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Abstract

A method for computing b-functions associated with semi-quasihomogeneous
isolated singularities is considered in the context of symbolic computation. A new
method of computing b-functions and relevant holonomic D-modules associated
with p-constant deformations is described. The key of the resulting algorithm is the
use of the notions of comprehensive Grobner systems of a special class of Poincaré-
Birkhoff-Witt algebra and that of Weyl algebra. Several b-functions of p-constant
deformations of bimodal singularities are given as the result of the computation.

1. Introduction

The b-function, or Bernstein-Sato polynomial, is an important complex ana-
lytic invariant of hypersurface singularities. Many researchers of singularity the-
ory have studied b-functions and relations between b-functions and singularities
[1, 4, 5, 6,9, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 36, 39, 40, 42, 43].

Let by be the b-function of a semi-quasihomogeneous polynomial f with pa-
rameters. Then, by may change with the values of parameters. T. Yano in [43]
studied the b-function of the u-constant deformation of z® + y® and M. Kato
computed b-functions of the p-constant deformations of z7 + y° and 22 + y* in
[15, 16]. Moreover, P. Cassou-Nogués computed b-functions of u-constant defor-
mations of 2% + y* and 27 + 4° in [5, 6]. B-functions of y-constant deformations
have been studied by many researchers. See [3, 5, 7, 10, 11, 31, 32].

There exist mainly two different kinds of approaches for computing b-
functions [3, 27, 29, 39]. The first approach requires an annihilating ideal of
f? in rings of partial differential operators to compute the b-function by where s
is an indeterminate. The second approach computes b-functions without comput-
ing the annihilating ideal of f*. We follow the first approach to study b-functions
of p-constant deformations.

In [21], we have presented algorithms for computing comprehensive Grobner
systems in rings of partial differential operators and a special class of Pincaré-
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Birkhoff-Witt algebras. We also have implemented the algorithms in the com-
puter algebra system Risa/Asir [24].

In this paper, we show that an algorithm for computing parametric b-
functions can be constructed by using comprehensive Grobner systems. We
propose a comprehensive Grobner systems approach for studying b-function of u-
constant deformations. We provide a method that utilizing holonomic D-modules
to compute b-function of p-constant deformations.

This paper is organized as follows. In section 2, we see comprehensive
Grobner systems in rings of partial differential operators. In section 3, we re-
view comprehensive Grobner systems in Poincaré-Birkhoff-Witt algebra and give
a method for computing parametric b-functions. In section 4, we describe struc-
tures of holonomic D-module associated with roots of b-functions. In section 5,
we give b-functions of p-constant deformations of several non-unimodal singu-
larities. In section 6, we introduce an idea for avoiding heavy computation of
b-functions.

2. Comprehensive Grobner systems

Here we recall the notations of comprehensive Grobner systems in rings of
partial differential operators. For details, we refer the reader to [21].

Let K be a field of characteristic zero, K an algebraic closure of K. The set
of natural numbers N includes zero, C is the field of complex numbers and Q is
the field of rational numbers.

Let K({x,0,) denote the Weyl algebra, the ring of linear partial differen-
tial operators with coefficients in K, where z = (x1,...,2,), O = (O1,...,0n),

0; = % with relations

Tilj = XTjTy, Blaj = (%-81-, ajCL’i = IIJiaj (’L # j) and 61301 = .’Ezal + 1.

Let w = (u1,...,uny) be variables such that u Nz = 0, K[u]{x,d,) a ring
of partial differential operators with coefficients in a polynomial ring Ku]. The
symbol pp(z, ;) is the set of power products of z U 9.

Throughout the paper we assume that a partial differential operator in
K(x,0) (or K[u)|{z,d,)), is always represented in the canonical form that is each
power product of a partial differential operator is written as 752 - -- xff"é‘f !
652 - 0P where a1, ag,...,an, B1,B2, ..., Bn €N

We have the following natural K-vector space isomorphism ¥ : K(z,d,) —
K[z, €] (2707 — 28¢7) where K|, €] is a commutative polynomial ring, & = (£,

..,&,) corresponds to 9, = (91,0s,...,0,). For example, let p = 3x2290; +
290y € Clw1,29,01,02). Then U(p) = 323w2&; + 22& € Clay, x9,&1, &), For all
i€{1,...,n}, the inverse map ¥~! is defined as changing symbols &; into &;.

Fix a term ordering > on pp(z,d,) and let p € K (x, d,.). Then, lpp(p), lm(p)
and lc(p) denote as the leading power product, leading monominal and leading
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coefficient of ¥(p) in K|[z,£]. Furthermore, for a subset P in K(z, d,), we define
Ipp(P) := {lpp(p)|p € P}, Im(P) := {lm(p)| p € P} and lc(P) := {lc(p)[p € P}.

Let p1,...,pr € K{u,z,9,) (or K[u](z,d,)). Then, the left ideal generated
by p1,...,pr is written as Id(p1,...,pr)-

Definition 1. Fix a term ordering on pp(x,0;). Let p1,...,p. € K{(x,0;) and
G=Ag,...,9-} C ld(p1,...,pr) C K{u,2,0;). Then, G is a Grobner basis of
Id(p1,...,pr) if G satisfies Id(1m(I)) = Id(1m(g1), ... ,1m(g,)).

There exist algorithms and implementations to compute Grobner bases of
ideals in K{u,x,0y).

