On p-unipotent triangular automorphisms of polynomial rings in positive characteristic p

Ryuji Tanimoto

(Received 27 August, 2019; Revised 17 December, 2019; Accepted 17 December, 2019)

Abstract

Let k be a field of positive characteristic p and let $k[x_1, \ldots, x_n]$ denote the polynomial ring in n variables over k. In this article, we treat two topics. The first topic is to give a method of constructing p-unipotent triangular automorphism of $k[x_1, \ldots, x_n]$. The second topic is to give a necessary and sufficient condition for a p-unipotent automorphism σ of $k[x_1, \ldots, x_n]$ to be triangular in terms of the pseudo-derivation Δ of $k[x_1, \ldots, x_n]$ corresponding to σ .

0. Introduction

Let k be a field of positive characteristic p and let A be a k-algebra. For a k-algebra homomorphism $\sigma : A \to A$, we say that σ is p-unipotent if $\sigma^p = id_A$, where $id_A : A \to A$ denotes the identity map. Clearly, if a k-algebra homomorphism $\sigma : A \to A$ is p-unipotent, then σ is a k-algebra automorphism of A.

Let $k[x_1, \ldots, x_n]$ be the polynomial ring in n variables over k and let σ be a k-algebra automorphism of $k[x_1, \ldots, x_n]$. We say that σ is triangular if σ can be written as $\sigma(x_i) = u_i x_i + f_i$ for some $u_i \in k \setminus \{0\}$ and $f_i \in k[x_1, \ldots, x_{i-1}]$ $(1 \le i \le n)$. Especially when $u_i = 1$ for all $1 \le i \le n$, we say that σ is a unitriangular automorphism. Any p-unipotent triangular automorphism of $k[x_1, \ldots, x_n]$ is a unitriangular automorphism of $k[x_1, \ldots, x_n]$. We say that σ is triangulable if σ is conjugate to a triangular automorphism, i.e., $\varphi^{-1} \circ \sigma \circ \varphi$ is a triangular automorphism of $k[x_1, \ldots, x_n]$ for some polynomial automorphism φ of $k[x_1, \ldots, x_n]$.

In [4], we proved that for any *p*-unipotent triangular automorphism σ of the polynomial ring $k[x_1, x_2, x_3]$ in three variables, the modular invariant ring $k[x_1, x_2, x_3]^{\langle \sigma \rangle}$ is a hypersurface ring, where $\langle \sigma \rangle$ is the cyclic group generated by σ . We wish to extend this result for *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$, where $n \geq 4$. Now, we hope to express the forms of *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$. However, little is known about such forms, except for linear *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$.

²⁰¹⁰ Mathematics Subject Classification. Primary 14R20; Secondary 13A50

 $Key\ words\ and\ phrases.$ Polynomial automorphisms, p-unipotent automorphisms, triangular automorphisms.

In [4], we also proved that there is a one-to-one correspondence between the set of all *p*-unipotent *k*-algebra automorphisms of *A* and the set of all pseudo-derivations of *A*. So, we are interested in translating triangularity of a *p*-unipotent automorphism σ of $k[x_1, \ldots, x_n]$ into a property of the pseudo-derivation Δ of $k[x_1, \ldots, x_n]$ corresponding to σ .

We summarise the article, as follows:

In Section 1, we give a method of constructing *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$. We may perform the method by hand calculations. We can run, in principle, the method on computer with the aid of Kemper's algorithm [2] and Gröbner bases theory. Anyway, we just started to study expressing *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$, where $n \ge 4$.

In Section 2, we give a necessary and sufficient condition for a *p*-unipotent automorphism σ of $k[x_1, \ldots, x_n]$ to be triangular in terms of the pseudo-derivation Δ of $k[x_1, \ldots, x_n]$ corresponding to σ .

1. A method of constructing *p*-unipotent triangular automorphisms of polynomial rings

Let k be a field of positive characteristic p and let A be a k-algebra. Given a k-algebra homomorphism $\sigma : A \to A$, we can define a k-linear map $D_{\sigma} : A \to A$ as $D_{\sigma}(f) := \sigma(f) - f$ for all $f \in A$. We have

$$D_{\sigma}(fg) = D_{\sigma}(f) \sigma(g) + f D_{\sigma}(g)$$
 for all $f, g \in A$.

