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Abstract

Let k be an algebraically closed field of positive characteristic p, let Ga denote

the additive group of k, and let Z/pZ denote the cyclic group of order p. Given a

modular representation ρ : (Z/pZ)r → GL(n, k), we ask whether or not ρ can be

extended, by an arbitrary group embedding ι : (Z/pZ)r → Ga, to a representation

ϕ : Ga → GL(n, k), i.e., ρ = ϕ◦ ι. We consider some classes of modular representa-

tions of elementary abelian p-groups, and give some partial positive answers to the

above problem. Besides, we classify up to equivalence four-dimensional modular

representations ρ : (Z/2Z)r → GL(4, k) in characteristic two.

0. Introduction

Let k be an algebraically closed field of positive characteristic p and let Ga

denote the additive group of k. A map ϕ : Ga → GL(n, k) is said to be a represen-

tation of Ga if ϕ is a homomorphism of algebraic groups over k. An elementary

abelian p-group of rank r is a finite abelian group which is isomorphic to (Z/pZ)r,

where Z/pZ denotes the cyclic group of order p.

In this article, we consider the following problem:

Given a modular representation ρ : (Z/pZ)r → GL(n, k), we ask whether

or not ρ can be extended, by an arbitrary injective group homomorphism ι :

(Z/pZ)r ↪→ Ga, to a representation ϕ : Ga → GL(n, k), i.e., the following dia-

gram commutes:

Ga
ϕ �� GL(n, k)

(Z/pZ)r

ι

��

ρ

������������

We remark that there exists a one-to-one correspondence between the set of

all injective group homomorphisms ι : (Z/pZ)r ↪→ Ga and the set of all elements
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(α1, . . . , αr) ∈ kr such that α1, . . . , αr are linearly independent over Fp.

Let An
k denote the affine space in dimension n over k and let Er := (Z/pZ)r.

If the above problem is affirmative, any linear action of Er on A
n
k can be extended

to a linear action of Ga on A
n
k , and then we have the following commutative di-

agram:

A
n
k

��

A
n
k

idAn
k��

��
A

n
k/Ga A

n
k/Er

��

However, we still do not know whether the quotient A
n
k/Ga is an affine alge-

braic variety over k. We are in progress for solving this quotient problem (see

[3, 4, 5, 6]). In this article, we consider the extension problem in order to study

modular representations of elementary abelian p-groups through A
1
k-fibrations on

the affine space A
n
k .

In the following, we state our theorems and corollaries in this article:

We say that matrices X1, . . . , Xr of Mat(n, k) are p-pyramidic if X1, . . . , Xr

satisfy

r∏
i=1

X li
i = On for all l1, . . . , lr ≥ 0 with l1 + · · ·+ lr ≥ p.

For 1 ≤ i ≤ r, an element ei of (Z/pZ)
r is defined as the i-th component of

ei is 1 and the other components of ei are zeros.

A modular representation ρ : (Z/pZ)r → GL(n, k) is said to be p-pyramidic

if r matrices ρ(e1)− In, . . . , ρ(er)− In are p-pyramidic.

The following theorem gives a partial positive answer to the extension prob-

lem.

Theorem 1 Let r ≥ 1 and let ρ : (Z/pZ)r → GL(n, k) be a modular repre-

sentation. Assume that one of the following conditions (1), (2) and (3) holds

true:

(1) r = 1.

(2) ρ is p-pyramidic.

(3) 1 ≤ n ≤ p.

Then, for any injective group homomorphism ι : (Z/pZ)r ↪→ Ga, there exists a

representation ϕ : Ga → GL(n, k) satisfying ρ = ϕ ◦ ι.
Let 1 ≤ j ≤ r. We say that matrices X1, . . . , Xr of Mat(n, k) are of j-

mutually annihilating if X1, . . . , Xr satisfy Xi1 · · ·Xij = On for all distinct j
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integers i1, . . . , ij within 1 ≤ i1, . . . , ij ≤ r.

Let ρ : (Z/pZ)r → GL(n, k) be a modular representation. For 2 ≤ j ≤ r, we

say that ρ is of j-mutually annihilating if the matrices ρ(e1)− In, . . . , ρ(er)− In
are of j-mutually annihilating.

In particular when p = 2, we have the following partial positive answer to

the problem.

Theorem 2 Let p = 2 and let ρ : (Z/pZ)r → GL(n, k) be a modular represen-

tation. Assume that one of the following conditions (1) and (2) holds true:

(1) 2 ≤ r ≤ 3.