For every a € K™, we define the canonical specialization homomorphism
oa : K[ul{x,0,) — K{(x,0,) as a map that substitutes u by @ in a partial dif-
ferential operator p(u,z,0;) € Klu](xz,d;). The image under o5 of an ideal
I C K[u](x,d,) is denoted by o4(I) := {oa(p)|p € I} C K(x,0,).

For instance, let p = 3ujusx3d? + uow10; + x1 in Cluy,us]{wy,d1) and
(=3,1),(0,-2) € C2. Then, by substituting values (—3,1), (0, —2) into (u1, uz),
we get 0(_3,1)(p) = —92307 + 2101 + 21 and o0,-2)(p) = — 22101 + 1.

For g1,...,9- € K], V(g1,..., g-) € K™ denotes the affine variety of
91y 9r, 16, V(g1, ..., g9-) i ={a e K™ g1(a) =--- = g-(a) =0}, V(0) = K™
and V(1) = (). We call an algebraically constructible set V(g1,...,¢:)\V(gi,---,
g.) C K™withgy,...,0r, 91, 9. € K[u], a stratum. (Notation A1, Ag, ..., A,
are used to represent strata.)

The definition of comprehensive Grébner systems is the key ingredient of this
paper.

Definition 2 (CGS). Fiz a term ordering on pp(xz,d,). Let P be a subset of
Klu)(x,05), A1, ..., Ay strata in K™ and let G1,. .., Gy be subsets in K[u](x,0,).
A finite set G = {(A1,G1),...,(Ay,Go)} of pairs is called a comprehensive
Grébner system CGS on AiU--- U A, for P if for all a € A;, 0a(G)) is a
Grébner basis of Id(oz(P)) in K(z,0,) for each i = 1,...,L. We call a pair
(A;, G;) segment of G. We simply say G is a comprehensive Grébner system for
PifAfU---UA = K™,

There exist algorithms for computing comprehensive Grobner systems. We
have adapted the algorithm [21] for computing CGSs and implemented it in the
computer algebra system Risa/Asir.

To the best of our knowledge, our implementation is currently, in the rings
of partial differential operators, only one implementation for computing CGSs.

Example 3. Let F = {21003 + ax103,0? + bwy0102, 1107 + 31203 + bx107} C
Cla, b){z1,x2,01,02) and > the total degree lexicographic term ordering s.t. xy =
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xy = Oy = Oy where 8 = 52,05 = 3%, Then, a CGS of F w.r.t. - is the
following.
{(C*\V(ab(b + 1)), {b*9102 + b°0102, abd?, abx203}),
(V(@)\V(b(b+1),a), {b*8105 + b33, 05, b0 + b282, 022203},
(V(a,b+1),{8:02,820, — 8,05, 03 — 82, £002.220,85 — 02}),
(V(a,b),{0%, 2203}),
(V(b+ 1D\ V(a,b+1),{ad 8, ad?, 2202}),
(V(0)\ V(a,b), {0F, 2203}) }.

3. The Poincaré-Birkhoff-Witt algebra and b-functions

Let f be a non-constant polynomial in C[z]. Then, the annihilating ideal of
f®is
Ann(f*) :={p € C(s,z,0,) | pf* =0}
where s is an indeterminate.
The global b-function or the Bernstein-Sato polynomial of f is defined as the
monic generator bs(s) of

(Ann(f°) + Id(f)) N CJs].

It is known that the b-function of f always has s + 1 as a factor and has a form
(5 + 1)bs(s), where b(s) € C[s]. The polynomial by(s) is called the reduced
b-function of f.

Here first, we recall the approach of Briangon-Maisonobe [3] for computing
a basis of Ann(f®). Second, we review a computation method of parametric b-
functions.

Consider C(0t, s) with the relation
ot-s=s0t—0t

and let C(x, 9,,[0t,s]) denote the Poincaré-Birkhoff-Witt algebra C{z,d,) ®c
C(0t, s) with relations
x;8 = sx;, 0;8 = 80;, x;0t = Otx;, 0;0t = Ot0;, 0t - s = sOt — Ot,
xixj = x;2;,0;0; = 0;0;, 050, = 2;0;(1 # j) and Ojz; = x;0; + 1.

Moreover, consider the following left ideal in C(x, 9;, [0t, s]):

B ) af o af 3 af
I—Id(fat—i—sa oty 82+8tax2,...,axn+8taxn>.
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Briangon and Maisonobe proved in [3] that Ann(f®) = I N C(s,x, d,) and hence
the latter can be computed via the Grobner basis in C(z, d,, [0t, s]), w.r.t. an
elimination ordering for {0t}.

Definition 4. Fiz a term ordering on pp(z,0;,0t,s). Let p1,...,p, €
K(z,0,,0t,s) and G = {g1,...,9-} C Id(p1,...,pr) C K(x,0.,|0t,s]).
Then, G is a Grébner basis of Id(pi,...,pr) if G satisfies Id(lm(I)) =
Id(lm(gy), ... ,1lm(g,)).

There exists an algorithm for computing Grobner bases in K(z,d,, [0t, s])
([21]). Actually, we have implemented the algorithm in the computer algebra
system Risa/Asir. Hence, we can obtain a Grébner basis of the ideal Ann(f*®) by
utilizing Briancon-Maisonobe’s method.

We turn to parametric cases. We can define and compute comprehensive
Grobner bases in K[u]{x, 0., [0, s]) in the same way where u are variables (pa-
rameters) s.t. wNx = . Thus, we are able to obtain a basis of the parametric
ideal Ann(f*®) where f € K[u][z].

