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Abstract

We observe that there exists a Bia�lynicki-Birula decomposition of the Hilbert

scheme HilbP
n such that the cells are homeomorphic to Gröbner strata of homo-

geneous ideals with fixed initial ideal. Using such a decomposition, we show that

HilbP
n is singular at a monomial scheme if the corresponding Gröbner stratum is

singular at J .

1. Introduction

Let k be a field. We consider the Hilbert scheme HilbP
n parameterizing closed

subschemes of P
n
k with Hilbert polynomial P . If we fix a term order ≺ on the

polynomial ring S = k[x] = k[x0, . . . , xn], each homogeneous ideal I in S has a

unique initial ideal in≺(I) and a unique reduced Gröbner basis G with respect to

≺. Hence if we think to the set of k-rational points of HilbP
n as represented by a

set of homogeneous ideals in S, k-rational points can be decomposed into loci of

homogeneous ideals with fixed initial ideal, called Gröbner strata or Gröbner basis

schemes [NS00, Rob09, RT10]. The main purpose of this article is to discuss this

decomposition and its relation with a torus group action on HilbP
n corresponding

to ≺.

For short, we call Gröbner basis scheme by Gröbner scheme. We denote by

GröbJ
≺ the Gröbner scheme or the Gröbner stratum parameterizing homogeneous

ideals in S whose initial ideal is J with respect to ≺. In this paper, we call those

schemes the Gröbner strata when we think to those schemes as loci of a Hilbert

scheme. Otherwise we call GröbJ
≺ the Gröbner scheme when we think to GröbJ

≺
as the scheme representing the Gröbner functor [Led11, LR16]

GröbJ
≺ : (k -Alg) → (Set)

A �→
{
G ⊂ A[x]

∣∣∣∣∣ G is a homogeneous reduced Gröbner basis

whose in≺(〈G〉) = J

}
.

2010 Mathematics Subject Classification. Primary 14C05, 13P10, 13F20
Key words and phrases. Hilbert scheme, Bia�lynicki-Birula decomposition, Gröbner bases.
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The Gröbner scheme GröbJ
≺ is computable, in the sense that we can

give defining equations of GröbJ
≺ and explicitly describe the family of ideals

[Rob09, RT10, Led11]. Each Gröbner scheme is a weighted cone in its tangent

space on the point corresponding to the monomial ideal [Rob09, RT10]. It implies

that GröbJ
≺ is smooth at J if and only if GröbJ

≺ is isomorphic to an affine space.

This property plays a relevant role in this content. For instance, it can be used

to decide whether GröbJ
≺ is smooth or not. We denote the computation methods

in Section 3 that we used for this paper.

To the best knowledge of the author, the study of Gröbner strata began from

Notari and Spreafico’s results [NS00] which became basic concepts and proper-

ties nowadays. Roggero and Terracini dealt with a construction of Gröbner strata

from Buchberger’s criterion [RT10], Robbiano and Lederer also gave a construc-

tion of Gröbner strata from a theory of border basis [Rob09, Led11]. Moreover,

[Rob09, RT10] show properties on Gröbner strata about the computability and

the smoothness as above. Hence one can consider that the smoothness of Gröbner

strata implies the rationality on the Hilbert scheme. Lella and Roggero show the

following.

Theorem 1.1 ([LR11]). Let H be an irreducible component of HilbP
n . Let r be

the Gotzmann number of P .

• If H is smooth, then it is rational.

• If H contains a smooth point which corresponds to a (r,≺)-segment ideal

(where ≺ is any term order), then H is rational.

• The Reeves and Stillman component HRS of HilbP
n is rational.

Moreover, if J is a (r,≺)-segment ideal and HilbP
n is smooth at ProjS/J , then

GröbJ
≺ is isomorphic to an affine space.

The Gotzmann number of a Hilbert polynomial P is a number determined

by a combinatorial way and is an upper-bound of Castelnuvo-Munfold regular-

ity on the Hilbert scheme HilbP
n . By Gotzmann’s Persistence Theorem, we have

a representation of the k-rational points of the Hilbert scheme as the following

[LR11]:

HilbP
n (k) ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
I ⊂ S

∣∣∣∣∣∣∣∣∣∣∣

• I is homogeneous generated by Ir

• dimk Ir =

(
n+ r

r

)
− P (r)

• dimk Ir+1 =

(
n+ r + 1

r + 1

)
− P (r + 1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (1.1)

Here we mean Ir = {f ∈ I | f is homogeneous of degree r}.