(2) r ≥ 4, and ρ is of 3-mutually annihilating.

Then, for any injective group homomorphism ι : (Z/pZ)r ↪→ Ga, there exists a

representation ϕ : Ga → GL(n, k) such that ρ = ϕ ◦ ι.
If the dimension n of a modular representation ρ : (Z/pZ)r → GL(n, k) is

in the range 1 ≤ n ≤ 4, we have the following partial positive answer to the

problem.

Corollary 3 Let r ≥ 1 and let ρ : (Z/pZ)r → GL(n, k) be a modular represen-

tation. Assume that one of the following conditions (1) and (2) holds true:

(1) 1 ≤ n ≤ 3.

(2) p = 2 and n = 4.

Then, for any injective group homomorphism ι : (Z/pZ)r ↪→ Ga, there exists a

representation ϕ : Ga → GL(n, k) such that ρ = ϕ ◦ ι.
We know the following concerning modular representations of elementary

abelian p-groups: There are exactly p inequivalent indecomposable modular rep-

resentations of Z/pZ. Bašev [1] classifies indecomposable modular representations

of Z/2Z × Z/2Z over an algebraically closed field of characteristic two. Camp-

bell, Shank and Wehlau [2] give parametrizations of modular representations of

elementary abelian p-groups whose representation spaces are in dimensions two

and three.

In the following Corollary 4, with assuming p = 2, we describe, up to equiva-

lence, four-dimensional modular representations of elementary abelian p-groups.

We define subsets A2,2, A3,1, Hμ (μ ∈ k) of GL(4, k) as follows:

A2,2 :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 0 α β

0 1 γ δ

0 0 1 0

0 0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ α, β, γ, δ ∈ k

⎫⎪⎪⎬⎪⎪⎭ ,
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A3,1 :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 0 0 α

0 1 0 β

0 0 1 γ

0 0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ α, β, γ ∈ k

⎫⎪⎪⎬⎪⎪⎭ ,

Hμ :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
1 α β γ

0 1 0 μβ

0 0 1 μα

0 0 0 1

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ α, β, γ ∈ k

⎫⎪⎪⎬⎪⎪⎭ .

Let (Ui)
r
i=1 be a sequence taken from one of the subsets A2,2, A3,1, Hμ (μ ∈ k).

Then we can define a modular representation σ : (Z/pZ)r → GL(4, k) as

σ(n1, . . . , nr) := Un1
1 · · ·Unr

r .

Corollary 4 Assume p = 2. Let ρ : (Z/pZ)r → GL(4, k) be a modular repre-

sentation of (Z/pZ)r. Then there exists a modular representation σ : (Z/pZ)r →
GL(4, k) satisfying the following conditions (1) and (2):

(1) σ is equivalent to ρ.

(2) The set {σ(ei) | 1 ≤ i ≤ r} is included in one of the subsets A2,2, A3,1, Hμ

(μ ∈ k),

Acknowledgements. The author would like to thank Professor Jean-

Philippe Furter for suggesting the problem to him.

Notations and definitions. For any field F, we denote by F[x1, . . . , xr] a

polynomial ring in r variables over F. Let Fp denote the finite field consisting of

p elements.

For a commutative ring R with unity, we denote by Mat(n,R) the ring of

all n × n matrices whose entries belong to R, and write On (and In) for the

zero element (resp. unity). For any A ∈ Mat(n,R), we denote by det(A) the

determinant of A. We denote by GL(n,R) the group of all invertible matrices of

Mat(n,R).

Let G be a group. Two representations ρ1 : G → GL(n,R) and ρ2 : G →
GL(n,R) of G are equivalent if there exists a regular matrix P ∈ GL(n,R) such

that P−1ρ1(g)P = ρ2(g) for all g ∈ G.

Let k[T ] be a polynomial ring in one variable over k. We say that a polyno-

mial f(T ) ∈ k[T ] is a p-polynomial if f(T ) has the form f(T ) =
∑s

i=0 aiT
pi

for

some a0, . . . , as ∈ k.

1. A correspondence between N(A) and U(A)

Let k be a field of positive characteristic p and let A be a not-necessarily
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commutative k-algebra with unity. We denote by O the zero element of A under

addition and denote by I the unity of A under multiplication. Let N(A) be the

set of all p-nilpotent elements of A, and let U(A) be the set of all p-unipotent

elements of A, i.e., {
N(A) := {N ∈ A | Np = O},
U(A) := {U ∈ A | Up = I}.

