# A note on modular representations of elementary abelian $p$-groups 

Ryuji Tanimoto

(Received 29 July, 2018; Revised 29 November, 2018; Accepted 30 November, 2018)


#### Abstract

Let $k$ be an algebraically closed field of positive characteristic $p$, let $\mathbb{G}_{a}$ denote the additive group of $k$, and let $\mathbb{Z} / p \mathbb{Z}$ denote the cyclic group of order $p$. Given a modular representation $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$, we ask whether or not $\rho$ can be extended, by an arbitrary group embedding $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow \mathbb{G}_{a}$, to a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$, i.e., $\rho=\varphi \circ \iota$. We consider some classes of modular representations of elementary abelian $p$-groups, and give some partial positive answers to the above problem. Besides, we classify up to equivalence four-dimensional modular representations $\rho:(\mathbb{Z} / 2 \mathbb{Z})^{r} \rightarrow G L(4, k)$ in characteristic two.


## 0. Introduction

Let $k$ be an algebraically closed field of positive characteristic $p$ and let $\mathbb{G}_{a}$ denote the additive group of $k$. A map $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ is said to be a representation of $\mathbb{G}_{a}$ if $\varphi$ is a homomorphism of algebraic groups over $k$. An elementary abelian p-group of rank $r$ is a finite abelian group which is isomorphic to $(\mathbb{Z} / p \mathbb{Z})^{r}$, where $\mathbb{Z} / p \mathbb{Z}$ denotes the cyclic group of order $p$.

In this article, we consider the following problem:
Given a modular representation $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$, we ask whether or not $\rho$ can be extended, by an arbitrary injective group homomorphism $\iota$ : $(\mathbb{Z} / p \mathbb{Z})^{r} \hookrightarrow \mathbb{G}_{a}$, to a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$, i.e., the following diagram commutes:


We remark that there exists a one-to-one correspondence between the set of all injective group homomorphisms $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \hookrightarrow \mathbb{G}_{a}$ and the set of all elements

[^0]$\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in k^{r}$ such that $\alpha_{1}, \ldots, \alpha_{r}$ are linearly independent over $\mathbb{F}_{p}$.
Let $\mathbb{A}_{k}^{n}$ denote the affine space in dimension $n$ over $k$ and let $E_{r}:=(\mathbb{Z} / p \mathbb{Z})^{r}$. If the above problem is affirmative, any linear action of $E_{r}$ on $\mathbb{A}_{k}^{n}$ can be extended to a linear action of $\mathbb{G}_{a}$ on $\mathbb{A}_{k}^{n}$, and then we have the following commutative diagram:


However, we still do not know whether the quotient $\mathbb{A}_{k}^{n} / \mathbb{G}_{a}$ is an affine algebraic variety over $k$. We are in progress for solving this quotient problem (see $[3,4,5,6])$. In this article, we consider the extension problem in order to study modular representations of elementary abelian $p$-groups through $\mathbb{A}_{k}^{1}$-fibrations on the affine space $\mathbb{A}_{k}^{n}$.

In the following, we state our theorems and corollaries in this article:
We say that matrices $X_{1}, \ldots, X_{r}$ of $\operatorname{Mat}(n, k)$ are $p$-pyramidic if $X_{1}, \ldots, X_{r}$ satisfy

$$
\prod_{i=1}^{r} X_{i}^{l_{i}}=O_{n} \quad \text { for all } l_{1}, \ldots, l_{r} \geq 0 \text { with } l_{1}+\cdots+l_{r} \geq p
$$

For $1 \leq i \leq r$, an element $e_{i}$ of $(\mathbb{Z} / p \mathbb{Z})^{r}$ is defined as the $i$-th component of $e_{i}$ is 1 and the other components of $e_{i}$ are zeros.

A modular representation $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ is said to be $p$-pyramidic if $r$ matrices $\rho\left(e_{1}\right)-I_{n}, \ldots, \rho\left(e_{r}\right)-I_{n}$ are $p$-pyramidic.

The following theorem gives a partial positive answer to the extension problem.

Theorem 1 Let $r \geq 1$ and let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ be a modular representation. Assume that one of the following conditions (1), (2) and (3) holds true:
(1) $r=1$.
(2) $\rho$ is $p$-pyramidic.
(3) $1 \leq n \leq p$.

Then, for any injective group homomorphism $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \hookrightarrow \mathbb{G}_{a}$, there exists a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ satisfying $\rho=\varphi \circ \iota$.

Let $1 \leq j \leq r$. We say that matrices $X_{1}, \ldots, X_{r}$ of $\operatorname{Mat}(n, k)$ are of $j$ mutually annihilating if $X_{1}, \ldots, X_{r}$ satisfy $X_{i_{1}} \cdots X_{i_{j}}=O_{n}$ for all distinct $j$
integers $i_{1}, \ldots, i_{j}$ within $1 \leq i_{1}, \ldots, i_{j} \leq r$.
Let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ be a modular representation. For $2 \leq j \leq r$, we say that $\rho$ is of $j$-mutually annihilating if the matrices $\rho\left(e_{1}\right)-I_{n}, \ldots, \rho\left(e_{r}\right)-I_{n}$ are of $j$-mutually annihilating.

In particular when $p=2$, we have the following partial positive answer to the problem.

Theorem 2 Let $p=2$ and let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ be a modular representation. Assume that one of the following conditions (1) and (2) holds true:
(1) $2 \leq r \leq 3$.
(2) $r \geq 4$, and $\rho$ is of 3-mutually annihilating.

Then, for any injective group homomorphism $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \hookrightarrow \mathbb{G}_{a}$, there exists a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ such that $\rho=\varphi \circ \iota$.

If the dimension $n$ of a modular representation $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ is in the range $1 \leq n \leq 4$, we have the following partial positive answer to the problem.

Corollary 3 Let $r \geq 1$ and let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ be a modular representation. Assume that one of the following conditions (1) and (2) holds true:
(1) $1 \leq n \leq 3$.
(2) $p=2$ and $n=4$.

Then, for any injective group homomorphism $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \hookrightarrow \mathbb{G}_{a}$, there exists a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ such that $\rho=\varphi \circ \iota$.

We know the following concerning modular representations of elementary abelian $p$-groups: There are exactly $p$ inequivalent indecomposable modular representations of $\mathbb{Z} / p \mathbb{Z}$. Bašev [1] classifies indecomposable modular representations of $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ over an algebraically closed field of characteristic two. Campbell, Shank and Wehlau [2] give parametrizations of modular representations of elementary abelian $p$-groups whose representation spaces are in dimensions two and three.

