided that Ei’s remain to be normal crossing.

Proof. The corank μ is independent of the choice of the basis of H, and the new

exceptional curve is odd and orthogonal to all total transforms.

Corollary 2.4. The number μ is an invariant for real analytic class of isolated

real surface singularities.

Remark 2.5. Since μ = 0 if and only if the determinant of A is one, we can

rewrite the assertions in [1] using μ. For instance, if all the curves are odd, the

condition μ = 0 is equivalent to the existence of a composition of simple blowings

up β : (X, ∪Ei) → (R2, {0}).
Since the classes of Ei’s form a basis of H, there exists an orthogonal

decomposition H = kerA ⊕ H ′ where H ′ is a subspace spanned by basis

{Ei1 , . . . , Ein−µ
} for a suitable choice of i1, . . . , in−μ ⊂ {1, . . . , n}. The ma-

trix associated to the bilinear form on H ′ has determinant one.

Proposition 2.6. Suppose that μ = 1. Then (X, {Ei}) can be transformed by

simple blowings up and down to a neighborhood of a single even curve.

Proof. Since kerA is spanned by a single vector, the space H ′ is spanned by all

but one curve, say Ej . Let Γ ′ be the full subgraph which does not contain Ej .

Since Γ ′ has determinant one and all the connected component of Γ ′ has at most

one intersection with Ej , one can contract Γ ′ leaving Ej smooth by Proposition

8 in [1]. The remaining Ej becomes even since the determinant is zero.

Corollary 2.7. An isolated real surface singularity with μ = 1 is blow-analytically

equivalent to an ordinary double point ({x2 + y2 = z2}, 0).

3. An invariant μ′ of branched plane curves

Definition 3.1. We call a germ of analytic curve in R2 which has an isolated

singularity with several branches at the origin a branched plane curve. We only

consider the real support of the curve, and do not take account in multiplicities of

components, embedded primes, imaginary components. Let (C, 0) be a branched

curve and β : X → R2 be a simple good resolution, in the sense that:

(1) (“simple”) the map β is a composition of simple blowings up βi (1 ≤ i ≤ n)

and each center of βi is above the origin of R2,
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(2) (“good”) the set β−1(C) is a union of smooth curves, no three components

meet at a point and any two components intersect at most at a point transver-

sally.

A simple good resolution exists e.g. by Hironaka’s theorem.

Lemma 3.2. Each analytic branch of a plane curve at a point P intersects a

small neibourhood of P at two points. Especially, an analytic branch does not

have an end point.

Proof. Since the germ of a real curve at a smooth point is real analytically a line,

the strict transform of each branch of the plane curve in a simple good resolution

intersects with the boundary of a small tubular neighborhood of the exceptional

set at two points. Since the contraction map is homeomorphic outside the excep-

tional set, the original branch has also two intersection points at the boundary

of a tubular neighborhood of P .

Fix a simple good resolution of C. Since the dual graph of the exceptional

curves is a tree, there exists the minimal subtree c of exceptional curves which

combines the components of the strict transforms of C. When C is bibranched,

c is a chain. Let V ′ be the set of exceptional curves which do not participate

in c. Let Γ ′ be the full subgraph of the total dual graph of exceptional curves,

whose vertex set is V ′. We define μ′ to be the corank of Γ ′, and Δ′ to be the

determinant of the intersection matrix of Γ ′.

Lemma 3.3. The numbers μ′ and Δ′ are independent of the choice of simple

good resolution.

Proof. The center of simple blowing up is one of the following:

(1) an intersection of two curves which are either a curve in c or a component of

the strict transform of C,

(2) a simple point on an exceptional curve in c or

(3) a point on an exceptional curve in V ′.

In the case (1), the tree c gets longer and Γ ′ does not change at all. The case (2)
creates a new cell which belongs to V ′; since this is a launch extension for Γ ′, the
number μ′ does not change. The case (3) extends Γ ′ and this does not change

μ′.
Blowing down of a branch point in the union of the exceptional divisors

and the strict transform destroys the property of ‘goodness’, thus simple blowing

down in a category of a simple good resolution does not harm c.

Thus μ′ and Δ′ are well-defined for a germ of branched curve in R2, since

any branched curve has a simple good resolution and two such resolutions always
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have a common simple good resolution.

