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Abstract

Let k be an algebraically closed field of positive characteristic p, let G, denote
the additive group of k, and let Z/pZ denote the cyclic group of order p. Given a
modular representation p : (Z/pZ)" — GL(n,k), we ask whether or not p can be
extended, by an arbitrary group embedding ¢ : (Z/pZ)" — Ga, to a representation
¢ : Go — GL(n, k), i.e., p = ¢or. We consider some classes of modular representa-
tions of elementary abelian p-groups, and give some partial positive answers to the
above problem. Besides, we classify up to equivalence four-dimensional modular
representations p : (Z/2Z)" — GL(4, k) in characteristic two.

0. Introduction

Let k be an algebraically closed field of positive characteristic p and let G,
denote the additive group of k. A map ¢ : G, — GL(n, k) is said to be a represen-
tation of G, if ¢ is a homomorphism of algebraic groups over k. An elementary
abelian p-group of rank r is a finite abelian group which is isomorphic to (Z/pZ)",
where Z/pZ denotes the cyclic group of order p.

In this article, we consider the following problem:

Given a modular representation p : (Z/pZ)" — GL(n,k), we ask whether
or not p can be extended, by an arbitrary injective group homomorphism t :
(Z/pZ)" — Gy, to a representation ¢ : G, — GL(n,k), i.e., the following dia-
gram commautes:

Gy ——> GL(n, k)

|

(Z/pZ)"

We remark that there exists a one-to-one correspondence between the set of
all injective group homomorphisms ¢ : (Z/pZ)" — G, and the set of all elements
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(aq,...,) € k7 such that a1, ..., «, are linearly independent over F,,.

Let A} denote the affine space in dimension n over k and let E, := (Z/pZ)".
If the above problem is affirmative, any linear action of F, on A} can be extended
to a linear action of G, on A}, and then we have the following commutative di-
agram:

idyn
Ak

Ay AR

L

A?/G, <— A} /E,

However, we still do not know whether the quotient A}/G, is an affine alge-
braic variety over k. We are in progress for solving this quotient problem (see
[3, 4, 5, 6]). In this article, we consider the extension problem in order to study
modular representations of elementary abelian p-groups through A} -fibrations on
the affine space A}.

In the following, we state our theorems and corollaries in this article:

We say that matrices X1, ..., X, of Mat(n, k) are p-pyramidic if X4,..., X,
satisfy

[[xi=o0n forall ly,....L, >0 with iy +---+1, > p.
i=1

For 1 <i < r, an element e; of (Z/pZ)" is defined as the i-th component of
e; is 1 and the other components of e; are zeros.

A modular representation p : (Z/pZ)" — GL(n, k) is said to be p-pyramidic
if r matrices p(e1) — I, ..., p(e,) — I, are p-pyramidic.

The following theorem gives a partial positive answer to the extension prob-
lem.

Theorem 1 Let r > 1 and let p : (Z/pZ)" — GL(n,k) be a modular repre-
sentation. Assume that one of the following conditions (1), (2) and (3) holds
true:

(I)r=1.
(2) p is p-pyramidic.
(3)1<n<p.

Then, for any injective group homomorphism v : (Z/pZ)" — G, there exists a
representation ¢ : G, — GL(n, k) satisfying p =@ ot.

Let 1 < j < r. We say that matrices Xi,...,X, of Mat(n,k) are of j-
mutually annihilating if Xq,..., X, satisfy X;, ---X;, = O, for all distinct j
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integers 41, ...,4; within 1 <iq,...,4; <.
Let p: (Z/pZ)" — GL(n,k) be a modular representation. For 2 < j <r, we
say that p is of j-mutually annihilating if the matrices p(e1) — I, ..., p(er) — I

are of j-mutually annihilating.
In particular when p = 2, we have the following partial positive answer to
the problem.

Theorem 2 Let p =2 and let p : (Z/pZ)" — GL(n,k) be a modular represen-
tation. Assume that one of the following conditions (1) and (2) holds true:

(1)2<r<3.
(2) r > 4, and p is of 3-mutually annihilating.