In the following Corollary 4 , with assuming $p=2$, we describe, up to equivalence, four-dimensional modular representations of elementary abelian $p$-groups. We define subsets $\mathcal{A}_{2,2}, \mathcal{A}_{3,1}, \mathcal{H}_{\mu}(\mu \in k)$ of $G L(4, k)$ as follows:

$$
\mathcal{A}_{2,2}:=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & \alpha & \beta \\
0 & 1 & \gamma & \delta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in k\right\}
$$

$$
\begin{aligned}
\mathcal{A}_{3,1} & :=\left\{\left.\left(\begin{array}{cccc}
1 & 0 & 0 & \alpha \\
0 & 1 & 0 & \beta \\
0 & 0 & 1 & \gamma \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in k\right\}, \\
\mathcal{H}_{\mu} & :=\left\{\left.\left(\begin{array}{cccc}
1 & \alpha & \beta & \gamma \\
0 & 1 & 0 & \mu \beta \\
0 & 0 & 1 & \mu \alpha \\
0 & 0 & 0 & 1
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma \in k\right\} .
\end{aligned}
$$

Let $\left(U_{i}\right)_{i=1}^{r}$ be a sequence taken from one of the subsets $\mathcal{A}_{2,2}, \mathcal{A}_{3,1}, \mathcal{H}_{\mu}(\mu \in k)$. Then we can define a modular representation $\sigma:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(4, k)$ as $\sigma\left(n_{1}, \ldots, n_{r}\right):=U_{1}^{n_{1}} \cdots U_{r}^{n_{r}}$.

Corollary 4 Assume $p=2$. Let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(4, k)$ be a modular representation of $(\mathbb{Z} / p \mathbb{Z})^{r}$. Then there exists a modular representation $\sigma:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow$ $G L(4, k)$ satisfying the following conditions (1) and (2):
(1) $\sigma$ is equivalent to $\rho$.
(2) The set $\left\{\sigma\left(e_{i}\right) \mid 1 \leq i \leq r\right\}$ is included in one of the subsets $\mathcal{A}_{2,2}, \mathcal{A}_{3,1}, \mathcal{H}_{\mu}$ ( $\mu \in k$ ),

Acknowledgements. The author would like to thank Professor JeanPhilippe Furter for suggesting the problem to him.

Notations and definitions. For any field $\mathbb{F}$, we denote by $\mathbb{F}\left[x_{1}, \ldots, x_{r}\right]$ a polynomial ring in $r$ variables over $\mathbb{F}$. Let $\mathbb{F}_{p}$ denote the finite field consisting of $p$ elements.

For a commutative ring $R$ with unity, we denote by $\operatorname{Mat}(n, R)$ the ring of all $n \times n$ matrices whose entries belong to $R$, and write $O_{n}$ (and $I_{n}$ ) for the zero element (resp. unity). For any $A \in \operatorname{Mat}(n, R)$, we denote by $\operatorname{det}(A)$ the determinant of $A$. We denote by $G L(n, R)$ the group of all invertible matrices of $\operatorname{Mat}(n, R)$.

Let $G$ be a group. Two representations $\rho_{1}: G \rightarrow G L(n, R)$ and $\rho_{2}: G \rightarrow$ $G L(n, R)$ of $G$ are equivalent if there exists a regular matrix $P \in G L(n, R)$ such that $P^{-1} \rho_{1}(g) P=\rho_{2}(g)$ for all $g \in G$.

Let $k[T]$ be a polynomial ring in one variable over $k$. We say that a polynomial $f(T) \in k[T]$ is a $p$-polynomial if $f(T)$ has the form $f(T)=\sum_{i=0}^{s} a_{i} T^{p^{i}}$ for some $a_{0}, \ldots, a_{s} \in k$.

## 1. A correspondence between $\mathfrak{N}(A)$ and $\mathfrak{U}(A)$

Let $\mathbb{k}$ be a field of positive characteristic $p$ and let $A$ be a not-necessarily
commutative $\mathbb{k}$-algebra with unity. We denote by $O$ the zero element of $A$ under addition and denote by $I$ the unity of $A$ under multiplication. Let $\mathfrak{N}(A)$ be the set of all $p$-nilpotent elements of $A$, and let $\mathfrak{U}(A)$ be the set of all $p$-unipotent elements of $A$, i.e.,

$$
\left\{\begin{aligned}
\mathfrak{N}(A) & :=\left\{N \in A \mid N^{p}=O\right\}, \\
\mathfrak{U}(A) & :=\left\{U \in A \mid U^{p}=I\right\} .
\end{aligned}\right.
$$

### 1.1 The truncated exponential of $p$-nilpotent elements

We can define a map $\operatorname{Exp}: \mathfrak{N}(A) \rightarrow \mathfrak{U}(A)$ as

$$
\operatorname{Exp}(N):=\sum_{i=0}^{p-1} \frac{N^{i}}{i!}
$$

We know the following lemma:
Lemma 5 Let $N_{1}, N_{2}$ be elements of $\mathfrak{N}(A)$ satisfying both conditions $N_{1} N_{2}=$ $N_{2} N_{1}$ and $N_{1}^{i} N_{2}^{j}=O$ for all $i, j \geq 0$ with $i+j \geq p$. Then we have $\operatorname{Exp}\left(N_{1}+N_{2}\right)=\operatorname{Exp}\left(N_{1}\right) \operatorname{Exp}\left(N_{2}\right)$.

### 1.2 The truncated logarithm of $p$-unipotent elements

We can define a map Log: $\mathfrak{U}(A) \rightarrow \mathfrak{N}(A)$ as

$$
\log (U):=\sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i}(U-I)^{i}
$$

Lemma 6 The truncated logarithm Log is injective.
Proof. Choose arbitrary $U_{1}, U_{2} \in \mathfrak{U}(A)$ and assume that $\log \left(U_{1}\right)=\log \left(U_{2}\right)$. Let $N_{1}:=U_{1}-I$ and $N_{2}:=U_{2}-I$. We have

$$
\sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i} N_{1}^{i}=\sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i} N_{2}^{i}
$$

Calculating the $(p-1)$ th power of both sides of the above equality, we have $N_{1}^{p-1}=N_{2}^{p-1}$, which implies

$$
\sum_{i=1}^{p-2} \frac{(-1)^{i-1}}{i} N_{1}^{i}=\sum_{i=1}^{p-2} \frac{(-1)^{i-1}}{i} N_{2}^{i}
$$

Calculating $(p-2)$ th power of both sides of the above equality, we have $N_{1}^{p-2}=$ $N_{2}^{p-2}$, which implies

$$
\sum_{i=1}^{p-3} \frac{(-1)^{i-1}}{i} N_{1}^{i}=\sum_{i=1}^{p-3} \frac{(-1)^{i-1}}{i} N_{2}^{i}
$$

We can repeat the above arguments in finitely many steps until we have $N_{1}=N_{2}$.
Q.E.D.