For each $\ell \geq 1$, we can define the kernel $A^{D^{\ell}_{\sigma}}$ of D^{ℓ}_{σ} as

$$A^{D^{\ell}_{\sigma}} := \{ f \in A \mid D^{\ell}_{\sigma}(f) = 0 \}.$$

Clearly, $A^{D_{\sigma}}$ becomes a k-subalgebra of A, and each $A^{D_{\sigma}^{\ell}}$ becomes an $A^{D_{\sigma}}$ -module.

1.1 On *p*-unipotent triangular automophisms

Lemma 1 Let $\sigma : A \to A$ be a k-algebra homomorphism. Then σ is p-unipotent if and only if $D^p_{\sigma} = 0$. In particular when $A = k[x_1, \ldots, x_n]$ is the polynomial ring in n variables over k, σ is p-unipotent if and only if $D^p_{\sigma}(x_i) = 0$ for all $1 \le i \le n$.

Proof. The proof follows from $D^p_{\sigma} = D_{\sigma^p}$. Q.E.D.

By the following Lemmas 2 and 3, we can inductively construct *p*-unipotent triangular automorphisms of $k[x_1, \ldots, x_n]$, where $n \ge 1$.

Lemma 2 Let σ be a k-algebra endomorphism of $k[x_1]$. Then the following conditions (1) and (2) are equivalent:

Q.E.D.

- (1) σ is a p-unipotent triangular automorphism.
- (2) $\sigma(x_1) = x_1 + f_1$ for some $f_1 \in k$.

Proof. The proof is straightforward.

For any k-algebra homomorphism $\sigma : k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_n]$ and any $f \in k[x_1, \ldots, x_n]$, we can define a k-algebra homomorphism $\varepsilon_{\sigma,f} : k[x_1, \ldots, x_n, x_{n+1}] \to k[x_1, \ldots, x_n, x_{n+1}]$ as

$$\varepsilon_{\sigma,f}(x_i) = \begin{cases} \sigma(x_i) & \text{if } 1 \le i \le n, \\ x_{n+1} + f & \text{if } i = n+1. \end{cases}$$

Lemma 3 For any integer $n \ge 1$, the following assertions (1) and (2) hold true:

- (1) Let σ be a p-unipotent triangular automorphism of $k[x_1, \ldots, x_n]$. Take any element f of the kernel $k[x_1, \ldots, x_n]^{D_{\sigma}^{p-1}}$. Then the k-algebra endomorphism $\varepsilon_{\sigma,f}$ of $k[x_1, \ldots, x_n, x_{n+1}]$ is a p-unipotent triangular automorphism of $k[x_1, \ldots, x_n, x_{n+1}]$.
- (2) Let τ be a p-unipotent triangular automorphism of $k[x_1, \ldots, x_n, x_{n+1}]$. Let $\tau|_{k[x_1, \ldots, x_n]}$ be the k-algebra endomorphism of $k[x_1, \ldots, x_n]$ defined by $\tau|_{k[x_1, \ldots, x_n]}(f) := \tau(f)$ for all $f \in k[x_1, \ldots, x_n]$. Then $\tau|_{k[x_1, \ldots, x_n]}$ is a p-unipotent triangular automorphism of $k[x_1, \ldots, x_n]$, and $\tau(x_{n+1}) - x_{n+1} \in k[x_1, \ldots, x_n]^{D_{\tau|k[x_1, \ldots, x_n]}^{p-1}}$.

Proof. (1) Note that

$$D^p_{\varepsilon_{\sigma,f}}(x_i) = \begin{cases} D^p_{\sigma}(x_i) & \text{if } 1 \le i \le n, \\ D^{p-1}_{\sigma}(f) & \text{if } i = n+1. \end{cases}$$

Thus, we have $D_{\varepsilon_{\sigma,f}}^p(x_i) = 0$ for all $1 \leq i \leq n+1$, which implies that $\varepsilon_{\sigma,f}$ is *p*-unipotent by Lemma 1. Clearly, $\varepsilon_{\sigma,f}$ is a triangular automorphism of $k[x_1, \ldots, x_n, x_{n+1}]$.