For shot, we denote by IP,n the above three conditions. There is an easy

proposition about initial ideals of ideals in HilbP
n (k).
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Proposition 1.2. Let I be a homogeneous ideal in S. Let ≺ be a term order on

S. Then I satisfies IP,n if and only if the initial ideal in≺ I satisfies IP,n.

Proof. Note that I satisfies IP,n if and only if I is the r-truncation of a satu-

rated ideal defining an element of HilbP
n (k) [RT10, LR11]. Here we call I≥r the

r-truncation of I and we say I is saturated if Isat := {f ∈ S | ∃ d ≥ 0, ∀xγ ∈
Sd, x

γf ∈ I} = I.

Put J = in≺ I. Assume that I satisfies IP,n. For any s ≥ r, we have

dimk(S/J)s = dimk(S/I)s = P (s). The Hilbert polynomial of ProjS/J in P
n
k is

also P , then dimk(S/Jsat)s = P (s). Thus (Jsat)≥r = J≥r = in≺(I≥r) = in≺(I) =

J . Conversely, assume that J satisfies IP,n. Then there exists a saturated mono-

mial ideal J ′ such that J = J ′
≥r and ProjS/J ′ ∈ HilbP

n (k). Put I ′ = Isat. Then

for any s ≥ r, we have dimk(S/I)s = dimk(S/J)s = dimk(S/J ′)s = P (s) =

dimk(S/I ′)s. Therefore we obtain I = I ′≥r.

We define the set of monomial ideals in S satisfying IP,n and denote it by

MP,n, i.e.

MP,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
J ⊂ S

∣∣∣∣∣∣∣∣∣∣∣

• J is a monomial ideal generated by Jr

• dimk Jr =

(
n+ r

r

)
− P (r)

• dimk Jr+1 =

(
n+ r + 1

r + 1

)
− P (r + 1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∼= {x ∈ HilbP
n (k) | x corresponds to a monomial ideal}.

(1.2)

Then we obtain the following decomposition of the k-rational points of HilbP
n by

Proposition 1.2:

HilbP
n (k) =

∐
J∈MP,n

GröbJ
≺(k). (1.3)

We call this decomposition the Gröbner decomposition of HilbP
n with respect

to ≺. Since the set MP,n is computable (see Section 3), the Gröbner schemes in

the Gröbner decomposition (1.3) is also computable.

Example 1.3. We introduce an example of the Gröbner decomposition com-

puted by the methods in Section 3. We consider the Hilbert scheme of d points

in P
2
k and let ≺ be the lexicographic order on k[x0, x1, x2]. The Hilbert scheme

Hilbd
2 is smooth and its dimension is 2d [Har10]. By computing (1.3), in fact,

GröbJ
≺ is isomorphic to an affine space A

m
k for any J ∈ Md,2. We make Table 1

of the numbers of J ∈ Md,2 such that GröbJ
≺ ∼= A

m
k . In fact, these numbers are

the Betti numbers of Hilbd
2 [ES87].

In [ES88], Ellingsrud and Strømme give a cell decomposition of Hilbd
2 using a



4 Y. Kambe

Table 1 The numbers of J ∈ Md,2 such that GröbJ≺ ∼= A
m
k

d \m 0 1 2 3 4 5 6 7 8 9 10

1 1 1 1

2 1 2 3 2 1

3 1 2 5 6 5 2 1

4 1 2 6 10 13 10 6 2 1

5 1 2 6 12 21 24 21 12 6 2 1

result of Bia�lynicki-Birula [BB73, BB76], called Bia�lynicki-Birula decomposition.

The original Bia�lynicki-Birula decomposition is a cell decomposition of a smooth

projective variety with a one dimensional torus action. Since Gröbner strata are

naturally equipped with a one dimensional torus action from Gröbner degener-

ation [Bay82, Rob09, RT10], one may wonder when the Gröbner decomposition

(1.3) coincides with a Bia�lynicki-Birula decomposition.