### 1.3 A correspondence between $\mathfrak{N}(A)$ and $\mathfrak{U}(A)$

We shall use the following lemma on proving Lemma 8.
Lemma 7 Let $p$ be a prime number. Then the following assertions (1) and (2) hold true:
(1) For all $0 \leq j^{\prime} \leq p-2$, we have $\sum_{\ell=j^{\prime}}^{p-2}\binom{\ell}{j^{\prime}} \equiv(-1)^{j^{\prime}+1}(\bmod p)$.
(2) Assume $p \geq 3$. For all $1 \leq n \leq p-2$, we have $\sum_{j=1}^{p-1} j^{n} \equiv 0(\bmod p)$.

Proof. (1) In the polynomial ring $\mathbb{F}_{p}[x]$, compare the coefficients of $x^{j^{\prime}}(0 \leq$ $j^{\prime} \leq p-2$ ) of the both sides of the equality

$$
\sum_{\ell=0}^{p-2}(x+1)^{\ell}=\sum_{j=1}^{p-1}\binom{p-1}{j} x^{j-1}
$$

(2) Let $\mathbb{F}_{p}^{*}$ denote the set of all invertible elements of the field $\mathbb{F}_{p}$. Since $\mathbb{F}_{p}^{*}$ is a cyclic group of order $p-1$, there exists an element $\zeta \in \mathbb{F}_{p}^{*}$ such that $\mathbb{F}_{p}^{*}=\left\{\zeta^{i} \mid 1 \leq i \leq p-1\right\}$. Since $1 \leq n \leq p-2$, we have $\zeta^{n} \neq 1$, and thereby have

$$
\sum_{j=1}^{p-1} j^{n}=\sum_{i=1}^{p-1} \zeta^{i n}=\frac{\zeta^{p n}-\zeta^{n}}{\zeta^{n}-1}=0 \in \mathbb{F}_{p}
$$

Q.E.D.

The following lemma states that there exists a one-to-one correspondence between $\mathfrak{N}(A)$ and $\mathfrak{U}(A)$.

Lemma 8 We have $\log \circ \operatorname{Exp}=\mathrm{id}_{\mathfrak{N}(A)}$ and $\operatorname{Exp} \circ \log =\mathrm{id}_{\mathfrak{U}_{(A)}}$.
Proof. We first prove $\log \circ \operatorname{Exp}=\operatorname{id}_{\mathfrak{N}(A)}$. Choose an arbitrary element $N$ of $\mathfrak{N}(A)$.
$(\log \circ \operatorname{Exp})(N)$

$$
=\sum_{\ell=1}^{p-1} \frac{(-1)^{\ell-1}}{\ell}(\operatorname{Exp}(N)-I)^{\ell}=\sum_{\ell=1}^{p-1} \sum_{j=0}^{\ell} \frac{(-1)^{j+1}}{\ell}\binom{\ell}{j} \operatorname{Exp}(j N)
$$

$$
=\sum_{\ell=1}^{p-1} \frac{-1}{\ell} I+\sum_{\ell=1}^{p-1} \sum_{j=1}^{\ell} \frac{(-1)^{j+1}}{\ell}\binom{\ell}{j} \operatorname{Exp}(j N) .
$$

Let
$\alpha:=\sum_{\ell=1}^{p-1} \frac{-1}{\ell} I=-\sum_{\ell=1}^{p-1} \ell^{p-2} I \quad$ and $\quad \beta:=\sum_{\ell=1}^{p-1} \sum_{j=1}^{\ell} \frac{(-1)^{j+1}}{\ell}\binom{\ell}{j} \operatorname{Exp}(j N)$.
So, we have

$$
(\log \circ \operatorname{Exp})(N)=\alpha+\beta
$$

We can express $\alpha$ as

$$
\alpha=\left\{\begin{array}{lll}
I & \text { if } & p=2 \\
O & \text { if } & p \geq 3
\end{array}\right.
$$

We can express $\beta$ as

$$
\begin{aligned}
\beta & =\sum_{\ell=1}^{p-1} \sum_{j=1}^{\ell} \frac{(-1)^{j+1}}{\ell}\binom{\ell}{j} \operatorname{Exp}(j N)=\sum_{\ell=1}^{p-1} \sum_{j=1}^{\ell} \frac{(-1)^{j+1}}{j}\binom{\ell-1}{j-1} \operatorname{Exp}(j N) \\
& =\sum_{j=1}^{p-1} \sum_{\ell=j}^{p-1} \frac{(-1)^{j+1}}{j}\binom{\ell-1}{j-1} \operatorname{Exp}(j N) \stackrel{(\text { a })}{p-1} \sum_{j=1}^{p-1} \frac{-1}{j} \operatorname{Exp}(j N) \\
& =\sum_{j=1}^{p-1} \sum_{m=0}^{p-1}\left(-j^{m-1}\right) \frac{N^{m}}{m!}=-\sum_{m=0}^{p-1}\left(\sum_{j=1}^{p-1} j^{m-1}\right) \frac{N^{m}}{m!} \\
& \stackrel{(\text { b) }}{=}\left\{\begin{array}{l}
-\sum_{j=1}^{p-1} \frac{1}{j} I-(p-1) \frac{N}{1!} \quad \text { if } \quad p=2, \\
-\sum_{j=1}^{p-1} \frac{1}{j} I-(p-1) \frac{N}{1!}-\sum_{m=2}^{p-1}\left(\sum_{j=1}^{p-1} j^{m-1}\right) \frac{N^{m}}{m!} \quad \text { if } \quad p \geq 3
\end{array}\right. \\
& =\alpha+N,
\end{aligned}
$$

where we use assertions (1) (and (2)) of Lemma 7 for proving the above equalities (a) (resp. (b)). Thus we have $(\log \circ \operatorname{Exp})(N)=N$.

We next prove $\operatorname{Exp} \circ \log =\operatorname{id}_{\mathfrak{U}(A)}$. Choose an arbitrary element $U$ of $\mathfrak{U}(A)$. Let $U^{\prime}:=(\operatorname{Exp} \circ \log )(U)$. Then we have $\log \left(U^{\prime}\right)=\log (U)$. Since Log is injective, we know that $U^{\prime}=U$.
Q.E.D.