Then, for any injective group homomorphism ¢ : (Z/pZ)" — G, there exists a
representation ¢ : G, — GL(n, k) such that p = po .

If the dimension n of a modular representation p : (Z/pZ)" — GL(n,k) is
in the range 1 < n < 4, we have the following partial positive answer to the
problem.

Corollary 3 Letr > 1 and let p: (Z/pZ)" — GL(n,k) be a modular represen-
tation. Assume that one of the following conditions (1) and (2) holds true:

1)1<n<3.
(2)p=2and n=4.

Then, for any injective group homomorphism v : (Z/pZ)" — G, there exists a
representation ¢ : G, — GL(n, k) such that p = po .

We know the following concerning modular representations of elementary
abelian p-groups: There are exactly p inequivalent indecomposable modular rep-
resentations of Z/pZ. Basev [1] classifies indecomposable modular representations
of Z/27 x 7./27 over an algebraically closed field of characteristic two. Camp-
bell, Shank and Wehlau [2] give parametrizations of modular representations of
elementary abelian p-groups whose representation spaces are in dimensions two
and three.

In the following Corollary 4, with assuming p = 2, we describe, up to equiva-
lence, four-dimensional modular representations of elementary abelian p-groups.
We define subsets A o, As 1, H, (1 € k) of GL(4, k) as follows:

a p

vy 0
A2,2 = 1 0 a, Ba ’Y,5€k )
0 1

o O O
S O = O
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1 0 0 «
. 01 0 g8
-A3,1 = 0 0 1 v «, ﬁa’YEk ’
0 0 0 1
1 a B v
)]0 1 0 pub
H, = 00 1 ua o, B,y€k
0 0 0 1

Let (U;)7—; be a sequence taken from one of the subsets Az 2, Az 1, H, (1 € k).
Then we can define a modular representation o : (Z/pZ)" — GL(4,k) as
ony,...,ng) =0 - Ulr.

Corollary 4 Assume p = 2. Let p : (Z/pZ)" — GL(4,k) be a modular repre-
sentation of (Z/pZ)". Then there exists a modular representation o : (Z/pZ)" —
GL(4,k) satisfying the following conditions (1) and (2):

(1) o is equivalent to p.

(2) The set {o(e;) | 1 <1i < r} is included in one of the subsets Ao, Asi1, Hu
(nek),

Acknowledgements. The author would like to thank Professor Jean-
Philippe Furter for suggesting the problem to him.

Notations and definitions. For any field F, we denote by F[z1,...,z,] a
polynomial ring in r variables over F. Let F, denote the finite field consisting of
p elements.

For a commutative ring R with unity, we denote by Mat(n, R) the ring of
all n x n matrices whose entries belong to R, and write O,, (and I,,) for the
zero element (resp. unity). For any A € Mat(n, R), we denote by det(A) the
determinant of A. We denote by GL(n, R) the group of all invertible matrices of
Mat(n, R).

Let G be a group. Two representations p1 : G — GL(n,R) and ps : G —
GL(n, R) of G are equivalent if there exists a regular matrix P € GL(n, R) such
that P=1p1(g)P = pa(g) for all g € G.

Let k[T] be a polynomial ring in one variable over k. We say that a polyno-
mial f(T) € k[T is a p-polynomial if f(T) has the form f(T) = >_;_,a;T?" for
some ag,...,as € k.

1. A correspondence between 91(A) and ((A)

Let k be a field of positive characteristic p and let A be a not-necessarily
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commutative k-algebra with unity. We denote by O the zero element of A under
addition and denote by I the unity of A under multiplication. Let 91(A) be the
set of all p-nilpotent elements of A, and let L{(A) be the set of all p-unipotent
elements of A, i.e.,

N(A) = {NeA|NP=0},
{u(A) = {UecA|UP=1}.

1.1 The truncated exponential of p-nilpotent elements
We can define a map Exp : M(A) — U(A) as

Exp(N) := z_: N

=0

7.