The interest in these object is not new. Evain and Lederer study Gröbner

strata and Bia�lynicki-Birula decomposition in Hilbert schemes parameterizing

points on an affine space [EL12]. They give a functorial definition of cells of

Bia�lynicki-Birula decomposition and they show that such functors are repre-

sentable by k-schemes called Bia�lynicki-Birula scheme. For more general setting,

Drinfeld [Dri13], Jelisiejew and Sienkiewicz [JS18] study about the Bia�lynicki-

Birula decomposition on any (possibly non-smooth) algebraic scheme with an

action of Gm or a reductive group.

Thanks to these studies, the contribution of this paper is to compare a

Bia�lynicki-Birula decomposition of HilbP
n with the Gröbner decomposition fo-

cusing on their topologies and singularities. Moreover, we will obtain another

proof of a result in [LR11] as Theorem 1.5.

Theorem 1.4. For any term order ≺, there exists a Gm-action on HilbP
n such

that:

• the scheme of fixed points is 0-dimensional and the k-rational fixed points are

the monomial schemes {ProjS/J | J ∈ MP,n} in HilbP
n .

• the Bia�lynicki-Birula scheme for a fixed point ProjS/J is homeomorphic to

GröbJ
≺ with the same k-rational points in HilbP

n .

In particular, the Gröbner decomposition

HilbP
n (k) =

∐
J∈MP,n

GröbJ
≺(k).

coincides with the Bialyniciki-Birula decomposition of HilbP
n on the k-rational

points.

Theorem 1.5. For any J ∈ MP,n, if the Hilbert scheme HilbP
n is smooth at

ProjS/J , then the Gröbner scheme GröbJ
≺ is isomorphic to an affine space.
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On Theorem 1.5, we provide an example in where P = 2t + 2, n = 3 (Ex-

ample 7.7). Such Hilbert scheme is dealt in a Sernesi’s book [Ser06] and Sernesi

shows that Hilb2t+2
3 has a singular point defined by a monomial ideal using a

obstruction theory. In our example, we find 18 new singular points in Hilb2t+2
3

defined by monomial ideals in M2t+2,3 using Theorem 1.5.

This paper is organized as follows. Section 2 and Section 3 describe pre-

liminaries, notations and computation methods used in this paper. We attach

a Gm-action on HilbP
n induced from given term order ≺ in Section 4. Then we

define the Bia�lynicki-Birula decomposition of HilbP
n in Section 5. In Section 6 and

Section 7, we compare topologies and smoothness on HilbP
n and GröbJ

≺. Then we

will obtain Theorem 1.4 and Theorem 1.5.
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to my progresses. The author’s results have been shaping up and polished by

discussions with Professor Watanabe at Saitama University. The author would

like to thank him for his supporting.

2. Preliminaries and Notation

• Let k be a field and S = k[x] = k[x0, . . . , xn] the polynomial ring over k in

(n+ 1) variables. We always fix a term order ≺ on S that is a total order on

all monomials in S with xα ≺ xβ ⇒ xαxγ ≺ xβxγ and xα � 0 (xα �= 1).

• We equip S with the ordinal total degrees of polynomials and denote it by

deg f for f ∈ S. For a subset A ⊂ S, we denote by Ar the homogeneous

elements of A with degree r and denote by 〈A〉 the ideal generated by A in

S.

• For α = (α0, . . . , αn) ∈ N
n+1, let xα = xα0

0 · · ·xαn
n . Using this notation, we

regard N
n+1 as the set of monomials in (n+ 1) variables. The degree of α is

|α| = α0 + · · · + αn. For a subset A ⊂ N
n+1, let Ar = {α ∈ A | |α| = r}. We

also define A≥r and A≤r in a similar way.

• For k-schemes X and Y , let X(Y ) = Homk(Y,X). If Y = SpecA, we denote

it by X(A) instead.

• We denote by Gm the one-dimensional algebraic torus Spec k[t, t−1].