(2) Clearly, $\tau|_{k[x_1,\ldots,x_n]}$ is a *p*-unipotent triangular automorphism of $k[x_1,\ldots,x_n]$. We can express $\tau(x_{n+1})$ as $\tau(x_{n+1}) = x_{n+1} + f$ for some $f \in k[x_1,\ldots,x_n]$. So, $\tau(x_{n+1}) - x_{n+1} = f \in k[x_1,\ldots,x_n] \cap k[x_1,\ldots,x_n,x_{n+1}]^{D_{\tau}^{p-1}} = k[x_1,\ldots,x_n]^{D_{\tau|k[x_1,\ldots,x_n]}^{p-1}}$. Q.E.D.

We denote by $U^{p,\triangle}(k[x_1,\ldots,x_n])$ the set of all *p*-unipotent triangular automorphisms of $k[x_1,\ldots,x_n]$, and let $\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n])$ be the set defined by

$$\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n])$$

:= $\left\{ (\sigma,f) \in \mathrm{U}^{p,\triangle}(k[x_1,\ldots,x_n]) \times k[x_1,\ldots,x_n] \mid f \in k[x_1,\ldots,x_n]^{D_{\sigma}^{p-1}} \right\}.$

R. Tanimoto

By Lemma 3, we can define a map $\Phi : \mathbb{U}^{p, \triangle}(k[x_1, \ldots, x_n]) \to \mathbb{U}^{p, \triangle}(k[x_1, \ldots, x_n, x_{n+1}])$ as

$$\Phi(\sigma, f) := \varepsilon_{\sigma, f},$$

and also define a map $\Psi: U^{p,\triangle}(k[x_1,\ldots,x_n,x_{n+1}]) \to U^{p,\triangle}(k[x_1,\ldots,x_n])$ as

 $\Psi(\tau) := (\tau|_{k[x_1,\dots,x_n]}, \tau(x_{n+1}) - x_{n+1}).$

We denote by $\mathrm{id}_{\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n])}$ the identity map from $\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n])$ to itself, and denote by $\mathrm{id}_{\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n,x_{n+1}])}$ the identity map form $\mathrm{U}^{p,\triangle}(k[x_1,\ldots,x_n,x_{n+1}])$ to itself.

The following theorem implies that there exists a one-to-one correspondence between the set $\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n])$ and the set $\mathbb{U}^{p,\triangle}(k[x_1,\ldots,x_n,x_{n+1}])$. So, we obtain a method of constructing *p*-unipotent triangular automorphisms of $k[x_1,\ldots,x_n,x_{n+1}]$ from *p*-unipotent triangular automorphisms of $k[x_1,\ldots,x_n]$, for any $n \ge 1$.

Theorem 4 For any $n \ge 1$, we have

 $\Psi \circ \Phi = \mathrm{id}_{\mathbb{U}^{p,\triangle}(k[x_1,\dots,x_n])} \qquad and \qquad \Phi \circ \Psi = \mathrm{id}_{\mathbb{U}^{p,\triangle}(k[x_1,\dots,x_n,x_{n+1}])}.$

Q.E.D.

Proof. The proof follows from Lemma 3.

1.2 On forms of *p*-unipotent triangular automorphisms

The following lemma gives a form of any *p*-unipotent triangular automorphism of $k[x_1, x_2]$.

Lemma 5 Let τ be a k-algebra endomorphism of $k[x_1, x_2]$. Then the following conditions (1) and (2) are equivalent:

(1) τ is a p-unipotent triangular automorphism of $k[x_1, x_2]$.

(2) τ has one of the following forms (2.1) and (2.2):

(2.1)
$$\begin{cases} \tau(x_1) = x_1, \\ \tau(x_2) = x_2 + f_2(x_1) \end{cases}$$

for some $f_2(x_1) \in k[x_1]$; and

(2.2)
$$\begin{cases} \tau(x_1) = x_1 + f_1, \\ \tau(x_2) = x_2 + \sum_{i=0}^{p-2} \phi_i (x_1^p - f_1^{p-1} x_1) x_1^i \end{cases}$$

for some $f_1 \in k \setminus \{0\}$ and $\phi_i(T) \in k[T]$ $(0 \le i \le p-2)$, where k[T] is the

polynomial ring in one variable over k.