Algorithm 1 ParaAnn

Specification: ParaAnn(f)
Computing a parametric basis of Ann(f*).
Input: f € Ku](z].
Output: B = {(A1,B1), (A2, Ba),...,(Ag, Be)}: For all a € A;, 05(B;) is a basis
of Ann(oz(f)®), for each i € {1,...,¢}.
BEGIN
B« 0;
I {fot+s 5= +ot5l 2 v orgl, . 52+ o2l
= a¢<— an elimination ordering for {0t};
G < compute a CGS for I w.r.t. =g in K[ul(z,d,,[0t, s]) ([21]);
while G # () do
select (A, G) from G; G + G\{(A,G)};
B+ BU{(A,GNK(s,x,0.))};
end-while
return B;
END

We have implemented the algorithm ParaAnn in the computer algebra system
Risa/Asir.

Example 5. Let f = 23 +ax 23 +bx3 € Cla, b][x1, z2] where a,b are parameters.
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Then, our implementation outputs the following as parametric bases of Ann(f*)

in Cla, bl(s,x, 0).
1. If parameters (a,b) belong to C*\ V(ab), then a basis of Ann(f*) is

By = {az31205 — 2bx101 — 3bx12202 + 6bsxy + 2022305 — 2a%sx3,
—2az30) — 2ax17905 + 6as — 202101 — 3bx20, + 6bs,
—333‘%(92 + 2ax12901 — am%f)g + 2b.’13281}.

2. If parameters (a,b) belong to V(a)\ V(a,b), then a basis of Ann(f®) is
By = {22101 4 32902 — 68, —32102 + 2bx30; }.
3. If parameters (a,b) belong to V(b)\ V(a,b), then a basis of Ann(f*) is
B3 = {2101 + 2202 — 3s, —3220y + 2ax1220; — axgag}.
4. If parameters (a,b) belong to V(a,b), then a basis of Ann(f*) is

B4 = {1181 - 38,82}.

Note that the sets By, Ba, By and By will be used in Example 6, again.

As the monic generator of (Ann(f*)+ Id(f)) NCJs] is the b-function of f, we
are able to construct an algorithm for computing b-functions of the parametric
polynomial f as follows.

Algorithm 2 ParaBF

Specification: ParaBF(f)
Computing b-functions of a parametric polynomial f.
Input: f € Clu][z]. =: a block term ordering s.t. {z,0,} > s
Output: P = {(A1,b1(5)), (A, b2(s)), ..., (Ag, be(s))}: If parameters u belong
to A;, then b;(s) is the b-function of f where i € {1,...,¢}.
BEGIN
P < (); B <ParaAnn(f);
while B # () do
select (A, B) from B; B «+ B\{(A, B)};
G < compute a CGS for BU{f} w.r.t. > on A in C(s,z,9,) ;
while G # 0 do
select (A’,G) from G; G < G\{(4',G)};
b(s) < the smallest element of G N C[s] w.r.t. >;
P PU{(A",b(s))};
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end-while
end-while
return P;
END

We illustrate the algorithm with the following example.

Example 6. Let f = 23 +ax123+bz3 be a polynomial in Cla, b][z1, x2], = the to-
tal degree lexicographic term ordering s.t. 01 > Oy = x1 = o on pp(x1,x2, 01, 02)
and > the block term ordering s.t. {x,0,} > s with = where a,b are parameters.

0. Compute parametric bases of Ann(f*®), which is already given in Example 5.

1. Compute a CGS for By U{f} w.r.t. =, on C*\V(ab) where By is from Ea-
ample 5. Then,

{(C*\V(ab),G1 = {s® + 352 + 107/365 + 35/36, (s + 1)xa, (—65> — 135 —
7)1, (=3s — 3)2? + (—as — a)x3, 23 + azdxy + ba3, (—a®x30y — 3b%02)2? +
a’br3x102 — a*x50y — 2a*x3 — 4ab®230y + —6abxe + 2031901, a* w3 w00y —
abw1 2205 + 20%1101 + alx30y — 2a3sw3 + 3b%w205 — 6b%s})}

is the CGS. Hence, G1 N Cls] = {s® + 3s® + 107/36 + 35/36}. Therefore, if
parameters (a,b) belong to C*\ V(ab), then the b-function of f is

107 35 5 7
#4385+ st g =(s+1) (‘”6) <S+6)'

2. A CGS for B U{f} w.r.t. =5 on V(a)\V(a,b) is

{(V(a)\ V(a,b),{s3+3s%+107/365+35/36, (s+1)xa, 65>, +13sz1 + 721, (5+
a2, 23 + bad, —3230y + 2bx201, 21101 + 31205 — 65})}.

Therefore, if parameters (a,b) belong to V(a)\ V(a,b), then the b-function of
f s
107 35

5 7
S35+ grst g = (st 1) <5+6) <S+6)'

3. A CGS for Bs U{f} w.r.t. =5 on V(b)\ V(a,b) is

{(V(b)\ V(a,b)), {s* + 45> + 53/9s> + 34/9s + 8/9, (35> + 10s> + 11s +
4)2q, (383 +1082 +11s+4) w1, (352 + Ts +4)x3, (s + 1)x122, (35 +3) 27 + (as+
a)x3, (s +1)x3, 23 + ax3zy, 52300 + 2305 — 35%wa — 4819 — 9, 2302 + ax309 —
2519, 3521109 + 652102 + 32102 + as?x201 + 2as1201 + adi, 101 + x202 —
38, 35112202 + 3122202 — 9521 — 15511 — 621 — asx20; — ax3dy, —117205 +
352109 + 109 + aa:§8182 — 2asx281})}.
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Therefore, if parameters (a,b) belong to V(a)\ V(a,b), then the b-function of
f s

2 4
s* + 453 +53/95% +34/95 +8/9 = (s + 1)? (s—i— §> <s+ §) .