The Hilbert scheme HilbP
n is the scheme representing the following Hilbert

functor :

HilbP
n : (k -Sch) → (Set)
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Z �→

⎧⎪⎨
⎪⎩Y ⊂ P

n
Z

∣∣∣∣∣∣∣
Y is a closed subscheme in P

n
Z flat over Z,

the Hilbert polynomials of all fibers on closed

points of Z are P

⎫⎪⎬
⎪⎭ .

The Hilbert scheme HilbP
n is a projective scheme over k [Har10].

The Gröbner scheme GröbJ
≺ is the scheme representing the following Gröbner

functor :

GröbJ
≺ : (k -Alg) → (Set)

A �→
{
G ⊂ A[x]

∣∣∣∣∣ G is a homogeneous reduced Gröbner basis

whose in≺(〈G〉) = J

}
.

See [Wib07] for the definition of Gröbner basis with ring coefficient. If a mono-

mial ideal J defines a point of HilbP
n , then there exists a canonical morphism

GröbJ
≺ → HilbP

n induced by the natural transformation

GröbJ
≺ → HilbP

n

G �→ ProjA[x]/〈G〉.
If we denote a morphism GröbJ

≺ → HilbP
n , we always mean this morphism.

Important facts on GröbJ
≺ for this content are the following:

Theorem 2.1 ([LR16]). If J ∈ MP,n, then GröbJ
≺ → HilbP

n is a locally closed

immersion. Namely, it can be factored as j ◦ i where i is a closed immersion and

j is an open immersion.

Theorem 2.2 ([Rob09, RT10]). For any monomial ideal J and any term order

≺, the GröbJ
≺ is smooth at J if and only if GröbJ

≺ is isomorphic to an affine

space over k.

3. Computation methods

In this section, we introduce computation methods for Gröbner schemes and

Gröbner decompositions. We mainly refer to [RT10] for this section.

Let I be a homogeneous ideal in S with in≺ I = J . Let BJ be the minimal

generators of J . Then the reduced Gröbner basis of I is in the following form:

G =

⎧⎪⎪⎨
⎪⎪⎩gα = xα +

∑
xβ �∈BJ

xβ≺xα

Cα,βx
β

∣∣∣∣∣∣∣∣
α ∈ BJ , gα is homogeneous

⎫⎪⎪⎬
⎪⎪⎭ .
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Conversely, for given ≺ and J , let us consider the form G as the above with

arbitrary coefficients Cα,β ∈ k. Using the Buchberger’s criterion, we will obtain

the polynomials F1, . . . , Fs of the coefficients Cα,β such that G is a Gröbner basis

of 〈G〉 if and only if the polynomials F1, . . . , Fs are vanish. In fact, by regarding

the coefficients Cα,β as the variables, the polynomials F1, . . . , Fs only depend on

the choice of ≺ and J [RT10]. Therefore F1, . . . , Fs define the Gröbner scheme

GröbJ
≺.

Theorem 3.1 ([RT10]). The Gröbner scheme GröbJ
≺ is isomorphic to the affine

scheme

Spec k[Cα,β | xα ∈ BJ , x
β �∈ BJ , x

α � xβ , deg xα = deg xβ ]/〈F1, . . . , Fs〉.

Therefore we can compute GröbJ
≺ by computing syzygies of the form G. Note

that also we can compute GröbJ
≺ by a theory of border basis [Rob09, Led11].

For computing the tangent space of GröbJ
≺ on J , denoted by T J

≺, we recall a

positive grading on k[C], where

C = {Cα,β | xα ∈ BJ , x
β �∈ BJ , x

α � xβ , deg xα = deg xβ},

and a theory of homogeneous varieties given in [FR09, RT10].

Proposition 3.2 ([Bay82, Proposition 1.8]). Let ≺ be a term order on S, and

let A be a finite subset of N
n+1. Then there exists a vector ω ∈ N

n+1 such that

for any α, β ∈ A, α ≺ β if and only if ω · α < ω · β. Here ω · α is the ordinary

inner product ω0α0 + · · ·ωnαn.

Let r be the maximum degree in BJ . We fix a vector ω ∈ N
n+1 given by

Proposition 3.2 for fixed term order ≺ and the finite subset A = (Nn+1)≤r. Then

this vector ω implies a positive grading on R as follows.