We know the following lemma:
Lemma 5 Let N1, N2 be elements of M(A) satisfying both conditions N1 Ny =
NoN; and NiNj = O for all i,j > 0 with i + j > p. Then we have
Exp(N1 + N2) = Exp(N1) Exp(N2).

1.2 The truncated logarithm of p-unipotent elements
We can define a map Log : {l(A) — 91(A) as

Lemma 6 The truncated logarithm Log is injective.

Proof. Choose arbitrary Uy, Us € $(A) and assume that Log(U;) = Log(Us).
Let Ny :=U; — I and Ny := Uy — I. We have

p—1 i—1 p—1 i—1
(-1) ; (=1 ;
N = Z N

i=1 =1

Calculating the (p — 1)th power of both sides of the above equality, we have
N{’_l = Né)—l, which implies

[

p— p—2 (_1)2‘71

7

_1)i—1 .
SISNN
1 v i=1

N&.

2

Calculating (p — 2)th power of both sides of the above equality, we have N} 2=
NP2 which implies
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p—3 i—1 p—3 i—1
(-1) ; (-1 ;
N} = Z N
i=1 i=1

We can repeat the above arguments in finitely many steps until we have N3 = Ns.
Q.E.D.

1.3 A correspondence between 91(A4) and L(A)
We shall use the following lemma on proving Lemma 8.

Lemma 7 Let p be a prime number. Then the following assertions (1) and (2)
hold true:

(1) For all 0 < j' < p—2, we have Z?;f, (f,) = (=1)7"*1 (mod p).
(2) Assume p > 3. For all1 <n <p—2, we have 25;11 j" =0 (mod p).

Proof. (1) In the polynomial ring F,[z], compare the coefficients of 27" (0 <
j' < p—2) of the both sides of the equality

If(m +1)f = pz_:l (pj 1)xj1.

=0 j=1

(2) Let F; denote the set of all invertible elements of the field F,. Since
IF; is a cyclic group of order p — 1, there exists an element ¢ € F; such that
Fy = {¢*|1<i<p—1}. Since 1 <n < p—2, we have (" # 1, and thereby have

p—1 p—1
n in Cpn — Cn
TS o= e,
; ; =1
Jj=1 i=1
Q.E.D.
The following lemma states that there exists a one-to-one correspondence
between 91(A) and $4(A).
Lemma 8 We have Log o Exp = idy(4) and Exp o Log = idy(4)-

Proof. We first prove Log o Exp = idy(4). Choose an arbitrary element N of
N(A).
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p—1 p—1 ¢ ;
_ —1 (=1)7*t e
=Y I+ > J j Exp(jN)
=1 (=1 j=1
Let
p—1 _ p—1 p—1 ¢ _1V\j+1
a=S"Lr— N2 and B Z( D7 Exp(jN)
1 4
=1 =1 =1 j=1

So, we have
(Log o Exp)(N) = a + .

We can express a as

We can express [ as

p—1 ¢ . p—1 ¢ ;
1)t /p . —1)i* -1 ‘
B = Z( ) <.>EXP(]N) Z( ) ( )EXP(JN)
(=1 j=1 ¢ J (=1 j=1 J J-1
p—1lp—1 1)+ /¢ p—1
- . (a) —1 .
= 1) ( ) Exp(jN) = ) — Exp(jN)
eyl j—1 il
p—1 p—1 p—1 p—1
N™ N™
— -1 -1
D ID I C A DY D OF A -y
j=1m=0 m=0 \j=1
p—1
1 N
(b) =17 L
- p—1 p—1 [p—1
1 N N™
N CI-p-1)= - m=1] 2 i p>3
=t T 7; ;] mt 0P
= a+ N

where we use assertions (1) (and (2)) of Lemma 7 for proving the above equalities
(a) (resp. (b)). Thus we have (Log o EXp)(N) = N.

We next prove Exp o Log = idy4). Choose an arbitrary element U of U(A).
Let U’ := (Exp o Log)(U). Then we have Log(U’) = Log(U). Since Log is injec-
tive, we know that U’ = U. Q.E.D.