1.1 The truncated exponential of p-nilpotent elements

We can define a map Exp : N(A) → U(A) as

Exp(N) :=

p−1∑
i=0

N i

i!
.

We know the following lemma:

Lemma 5 Let N1, N2 be elements of N(A) satisfying both conditions N1N2 =

N2N1 and N i
1N

j
2 = O for all i, j ≥ 0 with i + j ≥ p. Then we have

Exp(N1 +N2) = Exp(N1) Exp(N2).

1.2 The truncated logarithm of p-unipotent elements

We can define a map Log : U(A) → N(A) as

Log(U) :=

p−1∑
i=1

(−1)i−1

i
(U − I)i.

Lemma 6 The truncated logarithm Log is injective.

Proof. Choose arbitrary U1, U2 ∈ U(A) and assume that Log(U1) = Log(U2).

Let N1 := U1 − I and N2 := U2 − I. We have

p−1∑
i=1

(−1)i−1

i
N i

1 =

p−1∑
i=1

(−1)i−1

i
N i

2.

Calculating the (p − 1)th power of both sides of the above equality, we have

Np−1
1 = Np−1

2 , which implies

p−2∑
i=1

(−1)i−1

i
N i

1 =

p−2∑
i=1

(−1)i−1

i
N i

2.

Calculating (p− 2)th power of both sides of the above equality, we have Np−2
1 =

Np−2
2 , which implies
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p−3∑
i=1

(−1)i−1

i
N i

1 =

p−3∑
i=1

(−1)i−1

i
N i

2.

We can repeat the above arguments in finitely many steps until we have N1 = N2.

Q.E.D.

1.3 A correspondence between N(A) and U(A)

We shall use the following lemma on proving Lemma 8.

Lemma 7 Let p be a prime number. Then the following assertions (1) and (2)

hold true:

(1) For all 0 ≤ j′ ≤ p− 2, we have
∑p−2

�=j′
(
�
j′
) ≡ (−1)j

′+1 (mod p).

(2) Assume p ≥ 3. For all 1 ≤ n ≤ p− 2, we have
∑p−1

j=1 j
n ≡ 0 (mod p).

Proof. (1) In the polynomial ring Fp[x], compare the coefficients of xj
′
(0 ≤

j′ ≤ p− 2) of the both sides of the equality

p−2∑
�=0

(x+ 1)� =

p−1∑
j=1

(
p− 1

j

)
xj−1.

(2) Let F
∗
p denote the set of all invertible elements of the field Fp. Since

F
∗
p is a cyclic group of order p − 1, there exists an element ζ ∈ F

∗
p such that

F
∗
p = {ζi | 1 ≤ i ≤ p− 1}. Since 1 ≤ n ≤ p− 2, we have ζn �= 1, and thereby have

p−1∑
j=1

jn =

p−1∑
i=1

ζin =
ζpn − ζn

ζn − 1
= 0 ∈ Fp.

Q.E.D.

The following lemma states that there exists a one-to-one correspondence

between N(A) and U(A).

Lemma 8 We have Log ◦ Exp = idN(A) and Exp ◦ Log = idU(A).

Proof. We first prove Log ◦ Exp = idN(A). Choose an arbitrary element N of

N(A).

(Log ◦ Exp)(N)

=

p−1∑
�=1

(−1)�−1

�
(Exp(N)− I)� =

p−1∑
�=1

�∑
j=0

(−1)j+1

�

(
�

j

)
Exp(jN)
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=

p−1∑
�=1

−1

�
I +

p−1∑
�=1

�∑
j=1

(−1)j+1

�

(
�

j

)
Exp(jN).

Let

α :=

p−1∑
�=1

−1

�
I = −

p−1∑
�=1

�p−2I and β :=

p−1∑
�=1

�∑
j=1

(−1)j+1

�

(
�

j

)
Exp(jN).

So, we have

(Log ◦ Exp)(N) = α+ β.

We can express α as

α =

{
I if p = 2,

O if p ≥ 3.