Proof. The proof of the implication $(2) \Longrightarrow (1)$ is straightforward. We shall prove $(1) \Longrightarrow (2)$. By assertion (2) of Lemma 3, $\tau|_{k[x_1]}$ is a *p*-unipotent automorphism of $k[x_1]$ and $\tau(x_2) - x_2 \in k[x_1]^{D_{\tau|k[x_1]}^{p-1}}$. By Lemma 2, $\tau|_{k[x_1]}(x_1) = x_1 + f_1$ for some $f_1 \in k$. We know from [4, Lemma 2.8] that

$$k[x_1]^{D^{p-1}_{\tau|_{k[x_1]}}} = \begin{cases} k[x_1] & \text{if } f_1 = 0, \\ \sum_{i=0}^{p-2} k[x_1^p - f_1^{p-1}x_1] x_1^i & \text{if } f_1 \neq 0. \end{cases}$$

So, if $f_1 = 0$, then τ has the form (2.1); and if $f_1 \neq 0$, then τ has the form (2.2). Q.E.D.

We shall give an example of non-linear *p*-unipotent triangular automorphisms of $k[x_1, x_2, x_3, x_4]$. Assume that the characteristic of k is three, let $A := k[x_1, x_2, x_3]$ be the polynomial ring in three variables over k, and let σ be the k-algebra automorphism σ of $k[x_1, x_2, x_3]$ defined by

$$\sigma(x_i) := \begin{cases} x_1 & \text{if } i = 1, \\ x_i + x_{i-1} & \text{if } i > 1. \end{cases}$$

Clearly, σ is a *p*-unipotent triangular automorphism of *A*. We know from [1] that the kernel $A^{D_{\sigma}}$ is generated as a *k*-algebra by the following four polynomials f_1, f_2, f_3, f_4 :

$$\begin{cases} f_1 := x_1, \\ f_2 := x_1 x_2 + 2x_2^2 + 2x_1 x_3, \\ f_3 := 2x_1^2 x_2 + x_2^3, \\ f_4 := x_1 x_2 x_3 + 2x_2^2 x_3 + x_1 x_3^2 + x_3^3 \end{cases}$$

Lemma 6 Let σ be as above. Let τ be a *p*-unipotent triangular automorphism of $k[x_1, x_2, x_3, x_4]$ satisfying $\tau|_{k[x_1, x_2, x_3]} = \sigma$. Then τ has the following form:

$$\begin{cases} \tau(x_1) = x_1, \\ \tau(x_2) = x_2 + x_1, \\ \tau(x_3) = x_3 + x_2, \\ \tau(x_4) = x_4 + \sum_{i=1}^4 \beta_i(f_1, f_2, f_3, f_4) g_i, \end{cases}$$

for some polynomials $\beta_i(y_1, y_2, y_3, y_4) \in k[y_1, y_2, y_3, y_4]$ $(1 \leq i \leq 4)$, where $k[y_1, y_2, y_3, y_4]$ is the polynomial ring in four variables over k and the polynomials g_1, g_2, g_3, g_4 are defined by

$$\begin{cases} g_1 := 1, \\ g_2 := x_2, \\ g_3 := 2x_1x_2 + x_2^2 + 2x_2x_3, \\ g_4 := x_1x_2^2 + 2x_2^3 + 2x_1x_2x_3 + x_2^2x_3 + 2x_1x_3^2. \end{cases}$$

Proof. We know from [5, Theorem 5] that $A^{D^2_{\sigma}} = \sum_{i=1}^{4} A^{D_{\sigma}} g_i$. By Lemma 3, τ has the desired form. Q.E.D.

1.3 A method of constructing a generating set of the kernel $k[x_1, \ldots, x_n]^{D_{\sigma}^{\ell}} \ (1 \le \ell \le p-1)$

Let $A := k[x_1, \ldots, x_n]$ be the polynomial ring in n variables over k, where k is a field of positive characteristic p. Let σ be a k-algebra automorphism of A of order p, i.e., $\sigma \neq \mathrm{id}_A$ and $\sigma^p = \mathrm{id}_A$. Let $B := A^{D_\sigma}$ be the kernel of D_σ . So, we can take a finitely generated k-subagebra C of B such that A is a finite C-module. In fact, we know the following C and A: For any $f \in A$, we define a polynomial $\varphi_f(T) := \prod_{i=0}^{p-1} (T - \sigma^i(f))$ of A[T]. Expand $\varphi(T)$ as $\sum_{i=0}^{p} s_i(f) T^i$, where $s_i(f) \in A^{D_\sigma}$ for all $0 \le i \le p-1$. Let $C := k[s_i(x_j) \mid 1 \le j \le n, 0 \le i \le p-1]$. Clearly, $A = \sum_{0 \le i_1, \ldots, i_n \le p-1} C x_1^{i_1} \cdots x_n^{i_n}$.

