# On $p$-unipotent triangular automorphisms of polynomial rings in positive characteristic $p$ 

Ryuji Tanimoto

(Received 27 August, 2019; Revised 17 December, 2019; Accepted 17 December, 2019)


#### Abstract

Let $k$ be a field of positive characteristic $p$ and let $k\left[x_{1}, \ldots, x_{n}\right]$ denote the polynomial ring in $n$ variables over $k$. In this article, we treat two topics. The first topic is to give a method of constructing $p$-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. The second topic is to give a necessary and sufficient condition for a $p$-unipotent automorphism $\sigma$ of $k\left[x_{1}, \ldots, x_{n}\right]$ to be triangular in terms of the pseudo-derivation $\Delta$ of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$.


## 0. Introduction

Let $k$ be a field of positive characteristic $p$ and let $A$ be a $k$-algebra. For a $k$-algebra homomorphism $\sigma: A \rightarrow A$, we say that $\sigma$ is $p$-unipotent if $\sigma^{p}=\mathrm{id}_{A}$, where $\operatorname{id}_{A}: A \rightarrow A$ denotes the identity map. Clearly, if a $k$-algebra homomorphism $\sigma: A \rightarrow A$ is $p$-unipotent, then $\sigma$ is a $k$-algebra automorphism of $A$.

Let $k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n$ variables over $k$ and let $\sigma$ be a $k$-algebra automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. We say that $\sigma$ is triangular if $\sigma$ can be written as $\sigma\left(x_{i}\right)=u_{i} x_{i}+f_{i}$ for some $u_{i} \in k \backslash\{0\}$ and $f_{i} \in k\left[x_{1}, \ldots, x_{i-1}\right]$ $(1 \leq i \leq n)$. Especially when $u_{i}=1$ for all $1 \leq i \leq n$, we say that $\sigma$ is a unitriangular automorphism. Any $p$-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ is a unitriangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. We say that $\sigma$ is triangulable if $\sigma$ is conjugate to a triangular automorphism, i.e., $\varphi^{-1} \circ \sigma \circ \varphi$ is a triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ for some polynomial automorphism $\varphi$ of $k\left[x_{1}, \ldots, x_{n}\right]$.

In [4], we proved that for any $p$-unipotent triangular automorphism $\sigma$ of the polynomial ring $k\left[x_{1}, x_{2}, x_{3}\right]$ in three variables, the modular invariant ring $k\left[x_{1}, x_{2}, x_{3}\right]^{\langle\sigma\rangle}$ is a hypersurface ring, where $\langle\sigma\rangle$ is the cyclic group generated by $\sigma$. We wish to extend this result for $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geq 4$. Now, we hope to express the forms of $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$. However, little is known about such forms, except for linear $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$.

In [4], we also proved that there is a one-to-one correspondence between the set of all $p$-unipotent $k$-algebra automorphisms of $A$ and the set of all pseudoderivations of $A$. So, we are interested in translating triangularity of a $p$-unipotent automorphism $\sigma$ of $k\left[x_{1}, \ldots, x_{n}\right]$ into a property of the pseudo-derivation $\Delta$ of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$.

We summarise the article, as follows:
In Section 1, we give a method of constructing $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$. We may perform the method by hand calculations. We can run, in principle, the method on computer with the aid of Kemper's algorithm [2] and Gröbner bases theory. Anyway, we just started to study expressing $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geq 4$.

In Section 2, we give a necessary and sufficient condition for a $p$-unipotent automorphism $\sigma$ of $k\left[x_{1}, \ldots, x_{n}\right]$ to be triangular in terms of the pseudo-derivation $\Delta$ of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$.

## 1. A method of constructing $p$-unipotent triangular automorphisms of polynomial rings

Let $k$ be a field of positive characteristic $p$ and let $A$ be a $k$-algebra. Given a $k$-algebra homomorphism $\sigma: A \rightarrow A$, we can define a $k$-linear map $D_{\sigma}: A \rightarrow A$ as $D_{\sigma}(f):=\sigma(f)-f$ for all $f \in A$. We have

$$
D_{\sigma}(f g)=D_{\sigma}(f) \sigma(g)+f D_{\sigma}(g) \quad \text { for all } \quad f, g \in A
$$

For each $\ell \geq 1$, we can define the kernel $A^{D_{\sigma}^{\ell}}$ of $D_{\sigma}^{\ell}$ as

$$
A^{D_{\sigma}^{\ell}}:=\left\{f \in A \mid D_{\sigma}^{\ell}(f)=0\right\} .
$$

Clearly, $A^{D_{\sigma}}$ becomes a $k$-subalgebra of $A$, and each $A^{D_{\sigma}^{\ell}}$ becomes an $A^{D_{\sigma_{-}}}$ module.