We can express β as

β =

p−1∑
�=1

�∑
j=1

(−1)j+1

�

(
�

j

)
Exp(jN) =

p−1∑
�=1

�∑
j=1

(−1)j+1

j

(
�− 1

j − 1

)
Exp(jN)

=

p−1∑
j=1

p−1∑
�=j

(−1)j+1

j

(
�− 1

j − 1

)
Exp(jN)

(a)
=

p−1∑
j=1

−1

j
Exp(jN)

=

p−1∑
j=1

p−1∑
m=0

(−jm−1)
Nm

m!
= −

p−1∑
m=0

⎛⎝p−1∑
j=1

jm−1

⎞⎠ Nm

m!

(b)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

p−1∑
j=1

1

j
I − (p− 1)

N

1!
if p = 2,

−
p−1∑
j=1

1

j
I − (p− 1)

N

1!
−

p−1∑
m=2

⎛⎝p−1∑
j=1

jm−1

⎞⎠ Nm

m!
if p ≥ 3

= α+N,

where we use assertions (1) (and (2)) of Lemma 7 for proving the above equalities

(a) (resp. (b)). Thus we have (Log ◦ Exp)(N) = N .

We next prove Exp ◦ Log = idU(A). Choose an arbitrary element U of U(A).

Let U ′ := (Exp ◦ Log)(U). Then we have Log(U ′) = Log(U). Since Log is injec-

tive, we know that U ′ = U . Q.E.D.

2. A proof of Theorem 1

2.1 Lemmas

Let k be as above, i.e., k is a field of positive characteristic p. We define a
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polynomial matrix Fr(x1, . . . , xr) of Mat(r,k[x1, . . . , xr]) as

Fr(x1, . . . , xr) :=

⎛⎜⎜⎜⎜⎝
x1 x2 · · · xr
xp1 xp2 · · · xpr
...

. . .
...

xp
r−1

1 xp
r−1

2 · · · xp
r−1

r

⎞⎟⎟⎟⎟⎠ .

Let ζ be a generator of the cyclic group F
∗
p of order p− 1.

For any � ≥ 1, we define a polynomial g�(x1, . . . , x�) ∈ k[x1, . . . , x�] as

g�(x1, . . . , x�)

:= x� ·

⎛⎜⎜⎝ ∏
1≤i1≤p−1
1≤j1≤�−1

(x� − ζi1xj1)

⎞⎟⎟⎠ ·

⎛⎜⎜⎝ ∏
1≤i1,i2≤p−1
1≤j1<j2≤�−1

(x� − ζi1xj1 − ζi2xj2)

⎞⎟⎟⎠

· · · · · ·

⎛⎜⎜⎝ ∏
1≤i1,...,i�−1≤p−1

1≤j1<···<j�−1≤�−1

(x� − ζi1xj1 − · · · − ζi�−1xj�−1
)

⎞⎟⎟⎠ .

Clearly, g1(x1) = x1.

Lemma 9 We have

det(Fr(x1, . . . , xr)) =

r∏
�=1

g�(x1, . . . , x�).

In particular if α1, . . . , αr are linearly independent over Fp, then Fr(α1, . . . , αr)

is a regular matrix.

Proof. We can express det(Fr) and gr as{
det(Fr) = det(Fr−1) · xpr−1

r + ( terms of lower degree in xr ),

gr = xp
r−1

r + ( terms of lower degree in xr ).

Since gr divides det(Fr) in k[x1, . . . , xr], we have det(Fr) = det(Fr−1) · gr, which
implies the desired expression. Q.E.D.

For a matrix A ∈ Mat(r,k), we define a submatrix Aj1,j2,...,j�
i1,i2,...,i�

(1 ≤ i1 < i2 <

· · · < i� ≤ r, 1 ≤ j1 < j2 < · · · < j� ≤ r) of A as

Aj1,j2,...,j�
i1,i2,...,i�

:=

⎛⎜⎜⎜⎝
ai1,j1 ai1,j2 · · · ai1,j�
ai2,j1 ai2,j2 · · · ai2,j�
...

. . .
...

ai�,j1 ai�,j2 · · · ai�,j�

⎞⎟⎟⎟⎠ .
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Let Γ := {(μ, ν) | 1 ≤ μ < ν ≤ r} be an ordered set whose ordering 	 is given

as follows: For γ1, γ2 ∈ Γ, we write γ1 	 γ2 if the first non-zero component of

γ2 − γ1 is positive or γ1 = γ2. The number of elements of Γ is r′ := (r(r− 1))/2.

For any A = (ai,j) ∈ Mat(r,k), we define a matrix Ã := (ãγ,δ)γ∈Γ,δ∈Γ ∈
Mat(r′, k) as

ãγ,δ := det(Aδ
γ).