We shall give a method of constructing a generating set of $A^{D_{\sigma}^{\ell}}$ as a *C*-module for each $1 \leq \ell \leq p-1$, as follows:

We can write C and A as

$$\begin{cases} C = k[c_1, \dots, c_r] & \text{for some } c_1, \dots, c_r \in C, \\ A = \sum_{i=1}^s C a_i & \text{for some } a_1, \dots, a_s \in A. \end{cases}$$

We have an increasing sequence

$$C \subset B = A^{D_{\sigma}} \subsetneq A^{D_{\sigma}^{2}} \subsetneq \cdots \subsetneq A^{D_{\sigma}^{p-1}} \subsetneq A^{D_{\sigma}^{p}} = A$$

of C-modules, and each $A^{D^{\ell}_{\sigma}}$ is a finite C-module. Let $\pi : C^{\oplus s} \to A$ be the surjective C-module homomorphism defined by

$$\pi(\gamma_1,\ldots,\gamma_s):=\sum_{i=1}^s\gamma_i\,a_i.$$

Clearly, we have

$$\begin{aligned} A^{D^{\ell}_{\sigma}} &= \pi \Big(\operatorname{Syz}_{C} \big(D^{\ell}_{\sigma}(a_{1}), \dots, D^{\ell}_{\sigma}(a_{s}) \big) \Big) \\ &= \pi \Big(\operatorname{Syz}_{A} \big(D^{\ell}_{\sigma}(a_{1}), \dots, D^{\ell}_{\sigma}(a_{s}) \big) \cap C^{\oplus s} \Big) \qquad \text{for all} \quad 1 \leq \ell \leq p-1. \end{aligned}$$

For each $1 \leq \ell \leq p - 1$, we let

$$M_{\ell} := \operatorname{Syz}_{A} \left(D_{\sigma}^{\ell}(a_{1}), \dots, D_{\sigma}^{\ell}(a_{s}) \right).$$

Clearly, we have $A^{D_{\sigma}^{\ell}} = \pi(M_{\ell} \cap C^{\oplus s})$ for all $1 \leq \ell \leq p-1$.

Now, we explain how to calculate a generating set of $A^{D_{\sigma}^{\ell}}$ as a *C*-module. Since *A* is a polynomial ring over *k*, we know an algorithm for calculating a generating set $\{m_{\ell,1}, \ldots, m_{\ell, t_{\ell}}\}$ of the syzygy module M_{ℓ} as an *A*-module (see, for example, [3]). And we also know an algorithm for calculating a generating set of the intersection $M_{\ell} \cap C^{\oplus s}$ as a *C*-module, by the algorithm of Kemper [2, Lemma 6]. So, let $\{\mu_{\ell,1}, \ldots, \mu_{\ell, u_{\ell}}\}$ be a generating set of $M_{\ell} \cap C^{\oplus s}$ as a *C*-module. Then the set $\{\pi(\mu_{\ell,1}), \ldots, \pi(\mu_{\ell, u_{\ell}})\}$ forms a generating set of $A^{D_{\sigma}^{\ell}}$ as a *C*-module.