### 1.1 On $p$-unipotent triangular automoprhisms

Lemma 1 Let $\sigma: A \rightarrow A$ be a $k$-algebra homomorphism. Then $\sigma$ is p-unipotent if and only if $D_{\sigma}^{p}=0$. In particular when $A=k\left[x_{1}, \ldots, x_{n}\right]$ is the polynomial ring in $n$ variables over $k$, $\sigma$ is p-unipotent if and only if $D_{\sigma}^{p}\left(x_{i}\right)=0$ for all $1 \leq i \leq n$.

Proof. The proof follows from $D_{\sigma}^{p}=D_{\sigma^{p}}$.
Q.E.D.

By the following Lemmas 2 and 3, we can inductively construct $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$, where $n \geq 1$.

Lemma 2 Let $\sigma$ be a $k$-algebra endomorphism of $k\left[x_{1}\right]$. Then the following conditions (1) and (2) are equivalent:
(1) $\sigma$ is a p-unipotent triangular automorphism.
(2) $\sigma\left(x_{1}\right)=x_{1}+f_{1}$ for some $f_{1} \in k$.

Proof. The proof is straightforward.
Q.E.D.

For any $k$-algebra homomorphism $\sigma: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}\right]$ and any $f \in k\left[x_{1}, \ldots, x_{n}\right]$, we can define a $k$-algebra homomorphism $\varepsilon_{\sigma, f}$ : $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right] \rightarrow k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$ as

$$
\varepsilon_{\sigma, f}\left(x_{i}\right)= \begin{cases}\sigma\left(x_{i}\right) & \text { if } \quad 1 \leq i \leq n, \\ x_{n+1}+f & \text { if } \quad i=n+1 .\end{cases}
$$

Lemma 3 For any integer $n \geq 1$, the following assertions (1) and (2) hold true:
(1) Let $\sigma$ be a p-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. Take any element $f$ of the kernel $k\left[x_{1}, \ldots, x_{n}\right]^{D_{\sigma}^{p-1}}$. Then the $k$-algebra endomorphism $\varepsilon_{\sigma, f}$ of $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$ is a $p$-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$.
(2) Let $\tau$ be a p-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$. Let $\left.\tau\right|_{k\left[x_{1}, \ldots, x_{n}\right]}$ be the $k$-algebra endomorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ defined by $\left.\tau\right|_{k\left[x_{1}, \ldots, x_{n}\right]}(f):=\tau(f)$ for all $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then $\left.\tau\right|_{k\left[x_{1}, \ldots, x_{n}\right]}$ is a $p-$ unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$, and $\tau\left(x_{n+1}\right)-x_{n+1} \in$ $k\left[x_{1}, \ldots, x_{n}\right]^{D_{\tau k\left[x_{1}, \ldots, x_{n}\right]}^{p-1}}$.

Proof. (1) Note that

$$
D_{\varepsilon_{\sigma, f}}^{p}\left(x_{i}\right)= \begin{cases}D_{\sigma}^{p}\left(x_{i}\right) & \text { if } \quad 1 \leq i \leq n, \\ D_{\sigma}^{p-1}(f) & \text { if } \quad i=n+1 .\end{cases}
$$

Thus, we have $D_{\varepsilon_{\sigma, f}}^{p}\left(x_{i}\right)=0$ for all $1 \leq i \leq n+1$, which implies that $\varepsilon_{\sigma, f}$ is $p$-unipotent by Lemma 1. Clearly, $\varepsilon_{\sigma, f}$ is a triangular automorphism of $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$.
(2) Clearly, $\left.\tau\right|_{k\left[x_{1}, \ldots, x_{n}\right]}$ is a $p$-unipotent triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$. We can express $\tau\left(x_{n+1}\right)$ as $\tau\left(x_{n+1}\right)=x_{n+1}+f$ for some $f \in$ $k\left[x_{1}, \ldots, x_{n}\right]$. So, $\tau\left(x_{n+1}\right)-x_{n+1}=f \in k\left[x_{1}, \ldots, x_{n}\right] \cap k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]^{D_{\tau}^{p-1}}=$ $k\left[x_{1}, \ldots, x_{n}\right]^{D_{\tau k\left[x_{1}, \ldots, x_{n}\right]}^{p-1}}$.
Q.E.D.