Lemma 10 If A is a regular matrix of Mat(r,k), then Ã is a regular matrix of

Mat(r′, k).

Proof. For any γ = (γ1, γ2) ∈ Γ, we let |γ| := γ1 + γ2. We define a ma-

trix B = (bγ,δ)(γ,δ)∈Γ×Γ ∈ Mat(r′, k) as follows: bγ,δ := (−1)|γ|+|δ| det(As−γ
s−δ ),

where s is a sequence defined by s := (1, 2, . . . , r), and for any (μ, ν) ∈ Γ,

s − (μ, ν) is a subsequence of s obtained from s by deleting μ and ν, i.e.,

s− (μ, ν) := (1, . . . , μ̂, . . . , ν̂, . . . , r). Clearly, Ã ·B = det(A) · Ir′ . Q.E.D.

Now, we prove Theorem 1.

(1) Let α1 := ι(e1). Clearly, α1 �= 0. Let M1 := ρ(e1) ∈ Mat(n, k). Clearly,

Mp
1 = In. So, let N1 := α−1

1 · Log(M1). We can define a map ϕ : Ga → GL(n, k)

as

ϕ(t) := Exp(tN1).

Clearly, ϕ is a representation of Ga and ρ(e1) = ϕ(α1), which implies ρ = ϕ ◦ ι.
(2) Let αi := ι(ei) and let Mi := ρ(ei) for 1 ≤ i ≤ r. Since ρ : (Z/pZ)r →

GL(n, k) is a modular representation, we have the following (i) and (ii):

(i)Mp
i = In for all 1 ≤ i ≤ r.

(ii)MiMj =MjMi for all 1 ≤ i, j ≤ r.

Let N be the set of all p-nilpotent matrices of Mat(n, k) and let U be the set

of all p-unipotent matrices of Mat(n, k). Let Exp : N → U be the truncated

exponential map and let Log : U → N be the truncated logarithmic map. So, we

have the following (iii) and (iv):

(iii) Log(Mi) ∈ N for all 1 ≤ i ≤ r.

(iv) Log(Mi) Log(Mj) = Log(Mj) Log(Mi) for all 1 ≤ i, j ≤ r.

There exist matrices N1, . . . , Nr ∈ Mat(n, k) satisfying

Log(Mi) =
r∑

λ=1

αpλ−1

i Nλ for all 1 ≤ i ≤ r,

since det(αpλ−1

i )1≤i,λ≤r �= 0. Thus we have the following (v) and (vi):
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(v) Np
i = On for all 1 ≤ i ≤ r.

(vi) NiNj = NjNi for all 1 ≤ i, j ≤ r.

Now, we can define a map ϕ : Ga → GL(n, k) as

ϕ(t) := Exp

(
r∑

λ=1

tp
λ−1

Nλ

)
.

Since ρ is p-pyramidic, ϕ is a representation of Ga. Clearly, ρ(ei) = ϕ(αi) for all

1 ≤ i ≤ r, which implies ρ = ϕ ◦ ι.
(3) It is enough to show that ρ is p-pyramidic. Let Xi := ρ(ei) − In

(1 ≤ i ≤ r). Since XiXj = XjXi for all 1 ≤ i, j ≤ r, there exists a regular

matrix P ∈ GL(n, k) such that P−1XiP ’s (1 ≤ i ≤ r) are upper triangular

matrices. Since Xp
i = On, the all diagonal entries of P−1XiP are zeros. Since

1 ≤ n ≤ p, we have

r∏
i=1

(P−1XiP )
�i = On for all �1, . . . , �r ≥ 0 with �1 + · · ·+ �r ≥ p.

This completes the proof of Theorem 1.

3. A proof of Theorem 2

3.1 A proof of assertion (2) of Theorem 2

Let Mi := ρ(ei) for 1 ≤ i ≤ r. We can solve the following equations (∗) for

Nλ ∈ Mat(n, k) (1 ≤ λ ≤ r) and Nμ,ν ∈ Mat(n, k) (1 ≤ μ < ν ≤ r):

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi − In

=

r∑
λ=1

αpλ−1

i Nλ +
∑

1≤μ<ν≤r

αpμ−1+pν−1

i Nμ,ν ( 1 ≤ i ≤ r ),

(Mi − In)(Mj − In)

=
∑

1≤μ<ν≤r

(αpμ−1

i αpν−1

j + αpν−1

i αpμ−1

j )Nμ,ν ( (i, j) ∈ Γ ).