For the convenience of the reader, we write Kemper's algorithm for calculating a generating set of the intersection $M_{\ell} \cap C^{\oplus s}$, as follows: Let $P = k[x_1, \ldots, x_n, y_1, \ldots, y_r]$ be the polynomial ring in n + r variables over k, and let $Q := k[y_1, \ldots, y_r]$ be the polynomial subring of P. Define maps $\Phi : P^{\oplus s} \to A^{\oplus s}$ and $\Psi : Q^{\oplus s} \to C^{\oplus s}$ as

$$\Phi(\alpha_1(x, y_1, \dots, y_r), \dots, \alpha_s(x, y_1, \dots, y_r)) := (\alpha_1(x, c_1, \dots, c_r), \dots, \alpha_s(x, c_1, \dots, c_r)), \\ \Psi(\beta_1(y_1, \dots, y_r), \dots, \beta_s(y_1, \dots, y_r)) := (\beta_1(c_1, \dots, c_r), \dots, \beta_s(c_1, \dots, c_r)),$$

where $x = (x_1, \ldots, x_n)$. Clearly, we have the following commutative diagrams, where vertical arrows are inclusion maps:

Let $N_{\ell} := \Phi^{-1}(M_{\ell})$. It follows that

$$N_{\ell} = \left(\sum_{i=1}^{t_{\ell}} P m_{\ell,i}\right) + \left(\sum_{j_1=1}^{r} \sum_{j_2=1}^{s} P (y_{j_1} - c_{j_1}) e_{j_2}\right),$$

where e_{j_2} is the element of $P^{\oplus s}$ whose j_2 -th entry is one and the other entries are zero. Since Ψ is surjective, we have

$$\Psi(N_{\ell} \cap Q^{\oplus s}) = M_{\ell} \cap C^{\oplus s}.$$

Using Gröbner bases theory for submodules of free modules over the polynomial ring Q, we can calculate a generating set of $N_{\ell} \cap Q^{\oplus s}$ as a Q-module, and let $\{\nu_{\ell,1}, \ldots, \nu_{\ell,u_{\ell}}\}$ be the generating set. Let $\mu_{\ell,i} := \Psi(\nu_{\ell,i})$ for all $1 \leq i \leq u_{\ell}$. Clearly, the set $\{\mu_{\ell,1}, \ldots, \mu_{\ell,u_{\ell}}\}$ forms a generating set of $M_{\ell} \cap C^{\oplus s}$ as a C-module.

R. Tanimoto

2. Triangular pseudo-derivations and triangulable pseudo-derivations

Let A be a k-algebra, where k is a field of positive characteristic p. A k-linear transformation Δ of A is said to be a *pseudo-derivation* if Δ satisfies the following conditions (1), (2) and (3):

(1)
$$\Delta(fg) = \Delta(f)g + f\Delta(g) + \sum_{i=1}^{p-1} \frac{(-1)^i}{i} \Delta^i(f) \Delta^{p-i}(g) \text{ for all } f, g \in A.$$

(2) $\Delta(1_A) = 0$, where 1_A is the unity of A.

(3)
$$\Delta^p = 0.$$

Given a pseudo-derivation Δ of A, we can define a k-linear transformation $Exp(\Delta): A \to A$ as

$$\operatorname{Exp}(\Delta)(f) := \sum_{i=0}^{p-1} \frac{\Delta^i(f)}{i!}$$

We know that $\text{Exp}(\Delta)$ is a k-algebra automorphism of A satisfying $\text{Exp}(\Delta)^p = \text{id}_A$ (see [4, Lemma 1.2]).

Given a k-algebra automorphism σ of A. We can define a k-linear transformation $Log(\sigma): A \to A$ as

$$Log(\sigma)(f) := \sum_{i=1}^{p-1} \frac{(-1)^{i-1}}{i} D^i_{\sigma}(f).$$

For any *p*-unipotent automorphism σ of A, the truncated logarithm $\text{Log}(\sigma)$ is a pseudo-derivation of A (see [4, Lemma 1.6]).

We denote by $U_k^p(A)$ the set of all *p*-unipotent automorphisms of A, and by $\operatorname{PDer}_k(A)$ the set of all pseudo-derivations of A. Let $\operatorname{Exp} : \operatorname{PDer}_k(A) \to U_k^p(A)$ be the map defined by $\Delta \mapsto \operatorname{Exp}(\Delta)$ and let $\operatorname{Log} : U_k^p(A) \to \operatorname{PDer}_k(A)$ be the map defined by $\sigma \mapsto \operatorname{Log}(\sigma)$. We denote by $\operatorname{id}_{\operatorname{PDer}_k(A)}$ the identity map from $\operatorname{PDer}_k(A)$ to itself and by $\operatorname{id}_{U_k^p(A)}$ the identity map from $U_k^p(A)$ to itself.

