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Abstract

A method for computing b-functions associated with semi-quasihomogeneous

isolated singularities is considered in the context of symbolic computation. A new

method of computing b-functions and relevant holonomic D-modules associated

with µ-constant deformations is described. The key of the resulting algorithm is the

use of the notions of comprehensive Gröbner systems of a special class of Poincaré-

Birkhoff-Witt algebra and that of Weyl algebra. Several b-functions of µ-constant

deformations of bimodal singularities are given as the result of the computation.

1. Introduction

The b-function, or Bernstein-Sato polynomial, is an important complex ana-

lytic invariant of hypersurface singularities. Many researchers of singularity the-

ory have studied b-functions and relations between b-functions and singularities

[1, 4, 5, 6, 9, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 33, 36, 39, 40, 42, 43].

Let bf be the b-function of a semi-quasihomogeneous polynomial f with pa-

rameters. Then, bf may change with the values of parameters. T. Yano in [43]

studied the b-function of the μ-constant deformation of x5 + y5 and M. Kato

computed b-functions of the μ-constant deformations of x7 + y5 and x9 + y4 in

[15, 16]. Moreover, P. Cassou-Nogués computed b-functions of μ-constant defor-

mations of x5 + y4 and x7 + y6 in [5, 6]. B-functions of μ-constant deformations

have been studied by many researchers. See [3, 5, 7, 10, 11, 31, 32].

There exist mainly two different kinds of approaches for computing b-

functions [3, 27, 29, 39]. The first approach requires an annihilating ideal of

fs in rings of partial differential operators to compute the b-function bf where s

is an indeterminate. The second approach computes b-functions without comput-

ing the annihilating ideal of fs. We follow the first approach to study b-functions

of μ-constant deformations.

In [21], we have presented algorithms for computing comprehensive Gröbner

systems in rings of partial differential operators and a special class of Pincaré-
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Birkhoff-Witt algebras. We also have implemented the algorithms in the com-

puter algebra system Risa/Asir [24].

In this paper, we show that an algorithm for computing parametric b-

functions can be constructed by using comprehensive Gröbner systems. We

propose a comprehensive Gröbner systems approach for studying b-function of μ-

constant deformations. We provide a method that utilizing holonomic D-modules

to compute b-function of μ-constant deformations.

This paper is organized as follows. In section 2, we see comprehensive

Gröbner systems in rings of partial differential operators. In section 3, we re-

view comprehensive Gröbner systems in Poincaré-Birkhoff-Witt algebra and give

a method for computing parametric b-functions. In section 4, we describe struc-

tures of holonomic D-module associated with roots of b-functions. In section 5,

we give b-functions of μ-constant deformations of several non-unimodal singu-

larities. In section 6, we introduce an idea for avoiding heavy computation of

b-functions.

2. Comprehensive Gröbner systems

Here we recall the notations of comprehensive Gröbner systems in rings of

partial differential operators. For details, we refer the reader to [21].

Let K be a field of characteristic zero, K̄ an algebraic closure of K. The set

of natural numbers N includes zero, C is the field of complex numbers and Q is

the field of rational numbers.

Let K〈x, ∂x〉 denote the Weyl algebra, the ring of linear partial differen-

tial operators with coefficients in K, where x = (x1, . . . , xn), ∂x = (∂1, . . . , ∂n),

∂i =
∂

∂xi
with relations

xixj = xjxi, ∂i∂j = ∂j∂i, ∂jxi = xi∂j (i �= j) and ∂ixi = xi∂i + 1.

Let u = (u1, . . . , um) be variables such that u ∩ x = ∅, K[u]〈x, ∂x〉 a ring

of partial differential operators with coefficients in a polynomial ring K[u]. The

symbol pp(x, ∂x) is the set of power products of x ∪ ∂x.

Throughout the paper we assume that a partial differential operator in

K〈x, ∂x〉 (or K[u]〈x, ∂x〉), is always represented in the canonical form that is each

power product of a partial differential operator is written as xα1
1 xα2

2 · · ·xαn
n ∂β1

1

∂β2

2 · · · ∂βn
n where α1, α2, . . . , αn, β1, β2, . . . , βn ∈ N.

We have the following natural K-vector space isomorphism Ψ : K〈x, ∂x〉 →
K[x, ξ] (xβ∂γ

x → xβξγ) where K[x, ξ] is a commutative polynomial ring, ξ = (ξ1,

. . . , ξn) corresponds to ∂x = (∂1, ∂2, . . . , ∂n). For example, let p = 3x2
1x2∂1 +

x2∂2 ∈ C〈x1, x2, ∂1, ∂2〉. Then Ψ(p) = 3x2
1x2ξ1 + x2ξ2 ∈ C[x1, x2, ξ1, ξ2]. For all

i ∈ {1, . . . , n}, the inverse map Ψ−1 is defined as changing symbols ξi into ∂i.

Fix a term ordering 
 on pp(x, ∂x) and let p ∈ K〈x, ∂x〉. Then, lpp(p), lm(p)

and lc(p) denote as the leading power product, leading monominal and leading



COMPREHENSIVE GRÖBNER SYSTEMS APPROACH TO B-FUNCTIONS 117

coefficient of Ψ(p) in K[x, ξ]. Furthermore, for a subset P in K〈x, ∂x〉, we define

lpp(P ) := {lpp(p)|p ∈ P}, lm(P ) := {lm(p)| p ∈ P} and lc(P ) := {lc(p)|p ∈ P}.
Let p1, . . . , pr ∈ K〈u, x, ∂x〉 (or K[u]〈x, ∂x〉). Then, the left ideal generated

by p1, . . . , pr is written as Id(p1, . . . , pr).

Definition 1. Fix a term ordering on pp(x, ∂x). Let p1, . . . , pr ∈ K〈x, ∂x〉 and
G = {g1, . . . , gr} ⊂ Id(p1, . . . , pr) ⊂ K〈u, x, ∂x〉. Then, G is a Gröbner basis of

Id(p1, . . . , pr) if G satisfies Id(lm(I)) = Id(lm(g1), . . . , lm(gr)).

There exist algorithms and implementations to compute Gröbner bases of

ideals in K〈u, x, ∂x〉.

For every ā ∈ K̄m, we define the canonical specialization homomorphism

σā : K[u]〈x, ∂x〉 → K̄〈x, ∂x〉 as a map that substitutes u by ā in a partial dif-

ferential operator p(u, x, ∂x) ∈ K[u]〈x, ∂x〉. The image under σā of an ideal

I ⊂ K[u]〈x, ∂x〉 is denoted by σā(I) := {σā(p)|p ∈ I} ⊆ K̄〈x, ∂x〉.
For instance, let p = 3u1u2x

3
1∂

2
1 + u2x1∂1 + x1 in C[u1, u2]〈x1, ∂1〉 and

(−3, 1), (0,− 2
3 ) ∈ C

2. Then, by substituting values (−3, 1), (0,− 2
3 ) into (u1, u2),

we get σ(−3,1)(p) = −9x3
1∂

2
1 + x1∂1 + x1 and σ(0,− 2

3 )
(p) = − 2

3x1∂1 + x1.