Let A := Fr(α1, . . . , αr) ∈ Mat(r, k). Recall that A is a regular matrix (see

Lemma 9) and that Ã is also a regular matrix (see Lemma 10). It follows that

(Nμ,ν)(μ,ν)∈Γ = ((Mi − In)(Mj − In))(i,j)∈Γ · Ã−1,

(Nλ)1≤λ≤r =

⎛⎝Mi − In −
∑

1≤μ<ν≤r

αpμ−1+pν−1

i Nμ,ν

⎞⎠
1≤i≤r

·A−1.



A NOTE ON MODULAR REPRESENTATIONS OF ELEMENTARY ABELIAN P -GROUPS 29

Since (Mi − In)
2 = On for all 1 ≤ i ≤ r and (Mi − In)(Mj − In) =

(Mj − In)(Mi − In) for all 1 ≤ i < j ≤ r, we have

Nμ,ν Nμ′,ν′ = On ( (μ, ν), (μ′, ν′) ∈ Γ ),

N2
λ = On ( 1 ≤ λ ≤ r ),

NμNν = NνNμ ( (μ, ν) ∈ Γ ).

Since ρ is of 3-mutually annihilating, we have

NλNμ,ν = On ( 1 ≤ λ ≤ r, (μ, ν) ∈ Γ ).

By the first equation of (∗), we have

(Mi − In)(Mj − In) =
∑

1≤μ<ν≤r

(αpμ−1

i αpν−1

j + αpν−1

i αpμ−1

j )NμNν ( (i, j) ∈ Γ ).

The second equality of (∗) implies

NμNν = Nμ,ν ( 1 ≤ μ < ν ≤ r ).

Now, the first equation of (∗) implies that

Mi =

r∏
λ=1

(In + αpλ−1

Nλ) ( 1 ≤ i ≤ r ).

Let ϕ : Ga → GL(n, k) be the map defined by

ϕ(t) =

r∏
λ=1

(In + tp
λ−1

Nλ).

Clearly, ϕ is a representation. So, ρ(ei) = ϕ(αi) for all 1 ≤ i ≤ r, which implies

ρ = ϕ ◦ ι. Q.E.D.

3.2 A proof of assertion (1) of Theorem 2

3.2.1 r = 2

We first consider the case r = 2. Let Mi := ρ(ei) for i = 1, 2. Let A :=

F2(α1, α2). We can solve the following equations (∗) for N1, N2, N1,2 ∈ Mat(n, k):

(∗)

⎧⎪⎨⎪⎩
Mi − In = αiN1 + αp

iN2 + αp+1
i N1,2 ( 1 ≤ i ≤ 2 ),

(M1 − In)(M2 − In) = det(A)N1,2.

Clearly, we have
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N2
1 = N2

2 = On, N1N2 = N2N1, N1N1,2 = On, N2N1,2 = On.

Calculate (M1 − In)(M2 − In) by using the first equation of (∗). Thus N1,2 =

N1N2. Hence we have Mi = (In + αiN1)(In + αp
iN2) for all 1 ≤ i ≤ 2. Now, we

can define a representation ϕ : Ga → GL(n, k) as

ϕ(t) := (In + tN1)(In + tpN2).

Clearly, ρ(ei) = ϕ(αi) for all i = 1, 2, which implies ρ = ϕ ◦ ι.

3.2.2 r = 3

We next consider the case r = 3. Let Mi = ρ(ei) for 1 ≤ i ≤ 3, let

A := F3(α1, α2, α3) and let Ã be as above. So,

A =

⎛⎜⎝ α1 α2 α3

αp
1 αp

2 αp
3

αp2

1 αp2

2 αp2

3

⎞⎟⎠ ,

Ã =

⎛⎜⎝ α1α
p
2 + αp

1α2 α1α
p
3 + αp

1α3 α2α
p
3 + αp

2α3

α1α
p2

2 + αp2

1 α2 α1α
p2

3 + αp2

1 α3 α2α
p2

3 + αp2

2 α3

αp
1α

p2

2 + αp2

1 α
p
2 αp

1α
p2

3 + αp2

1 α
p
3 αp

2α
p2

3 + αp2

2 α
p
3

⎞⎟⎠ .