2. A proof of Theorem 1

2.1 Lemmas
Let k be as above, i.e., k is a field of positive characteristic p. We define a
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polynomial matrix F,.(z1,...,x,) of Mat(r,k[z1,...,z,]) as
xq T9 . Ty
p P . D
) x5 P
Fo(z1,...,z.) = .
-1 r—1 1
p" p p"
xy b P

Let ¢ be a generator of the cyclic group F}, of order p — 1.
For any ¢ > 1, we define a polynomial gy(z1,...,2¢) € K[x1,..., 2] as

ge(x1,...,xp)

=T I (ze—¢ra) |- I @e—¢ray, —¢ay,)

1<i;<p-1 1<i1,i0<p—1
1<ji<e-1 1<51<ja<t—1
L I 7
""" H ('TZ —¢ Lj ¢ w]l—l)

1<iy,...ig—1<p—1
1<G1 < <je—1<l-1

Clearly, g1 (1) = 1.

Lemma 9 We have
det(Fr(x1,...,2,)) = Hgg(xl, cey ).
=1

In particular if oy, ..., q, are linearly independent over Fy, then F.(aq,..., )
is a reqular matriz.

Proof. We can express det(F,) and g, as

det(F,) = det(F,_1)-2" '+ ( terms of lower degree in z, ),
gr = acfrfl + ( terms of lower degree in z, ).

Since g, divides det(F}.) in k[z1,...,z,], we have det(F;) = det(F,_1) - g,, which
implies the desired expression. Q.E.D.

For a matrix A € Mat(r, k), we define a submatrix AZ;f;ff (1<i; <iz<
< <1< 1 <ja<--<je<r)of Aas

Aiygr Qigyg "0 Qigg,

o . iy g1 Qig gy *** iy j
QJrsdzeede . i2,51 i2,J2 i2,5¢
1152250500 °

Qig,jn Qig,jo " Qigj,
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Let I := {(u,v) | 1 < u < v <r} be an ordered set whose ordering < is given
as follows: For 71,7, € T', we write 71 = 7 if the first non-zero component of
Yo — 71 1s positive or 43 = 42. The number of elements of " is v’ := (r(r — 1))/2.

For any A = (a;;) € Mat(r,k), we define a matrix A := (dy.5) er.ser €
Mat(r', k) as

Uy5 = det(Afy).

Lemma 10 If A is a regular matriz of Mat(r,k), then Aisa reqular matriz of
Mat(r’, k).

Proof. For any v = (71,72) € T, we let || := v + 2. We define a ma-
trix B = (by,s)(y5)erxr € Mat(r’,k) as follows: by = (—1)"1+1°l det(4;77),
where s is a sequence defined by s := (1,2,...,7), and for any (u,v) € T,
s — (u,v) is a subsequence of s obtained from s by deleting p and v, i.e.,
s—(uv):i=,....0,...,0,...,7). Clearly, A- B = det(A) - I,.. Q.E.D.

Now, we prove Theorem 1.

(1) Let oy := t(e1). Clearly, @y # 0. Let M; := p(e1) € Mat(n, k). Clearly,
MP =1T,. So, let N := a; " - Log(M;). We can define a map ¢ : G, — GL(n, k)
as

¢(t) = Exp(tN1).

Clearly, ¢ is a representation of G, and p(e1) = ¢(aq), which implies p = ¢ o s.
(2) Let a; := t(e;) and let M; := p(e;) for 1 < i < r. Since p : (Z/pZ)" —
GL(n, k) is a modular representation, we have the following (i) and (ii):

(i) MP =1, forall 1 <i<r.
(11) MlM] = MJMl for all 1 < Z,j <r.

Let 91 be the set of all p-nilpotent matrices of Mat(n, k) and let 4 be the set
of all p-unipotent matrices of Mat(n, k). Let Exp : 91 — 4 be the truncated
exponential map and let Log : 31 — 91 be the truncated logarithmic map. So, we
have the following (iii) and (iv):

(iii) Log(M;) € Mforall 1 <i < r.
(iv) Log(M;) Log(M;) = Log(M;) Log(M;) for all 1 < 4,5 <.