For g1, . . . , gr ∈ K[u], V(g1, . . . , gr) ⊆ K̄m denotes the affine variety of

g1, . . . , gr, i.e., V(g1, . . . , gr) := {ā ∈ K̄m| g1(ā) = · · · = gr(ā) = 0}, V(0) = K̄m

and V(1) = ∅. We call an algebraically constructible set V(g1, . . . , gr)\V(g′1, . . . ,
g′r′) ⊆ K̄m with g1, . . . , gr, g

′
1, . . . , g

′
r′ ∈ K[u], a stratum. (Notation A1,A2, . . . ,A�

are used to represent strata.)

The definition of comprehensive Gröbner systems is the key ingredient of this

paper.

Definition 2 (CGS). Fix a term ordering on pp(x, ∂x). Let P be a subset of

K[u]〈x, ∂x〉, A1, . . . ,A� strata in K̄m and let G1, . . . , G� be subsets in K[u]〈x, ∂x〉.
A finite set G = {(A1, G1), . . . , (A�, G�)} of pairs is called a comprehensive

Gröbner system CGS on A1 ∪ · · · ∪ A� for P if for all ā ∈ Ai, σā(Gi) is a

Gröbner basis of Id(σā(P )) in K̄〈x, ∂x〉 for each i = 1, . . . , �. We call a pair

(Ai, Gi) segment of G. We simply say G is a comprehensive Gröbner system for

P if A1 ∪ · · · ∪ A� = K̄m.

There exist algorithms for computing comprehensive Gröbner systems. We

have adapted the algorithm [21] for computing CGSs and implemented it in the

computer algebra system Risa/Asir.

To the best of our knowledge, our implementation is currently, in the rings

of partial differential operators, only one implementation for computing CGSs.

Example 3. Let F = {x1∂
2
1∂

3
2 + ax1∂

3
1 , ∂

2
1 + bx2∂1∂2, x1∂

2
1 + 3x2∂

2
2 + bx1∂

2
1} ⊂

C[a, b]〈x1, x2, ∂1, ∂2〉 and 
 the total degree lexicographic term ordering s.t. x1 
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x2 
 ∂1 
 ∂2 where ∂1 = ∂
∂x1

, ∂2 = ∂
∂x2

. Then, a CGS of F w.r.t. 
 is the

following.

{
(C2 \V(ab(b+ 1)), {b4∂1∂2 + b3∂1∂2, ab∂

2
1 , abx2∂

2
2}),

(V(a)\V(b(b+ 1), a), {b4∂1∂2 + b3∂1∂2, b
3∂2

1 + b2∂2
1 , b

2x2∂
2
2}),

(V(a, b+ 1), {∂1∂2
2 , ∂

2
1∂2 − ∂1∂2, ∂

3
1 − ∂2

1 , x2∂
2
2 .x2∂1∂2 − ∂2

1}),
(V(a, b), {∂2

1 , x2∂
2
2}),

(V(b+ 1)\V(a, b+ 1), {a∂1∂2, a∂2
1 , x2∂

2
2}),

(V(b)\V(a, b), {∂2
1 , x2∂

2
2}) }.

3. The Poincaré-Birkhoff-Witt algebra and b-functions

Let f be a non-constant polynomial in C[x]. Then, the annihilating ideal of

fs is
Ann(fs) := {p ∈ C〈s, x, ∂x〉 | pfs = 0}

where s is an indeterminate.

The global b-function or the Bernstein-Sato polynomial of f is defined as the

monic generator bf (s) of

(Ann(fs) + Id(f)) ∩ C[s].

It is known that the b-function of f always has s+ 1 as a factor and has a form

(s + 1)b̃f (s), where b̃f (s) ∈ C[s]. The polynomial b̃f (s) is called the reduced

b-function of f .

Here first, we recall the approach of Briançon-Maisonobe [3] for computing

a basis of Ann(fs). Second, we review a computation method of parametric b-

functions.

Consider C〈∂t, s〉 with the relation

∂t · s = s∂t− ∂t

and let C〈x, ∂x, [∂t, s]〉 denote the Poincaré-Birkhoff-Witt algebra C〈x, ∂x〉 ⊗C

C〈∂t, s〉 with relations

xis = sxi, ∂is = s∂i, xi∂t = ∂txi, ∂i∂t = ∂t∂i, ∂t · s = s∂t− ∂t,

xixj = xjxi, ∂i∂j = ∂j∂i, ∂jxi = xi∂j(i �= j) and ∂ixi = xi∂i + 1.

Moreover, consider the following left ideal in C〈x, ∂x, [∂t, s]〉:

I = Id

(
f∂t+ s,

∂

∂x1
+ ∂t

∂f

∂x1
,

∂

∂x2
+ ∂t

∂f

∂x2
, . . . ,

∂

∂xn
+ ∂t

∂f

∂xn

)
.
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Briançon and Maisonobe proved in [3] that Ann(fs) = I ∩ C〈s, x, ∂x〉 and hence

the latter can be computed via the Gröbner basis in C〈x, ∂x, [∂t, s]〉, w.r.t. an

elimination ordering for {∂t}.
Definition 4. Fix a term ordering on pp(x, ∂x, ∂t, s). Let p1, . . . , pr ∈
K〈x, ∂x, ∂t, s〉 and G = {g1, . . . , gr} ⊂ Id(p1, . . . , pr) ⊂ K〈x, ∂x, [∂t, s]〉.
Then, G is a Gröbner basis of Id(p1, . . . , pr) if G satisfies Id(lm(I)) =

Id(lm(g1), . . . , lm(gr)).

There exists an algorithm for computing Gröbner bases in K〈x, ∂x, [∂t, s]〉
([21]). Actually, we have implemented the algorithm in the computer algebra

system Risa/Asir. Hence, we can obtain a Gröbner basis of the ideal Ann(fs) by

utilizing Briançon-Maisonobe’s method.

We turn to parametric cases. We can define and compute comprehensive

Gröbner bases in K[u]〈x, ∂x, [∂t, s]〉 in the same way where u are variables (pa-

rameters) s.t. u ∩ x = ∅. Thus, we are able to obtain a basis of the parametric

ideal Ann(fs) where f ∈ K[u][x].

Algorithm 1 ParaAnn

Specification: ParaAnn(f)

Computing a parametric basis of Ann(fs).

Input: f ∈ K[u][x].

Output: B = {(A1, B1), (A2, B2), . . . , (A�, B�)}: For all ā ∈ Ai, σā(Bi) is a basis

of Ann(σā(f)
s), for each i ∈ {1, . . . , �}.