Example 3.4. One can construct an example with arbitrary big μ′ as follows.
Start from a single odd curve v0 and perform a tick extension on it. A tick

extension has two branches and take the shorter branch consisting of a single

vertex, which we call v1. Performing again a tick extension on v1 and get v2.

Repeat tick extensions and you get vn. Let two noncompact smooth curves inter-

sect general single points on v0 and vn, respectively, and add arbitrary number

of noncompact curves on the chain between v0 and vn. The configuration has

μ = n and the image C is at least bibranched.

µ'

Figure 2 Curves with arbitrary µ′

Proposition 3.5. A germ of bibranched curve (C, 0) in R2 is blow-analytically

equivalent to a germ ({xy = 0}, 0) if and only if a good resolution of (C, 0) has

Δ′ = 1.

Proof. The germ ({xy = 0}, 0) in R2 itself is a simple good resolution and has

Δ′ = 1. Since one can always have a common simple good resolution, ‘only if’

part is proven by the previous lemma.

Suppose that some simple good resolution of (C, 0) has Δ′ = 1. Performing

additional simple blowings up if necessary, one can assume that all the excep-

tional curves in V ′ are odd. Since the determinant of a graph is the product of

the determinants of all the connected components, each connected component of

Γ ′ has determinant one.

For each connected component, there exists a unique vertex which is con-

nected to the chain c. Regarding that vertex to be ‘c’ in the Proposition 8 of

[Kobayashi-Kuo1], one can contract all the vertices in V ′ by a sequence of simple

blowings down leaving the curves in the chain smooth.

The remaining chain may be a mixture of odd and even curves. You can con-

tract any odd curves; after the contraction, the graph remains to be a chain with

two components of the strict transforms of C at both ends. When there exists a

pair of adjoining two even curves, blowing up the intersection of those two curves

creates three linear odd curves, which can be contracted by three simple blowings

down. Thus we can decrease the length of the chain. Since the determinant of

the chain is one, eventually one reaches the stage where there remains only one
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odd curve left; one can contract that last exceptional curve and get two smooth

curves intersecting transversally in R2.

Example 3.6. Two germs ({y(y2−x3) = 0}, 0), ({y(y−x3) = 0}, 0) have μ′ = 0,

hence blow-analytically equivalent to an ordinary double point.

We say two plane curve germs are blow-analytically equivalent in the level

of the graph if the germs have a common resolution graph (including the strict

transform).

Theorem 3.7. Two bibranched curves in R2 are blow-analytically equivalent in

the level of the graph if and only if they have a common μ′.

Proof. Let X be a simple good resolution of a bibranched curve. We will show

that X can be transformed to a standard configuration by simple blowings up

and down. One can assume that all the curves are odd as before.

Similarly, as in the proof of Proposition 8 in [1], one can contract the vertices

whose distance with the chain c is greater than two. Performing twin contractions

if necessary, one can assume that the connected components of Γ ′ are either (A)

a single odd vertex or (B) two adjoining odd vertices. The number of branches

of type (B) is equal to μ′. Let us denote the branches by γj ’s (1 ≤ j ≤ μ′).
Contract all the branches of type (A); Now the chain c may be a mixture of

odd or even curves. Each branch γj is joined with c at a unique vertex vj in c,

and if j1 
= j2, the vertices vj1 and vj2 are different by Corollary 10 in [1]. We can

assume that vj is ordered (increasingly or decreasingly) according to the order in

the chain.

Next contract vertices in c other than vj ’s; we can assume that each segment

separated by vj ’s has at most one vertex, which is even.

Now the Theorem follows from the two facts below.

Lemma 3.8. Even if the parity of v = vj is reversed, the equivalence class of the

configuration does not change.

Proof. The graphs v − o− o and o− v − o− o, where v and o’s are odd curves,

are equivalent, since they have a common resolution o− v − o− o = 8.

Claim 3.9. There are no even curves left in the segments.