There exist matrices Ny,..., N, € Mat(n, k) satisfying

Log(M;) = ZafklN,\ foralll1 <i<r,
A=1

since det(afx_l)lgi_)gr # 0. Thus we have the following (v) and (vi):
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(v) NP =0, forall 1 <i<r.
(Vl) NZN] = NJN1 for all 1 S Z,] S r.

Now, we can define a map ¢ : G, — GL(n, k) as

p(t) == Exp <Z tpklNA> .
A=1

Since p is p-pyramidic, ¢ is a representation of G,. Clearly, p(e;) = ¢(«;) for all
1 < ¢ <7, which implies p = g o ¢.

(3) Tt is enough to show that p is p-pyramidic. Let X; := p(e;) — I,
(1 <4 < r). Since XiX; = X;X; for all 1 < 4,5 < r, there exists a regular
matrix P € GL(n,k) such that P71X;P’s (1 < i < r) are upper triangular
matrices. Since X = O,,, the all diagonal entries of P~1X,;P are zeros. Since
1 < n < p, we have

r

H(P—lxip)@ =0, for all £1,...,0, >0 with &1 +---+ £, > p.

i=1

This completes the proof of Theorem 1.

3. A proof of Theorem 2

3.1 A proof of assertion (2) of Theorem 2
Let M; := p(e;) for 1 < i < r. We can solve the following equations (x) for
Ny € Mat(n,k) (1 <A <r)and N,, € Mat(n,k) (1 <p<v<r):

M, —1,

- Yawe S, sien,
( ) A=1 1<p<v<r
*

M-L)OL-L)
m= v v H— -
= Z (af of  +af of )N, ((i,7) €eT).
1<p<v<r

Let A := F.(a1,...,a,) € Mat(r, k). Recall that A is a regular matrix (see
Lemma 9) and that A is also a regular matrix (see Lemma 10). It follows that

(N uyer = (M; = L) (Mj = 1)) jrer - A7,
=1, -1
(N)\)lg)\gr = M; -1, — Z af} P N/_L,V -ATL
1<p<v<r

1<i<lr



A NOTE ON MODULAR REPRESENTATIONS OF ELEMENTARY ABELIAN P-GROUPS 29

Since (M; — I,)*> = O, for all 1 < ¢ < r and (M; — L,)(M; — I,) =
(M; —I,)(M; — I,) for all 1 <@ < j <r, we have

Nyw Ny = On ((sv), (ILL/7V/) el),
N,N, = N,N, ((p,v)el).

Since p is of 3-mutually annihilating, we have
NAN,, =0, (1<A<r (pv)el).
By the first equation of (x), we have

=1 v—1 v—1 =1 o
(M; — L,))(M; — I,) = Z (af o  +af of )N.N, ((i,j)€T).
1<p<v<r
The second equality of (x) implies
N,N,=N,, (1<pu<v<r).

Now, the first equation of (%) implies that
T A—1
M,; = H(In—&—ap Ny (1<i<r).
A=1

Let ¢ : G, = GL(n, k) be the map defined by

T

o(t) = [T+t "Ny,
A=1

Clearly, ¢ is a representation. So, p(e;) = ¢(«;) for all 1 < ¢ <, which implies
p=polL. Q.E.D.

3.2 A proof of assertion (1) of Theorem 2
3.21 r=2

We first consider the case 7 = 2. Let M; := p(e;) for i = 1,2. Let A :=
Fy(ay,az). We can solve the following equations (*) for Ny, Na, Ny 2 € Mat(n, k):

M; — I, =a;Ny + o’ Ny + PPN, (1< <2),
(*)
(Ml - In)(M2 - In) = det(A)N1,2~

Clearly, we have
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N{=Ni=0,, NiNy=NyNi, NiNio=0,, NaNis=0O,.
Calculate (My — I,,)(M2 — I,,) by using the first equation of (x). Thus Ny, =

N1 Ns. Hence we have M; = (I, + a;N1)(I, + of N2) for all 1 < i < 2. Now, we
can define a representation ¢ : G, — GL(n, k) as

o(t) = (I + tNy)(Ip + tPNo).