BEGIN

B ← ∅;
I ← {f∂t+ s, ∂

∂x1
+ ∂t ∂f

∂x1
, ∂
∂x2

+ ∂t ∂f
∂x2

, . . . , ∂
∂xn

+ ∂t ∂f
∂xn
};


∂t← an elimination ordering for {∂t};
G ← compute a CGS for I w.r.t. 
∂t in K[u]〈x, ∂x, [∂t, s]〉 ([21]);
while G �= ∅ do
select (A, G) from G; G ← G\{(A, G)};
B ← B ∪ {(A, G ∩K〈s, x, ∂x〉)};

end-while

return B;
END

We have implemented the algorithm ParaAnn in the computer algebra system

Risa/Asir.

Example 5. Let f = x3
1+ax1x

2
2+bx2

2 ∈ C[a, b][x1, x2] where a, b are parameters.
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Then, our implementation outputs the following as parametric bases of Ann(fs)

in C[a, b]〈s, x, ∂x〉.
1. If parameters (a, b) belong to C

2 \V(ab), then a basis of Ann(fs) is

B1 = {ax2
1x2∂2 − 2bx1∂1 − 3bx1x2∂2 + 6bsx1 + 2a2x3

2∂2 − 2a2sx2
2,

−2ax2
1∂1 − 2ax1x2∂2 + 6as− 2bx1∂1 − 3bx2∂2 + 6bs,

−3x2
1∂2 + 2ax1x2∂1 − ax2

2∂2 + 2bx2∂1}.
2. If parameters (a, b) belong to V(a)\V(a, b), then a basis of Ann(fs) is

B2 = {2x1∂1 + 3x2∂2 − 6s,−3x1∂2 + 2bx2∂1}.

3. If parameters (a, b) belong to V(b)\V(a, b), then a basis of Ann(fs) is

B3 = {x1∂1 + x2∂2 − 3s,−3x2
1∂2 + 2ax1x2∂1 − ax2

2∂2}.

4. If parameters (a, b) belong to V(a, b), then a basis of Ann(fs) is

B4 = {x1∂1 − 3s, ∂2}.

Note that the sets B1, B2, B3 and B4 will be used in Example 6, again.

As the monic generator of (Ann(fs)+ Id(f))∩C[s] is the b-function of f , we

are able to construct an algorithm for computing b-functions of the parametric

polynomial f as follows.

Algorithm 2 ParaBF

Specification: ParaBF(f)

Computing b-functions of a parametric polynomial f .

Input: f ∈ C[u][x]. 
: a block term ordering s.t. {x, ∂x} � s

Output: P = {(A1, b1(s)), (A2, b2(s)), . . . , (A�, b�(s))}: If parameters u belong

to Ai, then bi(s) is the b-function of f where i ∈ {1, . . . , �}.
BEGIN

P ← ∅; B ←ParaAnn(f);

while B �= ∅ do
select (A, B) from B; B ← B\{(A, B)};
G ← compute a CGS for B ∪ {f} w.r.t. 
 on A in C〈s, x, ∂x〉 ;
while G �= ∅ do
select (A′, G) from G; G ← G\{(A′, G)};
b(s)← the smallest element of G ∩ C[s] w.r.t. 
;
P ← P ∪ {(A′, b(s))};
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end-while

end-while

return P;
END

We illustrate the algorithm with the following example.

Example 6. Let f = x3
1+ax1x

2
2+bx2

2 be a polynomial in C[a, b][x1, x2], 
 the to-

tal degree lexicographic term ordering s.t. ∂1 
 ∂2 
 x1 
 x2 on pp(x1, x2, ∂1, ∂2)

and 
s the block term ordering s.t. {x, ∂x} � s with 
 where a, b are parameters.

0. Compute parametric bases of Ann(fs), which is already given in Example 5.

1. Compute a CGS for B1 ∪ {f} w.r.t. 
s on C
2 \V(ab) where B1 is from Ex-

ample 5. Then,

{(C2 \V(ab), G1 = {s3 + 3s2 + 107/36s + 35/36, (s + 1)x2, (−6s2 − 13s −
7)x1, (−3s − 3)x2

1 + (−as − a)x2
2, x

3
1 + ax2

2x1 + bx2
2, (−a3x2

2∂2 − 3b2∂2)x
2
1 +

a2bx2
2x1∂2 − a4x4

2∂2 − 2a4x3
2 − 4ab2x2

2∂2 + −6ab2x2 + 2b3x2∂1, a
2x2

1x2∂2 −
abx1x2∂2 + 2b2x1∂1 + a3x3

2∂2 − 2a3sx2
2 + 3b2x2∂2 − 6b2s})}

is the CGS. Hence, G1 ∩ C[s] = {s3 + 3s2 + 107/36 + 35/36}. Therefore, if

parameters (a, b) belong to C
2 \V(ab), then the b-function of f is

s3 + 3s2 +
107

36
s+

35

36
= (s+ 1)

(
s+

5

6

)(
s+

7

6

)
.

2. A CGS for B2 ∪ {f} w.r.t. 
s on V(a)\V(a, b) is
{(V(a)\V(a, b), {s3+3s2+107/36s+35/36, (s+1)x2, 6s

2x1+13sx1+7x1, (s+

1)x2
1, x

3
1 + bx2

2,−3x2
1∂2 + 2bx2∂1, 2x1∂1 + 3x2∂2 − 6s})}.

Therefore, if parameters (a, b) belong to V(a)\V(a, b), then the b-function of

f is

s3 + 3s2 +
107

36
s+

35

36
= (s+ 1)

(
s+

5

6

)(
s+

7

6

)
.

3. A CGS for B3 ∪ {f} w.r.t. 
s on V(b)\V(a, b) is
{(V(b)\V(a, b)), {s4 + 4s3 + 53/9s2 + 34/9s + 8/9, (3s3 + 10s2 + 11s +

4)x2, (3s
3+10s2+11s+4)x1, (3s

2+7s+4)x2
2, (s+1)x1x2, (3s+3)x2

1+(as+

a)x2
2, (s+1)x3

2, x
3
1 + ax2

2x1, sx
2
2∂2 +x2

2∂2− 3s2x2− 4sx2−x2, x
2
1∂2 + ax2

2∂2−
2asx2, 3s

2x1∂2 + 6sx1∂2 + 3x1∂2 + as2x2∂1 + 2asx2∂1 + a∂1, x1∂1 + x2∂2 −
3s, 3sx1x2∂2 + 3x2x2∂2 − 9s2x1 − 15sx1 − 6x1 − asx2

2∂1 − ax2
2∂1,−x1x2∂

2
2 +

3sx1∂2 + x1∂2 + ax2
2∂1∂2 − 2asx2∂1})}.
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Therefore, if parameters (a, b) belong to V(a)\V(a, b), then the b-function of

f is

s4 + 4s3 + 53/9s2 + 34/9s+ 8/9 = (s+ 1)2
(
s+

2

3

)(
s+

4

3

)
.

4. A CGS for B4 ∪ {f} w.r.t. 
s on V(a, b) is

{(V(a, b), {s3+2s2+11/9s+2/9, 3s2x1+5sx1+2x1, (s+1)x2
1, x

3
1, ∂2, x1∂1−

3s})}
Therefore, if parameters (a, b) belong to V(a, b), then the b-function of f is

s3 + 2s2 +
11

9
s+

2

9
= (s+ 1)

(
s+

1

3

)(
s+

2

3

)
.