We can solve the following equations (∗) for N1, N2, N3, N1,2, N1,3, N2,3, N1,2,3

∈ Mat(n, k):

(∗)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi − In

= αiN1 + αp
iN2 + αp2

i N3

+αp+1
i N1,2 + αp2+1

i N1,3 + αp2+p
i N2,3 + αp2+p+1

i N1,2,3

(1 ≤ i ≤ 3),

(Mi − In)(Mj − In)

= (αiα
p
j + αp

iαj)N1,2 + (αiα
p2

j + αp2

i αj)N1,3 + (αp
iα

p2

j + αp2

i α
p
j )N2,3

+

(
αiα

p2+p
j + αp

iα
p2+1
j + αp2

i α
p+1
j

+αp+1
i αp2

j + αp2+1
i αp

j + αp2+p
i αj

)
N1,2,3

(1 ≤ i < j ≤ 3),

(M1 − In)(M2 − In)(M3 − In) = det(A)N1,2,3.

In fact, letting Mi,j := (Mi − In)(Mj − In) for 1 ≤ i, j ≤ 3 and M1,2,3 :=

(M1 − In)(M2 − In)(M3 − In), we have, from the bottom to the top of the above

equations (∗),
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N1,2,3 =
1

det(A)
M1,2,3,

(N1,2, N1,3, N2,3) = (M1,2, M1,3, M2,3) · Ã−1 + (b1,2, b1,3, b2,3) ·M1,2,3

for some b1,2, b1,3, b2,3 ∈ k,

(N1, N2, N3) = (M1 − In, M2 − In, M3 − In) ·A−1

+(M1,2, M1,3, M2,3) · C + (d1,2, d1,3, d2,3) ·M1,2,3

for some C ∈ Mat(3, k) and d1,2, d1,3, d2,3 ∈ k.

Clearly, we have N2
i = On for all 1 ≤ i ≤ 3 and NiNj = NjNi for all 1 ≤ i, j ≤ 3.

For 1 ≤ i, j ≤ 3, let Ai,j be the determinant of the submatrix formed by deleting

the i-th row and the j-th column of A. So,

A−1 =
1

det(A)

⎛⎝A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

⎞⎠ ,

Ã =

⎛⎝A3,3 A3,2 A3,1

A2,3 A2,2 A2,1

A1,3 A1,2 A1,1

⎞⎠ , Ã−1 =
1

det(A)

⎛⎜⎝α
p2

3 αp
3 α3

αp2

2 αp
2 α2

αp2

1 αp
1 α1

⎞⎟⎠ .

Let A = (ai,j)1≤i,j≤3. For all 1 ≤ i ≤ 3 and 1 ≤ j < � ≤ 3 and

m ∈ {1, 2, 3}\{j, �}, we have

NiNj,� =

(
1

det(A)
(Ai,1(M1 − In) +Ai,2(M2 − In) +Ai,3(M3 − In))

)

·
(

1

det(A)
(am,3M1,2 + am,2M1,3 + am,1M2,3)

)

=
1

det(A)2
(Ai,1 am,1 +Ai,2 am,2 +Ai,3 am,3)M1,2,3

=

⎧⎪⎨⎪⎩
On if i �= m,

1

det(A)
M1,2,3 if i = m.

Calculate (M1 − In)(M2 − In)(M3 − In) by using the first equation of (∗). We

have

N1N2N3 =
1

det(A)
M1,2,3.

So, the third equality of (∗) implies



32 R. Tanimoto

N1N2N3 = N1,2,3.

Expand (Mi−In)(Mj−In) by using the first equation of (∗). The second equality

of (∗) can imply

N1N2 = N1,2, N1N3 = N1,3, N2N3 = N2,3.

Hence we have

Mi = (In + αiN1)(In + αp
iN2)(In + αp2

i N3) (1 ≤ i ≤ 3).

Let ϕ : Ga → GL(n, k) be the map defined by

ϕ(t) =
3∏

λ=1

(In + tp
λ−1

Nλ).

Clearly, ϕ is a representation. Thus, ρ(ei) = ϕ(αi) for all 1 ≤ i ≤ 3, which

implies ρ = ϕ ◦ ι.

4. Proofs of Corollaries 3 and 4

4.1 Lemmas

Let

a2,2 :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 0 a1,3 a1,4
0 0 a2,3 a2,4
0 0 0 0

0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ a1,3, a1,4, a2,3, a2,4 ∈ k

⎫⎪⎪⎬⎪⎪⎭
be a subset of Mat(4, k).