Proof. This comes from the condition that the total determinant is one, so here

we forget the noncompact curves. We will show the Claim by induction on μ′.
If μ′ is zero, there is only one room for those even curves, and if there re-

ally is, the determinant is zero. Next suppose that μ′ > 0 and that there is an

even curve outside of v1, that is, at one edge. The curve, blown up at a general

point, becomes two adjoining odd curves. Those curves together with the closest

γ1 constitute an impossible subgraph as usual. Thus, there are no even curves
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at either edges. By the previous Lemma, one can assume that v1 is odd, hence

one can perform a rifle contraction to v1 and γ1. Then the number μ′ has been

decreased by one.

Proof of Theorem, continued. Thus we get to a configuration where the chain c

consists of a linear μ′ odd curves and at each curve in c a branch of type (B) is

clinging. The Theorem is proven.

Example 3.10. A germ of bibranched curve with μ′ = 1 is blow-analytically

equivalent to a germ ({x(x− y2) = 0}, 0). In fact, it is easy to see that the dual

graph determines completely the tubular neibourhood in this case. It is also easy

to see that a germ of bibranched curve with μ′ = 2 is blow-analytically equivalent

to a germ ({(y2 − x5)(y − x2) = 0}, 0).
When C has more branches, you can choose any subset of branches and

consider similar invariants.

Definition 3.11. Let X be a simple good resolution of a germ of curve (C, 0) in

R2, which is n-branched. We denote the components of strict transform of C in

X by C1, . . . , Cn.

Let k be any integer between 0 and n. Choose arbitrary k components

among C1, . . . , Cn, say, {Ci1 , . . . , Cik}. Let ci1,...,ik be the minimal subtree of

exceptional curves which combines them, and Γi1,...,ik be the full complementary

subgraph. We define μk to be an unordered list (i.e. a set admitting repetition)

{corankΓi1,...,ik |1 ≤ i1 < · · · < ik ≤ n}.
Remark 3.12. (1) We have μ0 = {μ} and μn = {μ′}. We need not assume that

X comes from R2 by simple blowings up for the definition of μk.

(2) The numbers μk (k > 1) are invariant under simple blowing up and down,

but μ1 is not.

The invariance of μk follows by classifying the center of a simple blowing up.

If the center is in ci1,...,ik , the blowing up adds at most one odd curve in the new

Γi1,...,ik . If the center is outside ci1,...,ik , it is a simple blowing up of Γi1,...,ik . In

both cases corankΓi1,...,ik does not change.

Proposition 3.13. A germ of tribranched curve in R2 with μ′ = 0 is blow-

analytically equivalent either to

(1) an ordinary triple point ({xy(x+ y) = 0}, 0), or to

(2) a germ ({xy(x− y2) = 0}, 0),
according to μ2 = {1, 1, 1} or {0, 1, 1}.
Proof. Since μ′ = 0, one can contract all the curves in V ′ leaving the components

of c smooth as in the bibranched case. The resulting configuration including the
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component of the strict transform is a star. We denote by v the central vertex

of the star. As in the bibranched case, one can contract each segment between v

and the strict transform, performing some simple blowings up if necessary, and

leaves possibly one even curve on each segment. Since μ = 0, that can happen on

at most one segment and, in either case, the graph determines a blow-analytically

equivalent class.

(1) If all the segments vanish, v is now an odd curve. In this case, one has a

triple point.

(2) Otherwise, one segment has an even curve v′. This curve v may be odd or

even; but in either case, one can blow up a point on v′ and reach the configu-

ration o− o− o, where all three curves are odd, one end curve intersects one

noncompact component and the other end curve intersects two noncompact

components. This is nothing but a simple good resolution of (2).

One can easily calculate μ2 for each case.

4. An exotic blowing up

Proposition 4.1. Let f be a following map:

f : RP 1 ×RP 1 \ {(∞,∞)} → R2

sending (u, v) to

(x, y) =

(
uv2

1 + u2 + v2
,

u2v

1 + u2 + v2

)
.

Then the following holds:

(1) f is real analytic everywhere,

(2) f sends the axes {0} ×RP 1 and RP 1 × {0} to the origin,

(3) f(u,∞) = (u, 0) and f(∞, v) = (0, v) and

(4) f induces a real analytic isomorphism between {(u, v)|u 
= 0 and v 
= 0} and

R2 \ (0, 0).
Proof. (1) Let us take a local coordinate (ξ, η) around a point (u, v) = (a, b).