We have implemented the algorithm ParaBF in the computer algebra system

Risa/Asir.

4. CGS and supports of D-modules

Let f be a non-constant polynomial in C[x]. Let us regard s as a “parameter”

and compute a CGS of Ann(fs) ∪ {f} w.r.t. a block term ordering s.t. ∂ 
 x in

C[s]〈x, ∂x〉. Then, the CGS may give us the supports of roots of bf .

Let us consider f = x1x
2
3 + x3

2 ∈ C[x1, x2, x3]. In this example, let 
x be

the total degree lexicographic term ordering s.t. x1 
 x2 
 x3 on pp(x1, x2, x3)

and 
∂ be the total degree lexicographic term ordering s.t. ∂1 
 ∂2 
 ∂3 on

pp(∂1, ∂2, ∂3). A CGS of Ann(fs) ∪ {f} w.r.t. the block term ordering 
 s.t.

{∂1, ∂2, ∂3} � {x1, x2, x3} (with 
x and 
∂) in C[s]〈x1, x2, x3, ∂1, ∂2, ∂3〉, is the

following.

· If s = −1, then G1 = {2x2∂2 + 3x3∂3 + 6,−2x1∂1 + x3∂3, 3x
2
2∂1 −

x2
3∂2,−2x1x3∂2 + 3x2∂3, x1x

2
3 + x3

2, 9x2x3∂1∂3 + 6x2∂
2
2 + 2x2

3∂
2
2 , 27x

2
3∂1∂

2
3 −

4x2
3∂

3
2 + 81x3∂1∂3 + 24∂1} is a Gröbner basis of Ann(fs) ∪ {f} w.r.t. 
 in

C〈x1, x2, x3, ∂1, ∂2, ∂3〉.
· If s = − 4

3 , then G2 = {x1, x2, x3∂3 + 2, x2
3} is a Gröbner basis of

Ann(fs) ∪ {f}.
· If s = − 5

3 , then G3 = {x1, x3∂3 + 2, x2
3, x2∂2 + 2, x2

2} is a Gröbner basis of

Ann(fs) ∪ {f}.
· If s = − 5

6 , then G4 = {x3, x2, 2x1∂1+1} is a Gröbner basis of Ann(fs)∪{f}.
· If s = − 7

6 , then G5 = {x3, x2∂2 + 2, x2
2, 2x1∂1 + 1} is a Gröbner basis of

Ann(fs) ∪ {f}.
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· If (s + 1)(s + 4
3 )(s +

5
3 )(s +

5
6 )(s +

7
6 ) �= 0, then {1} is the Gröbner basis of

Ann(fs) ∪ {f}.
Note that the b-function of f is (s+1)(s+ 4

3 )(s+
5
3 )(s+

5
6 )(s+

7
6 ). That is,

the b-function appears in the output as the last stratum and the roots of bf (s)

also appear in the other strata above.

We have the following theorem.

Theorem 7 ([21]). An algorithm for computing CGSs [21], always outputs√
bf (s) and all roots of the bf (s) = 0 as strata where

√
bf (s) is the squarefree

polynomial of bf (s).

We borrow from the paper [43] the following theorem.

Theorem 8. Let γ ∈ Q and Jf = Id
(

∂f
∂x1

, . . . , ∂f
∂xn

)
. Set

M(γ,f) = C〈s, x, ∂x〉/(Ann(fs) + Id(f) + Id(s− γ)).

Then, if b̃f (γ) �= 0, then M(γ,f) = {0}, and if b̃f (γ) = 0, then M(γ,f)

is a holonomic D-module and supp(M(γ,f)) ⊆ Sing(S) where supp(M(γ,f)) is

the support of M(γ,f) and Sing(S) is the singular locus of the hypersurface

S = {x ∈ C
n |f(x) = 0}, i.e., Sing(S) = V

(
f, ∂f

∂x1
, ∂f
∂x2

, . . . , ∂f
∂xn

)
.

Let us consider f = x1x
2
3 + x3

2 ∈ C[x1, x2, x3], again. Focus on each system

of partial differential equations of the CGS of Ann(fs) ∪ {f}. Then, we can

compute supports of each holonomic D-module M(γ,f) from the CGS, namely,

supp(M(− 4
3 ,f)

) = V(G2 ∩C[x1, x2, x3]) = V(x1, x2, x
2
3), supp(M(− 5

3 ,f)
) = V(G3 ∩

C[x1, x2, x3]) = V(x1, x
2
2, x

2
3), supp(M(− 5

6 ,f)
) = V(G4 ∩C[x1, x2, x3]) = V(x2, x3)

and supp(M(− 7
6 ,f)

) = V(G5 ∩ C[x1, x2, x3]) = V(x2
2, x3). Thus, we see that, the

support of the holonomic D-module associated with s = − 4
3 ,− 5

3 is the origin

and the support of the holonomic D-module associated with s = − 5
6 ,− 7

6 is the

complex line y = z = 0. Note that the characteristic varieties of the holonomic

D-modules above can also easily determined from the outputs above.

5. B-functions of μ-constant deformations

We have obtained lists of b-functions of typical μ-constant deformations, that

are the main results of this paper.

First, we see a simple example which is the unimodal singularity E12 in sec-

tion 5.1, to facilitate our results. In fact, if f is a unimodal singularity, then our

implementation return b-functions of the μ-constant deformation f within a few

seconds. Thus, we mainly consider bimodal singularities. We show b-functions of

eight bimodal singularities, that are obtained by our implementation within one
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month.

All results of b-functions in this paper have been computed on a PC with

[OS: Windows 7 (64 bit), CPU: Intel Core i-7-5930K CPU @ 3.50GHz 3.50GHz,

RAM: 64GB].

5.1 x3 + y7 (E12 singularity)

The Milnor number μ of the singularity x3+y7 = 0 is 12, and the μ-constant

deformation is given by

f = x3 + y7 + axy5

where a is a parameter.

In order to compute b-functions of the μ-constant deformation, first of all,

we need to compute a parametric basis of Ann(fs) that is the following.

· If the parameter belong to C \V(a), then
B1 = {125a3x2y( ∂

∂x )
2 + 630x2( ∂

∂x )
2 + 100a3xy2 ∂

∂y
∂
∂x + 550a3xy ∂

∂x +

543xy ∂
∂y

∂
∂x +315sx ∂

∂x −12ax( ∂
∂y )

2+2688x ∂
∂x −65ay5( ∂

∂x )
2+30a2y4 ∂

∂y
∂
∂x +

20a3y3( ∂
∂y )

2+80a2y3 ∂
∂x+(190a3y2 ∂

∂y +117y2( ∂
∂y )

2−1125a3s2y−1275a3sy+
126sy ∂

∂y +999y ∂
∂y − 6615s2− 6174s,−5ax2 ∂

∂x − 7xy2 ∂
∂x − 2axy ∂

∂y +15asx−
3y3 ∂

∂y + 21sy2,−125a4x2 ∂
∂x − 50a4xy ∂

∂y + 1029xy ∂
∂x + 375a4sx− 21ax ∂

∂y +

35a2y4 ∂
∂x −5a3y3 ∂

∂y +441y2 ∂
∂y −3087sy, 3x2 ∂

∂y −5axy4 ∂
∂x −7y6 ∂

∂x +ay5 ∂
∂y}

is a basis of Ann(fs).