Proposition 3.3 ([RT10, Lemma 3.2]). Let J ∈ MP,n. We define a grading Λ

on K[C] such that Λ(Cα,β) = ω · α − ω · β. Then the defining ideal of GröbJ
≺ in

Spec k[C] is Λ-homogeneous.

Definition 3.4 ([RT10, Definition 3.3]). Let C be a set of variables and k[C] be

a polynomial ring with a positive grading Λ. Let A be a Λ-homogeneous ideal in

k[C].

• For a polynomial F ∈ k[C], we denote by L(F ) the linear component of F ,

i.e. the sum of terms of usual degree 1 that appear in F . We also denote by

L(A) the k-vector space {L(F ) | F ∈ A}.

• A subset C ′ of C is eliminable variables if for any c′ ∈ C ′, L(A) contains ele-

ments of the type c′ + l with l ∈ k[C \C ′]. C ′ is a maximal set of eliminable

variables if #(C ′) = dimk(L(A)).
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Theorem 3.5 ([RT10, Proposition 3.4, Corollary 3.6]). Let C = {Cα,β | xα ∈
BJ , x

β �∈ BJ , x
α � xβ , deg xα = deg xβ}. Let A ⊂ k[C] be the defining ideal of

the Gröbner scheme GröbJ
≺ in Spec k[C]. If C ′ = {c′1, . . . , c′r} is a maximal set

of eliminable variables for A, then the reduced Gröbner basis G of A with respect

to any elimination order of the variables C ′ in the following form:

G = {c′1 + g1, . . . , c
′
r + gr, f1, . . . , fd}

with gi ∈ k[C \ C ′] and fj ∈ 〈C \ C ′〉2 ⊂ k[C \ C ′]. In particular, GröbJ
≺ ∼=

Spec k[C \C ′]/〈f1, . . . , fd〉 Moreover, the affine scheme Spec k[C \C ′] is isomor-

phic to the tangent space of T J
≺ as schemes. Then GröbJ

≺ is non-singular at J if

and only if f1 = · · · = fd = 0.

We can find a maximal set of eliminable variables by the following method.

• A basis of L(A): Since J ∈ GröbJ
≺ as the origin of Spec k[C], the defining

ideal A is contained in 〈C〉. Thus generators of A do not contain constant

terms. Then the linear components of generators of A is a basis of L(A).

• Gaussian reduction: Let us consider L(A) as vector subspace in the vector

space V = {∑c∈C acc | ac ∈ k} with canonical basis C. Let {b1, . . . , bs}
be a basis of L(A). Assume that bi =

∑
c∈C bi,cc and consider the matrix

B = (bi,c). Doing Gaussian reduction on the rows of B, we will obtain new

basis {e1, . . . , es} of L(A) and s variables c′1, . . . , c
′
s such that ei = c′i + li

with li ∈ k[C \ C ′]. Therefore C ′ is a maximal eliminable variables.

Then we can compute the embedding GröbJ
≺ ↪→ T J

≺ with its defining ideal and

can determine if GröbJ
≺ is non-singular or not.

Next we introduce a computation methods for the Gröbner decomposition of

the Hilbert scheme

HilbP
n (k) =

∐
J∈MP,n

GröbJ
≺(k). (3.1)

Proposition 3.6 ([Vas98, Corollary B.5.1]). Let P be the Hilbert polynomial of

a projective scheme in a projective space. Then there exist integers a1 ≥ a2 ≥
· · · ≥ ar ≥ 0 such that

P (t) =

r∑
i=1

(
t+ ai − i+ 1

ai

)
.

We call the number r in the above the Gotzmann number of P . The proce-

dure for the Gotzmann number is the following.

(1) Put a1 = degP and P1 = P − (
t+a1−1+1

a1

)
.

(2) If we have obtained Pi and Pi is not constant, then put ai+1 = degPi and

Pi+1 = Pi −
(
t+ai+1−(i+1)+1

ai+1

)
.
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(3) Repeat (2) until Ps = c is constant. Then the Gotzmann number of P is

r = s+ c.

Finally we introduce the procedure for the set of monomials MP,n:

MP,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
J ⊂ S

∣∣∣∣∣∣∣∣∣∣∣

• J is a monomial ideal generated by Jr

• dimk Jr =

(
n+ r

r

)
− P (r)

• dimk Jr+1 =

(
n+ r + 1

r + 1

)
− P (r + 1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∼= {x ∈ HilbP
n (k) | x corresponds to a monomial ideal}.