## 2. A proof of Theorem 1

### 2.1 Lemmas

Let $\mathbb{k}$ be as above, i.e., $\mathbb{k}$ is a field of positive characteristic $p$. We define a
polynomial matrix $F_{r}\left(x_{1}, \ldots, x_{r}\right)$ of $\operatorname{Mat}\left(r, \mathbb{k}\left[x_{1}, \ldots, x_{r}\right]\right)$ as

$$
F_{r}\left(x_{1}, \ldots, x_{r}\right):=\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{r} \\
x_{1}^{p} & x_{2}^{p} & \cdots & x_{r}^{p} \\
\vdots & & \ddots & \vdots \\
x_{1}^{p^{r-1}} & x_{2}^{p^{r-1}} & \cdots & x_{r}^{p^{r-1}}
\end{array}\right)
$$

Let $\zeta$ be a generator of the cyclic group $\mathbb{F}_{p}^{*}$ of order $p-1$.
For any $\ell \geq 1$, we define a polynomial $g_{\ell}\left(x_{1}, \ldots, x_{\ell}\right) \in \mathbb{k}\left[x_{1}, \ldots, x_{\ell}\right]$ as

$$
\begin{aligned}
& g_{\ell}\left(x_{1}, \ldots, x_{\ell}\right) \\
& :=x_{\ell} \cdot\left(\prod_{\substack{1 \leq i_{1} \leq p-1 \\
1 \leq j_{1} \leq \ell-1}}\left(x_{\ell}-\zeta^{i_{1}} x_{j_{1}}\right)\right) \cdot\left(\prod_{\substack{1 \leq i_{1}, i_{2} \leq p-1 \\
1 \leq j_{1}<j_{2} \leq \ell-1}}\left(x_{\ell}-\zeta^{i_{1}} x_{j_{1}}-\zeta^{i_{2}} x_{j_{2}}\right)\right) \\
& \\
& \quad \ldots \cdots \cdot\left(\prod_{\substack{1 \leq i_{1}, \ldots, i_{\ell-1} \leq p-1 \\
1 \leq j_{1}<\cdots<j_{\ell-1} \leq \ell-1}}\left(x_{\ell}-\zeta^{i_{1}} x_{j_{1}}-\cdots-\zeta^{i_{\ell-1}} x_{j_{\ell-1}}\right)\right)
\end{aligned}
$$

Clearly, $g_{1}\left(x_{1}\right)=x_{1}$.
Lemma 9 We have

$$
\operatorname{det}\left(F_{r}\left(x_{1}, \ldots, x_{r}\right)\right)=\prod_{\ell=1}^{r} g_{\ell}\left(x_{1}, \ldots, x_{\ell}\right)
$$

In particular if $\alpha_{1}, \ldots, \alpha_{r}$ are linearly independent over $\mathbb{F}_{p}$, then $F_{r}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is a regular matrix.

Proof. We can express $\operatorname{det}\left(F_{r}\right)$ and $g_{r}$ as

$$
\left\{\begin{aligned}
\operatorname{det}\left(F_{r}\right) & =\operatorname{det}\left(F_{r-1}\right) \cdot x_{r}^{p^{r-1}}+\left(\text { terms of lower degree in } x_{r}\right) \\
g_{r} & =x_{r}^{p^{r-1}}+\left(\text { terms of lower degree in } x_{r}\right)
\end{aligned}\right.
$$

Since $g_{r}$ divides $\operatorname{det}\left(F_{r}\right)$ in $\mathbb{k}\left[x_{1}, \ldots, x_{r}\right]$, we have $\operatorname{det}\left(F_{r}\right)=\operatorname{det}\left(F_{r-1}\right) \cdot g_{r}$, which implies the desired expression.
Q.E.D.

For a matrix $A \in \operatorname{Mat}(r, \mathbb{k})$, we define a submatrix $A_{i_{1}, i_{2}, \ldots, i_{\ell}}^{j_{1}, j_{2}, \ldots, j_{\ell}}\left(1 \leq i_{1}<i_{2}<\right.$ $\left.\cdots<i_{\ell} \leq r, 1 \leq j_{1}<j_{2}<\cdots<j_{\ell} \leq r\right)$ of $A$ as

$$
A_{i_{1}, i_{2}, \ldots, i_{\ell}}^{j_{1}, j_{2}, \ldots, j_{\ell}}:=\left(\begin{array}{cccc}
a_{i_{1}, j_{1}} & a_{i_{1}, j_{2}} & \cdots & a_{i_{1}, j_{\ell}} \\
a_{i_{2}, j_{1}} & a_{i_{2}, j_{2}} & \cdots & a_{i_{2}, j_{\ell}} \\
\vdots & & \ddots & \vdots \\
a_{i_{\ell}, j_{1}} & a_{i_{\ell}, j_{2}} & \cdots & a_{i_{\ell}, j_{\ell}}
\end{array}\right) .
$$

Let $\Gamma:=\{(\mu, \nu) \mid 1 \leq \mu<\nu \leq r\}$ be an ordered set whose ordering $\preceq$ is given as follows: For $\gamma_{1}, \gamma_{2} \in \Gamma$, we write $\gamma_{1} \preceq \gamma_{2}$ if the first non-zero component of $\gamma_{2}-\gamma_{1}$ is positive or $\gamma_{1}=\gamma_{2}$. The number of elements of $\Gamma$ is $r^{\prime}:=(r(r-1)) / 2$.

For any $A=\left(a_{i, j}\right) \in \operatorname{Mat}(r, \mathbb{k})$, we define a matrix $\widetilde{A}:=\left(\widetilde{a}_{\gamma, \delta}\right)_{\gamma \in \Gamma, \delta \in \Gamma} \in$ $\operatorname{Mat}\left(r^{\prime}, \mathbb{k}\right)$ as

$$
\widetilde{a}_{\gamma, \delta}:=\operatorname{det}\left(A_{\gamma}^{\delta}\right) .
$$

Lemma 10 If $A$ is a regular matrix of $\operatorname{Mat}(r, \mathbb{k})$, then $\widetilde{A}$ is a regular matrix of $\operatorname{Mat}\left(r^{\prime}, \mathbb{k}\right)$.

Proof. For any $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \Gamma$, we let $|\gamma|:=\gamma_{1}+\gamma_{2}$. We define a ma$\operatorname{trix} B=\left(b_{\gamma, \delta}\right)_{(\gamma, \delta) \in \Gamma \times \Gamma} \in \operatorname{Mat}\left(r^{\prime}, \mathbb{k}\right)$ as follows: $b_{\gamma, \delta}:=(-1)^{|\gamma|+|\delta|} \operatorname{det}\left(A_{s-\delta}^{s-\gamma}\right)$, where $s$ is a sequence defined by $s:=(1,2, \ldots, r)$, and for any $(\mu, \nu) \in \Gamma$, $s-(\mu, \nu)$ is a subsequence of $s$ obtained from $s$ by deleting $\mu$ and $\nu$, i.e., $s-(\mu, \nu):=(1, \ldots, \widehat{\mu}, \ldots, \widehat{\nu}, \ldots, r)$. Clearly, $\widetilde{A} \cdot B=\operatorname{det}(A) \cdot I_{r^{\prime}} . \quad$ Q.E.D.