· If the parameter belong to V(a), then B2 = {7x ∂
∂x + 3y ∂

∂y − 21s, 3x2 ∂
∂y −

7y6 ∂
∂x} is a basis of Ann(fs).

Next, we compute a CGS {(A1, G1), (A2, G2), . . . , (A�, G�)} of Bi∪{f} w.r.t.
a block term order s. t. {x, y, ∂

∂x ,
∂
∂y} � s. After that for each i ∈ {1, . . . , �}, we

select a generator bf (s) of Gi ∩C[s]. Then, we obtain the b-functions as Table 1.

Table 1 b-functions of x3 + y7 + axy5

stratum global b-function

C \V(a) (s+ 1)(s+ 10
21

) (s+ 11
21

) (s+ 13
21

)(s+ 16
21

)(s+ 17
21

)

(s+ 19
21

)(s+ 20
21

)(s+ 22
21

)(s+ 23
21

)(s+ 25
21

)(s+ 26
21

)(s+ 29
21

)

V(a) (s+ 1)(s+ 10
21

)(s+ 13
21

)(s+ 16
21

)(s+ 17
21

)

(s+ 19
21

)(s+ 20
21

)(s+ 22
21

)(s+ 23
21

)(s+ 25
21

)(s+ 26
21

)(s+ 29
21

) (s+ 32
21

)

Furthermore, by using a CGS, we can compute a holonomic D-module asso-

ciated with s = γ for each root γ of the b-function, namely, we can obtain a set

G(γ,f) ⊂ C〈x, ∂x〉 that satisfies M(γ,f) = C〈x, ∂x〉/ Id(G(γ,f)).

If the parameter a belongs to C \V(a), then
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G(− 10
21 ,f)

= {x, y},
G(− 11

21 ,f)
= {x, y},

G(− 13
21 ,f)

= {y2, x, a3y + 49y ∂
∂y + 98},

G(− 16
21 ,f)

=
{
x, 37a6y2 − 245a3y − 7203y ∂

∂y − 21609, 136ya6 + 1470a3y ∂
∂y

+21609y
(

∂
∂y

)2

+ 2940a3 + 86436 ∂
∂y

}
,

G(− 17
21 ,f)

= {ax+ 7y2, 10a4x+ 147ax ∂
∂y − 1029y, xy, x2, . . .}

...
G(− 29

21 ,f)
= {−1273a6x2y + 9261a3x2 + 64827x2 ∂

∂y + 30870a2xy2, x3, . . .}.
If the parameter a belongs to V(a), then

G(− 10
21 ,f)

= {x, y},
G(− 13

21 ,f)
= {x, y ∂

∂y + 2, y2},
G(− 16

21 ,f)
= {x, y ∂

∂y + 3, y3},
G(− 17

21 ,f)
= {y, y ∂

∂y + 2, x2},
...

G(− 32
21 ,f)

= {y ∂
∂y + 6, x ∂

∂x + 2, x2, y6}.

5.2 x3 + y10 (E18 singularity)

The Milnor number μ of the singularity x3+y10 = 0 is 18, and the μ-constant

deformation is given by

f = x3 + y10 + axy7 + bxy8

where a, b are parameter. The algorithm ParaBF outputs Table 2 as the para-

metric b-function of f .

Let us consider (V(a4 − 64b)\V(a, b), b(2)f ). If parameters (a, b) belong to

V(a4 − 64b)\V(a, b), then the reduced b-function of f is b̃f = b
(2)
f /(s + 1).

One can check supp(M(γ,f)) ⊆ Sing(S) where γ is a root of b̃f = 0 and

S = {(x, y)|f(x, y) = 0}. Then, all roots of b̃0 = b̃f/(s + 1) = 0 are on the

origin and the root of b̃f/b̃0 = s + 1 = 0 is on another isolated singular point

(x, y) =

(
a2

32b3
,
−a
4b

)
. In fact, the Gröbner basis of Ann(fs) ∩ {f, ∂f

∂x ,
∂f
∂y } for

s = −1 in C〈x, y ∂
∂x ,

∂
∂y 〉 is {4aby + a2, 8x− a2y4}.

Set

B(s) = (s+ 5
6 )(s+

7
6 )(s+

8
15 )(s+

11
15 )(s+

13
15 )(s+

14
15 )(s+

16
15 )(s+

17
15 )(s+

19
15 )

×(s+ 13
30 )(s+

19
30 )(s+

23
30 )(s+

29
30 )(s+

31
30 )(s+

37
30 )(s+

41
30 )
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Table 2 global b-functions of x3 + y10 + axy7 + bxy8

strata global b-function

C
2 \V(a(a4 − 64b)) b

(1)
f = (s+ 1)(s+ 5

6
)(s+ 7

6
)(s+ 7

15
)(s+ 8

15
)

×(s+ 11
15

)(s+ 13
15

)(s+ 14
15

)(s+ 16
15

)(s+ 17
15

)(s+ 19
15

)(s+ 13
30

)

×(s+ 17
30

)(s+ 19
30

)(s+ 23
30

)(s+ 29
30

)(s+ 31
30

)(s+ 37
30

)(s+ 41
30

)

V(a4 − 64b)\V(a, b) b
(2)
f = (s+ 1)2(s+ 5

6
)(s+ 7

6
)(s+ 7

15
)(s+ 8

15
)

×(s+ 11
15

)(s+ 13
15

)(s+ 14
15

)(s+ 16
15

)(s+ 17
15

)(s+ 19
15

)(s+ 13
30

)

×(s+ 17
30

)(s+ 19
30

)(s+ 23
30

)(s+ 29
30

)(s+ 31
30

)(s+ 37
30

)(s+ 41
30

)

V(a)\V(a, b) b
(3)
f = (s+ 1)(s+ 5

6
)(s+ 7

6
)(s+ 8

15
)(s+ 11

15
)

×(s+ 13
15

)(s+ 14
15

)(s+ 16
15

)(s+ 17
15

)(s+ 19
15

)(s+ 22
15

)(s+ 13
30

)

×(s+ 17
30

)(s+ 19
30

)(s+ 23
30

)(s+ 29
30

)(s+ 31
30

)(s+ 37
30

)(s+ 41
30

)

V(a, b) b
(4)
f = (s+ 1)(s+ 5

6
)(s+ 7

6
)(s+ 8

15
)(s+ 11

15
)

×(s+ 13
15

)(s+ 14
15

)(s+ 16
15

)(s+ 17
15

)(s+ 19
15

)(s+ 22
15

)(s+ 13
30

)

×(s+ 19
30

)(s+ 23
30

)(s+ 29
30

)(s+ 31
30

)(s+ 37
30

)(s+ 41
30

)(s+ 47
30

)

that is the common factor of b
(1)
f /(s+1), b

(2)
f /(s+1), b

(3)
f /(s+1) and b

(4)
f /(s+1).