We denote by $\mathrm{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ the set of all $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$, and let $\mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ be the set defined by

$$
\begin{aligned}
& \mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right) \\
& :=\left\{(\sigma, f) \in \mathrm{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right) \times k\left[x_{1}, \ldots, x_{n}\right] \mid f \in k\left[x_{1}, \ldots, x_{n}\right]^{D_{\sigma}^{p-1}}\right\} .
\end{aligned}
$$

By Lemma 3, we can define a map $\Phi: \mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right) \rightarrow \mathrm{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right.\right.$, $\left.x_{n+1}\right]$ ) as

$$
\Phi(\sigma, f):=\varepsilon_{\sigma, f},
$$

and also define a map $\Psi: \mathrm{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]\right) \rightarrow \mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ as

$$
\Psi(\tau):=\left(\left.\tau\right|_{k\left[x_{1}, \ldots, x_{n}\right]}, \tau\left(x_{n+1}\right)-x_{n+1}\right) .
$$

We denote by $\operatorname{id}_{\mathbb{U}^{p}, \Delta\left(k\left[x_{1}, \ldots, x_{n}\right]\right)}$ the identity map from $\mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ to itself, and denote by $\operatorname{id}_{\mathrm{U}^{p, \Delta}}\left(k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]\right)$ the identity map form $\mathrm{U}^{p, \Delta}\left(k\left[x_{1}, \ldots\right.\right.$, $\left.x_{n}, x_{n+1}\right]$ ) to itself.

The following theorem implies that there exists a one-to-one correspondence between the set $\mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)$ and the set $\mathbb{U}^{p, \Delta}\left(k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]\right)$. So, we obtain a method of constructing $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]$ from $p$-unipotent triangular automorphisms of $k\left[x_{1}, \ldots, x_{n}\right]$, for any $n \geq 1$.

Theorem 4 For any $n \geq 1$, we have

$$
\Psi \circ \Phi=\mathrm{id}_{\mathbb{U}^{p}, \Delta\left(k\left[x_{1}, \ldots, x_{n}\right]\right)} \quad \text { and } \quad \Phi \circ \Psi=\mathrm{id}_{\mathrm{U}^{p, \Delta}}\left(k\left[x_{1}, \ldots, x_{n}, x_{n+1}\right]\right) .
$$

Proof. The proof follows from Lemma 3.
Q.E.D.

### 1.2 On forms of $p$-unipotent triangular automorphisms

The following lemma gives a form of any $p$-unipotent triangular automorphism of $k\left[x_{1}, x_{2}\right]$.

Lemma 5 Let $\tau$ be a $k$-algebra endomorphism of $k\left[x_{1}, x_{2}\right]$. Then the following conditions (1) and (2) are equivalent:
(1) $\tau$ is a p-unipotent triangular automorphism of $k\left[x_{1}, x_{2}\right]$.
(2) $\tau$ has one of the following forms (2.1) and (2.2):
(2.1) $\left\{\begin{array}{l}\tau\left(x_{1}\right)=x_{1}, \\ \tau\left(x_{2}\right)=x_{2}+f_{2}\left(x_{1}\right)\end{array}\right.$
for some $f_{2}\left(x_{1}\right) \in k\left[x_{1}\right]$; and

$$
\left\{\begin{align*}
\tau\left(x_{1}\right) & =x_{1}+f_{1},  \tag{2.2}\\
\tau\left(x_{2}\right) & =x_{2}+\sum_{i=0}^{p-2} \phi_{i}\left(x_{1}^{p}-f_{1}^{p-1} x_{1}\right) x_{1}^{i}
\end{align*}\right.
$$

for some $f_{1} \in k \backslash\{0\}$ and $\phi_{i}(T) \in k[T](0 \leq i \leq p-2)$, where $k[T]$ is the
polynomial ring in one variable over $k$.
Proof. The proof of the implication $(2) \Longrightarrow(1)$ is straightforward. We shall prove $(1) \Longrightarrow(2)$. By assertion (2) of Lemma $3,\left.\tau\right|_{k\left[x_{1}\right]}$ is a $p$-unipotent automorphism of $k\left[x_{1}\right]$ and $\tau\left(x_{2}\right)-x_{2} \in k\left[x_{1}\right]^{D_{\tau k\left[x_{1}\right]}^{p-1}}$. By Lemma 2, $\left.\tau\right|_{k\left[x_{1}\right]}\left(x_{1}\right)=x_{1}+f_{1}$ for some $f_{1} \in k$. We know from [4, Lemma 2.8] that

$$
k\left[x_{1}\right]_{\tau_{\left.|k| x_{1}\right]}^{p}}^{D^{p-1}}= \begin{cases}k\left[x_{1}\right] & \text { if } \quad f_{1}=0 \\ \sum_{i=0}^{p-2} k\left[x_{1}^{p}-f_{1}^{p-1} x_{1}\right] x_{1}^{i} & \text { if } \quad f_{1} \neq 0\end{cases}
$$

So, if $f_{1}=0$, then $\tau$ has the form (2.1); and if $f_{1} \neq 0$, then $\tau$ has the form (2.2).
Q.E.D.