4. A CGS for ByU{f} w.r.t. =5 onV(a,b) is

{(V(a,b), {s®+2s*+11/95+2/9, 3s%x1 + Hsx1 + 221, (s + 1) 22, 23, 00, 2101 —
3s})}

Therefore, if parameters (a,b) belong to V(a,b), then the b-function of f is

83+282+ES+2—(8+1) s—l—l s—l—2
9° 9 3 3)°

We have implemented the algorithm ParaBF in the computer algebra system
Risa/Asir.

4. CGS and supports of D-modules

Let f be a non-constant polynomial in Clx]. Let us regard s as a “parameter”
and compute a CGS of Ann(f®) U{f} w.r.t. a block term ordering s.t. 9 >~ = in
Cl[s](x,0z). Then, the CGS may give us the supports of roots of by.

Let us consider f = x123 + 23 € Clz1, 22, 23]. In this example, let =, be
the total degree lexicographic term ordering s.t. x1 > x2 > x3 on pp(x1,x2,x3)
and >y be the total degree lexicographic term ordering s.t. 9y = 0o > 03 on
pp(01,02,03). A CGS of Ann(f*) U {f} w.r.t. the block term ordering > s.t.
{01,02,05} > {x1, 29,23} (With =, and =p) in C[s]{x1, z2, x3, 1,02, 03), is the
following.

-If s = —1, then G = {21‘282 + 32303 + 6,—2x101 + .’[7363,33’3%81 -
2309, 2112302 + 33203, 1173 + 3, 910230105 + 61203 + 22303, 27230,03 —
42303 + 81230,05 + 240, } is a Grobner basis of Ann(f*) U {f} w.r.t. = in
(C<IL’1,$2,IL'3,81,82,83>.

I s = —%, then Gy = {x1,22,7305 + 2,25} is a Grobner basis of
Ann(f*)U{f}.

If s = —%, then G3 = {z1,7303 + 2,73, 2202 + 2,23} is a Grobner basis of
Ann(f*) U{f}.
-If s = =2, then G4 = {w3, 2, 2210; + 1} is a Grébner basis of Ann(f*)U{f}.

I s = —%, then G5 = {x3,2202 + 2,22,2110; + 1} is a Grobner basis of
Ann(f*) U {f}.
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I (s+1)(s+3)(s+3)(s+ 2)(s+ &) #0, then {1} is the Grébner basis of
Ann(f*) U{f}.

Note that the b-function of f is (s+1)(s+ 3)(s+ 3)(s+ 3)(s + £). That is,

the b-function appears in the output as the last stratum and the roots of by(s)

also appear in the other strata above.
We have the following theorem.

Theorem 7 ([21]). An algorithm for computing CGSs [21], always outputs
br(s) and all roots of the by(s) = 0 as strata where \/bs(s) is the squarefree
polynomial of bs(s).

We borrow from the paper [43] the following theorem.

Theorem 8. Let v € Q and Jy = Id (azl ..,am ) Set
My, 5y = C(s,2,05)/(Ann(f*) + Id(f) + Id(s — 7).

Then, if by(y) # 0, then M, 5y = {0}, and if bi(y) = 0, then M. p)
is a holonomic D-module and supp(M, r)) C Sing(S) where supp(M, r)) is
the support of M, yy and Sing(S) is the singular locus of the hypersurface

S={zeC"|f(x) =0}, i.e., Sing(S) = (f’8m1’8m2 "’687{1)'

Let us consider f = xlx?) + x% € Clzy,xq, z3], again. Focus on each system
of partial differential equations of the CGS of Ann(f*) U {f}. Then, we can
compute supports of each holonomic D-module M, ;) from the CGS, namely,
supp(M(__ ) = V(G2 N Clay, wa, 3]) = V(1, 22, 23), supp(M(_%f)) =V(GsNn
Clx1, o, 23]) = V(z1, 23, 23), supp(M(_%f)) = V(G4 NClz1,x2,23])) = V(z2, 23)
and supp(M(_z 7)) = V(G5 N Clay, 22, 23]) = V(z3,23). Thus, we see that, the

support of the holonomic D-module associated with s = f%, f% is the origin
and the support of the holonomic D-module associated with s = —%, —% is the

complex line y = z = 0. Note that the characteristic varieties of the holonomic
D-modules above can also easily determined from the outputs above.

5. B-functions of u-constant deformations

We have obtained lists of b-functions of typical p-constant deformations, that
are the main results of this paper.

First, we see a simple example which is the unimodal singularity F15 in sec-
tion 5.1, to facilitate our results. In fact, if f is a unimodal singularity, then our
implementation return b-functions of the p-constant deformation f within a few
seconds. Thus, we mainly consider bimodal singularities. We show b-functions of
eight bimodal singularities, that are obtained by our implementation within one
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month.

All results of b-functions in this paper have been computed on a PC with
[OS: Windows 7 (64 bit), CPU: Intel Core i-7-5930K CPU @ 3.50 GHz 3.50 GHz,
RAM: 64 GB].

5.1 2°+y" (B2 singularity)
The Milnor number 4 of the singularity 23 4+y” = 0 is 12, and the p-constant
deformation is given by

f=2>+y" +axy’
where a is a parameter.

In order to compute b-functions of the p-constant deformation, first of all,
we need to compute a parametric basis of Ann(f*) that is the following,.

