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Abstract

We study extrinsic conformal geometry of space forms involving pencils of cir-

cles or of spheres. We consider curves orthogonal to a foliation of an open set of a

3-sphere by spheres and prove that the osculating spheres to the curves at points

of a leaf form a pencil.

1. Introduction

Let F be a codimension 1 foliation of an open set of Rn, Sn or Hn by spheres.

The orthogonal curves form a one-dimensional foliation F⊥. The holonomy maps

of F⊥ are conformal maps defined from one spherical leaf of F to another (see

[3]). We study the local geometry of the curves of F⊥ at the points of a given

spherical leaf of F . We first consider a “baby case”, foliations F of the sphere

S
2 by circles and the orthogonal foliations F⊥, and prove our main theorem in

this dimension (Theorem 2.5) using only classical tools. Then we prove our main

theorem (Theorem 3.4) for S
3 using the de Sitter space Λ4 which is a model of

the set of oriented spheres of S3. The n-dimensional case can be shown by the

same argument. The Euclidean and hyperbolic cases can be reduced to the case

of Sn since R
n and H

n are conformally equivalent to S
n \∞ and to an open ball

of Sn respectively.

The topic of this paper is in the intersection of conformal (Möbius) geometry

and the theory of foliations. The reader is referred to [6] for advanced studies

of the topic, and to [2] and [4] for the basics of conformal (Möbius) geometry.

Related studies can be found in [1], where transformations of plane that map

circles to circes are studied, and in [7], where holomorphic maps of the complex

plane are characterized in terms of the images of pencils of circles.

2. Euclidean space view of osculating circles and pencils

A foliation is Riemannian if and only if the orthogonal trajectories are

geodesics. In the Euclidean plane a Riemannian foliation is just a foliation by

“parallel ” curves. Along a common normal, these parallel curves have the same
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Figure 1 The singular locus of the envelope of planes tangent to S2 along a curve determines
the osculating circles to the curve

center of curvature, namely, they have concentric osculating circles. Thus we

have

Proposition 2.1. If F is a foliation of a planar open set U by affine lines, all

the orthogonal trajectories of the leaves have concentric osculating circles at the

points of the same leaf.

For example, if E is the evolute of a plane curve C, the tangent lines to E
form a foliation by affine lines, and the orthogonal trajectories of the leaves are

the involutes of E , which are the curves parallel to C. We want to give first a

generalization of that result concerning a foliation of the plane by circles:

Theorem 2.2. If F is a foliation of a planar open set U by circles, the osculat-

ing circles of all the orthogonal trajectories at the points of the same leaf are in

a same pencil of circles (see Definition 2.3 for the definition of a pencil).

To prove this purely conformal theorem, it is convenient to replace R
2 by

the unit sphere S
2 in R

3. A circle in S
2 has a vertex which is the vertex of the

cone tangent to S
2 along the circle, or the “point at infinity” when the circle is a

geodesic circle (the tangent cone is in that case a tangent cylinder).

Notice that the curve C drawn on S
2 has an osculating circle OC,t at each

point c(t) which is a circle of S2. Therefore it is the intersection of S2 with the

osculating plane of the curve. This intersection is always a circle and not a point,

as the osculating plane of a smooth curve drawn on S
2 cannot be tangent to S

2.

The vertex of the osculating circle at c(t) is called the focal point at c(t).

For a second definition of the osculating circle, we parametrize C by s �→ c(s),

and we associate to each s the affine tangent plane P (s) of S2 at c(s). This family

of planes admits an envelope as follows, where the envelope is a surface that is
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Figure 2 Two pencils of circles on S2

tantgent to each P (s) at a line. As every point of S2 is umbilical, the Weingarten

map of S2 at c(s) is the identity and all the curves of S2 are lines of principal

curvature. The characteristic direction N (s) of the envelope of planes P (s) at

s, which is the limit of P (s) ∩ P (s +Δs) as Δs goes to 0, is the line tangent to

S
2 at c(s) which is normal to C. Thus, the union of the normal lines N (s) is

the envelope of the planes P (s) and is therefore a developable surface W. If two

curves c1(s) and c2(s) have a contact of order 2 at c1(s) = c2(s), the focal point

ω(s) ∈ N (s) is the same for the two curves, i.e. the vertex of the osculating circle

OCi
of Ci at ci(s) is ω(s) for i = 1, 2.