We shall give an example of non-linear $p$-unipotent triangular automorphisms of $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Assume that the characteristic of $k$ is three, let $A:=k\left[x_{1}, x_{2}, x_{3}\right]$ be the polynomial ring in three variables over $k$, and let $\sigma$ be the $k$-algebra automorphism $\sigma$ of $k\left[x_{1}, x_{2}, x_{3}\right]$ defined by

$$
\sigma\left(x_{i}\right):=\left\{\begin{array}{lll}
x_{1} & \text { if } & i=1, \\
x_{i}+x_{i-1} & \text { if } \quad i>1 .
\end{array}\right.
$$

Clearly, $\sigma$ is a $p$-unipotent triangular automorphism of $A$. We know from [1] that the kernel $A^{D_{\sigma}}$ is generated as a $k$-algebra by the following four polynomials $f_{1}, f_{2}, f_{3}, f_{4}$ :

$$
\left\{\begin{array}{l}
f_{1}:=x_{1}, \\
f_{2}:=x_{1} x_{2}+2 x_{2}^{2}+2 x_{1} x_{3}, \\
f_{3}:=2 x_{1}^{2} x_{2}+x_{2}^{3}, \\
f_{4}:=x_{1} x_{2} x_{3}+2 x_{2}^{2} x_{3}+x_{1} x_{3}^{2}+x_{3}^{3}
\end{array}\right.
$$

Lemma 6 Let $\sigma$ be as above. Let $\tau$ be a p-unipotent triangular automorphism of $k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ satisfying $\left.\tau\right|_{k\left[x_{1}, x_{2}, x_{3}\right]}=\sigma$. Then $\tau$ has the following form:

$$
\left\{\begin{array}{l}
\tau\left(x_{1}\right)=x_{1} \\
\tau\left(x_{2}\right)=x_{2}+x_{1} \\
\tau\left(x_{3}\right)=x_{3}+x_{2} \\
\tau\left(x_{4}\right)=x_{4}+\sum_{i=1}^{4} \beta_{i}\left(f_{1}, f_{2}, f_{3}, f_{4}\right) g_{i}
\end{array}\right.
$$

for some polynomials $\beta_{i}\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in k\left[y_{1}, y_{2}, y_{3}, y_{4}\right](1 \leq i \leq 4)$, where $k\left[y_{1}, y_{2}, y_{3}, y_{4}\right]$ is the polynomial ring in four variables over $k$ and the polynomials $g_{1}, g_{2}, g_{3}, g_{4}$ are defined by

$$
\left\{\begin{array}{l}
g_{1}:=1 \\
g_{2}:=x_{2} \\
g_{3}:=2 x_{1} x_{2}+x_{2}^{2}+2 x_{2} x_{3} \\
g_{4}:=x_{1} x_{2}^{2}+2 x_{2}^{3}+2 x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}+2 x_{1} x_{3}^{2}
\end{array}\right.
$$

Proof. We know from [5, Theorem 5] that $A^{D_{\sigma}^{2}}=\sum_{i=1}^{4} A^{D_{\sigma}} g_{i}$. By Lemma 3, $\tau$ has the desired form.
Q.E.D.

### 1.3 A method of constructing a generating set of the kernel $k\left[x_{1}, \ldots, x_{n}\right]^{D_{\sigma}^{\ell}}(1 \leq \ell \leq p-1)$

Let $A:=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring in $n$ variables over $k$, where $k$ is a field of positive characteristic $p$. Let $\sigma$ be a $k$-algebra automorphism of $A$ of order $p$, i.e., $\sigma \neq \operatorname{id}_{A}$ and $\sigma^{p}=\operatorname{id}_{A}$. Let $B:=A^{D_{\sigma}}$ be the kernel of $D_{\sigma}$. So, we can take a finitely generated $k$-subagebra $C$ of $B$ such that $A$ is a finite $C$-module. In fact, we know the following $C$ and $A$ : For any $f \in A$, we define a polyno$\operatorname{mial} \varphi_{f}(T):=\prod_{i=0}^{p-1}\left(T-\sigma^{i}(f)\right)$ of $A[T]$. Expand $\varphi(T)$ as $\sum_{i=0}^{p} s_{i}(f) T^{i}$, where $s_{i}(f) \in A^{D_{\sigma}}$ for all $0 \leq i \leq p-1$. Let $C:=k\left[s_{i}\left(x_{j}\right) \mid 1 \leq j \leq n, 0 \leq i \leq p-1\right]$. Clearly, $A=\sum_{0 \leq i_{1}, \ldots, i_{n} \leq p-1} C x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$.