If both a and b are finite, we can take ξ = u − a, η = v − b. Then

x = (ξ + a)(η + b)2/(1 + a2 + b2 + 2aξ + 2bη + ξ2 + η2) is obviously a real

analytic function of (ξ, η). So is y.

If a = ∞, we take ξ = 1/u and η = v − b. Note that only one of a and b can

be the infinity. In this case, the map

(x, y) =
1

1 + ξ2(η + b)2
(
ξ(η + b)2, η + b

)
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are again real analytic. The other cases are similar.

(2) Obvious from the definition.

(3) Obvious from the equation above when (ξ, η) → (0, 0).

(4) Assume first that u, v are finite and uv 
= 0. In this case xy 
= 0. The

Jacobian matrix ∂(x, y)/∂(u, v) is equal to

1

(u2 + v2 + 1)2

(
v2(v2 − u2 + 1) 2uv(u2 + 1)

2uv(v2 + 1) u2(u2 − v2 + 1)

)
,

whose determinant is

−u2v2(3 + 4u2 + 4v2 + 2u2v2 + u4 + v4)

(u2 + v2 + 1)4
< 0.

Thus f is locally one-to-one by the inverse function theorem.

On the other hand, u satisfies the following equation:

u3 − x2 + y2

x
u2 − y2

x
= 0.

One can easily check that this equation has exactly one real root. Thus f is

one-to-one in this case.

Next Assume that u = ∞ and v 
= 0. Let s = 1/u and then we have

(x, y) =
(sv2, v)

1 + s2 + s2v2
.

The Jacobian matrix is

∂(x, y)

∂(s, v)
=

1

(1 + s2 + s2v2)2

(
1− s2 − s2v2 2sv(1 + s2)

−2sv(1 + v2) 1 + s2 − s2v2

)
,

which is the identity matrix when s = 0. The other case is similar.

Let X be an analytic neighborhood of two even rational smooth curves which

intersect normally at one point. The surface X can be blown down to a smooth

surface so that the two curves are sent to a smooth point. We call this map an

exotic blowing down. More generally,

Definition 4.2. An exotic blowing down is a surjective real analytic map between

two dimensional real analytic manifolds g : M → N such that

(1) M has an open subset U which is real analytically isomorphic to RP 1×RP 1,

(2) g|U is real analytically equivalent to f in Proposition 4.1 and

(3) g is real analytic isomorphism outside U .
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We have proved that the determinant of the intersection matrix is an invari-

ant under simple blowing up and down. The exotic blowing up is represented by

three simple blowings up and one simple blowing down, thus the determinant is

also invariant under exotic blowings up and down.

The following asserts that the converse is true in the category of real analytic

blowings up.

Theorem 4.3. Let X be a tree of smooth rational curves whose determinant is

one. Then X can be contracted to R2 by a composition of simple and exotic

blowings down.

Moreover, if there is a noncompact curve normally crossing at only one curve,

then one can choose the contraction map whose restriction to the noncompact

curve is isomorphism to the image in R2.

Remark 4.4. The neighborhood in the definition of exotic blowing down above

cannot be contracted by a composition of smooth blowings down only, since there

are no odd curves.

Proof. Let c be any fixed vertex and d(v) be the distance from c to v. Assume

the maximum of d is greater than one. First contract all odd vertices which attain

the maximum of d.

Suppose there exists an even vertex v which attains the maximum of d. The

vertex v has a unique adjacent vertex w. If there are other vertices which is

adjacent to w and has the maximum d, the total determinant is zero using the

lemma. Thus there are exactly two adjacent vertices to w, that is, v and say x.

If w is odd, contract w and then v; if w is even, apply exotic blow down for w

and v. In either case, the number of vertices decreases by two. By repeating the

above process, one eventually get to the case where d is at most one.

Contract all the odd vertices which has d = 1 leaves only the chain c and the

even adjacent vertices. Again, the number of even adjacent vertices is at most

one. If c is alone, c is odd by determinantal reason. One can apply a simple

blowing down. Otherwise, apply an exotic blowing down or two simple blowings

down beginning from c according to the parity of c.

Thus we can contract the orignal surface to R2; and if there is a noncom-

pact component crossing normally to the curve corresponding to c, it is mapped

isomorphically to the image in R2.
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