Now, we prove Theorem 1.
(1) Let $\alpha_{1}:=\iota\left(e_{1}\right)$. Clearly, $\alpha_{1} \neq 0$. Let $M_{1}:=\rho\left(e_{1}\right) \in \operatorname{Mat}(n, k)$. Clearly, $M_{1}^{p}=I_{n}$. So, let $N_{1}:=\alpha_{1}^{-1} \cdot \log \left(M_{1}\right)$. We can define a map $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ as

$$
\varphi(t):=\operatorname{Exp}\left(t N_{1}\right)
$$

Clearly, $\varphi$ is a representation of $\mathbb{G}_{a}$ and $\rho\left(e_{1}\right)=\varphi\left(\alpha_{1}\right)$, which implies $\rho=\varphi \circ \iota$.
(2) Let $\alpha_{i}:=\iota\left(e_{i}\right)$ and let $M_{i}:=\rho\left(e_{i}\right)$ for $1 \leq i \leq r$. Since $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow$ $G L(n, k)$ is a modular representation, we have the following (i) and (ii):
(i) $M_{i}^{p}=I_{n}$ for all $1 \leq i \leq r$.
(ii) $M_{i} M_{j}=M_{j} M_{i}$ for all $1 \leq i, j \leq r$.

Let $\mathfrak{N}$ be the set of all $p$-nilpotent matrices of $\operatorname{Mat}(n, k)$ and let $\mathfrak{U}$ be the set of all $p$-unipotent matrices of $\operatorname{Mat}(n, k)$. Let $\operatorname{Exp}: \mathfrak{N} \rightarrow \mathfrak{U}$ be the truncated exponential map and let Log: $\mathfrak{U} \rightarrow \mathfrak{N}$ be the truncated logarithmic map. So, we have the following (iii) and (iv):
(iii) $\log \left(M_{i}\right) \in \mathfrak{N}$ for all $1 \leq i \leq r$.
(iv) $\log \left(M_{i}\right) \log \left(M_{j}\right)=\log \left(M_{j}\right) \log \left(M_{i}\right)$ for all $1 \leq i, j \leq r$.

There exist matrices $N_{1}, \ldots, N_{r} \in \operatorname{Mat}(n, k)$ satisfying

$$
\log \left(M_{i}\right)=\sum_{\lambda=1}^{r} \alpha_{i}^{p^{\lambda-1}} N_{\lambda} \quad \text { for all } 1 \leq i \leq r,
$$

since $\operatorname{det}\left(\alpha_{i}^{p^{\lambda-1}}\right)_{1 \leq i, \lambda \leq r} \neq 0$. Thus we have the following (v) and (vi):
(v) $N_{i}^{p}=O_{n}$ for all $1 \leq i \leq r$.
(vi) $N_{i} N_{j}=N_{j} N_{i}$ for all $1 \leq i, j \leq r$.

Now, we can define a map $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ as

$$
\varphi(t):=\operatorname{Exp}\left(\sum_{\lambda=1}^{r} t^{p^{\lambda-1}} N_{\lambda}\right)
$$

Since $\rho$ is $p$-pyramidic, $\varphi$ is a representation of $\mathbb{G}_{a}$. Clearly, $\rho\left(e_{i}\right)=\varphi\left(\alpha_{i}\right)$ for all $1 \leq i \leq r$, which implies $\rho=\varphi \circ \iota$.
(3) It is enough to show that $\rho$ is $p$-pyramidic. Let $X_{i}:=\rho\left(e_{i}\right)-I_{n}$ $(1 \leq i \leq r)$. Since $X_{i} X_{j}=X_{j} X_{i}$ for all $1 \leq i, j \leq r$, there exists a regular matrix $P \in G L(n, k)$ such that $P^{-1} X_{i} P$ 's $(1 \leq i \leq r)$ are upper triangular matrices. Since $X_{i}^{p}=O_{n}$, the all diagonal entries of $P^{-1} X_{i} P$ are zeros. Since $1 \leq n \leq p$, we have

$$
\prod_{i=1}^{r}\left(P^{-1} X_{i} P\right)^{\ell_{i}}=O_{n} \quad \text { for all } \ell_{1}, \ldots, \ell_{r} \geq 0 \text { with } \ell_{1}+\cdots+\ell_{r} \geq p
$$

This completes the proof of Theorem 1.

## 3. A proof of Theorem 2

### 3.1 A proof of assertion (2) of Theorem 2

Let $M_{i}:=\rho\left(e_{i}\right)$ for $1 \leq i \leq r$. We can solve the following equations ( $*$ ) for $N_{\lambda} \in \operatorname{Mat}(n, k)(1 \leq \lambda \leq r)$ and $N_{\mu, \nu} \in \operatorname{Mat}(n, k)(1 \leq \mu<\nu \leq r):$

$$
(*)\left\{\begin{array}{l}
M_{i}-I_{n} \\
\quad=\sum_{\lambda=1}^{r} \alpha_{i}^{p^{\lambda-1}} N_{\lambda}+\sum_{1 \leq \mu<\nu \leq r} \alpha_{i}^{p^{\mu-1}+p^{\nu-1}} N_{\mu, \nu} \quad(1 \leq i \leq r), \\
\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right) \\
=\sum_{1 \leq \mu<\nu \leq r}\left(\alpha_{i}^{p^{\mu-1}} \alpha_{j}^{p^{\nu-1}}+\alpha_{i}^{p^{\nu-1}} \alpha_{j}^{p^{\mu-1}}\right) N_{\mu, \nu} \quad((i, j) \in \Gamma) .
\end{array}\right.
$$

Let $A:=F_{r}\left(\alpha_{1}, \ldots, \alpha_{r}\right) \in \operatorname{Mat}(r, k)$. Recall that $A$ is a regular matrix (see Lemma 9) and that $\widetilde{A}$ is also a regular matrix (see Lemma 10). It follows that

$$
\begin{aligned}
\left(N_{\mu, \nu}\right)_{(\mu, \nu) \in \Gamma} & =\left(\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right)\right)_{(i, j) \in \Gamma} \cdot \widetilde{A}^{-1} \\
\left(N_{\lambda}\right)_{1 \leq \lambda \leq r} & =\left(M_{i}-I_{n}-\sum_{1 \leq \mu<\nu \leq r} \alpha_{i}^{p^{\mu-1}+p^{\nu-1}} N_{\mu, \nu}\right)_{1 \leq i \leq r} \cdot A^{-1}
\end{aligned}
$$

Since $\left(M_{i}-I_{n}\right)^{2}=O_{n}$ for all $1 \leq i \leq r$ and $\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right)=$ $\left(M_{j}-I_{n}\right)\left(M_{i}-I_{n}\right)$ for all $1 \leq i<j \leq r$, we have

$$
\begin{array}{ll}
N_{\mu, \nu} N_{\mu^{\prime}, \nu^{\prime}}=O_{n} & \left((\mu, \nu),\left(\mu^{\prime}, \nu^{\prime}\right) \in \Gamma\right), \\
N_{\lambda}^{2}=O_{n} & (1 \leq \lambda \leq r), \\
N_{\mu} N_{\nu}=N_{\nu} N_{\mu} & ((\mu, \nu) \in \Gamma) .
\end{array}
$$