Notice that, if we unroll the developable surface W, the focal point of the

plane curve (i.e. the characteristic point of the family of normals to the curve)

corresponds to the focal point of the family of planes tangent to the sphere along

the curve.

The distance of c(s) to ω(s) has a classical geometric interpretation. Devel-

oping the surface W onto the affine tangent plane to S
2 at c(s), the development

of C has an osculating circle at c(s) centered at ω(s) : this point is sometimes

called the geodesic curvature center of C at c(s). The distance of c(s) to ω(s)

is the geodesic curvature radius of C at c(s), and its inverse kg is the geodesic

curvature of C at c(s). We shall call ω(s) the osculation vertex of C at s.

Let us recall the classical definition of a pencil of circles.

Definition 2.3. A pencil of circles in S
2 is a set of circles of intersection of S2

with the planes containing an affine line Δ called the axis of the pencil (see

Figure 2).
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We give a proposition which we use in the proof of the spherical version of

Theorem 2.2.

Proposition 2.4. Let Δ be a line. The set of circles of S2 that have vertices

on Δ is a pencil of circles. If Δ intersects S
2, it is a Poncelet pencil with limit

points Δ ∩ S
2. If Δ ∩ S

2 = ∅, it is a pencil with base points. If Δ ∩ S
2 is one

point, it is a pencil of circles tangent at that point.

Proof. For any point v in R
3, the polar plane of v with respect to the sphere S

2 is

the set of points w such that w · v = 1, for the usual scalar product in R
3. If v is

outside S
2, the intersection of the polar plane of v with S

2 is a circle Γ of vertex

v. The intersection of the polar planes of all the points v on an affine line Δ is an

affine line, called the polar Δ∗ of Δ with respect to S
2. The polar planes of the

points v ∈ Δ form a pencil, the planes containing Δ∗. Thus their intersections

with S
2 form a pencil of circles of axis Δ∗. If Δ does not cut S2, then Δ∗ cuts S2

and all the planes containing Δ∗ must cut S2. In that case, the pencil of circles

Γ has the intersections of Δ∗ and S
2 as base points.

If Δ cuts S
2, then Δ∗ does not cut S

2, and the planes containing Δ∗ and

cutting S
2 are contained in a dihedral sector between two planes tangent to S

2.

The corresponding pencil of circles has two limit points, the contacts of the two

tangent planes with S
2. The limit case, when Δ is tangent to S

2 gives a pencil of

circles tangent to the line Δ∗ perpendicular to Δ at the common tangency point

with S
2.

Theorem 2.5. (A spherical version of Theorem 2.2) If F is a foliation of an

open set U of S2 by circles, the osculating circles of all the orthogonal trajectories

at the points of the same leaf are in a same pencil of circles on S
2.

Proof. The circles Γ(t) of the foliation may be described as the intersections of

planes Π(t) with S
2, where {Π(t)}t∈R is a family of affine planes in R

3 (see Figure

3). Let Δ(t) be the characteristic line of the envelope of this family of planes.

Consider a trajectory C orthogonal to the foliation, parameterized by arc

length : s �→ c(s) ∈ S
2. We denote the parameter t of the leaf which contains

c(s) by t(s). At the point c(s) ∈ C ∩ Γ(t(s)), C is orthogonal to Γ(t(s)) and the

affine normal line N (s) to C (tangent to S
2) is contained in the plane Π(t(s)).