- If the parameter belong to C\ V(a), then

B {125(13 2y(£)? + 63022(2)% + 100azy* L2 + 550azyL +
543xy 2 kg 2 +315sx% —12az(Z)* +2688x% — 65ay® ( az) +30a%y* gy 2+
20a3y3 (2 ) +80a2y° 2 +(190a3y +117y (2 ) 1125a3s2y 1275a3sy+
1265y81 +999ya— 766155 —6174s, f5a:c 7zy Qawya%+15asxf
3y’ 2 >+ 21sy?, —125a%2 2 — 50a* xy—y + 1029:vy01 + 375a4sx — 21(13388 +
35a2 " 3 —5a%y3 8 +441y 308753/,33626% 7y = +ay® ay}
is a ba51s of Ann(f ).

- 5aa:y4

- If the parameter belong to V(a), then By = {71‘% + 3y8% — 21s, 3x2% —
7y5 -2} is a basis of Ann(f*).
Next, we compute a CGS {(A1,G1), (A2, Ga),..., (A, Ge)} of B;U{f} w.r.t.

a block term order s. t. {x,y, %7 a%} > s. After that for each i € {1,...,¢}, we
select a generator by (s) of G; NC[s]. Then, we obtain the b-functions as Table 1.

Table 1 b-functions of 3 4 y7 + azy®

stratum | global b-function
C\V(a) | s+ 1)(s+ 29) (s + i} (s+§§)(s+21)(s+
(s+50)(s+ 35+ 3) (s + 3D)(s + 3D)(s + 33)(s + 39)
V(a) (+DE+GE+L8) 6+ 8+ 4
(s+§§’)<s+2°)(s+ )(s+21)(s+25)< +3)(s+ 37 s+ 3D)

Furthermore, by using a CGS, we can compute a holonomic D-module asso-

ciated with s = « for each root v of the b-function, namely, we can obtain a set

G(v.5) C C{z,0,) that satisfies M, ) =
If the parameter a belongs to C\

Clw,0)/ 1d(G(
(a), then

h)-
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G =1zy}
Gy =1z.y}
Gy ={v" w.a’y + 495 + 98},
Gy ) = {37a% — 2456%y — 7203y 2 — 21609, 136ya® + 14700y £
2
+21609 (a%) + 294043 + 864360%} ,

G g = {ax + Ty?,10a*x + 147ax3% — 1029y, vy, 2%, ...}

Gz = {—1273a82%y + 9261a32% + 648279528% + 30870a%xy?, 23, .. .}.

If the parameter a belongs to V(a), then

G(—%,f) ={z,y},

Gewp={vyg +2v°
CTY(—%,f) = {‘T7y% + 37y3}5
Giyp =1y +22%

- 9 9
G(—%,f) = {ya—y + 6,%‘% + 2,1‘2,2/6}.

5.2 23+ y'0 (B3 singularity)
The Milnor number y of the singularity 22 +y'° = 0is 18, and the y-constant
deformation is given by

f=x3+y10+axy7—|—ba:y8

where a,b are parameter. The algorithm ParaBF outputs Table 2 as the para-
metric b-function of f.

Let us consider (V(a* — 64b)\V(a,b),b§c2)). If parameters (a,b) belong to
V(a* — 64b)\ V(a,b), then the reduced b-function of f is by = b?)/(s +1).
One can check supp(M(, ) C Sing(S) where 7 is a root of by = 0 and
S = {(z,y)|f(z,y) = 0}. Then, all roots of bo = bs/(s+ 1) = 0 are on the
origin and the root of by/by = s+ 1 = 0 is on another isolated singular point

2
(z,y) = ( a a). In fact, the Grobner basis of Ann(f*) N {f, %, g—g} for

320%7 4b
s=—-1in Clz,yZ, 6%> is {4aby + a2, 8z — a®y*}.
Set
B(s) = (s+g)(s + §)(s + 15)(s + 13)(s + 12)(s + 13)(s + 15)(s + 15)(s + 13)
X(s+ 3 (s+33)(s+ 2)(s+ 2)(s+ 35 )(s + §—7)(s + 3—1)
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Table 2 global b-functions of =3 + 310 + azy” + bxy®

strata global b-function
C2\V(a(a* - 64b)) | b5 = (s + 1)(s+ 2)(s+ D)5+ F)(s + 3)

X(s+ 1)+ ) s+ 3 (s + 1) (s + 12)

s

V(a* - 64b)\ V(a,b) | b = (s + 1)2(s + D)(s + D)(s + &)(s + &)

)
X(s+ 35)(s + 50)(s + ) (s + 53)(s + 3p)(s
V(a)\ V(a, b) B = (s+D)(s+ (s + D)(s + £)(s + 1

X(s+ ) s+ )+ 1)+ D)5+ ) s+ B) s+ 52)
X(s+ 2 (s+ ) s+ Z) s+ D) (s + L) (s + 3)(s + 2)

4
V(a, b) B = (s+D)(s+ (s + D)(s + £)(s + 1
X(s+ B (s+ W) (s + 10)(s + 1T)(s + 12) (s + ) (s + 1)
X(s+ 3+ )+ 3+ )+ 3D+ )+ 2D)

. 1 2 3 4
that is the common factor of bg‘- )/(s—l— 1), bE‘- )/(s—l— 1), bE‘- )/(s—l— 1) and bgc )/(s—l— 1).
As we are considering p-constant deformations, b-functions of the p-constant
deformation f are given in Table 3, by collecting roots of the b-functions on the
origin.