Since $\rho$ is of 3-mutually annihilating, we have

$$
N_{\lambda} N_{\mu, \nu}=O_{n} \quad(1 \leq \lambda \leq r,(\mu, \nu) \in \Gamma)
$$

By the first equation of (*), we have

$$
\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right)=\sum_{1 \leq \mu<\nu \leq r}\left(\alpha_{i}^{p^{\mu-1}} \alpha_{j}^{p^{\nu-1}}+\alpha_{i}^{p^{\nu-1}} \alpha_{j}^{p^{\mu-1}}\right) N_{\mu} N_{\nu} \quad((i, j) \in \Gamma)
$$

The second equality of ( $*$ ) implies

$$
N_{\mu} N_{\nu}=N_{\mu, \nu} \quad(1 \leq \mu<\nu \leq r) .
$$

Now, the first equation of $(*)$ implies that

$$
M_{i}=\prod_{\lambda=1}^{r}\left(I_{n}+\alpha^{p^{\lambda-1}} N_{\lambda}\right) \quad(1 \leq i \leq r) .
$$

Let $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ be the map defined by

$$
\varphi(t)=\prod_{\lambda=1}^{r}\left(I_{n}+t^{p^{\lambda-1}} N_{\lambda}\right)
$$

Clearly, $\varphi$ is a representation. So, $\rho\left(e_{i}\right)=\varphi\left(\alpha_{i}\right)$ for all $1 \leq i \leq r$, which implies $\rho=\varphi \circ \iota$.
Q.E.D.

### 3.2 A proof of assertion (1) of Theorem 2

3.2.1 $r=2$

We first consider the case $r=2$. Let $M_{i}:=\rho\left(e_{i}\right)$ for $i=1,2$. Let $A:=$ $F_{2}\left(\alpha_{1}, \alpha_{2}\right)$. We can solve the following equations $(*)$ for $N_{1}, N_{2}, N_{1,2} \in \operatorname{Mat}(n, k)$ :

$$
(*)\left\{\begin{array}{l}
M_{i}-I_{n}=\alpha_{i} N_{1}+\alpha_{i}^{p} N_{2}+\alpha_{i}^{p+1} N_{1,2} \quad(1 \leq i \leq 2), \\
\left(M_{1}-I_{n}\right)\left(M_{2}-I_{n}\right)=\operatorname{det}(A) N_{1,2} .
\end{array}\right.
$$

Clearly, we have

$$
N_{1}^{2}=N_{2}^{2}=O_{n}, \quad N_{1} N_{2}=N_{2} N_{1}, \quad N_{1} N_{1,2}=O_{n}, \quad N_{2} N_{1,2}=O_{n} .
$$

Calculate $\left(M_{1}-I_{n}\right)\left(M_{2}-I_{n}\right)$ by using the first equation of $(*)$. Thus $N_{1,2}=$ $N_{1} N_{2}$. Hence we have $M_{i}=\left(I_{n}+\alpha_{i} N_{1}\right)\left(I_{n}+\alpha_{i}^{p} N_{2}\right)$ for all $1 \leq i \leq 2$. Now, we can define a representation $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ as

$$
\varphi(t):=\left(I_{n}+t N_{1}\right)\left(I_{n}+t^{p} N_{2}\right) .
$$

Clearly, $\rho\left(e_{i}\right)=\varphi\left(\alpha_{i}\right)$ for all $i=1,2$, which implies $\rho=\varphi \circ \iota$.

### 3.2.2 $r=3$

We next consider the case $r=3$. Let $M_{i}=\rho\left(e_{i}\right)$ for $1 \leq i \leq 3$, let $A:=F_{3}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and let $\widetilde{A}$ be as above. So,

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{1}^{p} & \alpha_{2}^{p} & \alpha_{3}^{p} \\
\alpha_{1}^{p^{2}} & \alpha_{2}^{p^{2}} & \alpha_{3}^{p^{2}}
\end{array}\right), \\
\widetilde{A} & =\left(\begin{array}{ccc}
\alpha_{1} \alpha_{2}^{p}+\alpha_{1}^{p} \alpha_{2} & \alpha_{1} \alpha_{3}^{p}+\alpha_{1}^{p} \alpha_{3} & \alpha_{2} \alpha_{3}^{p}+\alpha_{2}^{p} \alpha_{3} \\
\alpha_{1} \alpha_{2}^{p^{2}}+\alpha_{1}^{p^{2}} \alpha_{2} & \alpha_{1} \alpha_{3}^{p^{2}}+\alpha_{1}^{p^{2}} \alpha_{3} & \alpha_{2} \alpha_{3}^{p^{2}}+\alpha_{2}^{p^{2}} \alpha_{3} \\
\alpha_{1}^{p} \alpha_{2}^{p^{2}}+\alpha_{1}^{p^{2}} \alpha_{2}^{p} & \alpha_{1}^{p} \alpha_{3}^{p^{2}}+\alpha_{1}^{p^{2}} \alpha_{3}^{p} & \alpha_{2}^{p} \alpha_{3}^{p^{2}}+\alpha_{2}^{p^{2}} \alpha_{3}^{p}
\end{array}\right) .
\end{aligned}
$$

We can solve the following equations $(*)$ for $N_{1}, N_{2}, N_{3}, N_{1,2}, N_{1,3}, N_{2,3}, N_{1,2,3}$ $\in \operatorname{Mat}(n, k)$ :

$$
\begin{aligned}
& (*)\left\{\begin{aligned}
& M_{i}- I_{n} \\
&= \alpha_{i} N_{1}+\alpha_{i}^{p} N_{2}+\alpha_{i}^{p^{2}} N_{3} \\
&+\alpha_{i}^{p+1} N_{1,2}+\alpha_{i}^{p^{p^{2}+1}} N_{1,3}+\alpha_{i}^{p^{2}+p} N_{2,3}+\alpha_{i}^{p^{2}+p+1} N_{1,2,3} \\
&(1 \leq i \leq 3), \\
&\left(M_{i}-\right.\left.I_{n}\right)\left(M_{j}-I_{n}\right) \\
&=\left(\alpha_{i} \alpha_{j}^{p}+\alpha_{i}^{p} \alpha_{j}\right) N_{1,2}+\left(\alpha_{i} \alpha_{j}^{p^{2}}+\alpha_{i}^{p^{2}} \alpha_{j}\right) N_{1,3}+\left(\alpha_{i}^{p} \alpha_{j}^{p^{2}}+\alpha_{i}^{p^{2}} \alpha_{j}^{p}\right) N_{2,3} \\
&+\binom{\alpha_{i} \alpha_{j}^{p^{2}+p}+\alpha_{i}^{p} \alpha_{j}^{p^{2}+1}+\alpha_{i}^{p^{2}} \alpha_{j}^{p+1}}{+\alpha_{i}^{p+1} \alpha_{j}^{p^{2}}+\alpha_{i}^{p^{2}+1} \alpha_{j}^{p}+\alpha_{i}^{p^{2}+p} \alpha_{j}} N_{1,2,3}
\end{aligned}\right. \\
& (1 \leq i<j \leq 3),
\end{aligned}
$$