Recall that the osculation vertex ω(s) is the common limit of the two nearest

points of N (s′) and N (s), when s′ tends to s. Then ω(s) is contained in an affine

line Δ(t(s)) which is the limit of the intersection of Π(t(s′)) and Π(t(s)) when s′

tend to s (see Figure 3). Then ω(s) is on Δ(t(s)). It implies that, for a fixed t,

all the osculation vertices of the curves orthogonal to F at the points of the leaf

Γ(t) are on the characteristic line Δ(t).

In our case, all the osculating vertices of the orthogonal trajectories at points

of Γ(t) are in the line Δ(t), therefore the osculating circles to these orthogonal

curves form a pencil of axis Δ(t)∗. This pencil is orthogonal to the pencil of
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Figure 3

Figure 4 Two orthogonal pencils (one in black, the other in grey)

circles intersection of S2 with the planes containing Δ(t) (see Figure 4).

3. Conformal view of osculating spheres and pencils

3.1 Preliminaries for Möbius geometry

We will present Möbius geometry of spheres contained in S
3. The analogous

definitions, necessary to deal with circles of S2, or even with (n − 1)-spheres of

S
n, will be left to the reader.

The Lorentz quadratic form L on the 5-dimensional space R
5 and the as-

sociated Lorentz bilinear form L(·, ·), are defined by L(x) = L(x0, · · · , x4) =

−x2
0 + (x2

1 + · · · + x2
4) and L(u,v) = −u0v0 + (u1v1 + · · · + u4v4). When R

5 is

endowed with the Lorentz quadratic form L, we denote it by R
5
1. The isotropy

cone Light = {v ∈ R
5
1 | L(v) = 0} of L is called the light cone. Its non-zero

vectors are also called light-like vectors. The light cone divides the set of vec-
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Figure 5 S3∞ and the correspondence between points of Λ4 and 2-spheres.

tors v ∈ R
5
1,v /∈ {L = 0} in two classes. A vector v in R

5
1 is called space-like

if L(v) > 0 and time-like if L(v) < 0. A straight line is called space-like (or

time-like) if it contains a space-like (or respectively, time-like) vector. We say

that a vector u in the Minkowski space R
5
1 is orthogonal to a vector v ∈ R

5
1 if

L(u,v) = 0.

The points at infinity of the light cone in the upper half space {x0 > 0} form

a 3-dimensional sphere. Let it be denoted by S
3
∞. Since it can be considered

as the set of lines through the origin in the light cone, it is identified with the

intersection S
3
1 of the upper half light cone and the hyperplane {x0 = 1}, which

is given by S
3
1 = {(x1, · · · , x4) |x2

1 + · · ·+ x2
4 − 1 = 0}.

In this Minkowski space R
5
1, the hypersurface Λ4 of the point σ such that

L(σ) = 1 gives a parameterization of the set of oriented 2-spheres in S
3 as fol-

lows. To each point σ ∈ Λ4 corresponds an oriented 2-sphere Σ = σ⊥ ∩ S
3
∞

or Σ = σ⊥ ∩ S
3
1 (see Figure 5). It is convenient to have a formula giving the

point σ ∈ Λ4 in terms of the Riemannian geometry of the corresponding sphere

Σ ⊂ S
3 ⊂ Light and a point m on it. For that, we need the unit vector n tangent

to S
3 and normal to Σ at m and the geodesic curvature of the sphere Σ.

Proposition 3.1. The point σ ∈ Λ4 corresponding to the 2-sphere Σ ⊂ S
3 ⊂

Light is given by

σ = kgm+ n. (1)
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Figure 6 Spherical model in the Lorentz space R5
1 (left). The geodesic curvature kg , picture

in the affine 4-plane H (right).

Proof. The proof of Proposition 3.1 can be found in ([5], prop. 3.1). Let us give

a sketch of the idea of the proof (see Figure 6).

Let H be the affine hyperplane such that S3 = Light ∩ H; the restriction of

the Lorentz metric to H is an Euclidean metric. Let P be the hyperplane such

that Σ = S
3 ∩ P . The vertex v of the cone, contained in H, tangent to S

3 along

Σ is a point of the line P⊥ which contains the point σ ∈ Λ4.