Clearly, p(e;) = ¢(«;) for all i = 1,2, which implies p = p o ¢.

3.2.2 r=3
We next consider the case r = 3. Let M; = p(e;) for 1 < i < 3, let

A := F3(a1,a2,a3) and let A be as above. So,

PP P
A= @y g Az,
p P

azal + abag
2 2
asad +ab as

2 2
p_ D P P
Q03 + Qy Q3

aral + alag
2 2

ajad + afasg
2
arah +aod as

2
arad +aod as
p, p° P> p p p P> p
oy +oy oy oqag oy Oy

S
|

We can solve the following equations (%) for Ny, No, N3, N1 o, N1 3, N3, N123
€ Mat(n, k):

Mi _In
2
= ;N1 + OéfNQ + Ozf N3

1 241 2 2 1
—|—o¢f+ Nig+af * Nis+af +pN2,3 +af et Nioags
(1 << 3),

WS CIE AT o 2
= (iad +afaj)Nig + (iad +af aj)Nig+ (afaf +af af)Nas

2 2 2
1 1
aidf P +afal T +al o
1 2 241 1,2,3
Mol 4o ol + ol Pay

+a; o
(1<i<j<3),

(My — L) (My — I,))(M; — I,) = det(A) Ny o.5.

In fact, letting M;; = (M; — I,)(M; — I,) for 1 < 4,5 < 3 and M3 =
(M — I,)(Msy — I,) (M3 — I,), we have, from the bottom to the top of the above

equations (),
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1
N =—FM
1,2,3 det(A) 1,2,3,

(Ni,2, Ni3, Nag) = (My2, M1 3, Mag)- Aty (b1,2, b1,3, ba3) - Mi23

for some bl,g, b173, b273 S k?,

(N1, Na, N3) = (My — I,,, My — I,,, M3 — I,) - A~
+(My2, My 3, My3)-C + (di2, di3, d23)- Mi23
for some C' € Mat(3, k) and dy 2, d1 3, da,3 € k.
Clearly, we have N? = O,, for all 1 <i < 3 and N;Nj = N;N; forall 1 <4,j <3.

For 1 <4,5 <3, let A; ; be the determinant of the submatrix formed by deleting
the i-th row and the j-th column of A. So,

1 Ay Axn As;
Al = —— Ao Ao Az |,

det(A ’
(4) Az Ass Az
2
_ [As3 Asp Aszn _ 1 agz ay o
A= \|Ays Aso Asi], A_lzd— ofab o as
et(A) 2
Az Ap A & o

Let A = (ai’j)lgi)jgg. For all 1 < ¢+ < 3 and 1 < 5 < ¢ < 3 and
m € {1,2,3}\{J, ¢}, we have

1
det(A)

NiNj, = ( (Aii(My — L) + Ajo(My — I,) + A; 3(M3 — In))>

1
: ((am,3M1,2 + Q2 M3 + am,le,s))

det(A)
_ 1 (A’ + A, nyy )M
- det(A)? i,1 Am,1 i,2 Om,2 i,3 m,3)M1,23
On, if i#m,
Aot ( AN 1 1="m.
det(A) " b*?

Calculate (M; — I,)(Ms — I,)(M3 — I,) by using the first equation of (x). We
have
1

NiNyN3 = MMLQ 3.

So, the third equality of (x) implies
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N1N3N3 = Njp 2 3.

Expand (M; —1I,,)(M; —I,,) by using the first equation of (x). The second equality
of (%) can imply

NiN3 = Ni o, NiN3 = N 3, NyNg = No 3.
Hence we have
Mi = (I + 0aN1) (I + oP No) (I, + of N3) (1< <3).
Let ¢ : G, — GL(n, k) be the map defined by

3

ot) = [T+t Ny,

A=1

Clearly, ¢ is a representation. Thus, p(e;) = ¢(ey) for all 1 < ¢ < 3, which
implies p = p o .