Table 3 b-functions of 2 4 y'© + azy” + bxy® on the origin

strata b-function on the origin | degree of the b-function
C2\ V(a) B(s)(s + 1=)(s + 35) 18
V(@)\ V(a,b) | B(s)(s + 2)(s + &) 18
V(a, b) B(s)(s + 22)(s + 35) 18

5.3 23+ y'! (Eq singularity)
The Milnor number g of the singularity 23 +y'! = 0 is 20, and the p-constant
deformation is given by

f — .’173 +y11 +a$y8 +b$y9

where a, b are parameters. The algorithm ParaBF outputs Table 4 as the para-
metric b-function of f where

B(s) = (s + 53)(s + 53)(s + 5§)(s + 33) (s + 33)(s + 58) (s + 33) (s + 33)(s + §3)
x (s + %)(s + %)(8 + %)(s + %)(s + %)(s + %)(s + %)(s + %)(s + %).

Let us consider (V(16a® + 3125b%)\ V(a, b), bE,Z)). If parameters (a, b) belong
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Table 4 global b-functions of =3 + y1 + azy® + bxy?

strata global b-function

C2\ V(a(16a® + 3125b%)) | b\ = B(s)(s + 1

(s+ 3 (s+ 12
2

)
V(16 + 31256°)\ V(a,b) | b = B(s)(s + D?(s + 18)(s + 42)
V(@)\ V(a,b) b = B(s)(s + (s + 22)(s + 1)
V(a, b) b = B(s)(s + 1)(s + 42)(s + 52)

to V(16a® +3125b%)\ V(a, b), then the reduced b-function of f is by = b?)/(s—i—l).
One can check supp(M(, ) C Sing(S) where 7 is a root of by = 0 and
S = {(z,9)[f(z,y) = 0}. Then, all roots of bp = bs/(s +1) = 0 are on
the origin and bf/bp = 0 (s = —1) is on another isolated singular point

25637 5b
given in Table 5.

4a® -2
(x,y) = < ¢ a). The b-functions of the p-constant deformation f are

Table 5 b-functions of 23 + y1 4+ azy® + bzy? on the origin

strata b-function on the origin | degree of the b-function
C2\ V(a) B(s)(s + 38) (s + 1) 20
V(a)\ V(a,b) | B(s)(s+ 12)(s + 22) 20
V(a,b) B(s)(s+ %)(s—l— %) 20

5.4 z*+y" (Wys singularity)
The Milnor number p of the singularity 2* +%7 = 0 is 18, and the g-constant
deformation is given by

F=at 47 + azyt + bay®
where a,b are parameters. The algorithm ParaBF outputs Table 6 where

B(s)=(s+ ) (s + )+ 1)+ D+ 1)+ 15+ 55)(s + 38) (s + 53)
X (s+ 3%)(5 + %)(5 + %)(s + %)(s + %)(s + %)(S + %)
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strata global b-function

C2\V(a(a® +27b)) | b = B(s)(s + 1)(s + £)(s + 11

V(a® +276)\ V(a,0) | b7 = B(s)(s + 1)2(s + 22)(s + 1)
3

V(a)\ V(a,b) b = B(s)(s + 1)(s + 3D)(s + &)
4

V(a,b) b = B(s)(s + D)(s + 2)(s + 3)

Table 6 global b-functions of % + y7 + ax?y* + bx2y®

Let us consider (V(a® + 27b)\V(a,b),b§?)). If parameters (a,b) belong to
V(a® + 27b)\ V(a,b), then the reduced b-function of f is by = b?)/(s + 1).
One can check supp(M(,,)) € Sing(S) where v is a root of by = 0 and
S ={(z,y)|f(z,y) = 0}. Then, all roots of by = bs/(s + 1) = 0 are on the origin

30" 3b
The b-functions of the p-constant deformation f are given in Table 7.

and b /by = 0 (s = —1) is on two isolated singular points (,y) = (i a —a>.

Table 7 b-functions of % + y7 + az?y* + baz2y® on the origin

strata b-function on the origin | degree of the b-function
C2\ V(a) B(s)(s+ % (s+ %) 18
V(a)\ V(a,b) | B(s)(s+ 12)(s + 2%) 18
V(a, b) B(s)(s + 35)(s + 33) 18

5.5 3y +14® (Z17 singularity)
The Milnor number 4 of the singularity 23y+%® = 0is 17, and the p-constant
deformation is given by

f= x?’y + ys + aacyG + bgcy7

where a,b are parameters. By executing the algorithm ParaBF, we can obtain
Table 8 as the parametric reduced b-function of f where

B(s)=(s+1)(s+ %)(s + %)(s + %)(s + %)(s + %)(s + %)(s + %)
X(s+ 51)(s + 5 (s + 3 (s + 3D (s + 5 (s + 31 (s + 31)-

In all the cases, all roots of reduced b-functions are on the origin and the degree
of all the reduced b-functions is 17.

5.6 3+ 92?2 +y" (Q16 singularity)
The Milnor number x of the singularity 23 + yz? +y” = 0 is 16, and the
p-constant deformation is given by
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Table 8 reduced b-functions of z3y 4 y® + azxy® + bxy”
strata reduced b-function degree of the b-function
C2\ V(a) B(s)(s + 15)(s + 3% 17

7 35
V(a)\ V(a,b) | B(s)(s + 75)(s + 53 17
V(a, b) B(s)(s+ 1) (s + 17

f=a®+y22 + 4" + axy® + baz?