In fact, letting $M_{i, j}:=\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right)$ for $1 \leq i, j \leq 3$ and $M_{1,2,3}:=$ $\left(M_{1}-I_{n}\right)\left(M_{2}-I_{n}\right)\left(M_{3}-I_{n}\right)$, we have, from the bottom to the top of the above equations (*),

$$
\begin{aligned}
& N_{1,2,3}=\frac{1}{\operatorname{det}(A)} M_{1,2,3}, \\
& \left(N_{1,2}, N_{1,3}, N_{2,3}\right)=\left(M_{1,2}, M_{1,3}, M_{2,3}\right) \cdot \widetilde{A}^{-1}+\left(b_{1,2}, b_{1,3}, b_{2,3}\right) \cdot M_{1,2,3}
\end{aligned}
$$

$$
\text { for some } b_{1,2}, b_{1,3}, b_{2,3} \in k \text {, }
$$

$$
\begin{aligned}
& \left(N_{1}, N_{2}, N_{3}\right)=\left(M_{1}-I_{n}, M_{2}-I_{n}, M_{3}-I_{n}\right) \cdot A^{-1} \\
& \quad+\left(M_{1,2}, M_{1,3}, M_{2,3}\right) \cdot C+\left(d_{1,2}, d_{1,3}, d_{2,3}\right) \cdot M_{1,2,3} \\
& \quad \quad \text { for some } C \in \operatorname{Mat}(3, k) \text { and } d_{1,2}, d_{1,3}, d_{2,3} \in k .
\end{aligned}
$$

Clearly, we have $N_{i}^{2}=O_{n}$ for all $1 \leq i \leq 3$ and $N_{i} N_{j}=N_{j} N_{i}$ for all $1 \leq i, j \leq 3$. For $1 \leq i, j \leq 3$, let $A_{i, j}$ be the determinant of the submatrix formed by deleting the $i$-th row and the $j$-th column of $A$. So,

$$
\begin{aligned}
& A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{lll}
A_{1,1} & A_{2,1} & A_{3,1} \\
A_{1,2} & A_{2,2} & A_{3,2} \\
A_{1,3} & A_{2,3} & A_{3,3}
\end{array}\right), \\
& \widetilde{A}=\left(\begin{array}{lll}
A_{3,3} & A_{3,2} & A_{3,1} \\
A_{2,3} & A_{2,2} & A_{2,1} \\
A_{1,3} & A_{1,2} & A_{1,1}
\end{array}\right), \quad \widetilde{A}^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{lll}
\alpha_{3}^{p^{2}} & \alpha_{3}^{p} & \alpha_{3} \\
\alpha_{2}^{p^{2}} & \alpha_{2}^{p} & \alpha_{2} \\
\alpha_{1}^{p^{2}} & \alpha_{1}^{p} & \alpha_{1}
\end{array}\right) .
\end{aligned}
$$

Let $A=\left(a_{i, j}\right)_{1 \leq i, j \leq 3}$. For all $1 \leq i \leq 3$ and $1 \leq j<\ell \leq 3$ and $m \in\{1,2,3\} \backslash\{j, \ell\}$, we have

$$
\begin{aligned}
N_{i} N_{j, \ell}= & \left(\frac{1}{\operatorname{det}(A)}\left(A_{i, 1}\left(M_{1}-I_{n}\right)+A_{i, 2}\left(M_{2}-I_{n}\right)+A_{i, 3}\left(M_{3}-I_{n}\right)\right)\right) \\
& \cdot\left(\frac{1}{\operatorname{det}(A)}\left(a_{m, 3} M_{1,2}+a_{m, 2} M_{1,3}+a_{m, 1} M_{2,3}\right)\right) \\
= & \frac{1}{\operatorname{det}(A)^{2}}\left(A_{i, 1} a_{m, 1}+A_{i, 2} a_{m, 2}+A_{i, 3} a_{m, 3}\right) M_{1,2,3} \\
= & \begin{cases}O_{n} & \text { if } \quad i \neq m, \\
\frac{1}{\operatorname{det}(A)} M_{1,2,3} & \text { if } \quad i=m .\end{cases}
\end{aligned}
$$

Calculate $\left(M_{1}-I_{n}\right)\left(M_{2}-I_{n}\right)\left(M_{3}-I_{n}\right)$ by using the first equation of $(*)$. We have

$$
N_{1} N_{2} N_{3}=\frac{1}{\operatorname{det}(A)} M_{1,2,3} .
$$

So, the third equality of $(*)$ implies

$$
N_{1} N_{2} N_{3}=N_{1,2,3}
$$

Expand $\left(M_{i}-I_{n}\right)\left(M_{j}-I_{n}\right)$ by using the first equation of $(*)$. The second equality of $(*)$ can imply

$$
N_{1} N_{2}=N_{1,2}, \quad N_{1} N_{3}=N_{1,3}, \quad N_{2} N_{3}=N_{2,3}
$$

Hence we have

$$
M_{i}=\left(I_{n}+\alpha_{i} N_{1}\right)\left(I_{n}+\alpha_{i}^{p} N_{2}\right)\left(I_{n}+\alpha_{i}^{p^{2}} N_{3}\right) \quad(1 \leq i \leq 3) .
$$

Let $\varphi: \mathbb{G}_{a} \rightarrow G L(n, k)$ be the map defined by

$$
\varphi(t)=\prod_{\lambda=1}^{3}\left(I_{n}+t^{p^{\lambda-1}} N_{\lambda}\right)
$$

Clearly, $\varphi$ is a representation. Thus, $\rho\left(e_{i}\right)=\varphi\left(\alpha_{i}\right)$ for all $1 \leq i \leq 3$, which implies $\rho=\varphi \circ \iota$.

## 4. Proofs of Corollaries 3 and 4

### 4.1 Lemmas

Let

$$
\mathfrak{a}_{2,2}:=\left\{\left.\left(\begin{array}{cccc}
0 & 0 & a_{1,3} & a_{1,4} \\
0 & 0 & a_{2,3} & a_{2,4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, a_{1,3}, a_{1,4}, a_{2,3}, a_{2,4} \in k\right\}
$$

be a subset of $\operatorname{Mat}(4, k)$.
Lemma 11 Let $X=\left(x_{i, j}\right)$ be an upper triangular matrix of $\operatorname{Mat}(4, k)$ satisfying $X^{2}=O_{n}$ and $x_{2,3} \neq 0$. Then the following assertions (1) and (2) hold true:
(1) $X \in \mathfrak{a}_{2,2}$.
(2) For any upper triangular matrix $Y=\left(y_{i, j}\right)$ of $\operatorname{Mat}(4, k)$ satisfying $Y^{2}=O_{n}$ and $X Y=Y X$, we have $Y \in \mathfrak{a}_{2,2}$.