If m is a point on Σ, its (Euclidean) distance |−→mv| to the vertex v is (up to

sign) the inverse Rg of the geodesic curvature kg of Σ (at m, but not dependent

on m). One has L(−→mv) = R2
g. Let n be a unit vector tangent to S

3, normal to

Σ in the direction compatible with its chosen orientation. The orientation of n

and the sign of kg depend on the orientation of the sphere. As m is light-like and

orthogonal to −→mv =
1

kg
n, one has L(v) = R2

g. Finally

σ =
v

Rg
=

1

Rg
(m+−→mv) = kgm+ n.

This number kg may be named geodesic curvature, as |kg| is the inverse of

the radius of the sphere centered at v passing through m.

Remark 3.2. A similar proposition can be stated for 2-spheres and planes in

the Euclidean plane E
3 seen as a paraboloid, a section of the light cone by an

affine 4-plane parallel to a 4-plane tangent to the light cone. The argument goes

parallel for any dimension.

Definition 3.3. A pencil of spheres is a one-parameter family of spheres that

correspond to the intersection of Λ4 with a 2-dimensional plane through the ori-

gin.
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3.2 Main theorem

Using the space of oriented spheres Λ4, we shall prove the following theorem

which gives the corresponding result for a foliation of (an open set on) the sphere

S
3 by 2-dimensional spheres. In this section, curves in Λ4 and the corresponding

families of spheres will be smooth (of class C∞). Therefore the leaves of the or-

thogonal 1-dimensional foliation F⊥ are also smooth in open domains where the

family of spheres define a foliation.

Theorem 3.4. Consider a one parameter family S = {Σ(t)}t∈R of (2-

dimensional) spheres in S
3, and let σ(t) be the point of Λ4 corresponding to Σ(t).

We assume that the vectors σ(t),
.
σ(t) and

..
σ (t) are linearly independent in R

5
1.

Let us denote by C : t �→ c(t) the parameterization of a leaf of the foliation F⊥,
a curve such that c(t) ∈ Σ(t) and

.
c(t) is orthogonal to the tangent plane of Σ(t)

at c(t) in S
3 for any t.

Then all the osculating spheres of the orthogonal trajectories at the points of

Σ(t), where they can be, are in a same pencil of spheres P. The image of P in

Λ4 is the intersection of Λ4 with the orthogonal complement of the 3-dimensional

subspace of R5
1 generated by σ(t),

.
σ(t) and

..
σ (t).

In particular, although we have 2-dimensional set of orthogonal trajectories,

we have only 1-dimensional set of osculating spheres along a leaf (Corollary 3.5).

In what follows, we shall consider S
3 as the intersection of the hyperplane

H defined in R
5
1 by the equation x0 = 1 with the light cone. Any “point in S

3”

will be supposed to be in H ∩ Light. In particular, if a curve t �→ c(t) is drawn

in S
3 ⊂ H, its speed

.
c(t) is in the hyperplane defined by x0 = 0 which gives the

projective space “at the infinity” of H.

Proof. For a point m ∈ S
3 ⊂ H and σ ∈ Λ4, we know that m ∈ Σ if and only

if L(σ,m) = 0. Let πt be the hyperplane of equation L(σ(t),m) = 0. Near any

point of Σ ⊂ S
3, the affine 3-planes Πt = πt ∩H are all transverse to the sphere

S
3 ⊂ H and the spheres Σt = Πt ∩ S

3 foliate a neighborhood of m in S
3.

The curve t �→ c(t) ∈ S
3 ⊂ H has a contact of order ≥ k with a 3-plane

H = σ⊥∩H at c(0) if and only if the function t �→ L(σ, c(t)) and all of its deriva-

tives of order ≤ k take the value 0 at t, as the function t �→ L(σ, c(t)) is a regular

smooth function in a neighborhood of 0. As the curve t �→ c(t) is drawn on S
3,

this means that the curve t �→ c(t) has a contact of order ≥ k with H ∩ S
3 = Σ.