4. Proofs of Corollaries 3 and 4

4.1 Lemmas

Let
0 0 a1,3 Aa14
0 0 az3 aza
00 o0 0 a1,3,01,4,023,024 € K
0 0 0 0

be a subset of Mat(4, k).

Lemma 11 Let X = (z; ;) be an upper triangular matriz of Mat(4, k) satisfying
X2 =0, and x33 # 0. Then the following assertions (1) and (2) hold true:

(1) X e az2.

(2) For any upper triangular matriz Y = (y; ;) of Mat(4,k) satisfying Y? = O,
and XY =Y X, we have Y € az 5.

Proof. (1) The proof is straightforward.
(2) If ya3 # 0, then Y € az o (by the above assertion (1)). If yo 3 = 0, then

Y12 = Y34 = 0 (SiIlCe XY = YX), which implies Y € az 9. QED
Let
0 hiz hiz hia
o 0 0 ha
by = 0 0 0 by hi2,h13,h14,h24,h34 €K
0 0 0 0
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be a subset of Mat(4, k).

Lemma 12 Let N; (1 < i <) be upper triangular matrices of Mat(4, k) sat-
isfying both conditions N} = O,, for all 1 < i < r and N;N; = N;N; for all
1<4,5 <r. Then one of the following cases (1) and (2) can occur:

(1) N; €agya foralll <i<r.
(2) N; € by foralll1 <i<r.

Proof. Suppose that there exists at least one matrix N; among N; (1 <¢ <)
such that N; does not belongs to h4. By Lemma 11, N; € as 2 and then the other
(r — 1) matrices Ny, ..., N;,..., N, belong to as 5. Q.E.D.

Lemma 13 Assume r > 3. Let N; (1 < i < r) be matrices of Mat(4,k) sat-
isfying both conditions N? = O,, for all 1 < i < r and N;N; = N;N; for all
1 <i,5 <r. Then the matrices N1, ..., N, are of 3-mutually annihilating.

Proof. The proof is straightforward by the above Lemma 12. Q.E.D.

4.2 A proof of Corollary 3

If p > 3, the corollary follows from assertion (3) of Theorem 1. So, if p = 2
and 2 < r < 3, the corollary follows from assertion (1) of Theorem 2. If p = 2
and r > 4, the corollary follows from assertion (2) of Theorem 2 and Lemma 13.

4.3 A proof of Corollary 4

Let p : (Z/pZ)" — GL(4,k) be a modular representation. Since k is alge-
braically closed, there exists an injective group homomorphism ¢ : (Z/pZ)" — G,.
Let a; := t(e;) for 1 < i < r. By Theorem 1, we can factor p as p = p o for some
representation ¢ : G, — GL(4,k). By [6, Theorem 2.1], there exists a regular
matrix P € GL(4,k) such that the representation v (t) := P~1p(t)P of G, has
one of the following forms A 5(t), As1(t), H,(t):

1 0 a b

Az o(t) == (O) (1) i (C)l (a,b,c,d are p-polynomials),
0 0 0 1
1 0 0 a

Az (t) == 8 (1) (1) i (a, b, c are p-polynomials),
0 0 0 1




34

R. Tanimoto

(1) Cll g uab;— ¢ a, b, ¢ are p-polynomials,
H,(t) = 00 1 Z u a, b are linearly independent
00 0 1 over k, and pu € k

If ¥(t) = A29(t), then ¢¥(a;) € Ago for all 1 < i < r. If ¢(t) = As1(t), then
Yla;) € Az for all 1 < @ < r. If Y(t) = H,(t), then ¥(a;) € H, for all
1 < i <r. Now we define a modular representation o : (Z/pZ)" — GL(n, k) as
a(g) == P~ !p(g)P. Clearly, o satisfies the condition (1) of Corollary 4. And &
satisfies the condition (2) of Corollary 4 since o(e;) = ¢(a;) for all 1 < i < r.
This completes the proof of Corollary 4.

(1]
(2]
(3]
(4]
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