B(s) =

(s+1)(s+
x(s+ 2)(s+ 32

s+ 2)(s+
i)(s+§?)(

Table 9 global b-functions of 23 4 y2z2 4+ y7 4 axy® + bxz?
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where a,b are parameters. The algorithm ParaBF outputs Table 9 where

)8 5)(s o+ 51)(s + 5p)
B)(s+ (st )

strata global b-function

C2\ V(a(27a* +2560)) | b = B(s)(s+ 1)(s + D) (s + 2

V(27a +256b)\ V(a,b) | ¥ = B(s)(s + 1)(s + $)(s + 21 9)(s+ 23)
V(a)\ V(a, b) b = B(s)(s + D)(s + 23)(5 +41)

V(a, b) bV = B(s)(s + (s + &)(s + &)

Let us consider (V(27a* + 256b)\V(a,b),b§c2)).
long to V(27a* + 256b)\ V(a,b), then the reduced b-function of f is by
b;2)/(s +1). One can check supp(M,,5)) € Sing(S) W{lere 7~is a root of by
and S = {(z,y,2)|f(z,y,2) = 0}. Then, all roots of by = bs/(s + 3)=0
are on the origin and bs/by = s + % = 0 is on two isolated singular points
(z,y,2) = 3a 3a , 3a

7y7 - 4b27 4b7 4[)2\/(_)
f on the origin are given in Table 10.

If parameters (a,b) be-

). The b-functions of the p-constant deformation

Table 10 b-functions of 23 + yz2 + y7 + azy® + bxz? on the origin

strata b-function on the origin | degree of the b-function
C2\V(ab) | B(s)(s+ 22)(s+ 2) 14
V(a)\V(a,b) | B(s)(s + 22)(s + 31) 14
V(a,b) B(s)(s + % (s+ %) 14

Note that the Milnor number 16 does not coincide with the degree of the b-
function 14. If a = b = 0, then the multiplicity of the holonomic system M _ 17)
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defined by Id(G(_%J)) is equal to 2 where
0 0 9 "
G(g’f):{x,ya—erSZ&—f—?,z sYzZ, Y }

Actually, the algebraic local cohomology solutions of M _ i f) is Spang ([myle} ,

[a:yl‘lz})' (See [37, 38, 42, 43].) Similarly, the multiplicity of the holonomic

system M(_s ) defined by Id(G(_%J)) is equal to 2 where

_ 9 9 9 2 2,4
G(,gyf) = {yay +3Z62 +77$8x +2,2%yz,2°,y" ¢,

and the holonomic system M, yy is simple for every roots v (# —%, —%) of the
reduced b-function. The sum of the multiplicities is equal to 16.

The same fact can be verified for the other strata C\ V(a) and V(a)\ V(a,b)
by analyzing the structure of CGSs in the same way.

5.7 2% +y2% + xy® (Q17 singularity)
The Milnor number j of the singularity =3 + yz? 4+ zy® = 0 is 17, and the
p-constant deformation is given by

f=2+y2? + a2y’ + ay® + by’

where a,b are parameters. By executing the algorithm ParaBF, we can obtain
Table 11 as the parametric reduced b-function of f where

B(s)=(s+3)(s+3) s+ s+ Ds+ s+ 15)(s + B)(s + 1)
X (s + 55)(s 4 55)(s + 55) (s + 55) (s + 55) (5 + 55) (s + 55)-

Table 11 reduced b-functions of 3 + yz2 + zy® + ay® + by?

strata reduced b-function degree of the b-function
C2\ V(a) B(s)(s+ 15)(s + 22 17
V(a)\ V(a,b) | B(s)(s + 1) (s + 32 17
V(a, b) B(s)(s + 25)(s+ 22 17

In all the cases, all roots of reduced b-functions are on the origin.

5.8 22z +yz? +yb (517 singularity)
The Milnor number j of the singularity 2z 4 y22 + 9% = 0 is 17, and the
p-constant deformation is given by
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f=a?z4+y2> + ¢S +ay’z + 023

where a,b are parameters. By executing the algorithm ParaBF, we can obtain
Table 12 as the parametric reduced b-function of f where

B(s) = (s (s + s+ s+ s+ s + Dls + K5 + 4
X(s+3) s+ (s + 30+ 2)(s+ ) (s + 31)(s + 35)-

Table 12 reduced b-functions of z2z + yz2 + y% + ay*z + b23

strata reduced b-function degree of the b-function
C2\ V(a) B(s)(s+ 2)(s + 22) 17
V(a)\ V(a,b) | B(s)(s+ 2)(s + 2I) 17
V(a, b) B(s)(s + 1) (s + 27 17

In all the cases, all roots of reduced b-functions are on the origin.

5.9 23+ 222 +9° (Uys singularity)
The Milnor number u of the singularity 23 + 22 + y> = 0 is 16, and the
p-constant deformation is given by

F=a® a2 4P 4 ay?e? + byt
where a, b are parameter. The algorithm ParaBF outputs Table 13 where

B(s) = (s+8)(s+)(s+5)(s+8)(s+13)(s+18)(s+13) (s + B) (s +32)(s+35).