We know the following theorem (see [4, Theorem 1.7]), which states that there is a one-to-one correspondence between the set of all *p*-unipotent automorphisms of A and the set of all pseudo-derivations of A.

Theorem 7 We have

 $\operatorname{Log} \circ \operatorname{Exp} = \operatorname{id}_{\operatorname{PDer}_k(A)}$ and $\operatorname{Exp} \circ \operatorname{Log} = \operatorname{id}_{U_k^p(A)}$.

And we have $\operatorname{Exp}(\Delta) = \operatorname{id}_A$ if and only if $\Delta = 0$.

2.1 Triangular pseudo-derivations

Let Δ be a pseudo-derivation of $k[x_1, \ldots, x_n]$ and let σ be the *p*-unipotent automorphism of $k[x_1, \ldots, x_n]$ corresponding to Δ , i.e., $\sigma = \text{Exp}(\Delta)$. We say that Δ is *triangular* if σ is a triangular automorphism of $k[x_1, \ldots, x_n]$.

The following theorem gives a necessary and sufficient condition for a *p*-unipotent automorphism σ of $k[x_1, \ldots, x_n]$ to be triangular in terms of the pseudo-derivation Δ of $k[x_1, \ldots, x_n]$ corresponding to σ .

Theorem 8 Let σ be a *p*-unipotent automorphism of $k[x_1, \ldots, x_n]$ and let Δ be the pseudo-derivation of $k[x_1, \ldots, x_n]$ corresponding to σ . Then the following conditions (1) and (2) are equivalent:

- (1) σ is triangular.
- (2) $\Delta(x_i) \in k[x_1, \dots, x_{i-1}]$ for all $1 \le i \le n$.

In order to prove Theorem 8, we prepare the following lemma. After we proved Lemma 9, we prove Theorem 8.

Lemma 9 Let *i* be an integer satisfying $1 \le i \le n$, and let Δ be a pseudoderivation of $k[x_1, \ldots, x_n]$ satisfying the following conditions (1) and (2):

- (1) $\Delta(x_i) \in k[x_1, \ldots, x_{i-1}].$
- (2) $\Delta(k[x_1, \dots, x_{i-1}]) \subset k[x_1, \dots, x_{i-1}].$

Then, for all $r \geq 1$, we have

$$\begin{cases} \Delta(x_i^r) \in \sum_{\ell=0}^{r-1} k[x_1, \dots, x_{i-1}] \, x_i^{\ell}, \\ \Delta\left(\sum_{\ell=0}^{r-1} k[x_1, \dots, x_{i-1}] \, x_i^{\ell}\right) \subset \sum_{\ell=0}^{r-1} k[x_1, \dots, x_{i-1}] \, x_i^{\ell}. \end{cases}$$

Proof. We proceed by induction on $r \ge 1$. If r = 1, the proof is clear. So let $r \ge 2$ and suppose that

$$\begin{cases} \Delta(x_i^{r-1}) \in \sum_{\ell=0}^{r-2} k[x_1, \dots, x_{i-1}] x_i^{\ell}, \\ \Delta\left(\sum_{\ell=0}^{r-2} k[x_1, \dots, x_{i-1}] x_i^{\ell}\right) \subset \sum_{\ell=0}^{r-2} k[x_1, \dots, x_{i-1}] x_i^{\ell}. \end{cases}$$

We have

$$\Delta(x_i^r) = \Delta(x_i) \, x_i^{r-1} + x_i \, \Delta(x_i^{r-1}) + \sum_{\ell=1}^{p-1} \frac{(-1)^\ell}{\ell} \, \Delta^\ell(x_i) \, \Delta^{p-\ell}(x_i^{r-1})$$

R. Tanimoto

$$\in \sum_{\ell=0}^{r-1} k[x_1, \dots, x_{i-1}] x_i^{\ell}.$$

For any $f \in k[x_1, \ldots, x_{i-1}]$, we have

$$\Delta(f x_i^{r-1}) = \Delta(f) x_i^{r-1} + f \Delta(x_i^{r-1}) + \sum_{\ell=1}^{p-1} \frac{(-1)^{\ell}}{\ell} \Delta^{\ell}(f) \Delta^{p-\ell}(x_i^{r-1})$$

$$\in \sum_{\ell=0}^{r-1} k[x_1, \dots, x_{i-1}] x_i^{\ell}.$$
 Q.E.D.