Proof. (1) The proof is straightforward.
(2) If $y_{2,3} \neq 0$, then $Y \in \mathfrak{a}_{2,2}$ (by the above assertion (1)). If $y_{2,3}=0$, then $y_{1,2}=y_{3,4}=0($ since $X Y=Y X)$, which implies $Y \in \mathfrak{a}_{2,2}$.
Q.E.D.

Let

$$
\mathfrak{h}_{4}:=\left\{\left.\left(\begin{array}{cccc}
0 & h_{1,2} & h_{1,3} & h_{1,4} \\
0 & 0 & 0 & h_{2,4} \\
0 & 0 & 0 & h_{3,4} \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, h_{1,2}, h_{1,3}, h_{1,4}, h_{2,4}, h_{3,4} \in k\right\}
$$

be a subset of $\operatorname{Mat}(4, k)$.
Lemma 12 Let $N_{i}(1 \leq i \leq r)$ be upper triangular matrices of Mat $(4, k)$ satisfying both conditions $N_{i}^{2}=O_{n}$ for all $1 \leq i \leq r$ and $N_{i} N_{j}=N_{j} N_{i}$ for all $1 \leq i, j \leq r$. Then one of the following cases (1) and (2) can occur:
(1) $N_{i} \in \mathfrak{a}_{2,2}$ for all $1 \leq i \leq r$.
(2) $N_{i} \in \mathfrak{h}_{4}$ for all $1 \leq i \leq r$.

Proof. Suppose that there exists at least one matrix $N_{j}$ among $N_{i}(1 \leq i \leq r)$ such that $N_{j}$ does not belongs to $\mathfrak{h}_{4}$. By Lemma $11, N_{j} \in \mathfrak{a}_{2,2}$ and then the other $(r-1)$ matrices $N_{1}, \ldots, \widehat{N}_{j}, \ldots, N_{r}$ belong to $\mathfrak{a}_{2,2}$.
Q.E.D.

Lemma 13 Assume $r \geq 3$. Let $N_{i}(1 \leq i \leq r)$ be matrices of $\operatorname{Mat}(4, k)$ satisfying both conditions $N_{i}^{2}=O_{n}$ for all $1 \leq i \leq r$ and $N_{i} N_{j}=N_{j} N_{i}$ for all $1 \leq i, j \leq r$. Then the matrices $N_{1}, \ldots, N_{r}$ are of 3-mutually annihilating.

Proof. The proof is straightforward by the above Lemma 12.
Q.E.D.

### 4.2 A proof of Corollary 3

If $p \geq 3$, the corollary follows from assertion (3) of Theorem 1 . So, if $p=2$ and $2 \leq r \leq 3$, the corollary follows from assertion (1) of Theorem 2. If $p=2$ and $r \geq 4$, the corollary follows from assertion (2) of Theorem 2 and Lemma 13.

### 4.3 A proof of Corollary 4

Let $\rho:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(4, k)$ be a modular representation. Since $k$ is algebraically closed, there exists an injective group homomorphism $\iota:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow \mathbb{G}_{a}$. Let $\alpha_{i}:=\iota\left(e_{i}\right)$ for $1 \leq i \leq r$. By Theorem 1, we can factor $\rho$ as $\rho=\varphi \circ \iota$ for some representation $\varphi: \mathbb{G}_{a} \rightarrow G L(4, k)$. By [6, Theorem 2.1], there exists a regular matrix $P \in G L(4, k)$ such that the representation $\psi(t):=P^{-1} \varphi(t) P$ of $\mathbb{G}_{a}$ has one of the following forms $A_{2,2}(t), A_{3,1}(t), H_{\mu}(t)$ :

$$
\begin{array}{ll}
A_{2,2}(t):=\left(\begin{array}{cccc}
1 & 0 & a & b \\
0 & 1 & c & d \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) & (a, b, c, d \text { are } p \text {-polynomials }), \\
A_{3,1}(t):=\left(\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right) \quad(a, b, c \text { are } p \text {-polynomials }),
\end{array}
$$

$$
H_{\mu}(t):=\left(\begin{array}{cccc}
1 & a & b & \mu a b+c \\
0 & 1 & 0 & \mu b \\
0 & 0 & 1 & \mu a \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{l}
a, b, c \text { are } p \text {-polynomials, } \\
a, b \text { are linearly independent } \\
\text { over } k, \text { and } \mu \in k
\end{array}\right)
$$

If $\psi(t)=A_{2,2}(t)$, then $\psi\left(\alpha_{i}\right) \in \mathcal{A}_{2,2}$ for all $1 \leq i \leq r$. If $\psi(t)=A_{3,1}(t)$, then $\psi\left(\alpha_{i}\right) \in \mathcal{A}_{3,1}$ for all $1 \leq i \leq r$. If $\psi(t)=H_{\mu}(t)$, then $\psi\left(\alpha_{i}\right) \in \mathcal{H}_{\mu}$ for all $1 \leq i \leq r$. Now we define a modular representation $\sigma:(\mathbb{Z} / p \mathbb{Z})^{r} \rightarrow G L(n, k)$ as $\sigma(g):=P^{-1} \rho(g) P$. Clearly, $\sigma$ satisfies the condition (1) of Corollary 4. And $\sigma$ satisfies the condition (2) of Corollary 4 since $\sigma\left(e_{i}\right)=\psi\left(\alpha_{i}\right)$ for all $1 \leq i \leq r$. This completes the proof of Corollary 4.

## References

[1] V. A. Bašev, Representations of the group $Z_{2} \times Z_{2}$ in a field of characteristic 2, Dokl. Akad. Nauk SSSR 141 (1961), 1015-1018.
[2] H. E. A. Campbell, R. J. Shank, D. L. Wehlau, Rings of invariants for modular representations of elementary abelian p-groups, Transform. Groups 18 (2013), no.1, 1-22.
[3] A. Fauntleroy, On Weitzenböck's theorem in positive characteristic, Proc. Amer. Math. Soc. 64 (1977), no.2, 209-213.
[4] R. Tanimoto, An algorithm for computing the kernel of a locally finite iterative higher derivation, J. Pure Appl. Algebra 212 (2008), no.10, 2284-2297.
[5] R. Tanimoto, Representations of $\mathbb{G}_{a}$ of codimension two, Affine algebraic geometry, 279284, World Sci. Publ., Hackensack, NJ, 2013.
[6] R. Tanimoto, A note on the Weitzenböck problem in dimension four, Communications in Algebra 46 (2018), no.2, 588-596.

[^1]
[^0]:    2010 Mathematics Subject Classification. Primary 20C20, Secondary 15A21
    Key words and phrases. Modular representation theory, Representation theory of $\mathbb{G}_{a}$

[^1]:    Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
    e-mail: tanimoto.ryuji@shizuoka.ac.jp