We shall give a method of constructing a generating set of $A^{D_{\sigma}^{\ell}}$ as a $C$-module for each $1 \leq \ell \leq p-1$, as follows:

We can write $C$ and $A$ as

$$
\left\{\begin{array}{lll}
C=k\left[c_{1}, \ldots, c_{r}\right] & \text { for some } & c_{1}, \ldots, c_{r} \in C \\
A=\sum_{i=1}^{s} C a_{i} & \text { for some } & a_{1}, \ldots, a_{s} \in A
\end{array}\right.
$$

We have an increasing sequence

$$
C \subset B=A^{D_{\sigma}} \subsetneq A^{D_{\sigma}^{2}} \subsetneq \cdots \subsetneq A^{D_{\sigma}^{p-1}} \subsetneq A^{D_{\sigma}^{p}}=A
$$

of $C$-modules, and each $A^{D_{\sigma}^{\ell}}$ is a finite $C$-module. Let $\pi: C^{\oplus s} \rightarrow A$ be the surjective $C$-module homomorphism defined by

$$
\pi\left(\gamma_{1}, \ldots, \gamma_{s}\right):=\sum_{i=1}^{s} \gamma_{i} a_{i}
$$

Clearly, we have

$$
\begin{aligned}
A^{D_{\sigma}^{\ell}} & =\pi\left(\operatorname{Syz}_{C}\left(D_{\sigma}^{\ell}\left(a_{1}\right), \ldots, D_{\sigma}^{\ell}\left(a_{s}\right)\right)\right) \\
& =\pi\left(\operatorname{Syz}_{A}\left(D_{\sigma}^{\ell}\left(a_{1}\right), \ldots, D_{\sigma}^{\ell}\left(a_{s}\right)\right) \cap C^{\oplus s}\right) \quad \text { for all } \quad 1 \leq \ell \leq p-1
\end{aligned}
$$

For each $1 \leq \ell \leq p-1$, we let

$$
M_{\ell}:=\operatorname{Syz}_{A}\left(D_{\sigma}^{\ell}\left(a_{1}\right), \ldots, D_{\sigma}^{\ell}\left(a_{s}\right)\right) .
$$

Clearly, we have $A^{D_{\sigma}^{\ell}}=\pi\left(M_{\ell} \cap C^{\oplus s}\right)$ for all $1 \leq \ell \leq p-1$.
Now, we explain how to calculate a generating set of $A^{D_{\sigma}^{\ell}}$ as a $C$-module. Since $A$ is a polynomial ring over $k$, we know an algorithm for calculating a generating set $\left\{m_{\ell, 1}, \ldots, m_{\ell, t_{\ell}}\right\}$ of the syzygy module $M_{\ell}$ as an $A$-module (see, for example, [3]). And we also know an algorithm for calculating a generating set of the intersection $M_{\ell} \cap C^{\oplus s}$ as a $C$-module, by the algorithm of Kemper [2, Lemma 6]. So, let $\left\{\mu_{\ell, 1}, \ldots, \mu_{\ell, u_{\ell}}\right\}$ be a generating set of $M_{\ell} \cap C^{\oplus s}$ as a $C$-module. Then the set $\left\{\pi\left(\mu_{\ell, 1}\right), \ldots, \pi\left(\mu_{\ell, u_{\ell}}\right)\right\}$ forms a generating set of $A^{D_{\sigma}^{\ell}}$ as a $C$-module.