As we are considering μ-constant deformations, b-functions of the μ-constant

deformation f are given in Table 3, by collecting roots of the b-functions on the

origin.

Table 3 b-functions of x3 + y10 + axy7 + bxy8 on the origin

strata b-function on the origin degree of the b-function

C
2 \V(a) B(s)(s+ 7

15
)(s+ 17

30
) 18

V(a)\V(a, b) B(s)(s+ 22
15

)(s+ 17
30

) 18

V(a, b) B(s)(s+ 22
15

)(s+ 47
30

) 18

5.3 x3 + y11 (E20 singularity)

The Milnor number μ of the singularity x3+y11 = 0 is 20, and the μ-constant

deformation is given by

f = x3 + y11 + axy8 + bxy9

where a, b are parameters. The algorithm ParaBF outputs Table 4 as the para-

metric b-function of f where

B(s) = (s+ 14
33 )(s+

17
33 )(s+

20
33 )(s+

23
33 )(s+

25
33 )(s+

26
33 )(s+

28
33 )(s+

29
33 )(s+

31
33 )

×(s+ 32
33 )(s+

34
33 )(s+

35
33 )(s+

37
33 )(s+

38
33 )(s+

40
33 )(s+

41
33 )(s+

43
33 )(s+

46
33 ).

Let us consider (V(16a5 + 3125b2)\V(a, b), b(2)f ). If parameters (a, b) belong
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Table 4 global b-functions of x3 + y11 + axy8 + bxy9

strata global b-function

C
2 \V(a(16a5 + 3125b2)) b

(1)
f = B(s)(s+ 1)(s+ 16

33
)(s+ 19

33
)

V(16a5 + 3125b2)\V(a, b) b
(2)
f = B(s)(s+ 1)2(s+ 16

33
)(s+ 19

33
)

V(a)\V(a, b) b
(3)
f = B(s)(s+ 1)(s+ 19

33
)(s+ 49

33
)

V(a, b) b
(4)
f = B(s)(s+ 1)(s+ 49

33
)(s+ 52

33
)

to V(16a5+3125b2)\V(a, b), then the reduced b-function of f is b̃f = b
(2)
f /(s+1).

One can check supp(M(γ,f)) ⊆ Sing(S) where γ is a root of b̃f = 0 and

S = {(x, y)|f(x, y) = 0}. Then, all roots of b̃0 = b̃f/(s + 1) = 0 are on

the origin and b̃f/b̃0 = 0 (s = −1) is on another isolated singular point

(x, y) =

(
4a2

25b3
,
−2a
5b

)
. The b-functions of the μ-constant deformation f are

given in Table 5.

Table 5 b-functions of x3 + y11 + axy8 + bxy9 on the origin

strata b-function on the origin degree of the b-function

C
2 \V(a) B(s)(s+ 16

33
)(s+ 19

33
) 20

V(a)\V(a, b) B(s)(s+ 19
33

)(s+ 49
33

) 20

V(a, b) B(s)(s+ 49
33

)(s+ 52
33

) 20

5.4 x4 + y7 (W18 singularity)

The Milnor number μ of the singularity x4+y7 = 0 is 18, and the μ-constant

deformation is given by

f = x4 + y7 + ax2y4 + bx2y5

where a, b are parameters. The algorithm ParaBF outputs Table 6 where

B(s) = (s+ 9
14 )(s+

11
14 )(s+

13
14 )(s+

15
14 )(s+

17
14 )(s+

19
14 )(s+

11
28 )(s+

15
28 )(s+

19
28 )

×(s+ 23
28 )(s+

25
28 )(s+

27
28 )(s+

29
28 )(s+

31
28 )(s+

33
28 )(s+

37
28 ).
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strata global b-function

C
2 \V(a(a3 + 27b)) b

(1)
f = B(s)(s+ 1)(s+ 13

28
)(s+ 17

28
)

V(a3 + 27b)\V(a, b) b
(2)
f = B(s)(s+ 1)2(s+ 13

28
)(s+ 17

28
)

V(a)\V(a, b) b
(3)
f = B(s)(s+ 1)(s+ 17

28
)(s+ 41

28
)

V(a, b) b
(4)
f = B(s)(s+ 1)(s+ 41

28
)(s+ 45

28
)

Table 6 global b-functions of x4 + y7 + ax2y4 + bx2y5

Let us consider (V(a3 + 27b)\V(a, b), b(2)f ). If parameters (a, b) belong to

V(a3 + 27b)\V(a, b), then the reduced b-function of f is b̃f = b
(2)
f /(s + 1).

One can check supp(M(γ,f)) ⊆ Sing(S) where γ is a root of b̃f = 0 and

S = {(x, y)|f(x, y) = 0}. Then, all roots of b̃0 = b̃f/(s+ 1) = 0 are on the origin

and b̃f/b̃0 = 0 (s = −1) is on two isolated singular points (x, y) =

(
± a

3b
,
−a
3b

)
.

The b-functions of the μ-constant deformation f are given in Table 7.

Table 7 b-functions of x4 + y7 + ax2y4 + bx2y5 on the origin

strata b-function on the origin degree of the b-function

C
2 \V(a) B(s)(s+ 13

28
)(s+ 17

28
) 18

V(a)\V(a, b) B(s)(s+ 17
28

)(s+ 41
28

) 18

V(a, b) B(s)(s+ 41
28

)(s+ 45
28

) 18

5.5 x3y + y8 (Z17 singularity)

The Milnor number μ of the singularity x3y+y8 = 0 is 17, and the μ-constant

deformation is given by

f = x3y + y8 + axy6 + bxy7

where a, b are parameters. By executing the algorithm ParaBF, we can obtain

Table 8 as the parametric reduced b-function of f where

B(s) = (s+ 1)(s+ 2
3 )(s+

4
3 )(s+

5
6 )(s+

7
6 )(s+

5
12 )(s+

11
12 )(s+

13
12 )

×(s+ 13
24 )(s+

17
24 )(s+

19
24 )(s+

23
24 )(s+

25
24 )(s+

29
24 )(s+

31
24 ).

In all the cases, all roots of reduced b-functions are on the origin and the degree

of all the reduced b-functions is 17.