Now, we prove Theorem 8. We first prove $(1) \Longrightarrow (2)$. For all $1 \le i \le n$, we have

$$\Delta(x_i) = \text{Log}(\sigma)(x_i) = \sum_{\ell=1}^{p-1} \frac{(-1)^{\ell-1}}{\ell} D_{\sigma}^{\ell}(x_i).$$

Since σ is triangular, we know that $D_{\sigma}(x_i) \in k[x_1, \ldots, x_{i-1}]$ and $D_{\sigma}(k[x_1, \ldots, x_{i-1}]) \subset k[x_1, \ldots, x_{i-1}]$. So, we have $D_{\sigma}^{\ell}(x_i) \in k[x_1, \ldots, x_{i-1}]$ for all $1 \leq \ell \leq p-1$. It follows that $\Delta(x_i) \in k[x_1, \ldots, x_{i-1}]$.

We next prove $(2) \Longrightarrow (1)$. We begin with proving that $\Delta(k[x_1, \ldots, x_j]) \subset k[x_1, \ldots, x_j]$ for all $0 \leq j \leq n-1$. We proceed by induction on j. If j = 0, the proof is clear. So, let $j \geq 1$ and suppose that $\Delta(k[x_1, \ldots, x_{j-1}]) \subset k[x_1, \ldots, x_{j-1}]$. Since $\Delta(x_j) \in k[x_1, \ldots, x_{j-1}]$, we know from Lemma 9 that $\Delta(k[x_1, \ldots, x_j]) \subset k[x_1, \ldots, x_j]$. $(k[x_1, \ldots, x_j]) \subset k[x_1, \ldots, x_j]$. So, for all $1 \leq i \leq n$, we have

$$\sigma(x_i) = \operatorname{Exp}(\Delta)(x_i) = \sum_{\ell=0}^{p-1} \frac{\Delta^{\ell}(x_i)}{\ell!} \in x_i + k[x_1, \dots, x_{i-1}],$$

where we denote by $x_i + k[x_1, \ldots, x_{i-1}]$ $(1 \le i \le n)$ the set of all polynomials F which can be written in the form $F = x_i + f$ for some $f \in k[x_1, \ldots, x_{i-1}]$. This completes the proof of Theorem 8.

2.2 Triangulable pseudo-derivations

Let Δ be a pseudo-derivation of $k[x_1, \ldots, x_n]$. Clearly, for any automorphism φ of $k[x_1, \ldots, x_n]$, $\varphi^{-1}\Delta\varphi$ is a pseudo-derivation of $k[x_1, \ldots, x_n]$. We say that Δ is triangulable if $\varphi^{-1}\Delta\varphi$ is triangular for some automorphism φ of $k[x_1, \ldots, x_n]$.

We have the following lemma:

Lemma 10 Let σ be a *p*-unipotent automorphism of $k[x_1, \ldots, x_n]$ and let Δ be the pseudo-derivation of $k[x_1, \ldots, x_n]$ corresponding to σ . Then the following conditions (1) and (2) are equivalent:

(1) σ is triangulable.

10

(2) Δ is triangulable.

Proof. The proof follows from the fact that $\varphi^{-1}\sigma\varphi = \text{Exp}(\varphi^{-1}\Delta\varphi)$ for any automorphism φ of $k[x_1, \ldots, x_n]$. Q.E.D.

References

- L. E. Dickson, On Invariants and the Theory of Numbers, The Madison Colloquium (1913, Part 1), Amer. Math. Society, reprinted by Dover, New York, 1966.
- G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), no. 3, 351–366.
- [3] M. Kreuzer, L. Robbiano, Computational commutative algebra 1, Corrected reprint of the 2000 original, Springer-Verlag, Berlin, 2008. x+321 pp.
- [4] R. Tanimoto, Pseudo-derivations and modular invariant theory, Transform. Groups 23 (2018), no. 1, 271–297.
- [5] R. Tanimoto, The image membership algorithm for twisted derivations in modular invariant theory, Saitama Math. J. 29 (2012), 55–64.

Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422–8529, Japan e-mail: tanimoto.ryuji@shizuoka.ac.jp