For the convenience of the reader, we write Kemper's algorithm for calculating a generating set of the intersection $M_{\ell} \cap C^{\oplus s}$, as follows: Let $P=$ $k\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{r}\right]$ be the polynomial ring in $n+r$ variables over $k$, and let $Q:=k\left[y_{1}, \ldots, y_{r}\right]$ be the polynomial subring of $P$. Define maps $\Phi: P^{\oplus s} \rightarrow A^{\oplus s}$ and $\Psi: Q^{\oplus s} \rightarrow C^{\oplus s}$ as

$$
\begin{aligned}
\Phi\left(\alpha_{1}\left(x, y_{1}, \ldots, y_{r}\right), \ldots, \alpha_{s}\left(x, y_{1}, \ldots, y_{r}\right)\right): & =\left(\alpha_{1}\left(x, c_{1}, \ldots, c_{r}\right), \ldots, \alpha_{s}\left(x, c_{1}, \ldots, c_{r}\right)\right), \\
\Psi\left(\beta_{1}\left(y_{1}, \ldots, y_{r}\right), \ldots, \beta_{s}\left(y_{1}, \ldots, y_{r}\right)\right): & =\left(\beta_{1}\left(c_{1}, \ldots, c_{r}\right), \ldots, \beta_{s}\left(c_{1}, \ldots, c_{r}\right)\right),
\end{aligned}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$. Clearly, we have the following commutative diagrams, where vertical arrows are inclusion maps:


Let $N_{\ell}:=\Phi^{-1}\left(M_{\ell}\right)$. It follows that

$$
N_{\ell}=\left(\sum_{i=1}^{t_{\ell}} P m_{\ell, i}\right)+\left(\sum_{j_{1}=1}^{r} \sum_{j_{2}=1}^{s} P\left(y_{j_{1}}-c_{j_{1}}\right) e_{j_{2}}\right),
$$

where $e_{j_{2}}$ is the element of $P^{\oplus s}$ whose $j_{2}$-th entry is one and the other entries are zero. Since $\Psi$ is surjective, we have

$$
\Psi\left(N_{\ell} \cap Q^{\oplus s}\right)=M_{\ell} \cap C^{\oplus s} .
$$

Using Gröbner bases theory for submodules of free modules over the polynomial ring $Q$, we can calculate a generating set of $N_{\ell} \cap Q^{\oplus s}$ as a $Q$-module, and let $\left\{\nu_{\ell, 1}, \ldots \nu_{\ell, u_{\ell}}\right\}$ be the generating set. Let $\mu_{\ell, i}:=\Psi\left(\nu_{\ell, i}\right)$ for all $1 \leq i \leq u_{\ell}$. Clearly, the set $\left\{\mu_{\ell, 1}, \ldots, \mu_{\ell, u_{\ell}}\right\}$ forms a generating set of $M_{\ell} \cap C^{\oplus s}$ as a $C$-module.

## 2. Triangular pseudo-derivations and triangulable pseudo-derivations

Let $A$ be a $k$-algebra, where $k$ is a field of positive characteristic $p$. A $k$-linear transformation $\Delta$ of $A$ is said to be a pseudo-derivation if $\Delta$ satisfies the following conditions (1), (2) and (3):

$$
\begin{equation*}
\Delta(f g)=\Delta(f) g+f \Delta(g)+\sum_{i=1}^{p-1} \frac{(-1)^{i}}{i} \Delta^{i}(f) \Delta^{p-i}(g) \text { for all } f, g \in A \tag{1}
\end{equation*}
$$

(2) $\Delta\left(1_{A}\right)=0$, where $1_{A}$ is the unity of $A$.
(3) $\Delta^{p}=0$.

Given a pseudo-derivation $\Delta$ of $A$, we can define a $k$-linear transformation $\operatorname{Exp}(\Delta): A \rightarrow A$ as

$$
\operatorname{Exp}(\Delta)(f):=\sum_{i=0}^{p-1} \frac{\Delta^{i}(f)}{i!}
$$

We know that $\operatorname{Exp}(\Delta)$ is a $k$-algebra automorphism of $A$ satisfying $\operatorname{Exp}(\Delta)^{p}=$ $\mathrm{id}_{A}$ (see [4, Lemma 1.2]).

Given a $k$-algebra automorphism $\sigma$ of $A$. We can define a $k$-linear transformation $\log (\sigma): A \rightarrow A$ as

$$
\log (\sigma)(f):=\sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i} D_{\sigma}^{i}(f)
$$

For any $p$-unipotent automorphism $\sigma$ of $A$, the truncated $\operatorname{logarithm} \log (\sigma)$ is a pseudo-derivation of $A$ (see [4, Lemma 1.6]).