For k = 1, it means that a sphere Σtang ⊂ H is tangent to the arc C :

t �→ c(t) at c(t) if and only if

L(σtang, c(t)
)
= L(σtang,

.
c(t)

)
= 0,

that is, if and only if σtang is orthogonal to c(t) and to
.
c(t).

For k = 2, it means that the sphere Σcirc.osc ⊂ H contains the osculating
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circle of the arc C : t �→ c(t) at c(t) if and only if

L(σcirc.osc, c(t)
)
= L(σcirc.osc,

.
c(t)

)
= L(σcirc.osc,

..
c (t)

)
= 0.

For k = 3, it means that the sphere Σosc ⊂ H is the osculating sphere of the

arc C : t �→ c(t) at c if and only if

L(σosc, c(t)
)
= L(σosc,

.
c(t)

)
= L(σosc,

..
c (t)

)
= L(σosc,

...
c (t)

)
= 0.

Then, when the four vectors c(t),
.
c(t),

..
c (t),

...
c (t) are independent, the oscu-

lating sphere Σosc to the arc corresponds to the point of Λ4 orthogonal to the

hyperplane
〈
c(t),
.
c(t),

..
c (t),

...
c (t)

〉
generated by these four points (the linear in-

dependence of the four points is equivalent to the existence and unicity of the

osculating sphere).

If the arc C = {c(t)} ⊂ S
3 ⊂ H is orthogonal to Σ(t) at the point c(t), we

have seen that σ(t) = kgc(t) + n(t), where n(t) is a unit vector orthogonal to

Σ(t) at c(t).

As C is orthogonal to Σ at c(t), n(t) is proportional to
.
c(t), we can write.

c(t) = α(t)σ(t)+β(t)c(t). This gives an other interpretation of the vector spaces

constructed above :

〈
c(t),
.
c(t)

〉
= 〈c(t), σ(t)〉,

〈
c(t),
.
c(t),

..
c (t)

〉
=

〈
c(t), σ(t),

.
σ(t)

〉
,

〈
c(t),
.
c(t),

..
c (t),

...
c (t)

〉
=

〈
c(t), σ(t),

.
σ(t),

..
σ(t)

〉
.

In particular, the point σosc corresponding to the osculating sphere Σosc, orthog-

onal to this last hyperplane of R5
1, is orthogonal to the 3-dimensional subspace〈

σ(t),
.
σ(t),

..
σ(t)

〉
of R5

1 which depends only on the family {Σ(t)}t∈R. The set of

points ζ orthogonal to a 3-dimensional vector space of R5
1 corresponds to a pencil

of spheres in S
3.

Corollary 3.5. All the curves orthogonal to the initial family of spheres along

the circle Σ ∩ Σosc(t) have the same osculating sphere, Σosc(t).

Remark 3.6. The coefficients α(t) and β(t) of
.
c(t) in the proof can be given ex-

plicitly. Let e0 be the unit vector (1, 0, . . . , 0). Since
.
c(t) ∈ Tc(t)S

3∩(
Tc(t)Σ(t)

)⊥
,

using Gram-Schmidt orthonormalization, we have

.
c(t) ‖ σ(t)− L(c(t)− e0, σ(t)

)
c(t) + L(c(t), σ(t)) e0.

Since

L(c(t), σ(t)) = 0 ∀t, (2)

we have
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L(.c(t), σ(t)) = −L(c(t), .σ(t)). (3)

Applying (2), (3) and L(σ(t), σ(t)) = 1 we obtain

.
c(t) = −L(c(t), .σ(t))[σ(t) + L(σ(t), e0) c(t)

]
.
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Remi.Langevin@u-bourgogne.fr

Jun O’Hara

Department of Mathematics and Informatics, Chiba University,

1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan.

ohara@math.s.chiba-u.ac.jp

Jean-Claude Sifre
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