5.6 x3 + yz2 + y7 (Q16 singularity)

The Milnor number μ of the singularity x3 + yz2 + y7 = 0 is 16, and the

μ-constant deformation is given by



COMPREHENSIVE GRÖBNER SYSTEMS APPROACH TO B-FUNCTIONS 129

Table 8 reduced b-functions of x3y + y8 + axy6 + bxy7

strata reduced b-function degree of the b-function

C
2 \V(a) B(s)(s+ 7

12
)(s+ 11

24
) 17

V(a)\V(a, b) B(s)(s+ 7
12

)(s+ 35
24

) 17

V(a, b) B(s)(s+ 19
12

)(s+ 35
24

) 17

f = x3 + yz2 + y7 + axy5 + bxz2

where a, b are parameters. The algorithm ParaBF outputs Table 9 where

B(s) = (s+ 1)(s+ 4
3 )(s+

5
3 )(s+

19
21 )(s+

22
21 )(s+

25
21 )(s+

26
21 )

×(s+ 29
21 )(s+

31
21 )(s+

32
21 )(s+

34
21 )(s+

37
21 )(s+

38
21 ).

Table 9 global b-functions of x3 + yz2 + y7 + axy5 + bxz2

strata global b-function

C
2 \V(a(27a4 + 256b)) b

(1)
f = B(s)(s+ 1)(s+ 20

21
)(s+ 23

21
)

V(27a4 + 256b)\V(a, b) b
(2)
f = B(s)(s+ 1)(s+ 3

2
)(s+ 20

21
)(s+ 23

21
)

V(a)\V(a, b) b
(3)
f = B(s)(s+ 1)(s+ 23

21
)(s+ 41

21
)

V(a, b) b
(4)
f = B(s)(s+ 1)(s+ 41

21
)(s+ 44

21
)

Let us consider (V(27a4 + 256b)\V(a, b), b(2)f ). If parameters (a, b) be-

long to V(27a4 + 256b)\V(a, b), then the reduced b-function of f is b̃f =

b
(2)
f /(s + 1). One can check supp(M(γ,f)) ⊆ Sing(S) where γ is a root of b̃f

and S = {(x, y, z)|f(x, y, z) = 0}. Then, all roots of b̃0 = b̃f/(s + 3
2 ) = 0

are on the origin and b̃f/b̃0 = s + 3
2 = 0 is on two isolated singular points

(x, y, z) =

(
3a

4b2
,
3a

4b
,± 3a

4b2
√
b

)
. The b-functions of the μ-constant deformation

f on the origin are given in Table 10.

Table 10 b-functions of x3 + yz2 + y7 + axy5 + bxz2 on the origin

strata b-function on the origin degree of the b-function

C
2 \V(ab) B(s)(s+ 20

21
)(s+ 23

21
) 14

V(a)\V(a, b) B(s)(s+ 23
21

)(s+ 41
21

) 14

V(a, b) B(s)(s+ 41
21

)(s+ 44
21

) 14

Note that the Milnor number 16 does not coincide with the degree of the b-

function 14. If a = b = 0, then the multiplicity of the holonomic system M(− 4
3 ,f)
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defined by Id(G(− 4
3 ,f)

) is equal to 2 where

G(− 4
3 ,f)

=

{
x, y

∂

∂y
+ 3z

∂

∂z
+ 7, z2, yz, y4

}
.

Actually, the algebraic local cohomology solutions of M(− 4
3 ,f)

is SpanC

([
1

xyz2

]
,[

1
xy4z

])
. (See [37, 38, 42, 43].) Similarly, the multiplicity of the holonomic

system M(− 5
3 ,f)

defined by Id(G(− 5
3 ,f)

) is equal to 2 where

G(− 5
3 ,f)

=

{
y
∂

∂y
+ 3z

∂

∂z
+ 7, x

∂

∂x
+ 2, z2, yz, x2, y4

}
,

and the holonomic system M(γ,f) is simple for every roots γ ( �= − 4
3 ,− 5

3 ) of the

reduced b-function. The sum of the multiplicities is equal to 16.

The same fact can be verified for the other strata C \V(a) and V(a)\V(a, b)
by analyzing the structure of CGSs in the same way.

5.7 x3 + yz2 + xy5 (Q17 singularity)

The Milnor number μ of the singularity x3 + yz2 + xy5 = 0 is 17, and the

μ-constant deformation is given by

f = x3 + yz2 + xy5 + ay8 + by9

where a, b are parameters. By executing the algorithm ParaBF, we can obtain

Table 11 as the parametric reduced b-function of f where

B(s) = (s+ 3
2 )(s+

4
3 )(s+

5
3 )(s+

7
6 )(s+

11
6 )(s+ 9

10 )(s+
13
10 )(s+

17
10 )

×(s+ 31
30 )(s+

37
30 )(s+

41
30 )(s+

43
30 )(s+

47
30 )(s+

49
30 )(s+

53
30 ).

Table 11 reduced b-functions of x3 + yz2 + xy5 + ay8 + by9

strata reduced b-function degree of the b-function

C
2 \V(a) B(s)(s+ 11

10
)(s+ 29

30
) 17

V(a)\V(a, b) B(s)(s+ 11
10

)(s+ 59
30

) 17

V(a, b) B(s)(s+ 21
10

)(s+ 59
30

) 17

In all the cases, all roots of reduced b-functions are on the origin.

5.8 x2z + yz2 + y6 (S17 singularity)

The Milnor number μ of the singularity x2z + yz2 + y6 = 0 is 17, and the

μ-constant deformation is given by
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f = x2z + yz2 + y6 + ay4z + bz3

where a, b are parameters. By executing the algorithm ParaBF, we can obtain

Table 12 as the parametric reduced b-function of f where

B(s) = (s+ 3
2 )(s+

4
3 )(s+

5
3 )(s+

7
6 )(s+

11
6 )(s+ 7

8 )(s+
11
8 )(s+ 13

8 )

×(s+ 25
24 )(s+

29
24 )(s+

31
24 )(s+

35
24 )(s+

37
24 )(s+

41
24 )(s+

43
24 ).

Table 12 reduced b-functions of x2z + yz2 + y6 + ay4z + bz3

strata reduced b-function degree of the b-function

C
2 \V(a) B(s)(s+ 9

8
)(s+ 23

24
) 17

V(a)\V(a, b) B(s)(s+ 9
8
)(s+ 47

24
) 17

V(a, b) B(s)(s+ 17
8
)(s+ 47

24
) 17

In all the cases, all roots of reduced b-functions are on the origin.

5.9 x3 + xz2 + y5 (U16 singularity)

The Milnor number μ of the singularity x3 + xz2 + y5 = 0 is 16, and the

μ-constant deformation is given by

f = x3 + xz2 + y5 + ay2z2 + by3z2

where a, b are parameter. The algorithm ParaBF outputs Table 13 where

B(s) = (s+ 6
5 )(s+

7
5 )(s+

8
5 )(s+

9
5 )(s+

13
15 )(s+

16
15 )(s+

19
15 )(s+

22
15 )(s+

23
15 )(s+

26
15 ).