We denote by $U_{k}^{p}(A)$ the set of all $p$-unipotent automorphisms of $A$, and by $\operatorname{PDer}_{k}(A)$ the set of all pseudo-derivations of $A$. Let Exp : $\operatorname{PDer}_{k}(A) \rightarrow U_{k}^{p}(A)$ be the map defined by $\Delta \mapsto \operatorname{Exp}(\Delta)$ and let $\log : U_{k}^{p}(A) \rightarrow \operatorname{PDer}_{k}(A)$ be the map defined by $\sigma \mapsto \log (\sigma)$. We denote by $\operatorname{id}_{\text {PDer }_{k}(A)}$ the identity map from $\operatorname{PDer}_{k}(A)$ to itself and by $\operatorname{id}_{U_{k}^{p}(A)}$ the identity map from $U_{k}^{p}(A)$ to itself.

We know the following theorem (see [4, Theorem 1.7]), which states that there is a one-to-one correspondence between the set of all $p$-unipotent automorphisms of $A$ and the set of all pseudo-derivations of $A$.

Theorem 7 We have

$$
\log \circ \operatorname{Exp}=\operatorname{id}_{\text {PDer }_{k}(A)} \quad \text { and } \quad \operatorname{Exp} \circ \log =\operatorname{id}_{U_{k}^{p}(A)} .
$$

And we have $\operatorname{Exp}(\Delta)=\mathrm{id}_{A}$ if and only if $\Delta=0$.

### 2.1 Triangular pseudo-derivations

Let $\Delta$ be a pseudo-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ and let $\sigma$ be the $p$-unipotent automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\Delta$, i.e., $\sigma=\operatorname{Exp}(\Delta)$. We say that $\Delta$ is triangular if $\sigma$ is a triangular automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$.

The following theorem gives a necessary and sufficient condition for a $p$ unipotent automorphism $\sigma$ of $k\left[x_{1}, \ldots, x_{n}\right]$ to be triangular in terms of the pseudo-derivation $\Delta$ of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$.

Theorem 8 Let $\sigma$ be a p-unipotent automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ and let $\Delta$ be the pseudo-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$. Then the following conditions (1) and (2) are equivalent:
(1) $\sigma$ is triangular.
(2) $\Delta\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$ for all $1 \leq i \leq n$.

In order to prove Theorem 8, we prepare the following lemma. After we proved Lemma 9, we prove Theorem 8.

Lemma 9 Let $i$ be an integer satisfying $1 \leq i \leq n$, and let $\Delta$ be a pseudoderivation of $k\left[x_{1}, \ldots, x_{n}\right]$ satisfying the following conditions (1) and (2):
(1) $\Delta\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$.
(2) $\Delta\left(k\left[x_{1}, \ldots, x_{i-1}\right]\right) \subset k\left[x_{1}, \ldots, x_{i-1}\right]$.

Then, for all $r \geq 1$, we have

$$
\left\{\begin{array}{l}
\Delta\left(x_{i}^{r}\right) \in \sum_{\ell=0}^{r-1} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell} \\
\Delta\left(\sum_{\ell=0}^{r-1} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell}\right) \subset \sum_{\ell=0}^{r-1} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell} .
\end{array}\right.
$$

Proof. We proceed by induction on $r \geq 1$. If $r=1$, the proof is clear. So let $r \geq 2$ and suppose that

$$
\left\{\begin{array}{l}
\Delta\left(x_{i}^{r-1}\right) \in \sum_{\ell=0}^{r-2} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell} \\
\Delta\left(\sum_{\ell=0}^{r-2} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell}\right) \subset \sum_{\ell=0}^{r-2} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell}
\end{array}\right.
$$

We have

$$
\Delta\left(x_{i}^{r}\right)=\Delta\left(x_{i}\right) x_{i}^{r-1}+x_{i} \Delta\left(x_{i}^{r-1}\right)+\sum_{\ell=1}^{p-1} \frac{(-1)^{\ell}}{\ell} \Delta^{\ell}\left(x_{i}\right) \Delta^{p-\ell}\left(x_{i}^{r-1}\right)
$$

$$
\in \sum_{\ell=0}^{r-1} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell}
$$

For any $f \in k\left[x_{1}, \ldots, x_{i-1}\right]$, we have

$$
\begin{align*}
\Delta\left(f x_{i}^{r-1}\right)= & \Delta(f) x_{i}^{r-1}+f \Delta\left(x_{i}^{r-1}\right)+\sum_{\ell=1}^{p-1} \frac{(-1)^{\ell}}{\ell} \Delta^{\ell}(f) \Delta^{p-\ell}\left(x_{i}^{r-1}\right) \\
& \in \sum_{\ell=0}^{r-1} k\left[x_{1}, \ldots, x_{i-1}\right] x_{i}^{\ell}
\end{align*}
$$