Lemma 11 Let X = (xi,j) be an upper triangular matrix of Mat(4, k) satisfying

X2 = On and x2,3 �= 0. Then the following assertions (1) and (2) hold true:

(1) X ∈ a2,2.

(2) For any upper triangular matrix Y = (yi,j) of Mat(4, k) satisfying Y 2 = On

and XY = Y X, we have Y ∈ a2,2.

Proof. (1) The proof is straightforward.

(2) If y2,3 �= 0, then Y ∈ a2,2 (by the above assertion (1)). If y2,3 = 0, then

y1,2 = y3,4 = 0 (since XY = Y X), which implies Y ∈ a2,2. Q.E.D.

Let

h4 :=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
0 h1,2 h1,3 h1,4
0 0 0 h2,4
0 0 0 h3,4
0 0 0 0

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣ h1,2, h1,3, h1,4, h2,4, h3,4 ∈ k

⎫⎪⎪⎬⎪⎪⎭
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be a subset of Mat(4, k).

Lemma 12 Let Ni (1 ≤ i ≤ r) be upper triangular matrices of Mat(4, k) sat-

isfying both conditions N2
i = On for all 1 ≤ i ≤ r and NiNj = NjNi for all

1 ≤ i, j ≤ r. Then one of the following cases (1) and (2) can occur:

(1) Ni ∈ a2,2 for all 1 ≤ i ≤ r.

(2) Ni ∈ h4 for all 1 ≤ i ≤ r.

Proof. Suppose that there exists at least one matrix Nj among Ni (1 ≤ i ≤ r)

such that Nj does not belongs to h4. By Lemma 11, Nj ∈ a2,2 and then the other

(r − 1) matrices N1, . . . , N̂j , . . . , Nr belong to a2,2. Q.E.D.

Lemma 13 Assume r ≥ 3. Let Ni (1 ≤ i ≤ r) be matrices of Mat(4, k) sat-

isfying both conditions N2
i = On for all 1 ≤ i ≤ r and NiNj = NjNi for all

1 ≤ i, j ≤ r. Then the matrices N1, . . . , Nr are of 3-mutually annihilating.

Proof. The proof is straightforward by the above Lemma 12. Q.E.D.

4.2 A proof of Corollary 3

If p ≥ 3, the corollary follows from assertion (3) of Theorem 1. So, if p = 2

and 2 ≤ r ≤ 3, the corollary follows from assertion (1) of Theorem 2. If p = 2

and r ≥ 4, the corollary follows from assertion (2) of Theorem 2 and Lemma 13.

4.3 A proof of Corollary 4

Let ρ : (Z/pZ)r → GL(4, k) be a modular representation. Since k is alge-

braically closed, there exists an injective group homomorphism ι : (Z/pZ)r → Ga.

Let αi := ι(ei) for 1 ≤ i ≤ r. By Theorem 1, we can factor ρ as ρ = ϕ◦ ι for some

representation ϕ : Ga → GL(4, k). By [6, Theorem 2.1], there exists a regular

matrix P ∈ GL(4, k) such that the representation ψ(t) := P−1ϕ(t)P of Ga has

one of the following forms A2,2(t), A3,1(t), Hμ(t):

A2,2(t) :=

⎛⎜⎜⎝
1 0 a b

0 1 c d

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ (a, b, c, d are p-polynomials),

A3,1(t) :=

⎛⎜⎜⎝
1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1

⎞⎟⎟⎠ (a, b, c are p-polynomials),
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Hμ(t) :=

⎛⎜⎜⎝
1 a b μab+ c

0 1 0 μb

0 0 1 μa

0 0 0 1

⎞⎟⎟⎠
⎛⎝a, b, c are p-polynomials,

a, b are linearly independent

over k, and μ ∈ k

⎞⎠ .

If ψ(t) = A2,2(t), then ψ(αi) ∈ A2,2 for all 1 ≤ i ≤ r. If ψ(t) = A3,1(t), then

ψ(αi) ∈ A3,1 for all 1 ≤ i ≤ r. If ψ(t) = Hμ(t), then ψ(αi) ∈ Hμ for all

1 ≤ i ≤ r. Now we define a modular representation σ : (Z/pZ)r → GL(n, k) as

σ(g) := P−1ρ(g)P . Clearly, σ satisfies the condition (1) of Corollary 4. And σ

satisfies the condition (2) of Corollary 4 since σ(ei) = ψ(αi) for all 1 ≤ i ≤ r.

This completes the proof of Corollary 4.
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