Table 13 global b-functions of 3 + x22 + y® 4+ ay?22 + by322

strata global b-function

C2\V(a(27a* + 2560)) | b\ = B(s)(s + 1

)+ 1)

(s+
(s+3)(s+ 12)(s+ 1%)

)
V(27a* + 256b)\ V(a,b) [ ) = B(s)(s + 1)
V(a)\ V(a, b) b®) = B(s)(s + 1)(s + )(s + 2)
V(ab) b9 = Bls)(s + (s + 2)(s + 2)

Let us consider (V(27a* + 256b)\ V(a, b), bgf)). If parameters (a, b) belong to
V(27a* + 256b)\ V(a,b), then the reduced b-function of f is by = bgf)/(s +1).
One can check supp(M(,,)) € Sing(S) where v is a root of by = 0 and
S = {(z,y,2)|f(z,y,2) = 0}. Then, all roots of by = bf/(s + 3) = 0

are on the origin and b;/by = s + % = 0 is on two isolated singular points
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Table 14  b-functions of =3 + 22 + y® + ay?z2 + by322 on the origin

strata b-function on the origin | degree of the b-function
C2\V(a) | B(s)(s+ (s + 23) "
V(a)\ V(a,b) | B(s)(s + 2)(s + 2T) "
V(a,b) B(s)(s+%)(5+ %) 12

-3a%? —a a
) = 119 0 410 T—F
() (64b2 PRIV
on the origin, are given in Table 14.
Note that the Milnor number 16 does not coincide with the degree of the
b-function 12. One can check that the multiplicity of the holonomic system

M( 5,f)’ M( 7,f)’ M(*%,f) and M(*%,f) iS equal to 2

). The b-functions of the p-constant deformation f

5

5.10 Concluding remarks

We have tried to compute more than 40 p-constant deformations of non-
unimodal singularities by our implementation of Algorithm 2, directly. However,
we have obtained only 8 examples of the p-constant deformations that it took
less than “one month” to compute. Other examples need more RAM and time to
get b-functions. In general, the computation complexity of algorithms for com-
puting b-functions is quite big. Thus, the computation complexity of parametric
b-functions is quite big, too. Anyway, our implementation of Algorithm 2 could
return 8 new b-functions of p-constant deformations of non-unimodal singulari-
ties.

In order to avoid the heavy computation, V. Levandovskyy and J. Martin
have introduced a smart idea in [17]. We will adopt the idea to the parametric
case in the next section.

6. Checking roots of b-functions

Let f = fo+ g € Cujlz] = Clu,...,unl[*1,...,2,] be a semi-
quasihomogeneous polynomial where f; is the quasihomogeneous part and g is
a linear combinations of upper monomials with parameters u. Then, f can be
regard as a p-constant deformation of fy with an isolated singularity at the ori-
gin. The following is the classical result by M. Kashiwara [14]. The upper bound
statement is due to [10, 11, 33, 34, 41].

Theorem 9. Let Ey, = {albs, (o) = 0} where by, is the b-function of fo on the
origin. Then, for e € C™, the set of roots of b-function of o.(f), on the origin,

Es. (1) = {albs, (5)(a) = 0}

becomes a subset of E = {a+ kla € Eg,k € Z,—n < a+ k < 0} where Z is the
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set of integers. That is, Eq sy C E, fore € C™.

Empirically, the computational complexity of a Grébner basis of B U {f} is
bigger than the computational complexity of an annihilating ideal of f® where B
is a basis of the annihilating ideal of f*. Thus, in many cases, our implementation
can return a basis of the annihilating ideal of f*, but it takes more than “one
week” to return the Grébner basis of B U {f}.

In fact, the closed formula of by, is known, thus, the set E of the estimated
roots of by can be computed by Theorem 9. Hence, in order to avoid the big
computation, we can decide roots of by and holonomic D-modules by computing
a Grobner basis of Id(BU{f, s —v}) where v € E. If the reduced Grébuner basis
is {1}, then v is not a root of by, otherwise, v is a root of by. This idea is due to
V. Levandovskyy and J. Martin [17]. By the following algorithm, one can check
whether v is a root of the b-function of f or not. Moreover, if v is a root of the
b-function of f, then one can obtain the holonomic D-module associated with v,
too.

Algorithm 3 CheckingRoot

Specification: CheckingRoot(f,s — v, >)
Checking whether v is a root of the b-function of f or not.
Input: f € Clu][z], s —v € Q[s], >: a term order.
Output: R C K™: For (A,G) € R, if the parameters u belong to A, then v is a
root of the b-function of f and G is a basis of the holonomic D-module associated
with v, otherwise, v is not a root of the b-function of f.
BEGIN
B <+ ParaAnn(f) by Algorithm 1; R « (;
while B # ) do

select an element (A, B) from B; B + B\{(A, B)};

G <compute a CGS of Id(GU{f,s —v}) wrt. = on A in C(s,z,0,);

while G # () do

select an element (A',G’) from G; G < G\{(A',G")};

if G’ does not have a constant element then
R+ RU{(A",G' N Clu)(z,d.))};
end-if

end-while
end-while
return R;
END

We give a simple example of Algorithm 3.
Let us return to section 5.1. Consider s + % and compute a CGS of
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BiU{f,s+ 2} on C\V(a). Then, the CGS is {(C\V(a),{1})}. Thus, s = —2
is not a root of by(s) on C\V(a).
We turn to the case s+ 31. Our implementation returns {(C\ V(a), {z,y, s+

U1} as the CGS of By U{f,s+ 22} on C*\V(a). Thus, s = —3 is a root of

the b-function on C\ V(a) and defines the ideal generated by {z,y}.

In general, the computational complexity of Id(GU{f, s—v}) is much smaller
than the computational complexity of Id(GU{f}). That’s why Algorithm 3 may
work well, where the notations G and v are from Algorithm 3.

Here we only give a sketch of ideas. We will report the computation results
of Algorithm 3 elsewhere.
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