Table 13 global b-functions of x3 + xz2 + y5 + ay2z2 + by3z2

strata global b-function

C
2 \V(a(27a4 + 256b)) b

(1)
f = B(s)(s+ 1)(s+ 14

15
)(s+ 17

15
)

V(27a4 + 256b)\V(a, b) b
(2)
f = B(s)(s+ 1)(s+ 3

2
)(s+ 14

15
)(s+ 17

15
)

V(a)\V(a, b) b
(3)
f = B(s)(s+ 1)(s+ 17

15
)(s+ 29

15
)

V(a, b) b
(4)
f = B(s)(s+ 1)(s+ 29

15
)(s+ 32

15
)

Let us consider (V(27a4 + 256b)\V(a, b), b(2)f ). If parameters (a, b) belong to

V(27a4 + 256b)\V(a, b), then the reduced b-function of f is b̃f = b
(2)
f /(s + 1).

One can check supp(M(γ,f)) ⊆ Sing(S) where γ is a root of b̃f = 0 and

S = {(x, y, z)|f(x, y, z) = 0}. Then, all roots of b̃0 = b̃f/(s + 3
2 ) = 0

are on the origin and b̃f/b̃0 = s + 3
2 = 0 is on two isolated singular points
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Table 14 b-functions of x3 + xz2 + y5 + ay2z2 + by3z2 on the origin

strata b-function on the origin degree of the b-function

C
2 \V(a) B(s)(s+ 9

8
)(s+ 23

24
) 12

V(a)\V(a, b) B(s)(s+ 9
8
)(s+ 47

24
) 12

V(a, b) B(s)(s+ 17
8
)(s+ 47

24
) 12

(x, y) =

(−3a2
64b2

,
−a
4b

,± a

4b
√
b

)
. The b-functions of the μ-constant deformation f

on the origin, are given in Table 14.

Note that the Milnor number 16 does not coincide with the degree of the

b-function 12. One can check that the multiplicity of the holonomic system

M(− 6
5 ,f)

, M(− 7
5 ,f)

, M(− 8
5 ,f)

and M(− 9
5 ,f)

is equal to 2.

5.10 Concluding remarks

We have tried to compute more than 40 μ-constant deformations of non-

unimodal singularities by our implementation of Algorithm 2, directly. However,

we have obtained only 8 examples of the μ-constant deformations that it took

less than “one month” to compute. Other examples need more RAM and time to

get b-functions. In general, the computation complexity of algorithms for com-

puting b-functions is quite big. Thus, the computation complexity of parametric

b-functions is quite big, too. Anyway, our implementation of Algorithm 2 could

return 8 new b-functions of μ-constant deformations of non-unimodal singulari-

ties.

In order to avoid the heavy computation, V. Levandovskyy and J. Mart́ın

have introduced a smart idea in [17]. We will adopt the idea to the parametric

case in the next section.

6. Checking roots of b-functions

Let f = f0 + g ∈ C[u][x] = C[u1, . . . , um][x1, . . . , xn] be a semi-

quasihomogeneous polynomial where f0 is the quasihomogeneous part and g is

a linear combinations of upper monomials with parameters u. Then, f can be

regard as a μ-constant deformation of f0 with an isolated singularity at the ori-

gin. The following is the classical result by M. Kashiwara [14]. The upper bound

statement is due to [10, 11, 33, 34, 41].

Theorem 9. Let Ef0 = {α|bf0(α) = 0} where bf0 is the b-function of f0 on the

origin. Then, for e ∈ Cm, the set of roots of b-function of σe(f), on the origin,

Eσe(f) = {α|bσe(f)(α) = 0}

becomes a subset of E = {α+ k|α ∈ Ef0 , k ∈ Z,−n < α+ k < 0} where Z is the



COMPREHENSIVE GRÖBNER SYSTEMS APPROACH TO B-FUNCTIONS 133

set of integers. That is, Eσe(f) ⊂ E, for e ∈ C
m.

Empirically, the computational complexity of a Gröbner basis of B ∪ {f} is
bigger than the computational complexity of an annihilating ideal of fs where B

is a basis of the annihilating ideal of fs. Thus, in many cases, our implementation

can return a basis of the annihilating ideal of fs, but it takes more than “one

week” to return the Gröbner basis of B ∪ {f}.
In fact, the closed formula of bf0 is known, thus, the set E of the estimated

roots of bf can be computed by Theorem 9. Hence, in order to avoid the big

computation, we can decide roots of bf and holonomic D-modules by computing

a Gröbner basis of Id(B ∪ {f, s− ν}) where ν ∈ E. If the reduced Gröbner basis

is {1}, then ν is not a root of bf , otherwise, ν is a root of bf . This idea is due to

V. Levandovskyy and J. Mart́ın [17]. By the following algorithm, one can check

whether ν is a root of the b-function of f or not. Moreover, if ν is a root of the

b-function of f , then one can obtain the holonomic D-module associated with ν,

too.

Algorithm 3 CheckingRoot

Specification: CheckingRoot(f, s− ν,
)
Checking whether ν is a root of the b-function of f or not.

Input: f ∈ C[u][x], s− ν ∈ Q[s], 
: a term order.

Output: R ⊂ K̄m: For (A,G) ∈ R, if the parameters u belong to A, then ν is a

root of the b-function of f and G is a basis of the holonomic D-module associated

with ν, otherwise, ν is not a root of the b-function of f .

BEGIN

B ← ParaAnn(f) by Algorithm 1; R ← ∅;
while B �= ∅ do
select an element (A, B) from B; B ← B\{(A, B)};
G ←compute a CGS of Id(G ∪ {f, s− ν}) w.r.t. 
 on A in C〈s, x, ∂x〉;
while G �= ∅ do
select an element (A′, G′) from G; G ← G\{(A′, G′)};
if G′ does not have a constant element then

R ← R∪ {(A′, G′ ∩ C[u]〈x, ∂x〉)};
end-if

end-while

end-while

return R;
END

We give a simple example of Algorithm 3.

Let us return to section 5.1. Consider s + 3
2 and compute a CGS of
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B1 ∪ {f, s + 2
3} on C \V(a). Then, the CGS is {(C \V(a), {1})}. Thus, s = − 2

3

is not a root of bf (s) on C \V(a).
We turn to the case s+ 11

21 . Our implementation returns {(C \V(a), {x, y, s+
11
21})} as the CGS of B1 ∪ {f, s + 11

21} on C
2 \V(a). Thus, s = − 11

21 is a root of

the b-function on C \V(a) and defines the ideal generated by {x, y}.

In general, the computational complexity of Id(G∪{f, s−ν}) is much smaller

than the computational complexity of Id(G∪{f}). That’s why Algorithm 3 may

work well, where the notations G and ν are from Algorithm 3.

Here we only give a sketch of ideas. We will report the computation results

of Algorithm 3 elsewhere.

Acknowledgements

This work has been partly supported by JSPS Grant-in-Aid for Young Sci-

entists (B) (No.15K17513) and Grant-in-Aid for Scientific Research (C) (No.

15K04891).

References

[ 1 ] D. Andres, V. Levandovskyy and J. Mart́ın-Morales, Principal intersection and

Bernstein-Sato polynomial of an affine variety. Proc. ISSAC2009, 231–238, ACM (2009).

[ 2 ] J. Briançon, F. Geandier and P. Maisonobe, Déformation d’une singularité isolée
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