Now, we prove Theorem 8. We first prove $(1) \Longrightarrow(2)$. For all $1 \leq i \leq n$, we have

$$
\Delta\left(x_{i}\right)=\log (\sigma)\left(x_{i}\right)=\sum_{\ell=1}^{p-1} \frac{(-1)^{\ell-1}}{\ell} D_{\sigma}^{\ell}\left(x_{i}\right)
$$

Since $\sigma$ is triangular, we know that $D_{\sigma}\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$ and $D_{\sigma}\left(k\left[x_{1}\right.\right.$, $\left.\left.\ldots, x_{i-1}\right]\right) \subset k\left[x_{1}, \ldots, x_{i-1}\right]$. So, we have $D_{\sigma}^{\ell}\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$ for all $1 \leq \ell \leq p-1$. It follows that $\Delta\left(x_{i}\right) \in k\left[x_{1}, \ldots, x_{i-1}\right]$.

We next prove $(2) \Longrightarrow(1)$. We begin with proving that $\Delta\left(k\left[x_{1}, \ldots, x_{j}\right]\right) \subset$ $k\left[x_{1}, \ldots, x_{j}\right]$ for all $0 \leq j \leq n-1$. We proceed by induction on $j$. If $j=0$, the proof is clear. So, let $j \geq 1$ and suppose that $\Delta\left(k\left[x_{1}, \ldots, x_{j-1}\right]\right) \subset k\left[x_{1}, \ldots, x_{j-1}\right]$. Since $\Delta\left(x_{j}\right) \in k\left[x_{1}, \ldots, x_{j-1}\right]$, we know from Lemma 9 that $\Delta\left(k\left[x_{1}, \ldots, x_{j}\right]\right) \subset$ $k\left[x_{1}, \ldots, x_{j}\right]$. So, for all $1 \leq i \leq n$, we have

$$
\sigma\left(x_{i}\right)=\operatorname{Exp}(\Delta)\left(x_{i}\right)=\sum_{\ell=0}^{p-1} \frac{\Delta^{\ell}\left(x_{i}\right)}{\ell!} \in x_{i}+k\left[x_{1}, \ldots, x_{i-1}\right]
$$

where we denote by $x_{i}+k\left[x_{1}, \ldots, x_{i-1}\right](1 \leq i \leq n)$ the set of all polynomials $F$ which can be written in the form $F=x_{i}+f$ for some $f \in k\left[x_{1}, \ldots, x_{i-1}\right]$. This compietes the proof of Theorem 8.

### 2.2 Triangulable pseudo-derivations

Let $\Delta$ be a pseudo-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$. Clearly, for any automorphism $\varphi$ of $k\left[x_{1}, \ldots, x_{n}\right], \varphi^{-1} \Delta \varphi$ is a pseudo-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$. We say that $\Delta$ is triangulable if $\varphi^{-1} \Delta \varphi$ is triangular for some automorphism $\varphi$ of $k\left[x_{1}, \ldots, x_{n}\right]$.

We have the following lemma:
Lemma 10 Let $\sigma$ be a p-unipotent automorphism of $k\left[x_{1}, \ldots, x_{n}\right]$ and let $\Delta$ be the pseudo-derivation of $k\left[x_{1}, \ldots, x_{n}\right]$ corresponding to $\sigma$. Then the following conditions (1) and (2) are equivalent:
(1) $\sigma$ is triangulable.
(2) $\Delta$ is triangulable.

Proof. The proof follows from the fact that $\varphi^{-1} \sigma \varphi=\operatorname{Exp}\left(\varphi^{-1} \Delta \varphi\right)$ for any automorphism $\varphi$ of $k\left[x_{1}, \ldots, x_{n}\right]$.
Q.E.D.

## References

[1] L. E. Dickson, On Invariants and the Theory of Numbers, The Madison Colloquium (1913, Part 1), Amer. Math. Society, reprinted by Dover, New York, 1966.
[2] G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), no. 3, 351-366.
[3] M. Kreuzer, L. Robbiano, Computational commutative algebra 1, Corrected reprint of the 2000 original, Springer-Verlag, Berlin, 2008. x+321 pp.
[4] R. Tanimoto, Pseudo-derivations and modular invariant theory, Transform. Groups 23 (2018), no. 1, 271-297.
[5] R. Tanimoto, The image membership algorithm for twisted derivations in modular invariant theory, Saitama Math. J. 29 (2012), 55-64.

Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan e-mail: tanimoto.ryuji@shizuoka.ac.jp

