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Abstract

Birbrair, Fernandes, and Neumann proved that a two-dimensional isolated

Brieskorn hypersurface singularity is metrically conical if and only if the two

smallest weights are the same. We extend this result for two-dimensional isolated

Brieskorn complete intersection singularities.

1. Introduction

Let (V, o) ⊂ (Cm, o) be a germ of a normal complex surface singularity and

f : X → V a good resolution, i.e., a resolution with simple normal crossing ex-

ceptional divisor. Let E denote the exceptional divisor on X. Let Bε ⊂ C
m

denote the ball of radius ε centered at the origin and Sε its boundary. It is known

that for sufficiently small ε, V ∩Bε is homeomorphic to the cone C(M) over the

link M := V ∩ Sε. The standard metric on C
m induces a metric on V given by

arc-length within V . This metric is called the inner metric and independent of

the choice of embedding (V, o) ⊂ (Cm, o), up to bi-Lipschitz equivalence. The

germ (V, o) is said to be metrically conical if V ∩Bε is bi-Lipschitz equivalent to

the metric cone C(M) with respect to the inner metric ([1], [2], [3]).

Birbrair and Fernandes [1] first provided weighted homogeneous surface sin-

gularities which are not metrically conical. Subsequently, Birbrair, Fernan-

des, and Neumann showed that non metrically conical singularities are com-

mon. In fact, they proved that if a weighted homogeneous surface singularity

is metrically conical then the two smallest weights are the same ([2]), and that

the converse holds for Brieskorn hypersurface singularities, namely, the germ

({xa
1 + xb

2 + xb
3 = 0}, o) ⊂ (C3, o) with 2 ≤ a ≤ b is metrically conical ([3]). In

this paper we show the following.

Theorem 1.1. Suppose that (V, o) ⊂ (Cm, o) is a germ of an isolated complete

intersection surface singularity of Brieskorn type defined by
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V = { (xi) ∈ C
m | qj1xa1

1 + · · ·+ qjmxam
m = 0, j = 3, . . . ,m},

where ai are integers with 2 ≤ a1 ≤ · · · ≤ am. Then the singularity (V, o) is

metrically conical if and only if am−1 = am.

Recently, Birbrair, Neumann, and Pichon [4] gave a classification of surface

singularities up to bi-Lipschitz equivalence, in terms of the so-called thick-thin

decomposition. They proved that the germ (V, o) is metrically conical if and only

if (V, o) has no thin piece ([4, Corollary 1.8]), and gave a construction of the

thick-thin decomposition using “sufficiently good” resolution of (V, o) ([4, §2]).
Our theorem is obtained as an application of their results.

2. The proof of the theorem

A divisor on X supported in E is called a cycle. Let m be the maximal ideal

of the local ring OV,o. For a function h ∈ m\{0}, let (h)E denote the exceptional

part of the divisor divX(h ◦ f). Then the smallest one among the cycles (h)E ,

h ∈ m \ {0}, is called the maximal ideal cycle. We denote by Z the maximal

ideal cycle on X. Clearly, the intersection number ZEi is non-positive for every

irreducible component Ei of E. A component Ei is called an L-curve ([4, §2]) if
ZEi < 0. We call f : X → V a right resolution if the following three conditions

are satisfied.

(1) mOX = OX(−Z), i.e., f factors through the blowing up by m.

(2) No two L-curves intersect.
(3) f is the minimum among good resolutions of (V, o) satisfying two conditions

above.

Note that the right resolution can be obtained by blowing-ups from the minimal

good resolution. An irreducible component Ei is called a node if Ei is not a

rational curve or (E −Ei)Ei ≥ 3. (In [4, §2], L-curve is also called a node.) The

exceptional set E is said to be star-shaped if it has just one node.

Now we assume that (V, o) is as in Theorem 1.1. Let f : X → V be the

minimal good resolution. It is known that E is star-shaped except for the case

V = {x2
1 + x2

2 + xm
3 = 0} (E is a chain in this case). So we assume that E is

star-shaped. By [4, Corollary 7.11], we obtain the following.

Proposition 2.1. The germ (V, o) is metrically conical if and only if the node

is a unique L-curve on the right resolution.

A concrete description of the maximal ideal cycle for a Brieskorn hypersur-

face singularity was obtained by Konno and Nagashima [5], and their result was

extended to Brieskorn complete intersections in [6]. By [6, Theorem 6.1], the
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maximal ideal cycle Z coincides with (xm)E . Let

d = lcm(a1, . . . , am−1), αm = am/ gcd(am, d)

(see p.125 and p.128 of [6]). The L-curves are given in [6, Theorem 4.4] (those

are expressed as Em,sm,ξ). In fact, the node is the unique L-curve if and

only if αm = 1, namely, am | d. Assume that this condition is satisfied. If

mOX 	= OX(−Z), by resolving the base points of the linear systemH0(OX(−Z)),

on the right resolution, we have a node other than L-curves (see p. 135 for the

structure of the base points). Therefore the node is a unique L-curve on the right

resolution if and only if mOX = OX(−Z); f is the right resolution in this case.

By [6, Proposition 6.4], this condition is equivalent to that d/am−1 < d/am + 1.

Hence it follows from Proposition 2.1 that if (V, o) is metrically conical, then we

obtain am−1 ≥ am; by assumption, am−1 = am. Conversely, if am−1 = am, then

d/am−1 < d/am +1 and αm = 1. Hence f is the right resolution and the node is

a unique L-curve.
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