The procedure for MP,n is the following.

(1) Determine the Gotzmann number r of P .

(2) Make the list L of sets of
((

n+r
r

)− P (r)
)

monomials of degree r in (n + 1)

variables.

(3) Set MP,n = {}. For each B ∈ L, compute {x0, . . . , xn} · B = {xixγ | i =

0, . . . , n, xγ ∈ B}. If #({x0, . . . , xn} · B) =
(
n+r+1
r+1

) − P (r + 1), then add

J = 〈B〉 to MP,n.

Therefore we can compute the Gröbner schemes in the Gröbner decomposi-

tion of HilbP
n (3.1).

4. Gm-action on the Hilbert scheme corresponding to a monomial

order

Let J ∈ MP,n. We fix a vector ω ∈ N
n+1 given by Proposition 3.2 for fixed

term order ≺ and the finite subset A = (Nn+1)r, where r is the Gotzmann number

of P . By Proposition 3.3, there is a grading Λ on the polynomial ring

R = k[Cα,β | xα ∈ BJ , x
β �∈ BJ , x

α � xβ , deg xα = deg xβ = r]

such that Λ(Cα,β) = ω · α − ω · β. We attach a Gm-action on SpecR such

that t · Cα,β = tΛ(Cα,β)Cα,β = tω·α−ω·βCα,β . Then Proposition 3.3 says that

GröbJ
≺ is Gm-invariant in SpecR. The vector ω also defines a Gm-action on S

by t · xα = t−ω·αxα. Therefore there exists a Gm-action on the Hilbert scheme

HilbP
n as the set of saturated homogenous ideals in S. Namely, for a element

Y = ProjA[x]/I ∈ HilbP
n (A), we define t · Y = ProjA[x]/(t · Isat).

These Gm-actions on GröbJ
≺ and HilbP

n are compatible with each other under

the canonical morphism.

Proposition 4.1. If J ∈ MP,n, then the canonical morphism GröbJ
≺ → HilbP

n

is a Gm-equivariant morphism.
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Proof. For each reduced Gröbner basis

G =

⎧⎨
⎩gα = xα −

∑
β∈NJ

aα,βx
β

∣∣∣∣∣∣xα ∈ BJ

⎫⎬
⎭ ∈ GröbJ

≺(A),

we have

t · gα = t−ω·αxα −
∑

β∈NJ

t−ω·βaα,βxβ (t ∈ A×)

under the Gm-action on A[x]. Let I be the ideal generated by G, and let

Y = ProjA[x]/I. Then t · I = {t · f | f ∈ I} is generated by the set

{xα −∑
β∈NJ

tω·α−ω·βaα,βxβ | xα ∈ BJ}. This set is t · G under the Gm-action

on GröbJ
≺. Taking an integer s ≥ 0 such that I≥s = (Isat)≥s, then we obtain

t · Y = ProjA[x]/(t · Isat) = ProjA[x]/(t · Isat)≥s = ProjA[x]/(t · I).

Note that we use (t · I)≥s = t · I≥s in the last. Therefore the morphism

GröbJ
≺ → HilbP

n is a Gm-equivariant morphism.

From now on, we always attach Gm-actions on GröbJ
≺ and HilbP

n introduced

in the above for given term order ≺.

5. Bia�lynicki-Birula schemes in the Hilbert scheme

Let X be a scheme locally of finite type over k equipped with a Gm-action.

For any k-scheme Y , we attach a Gm-action on Y as the projection Gm ×kY → Y .

We also attach the trivial Gm-action on A
1
k ×k Y induced by the canonical Gm-

action on A
1
k.

The scheme of fixed points is defined as the subscheme XGm such that for

any k-scheme Y ,

XGm(Y ) = {ϕ ∈ X(Y ) | ϕ is Gm-equivariant}.
The scheme of fixed points exists and it is a closed subscheme of X [Dri13, Propo-

sition 1.2.2].

We define the scheme of attractors in X as the scheme X+ such that for any

k-scheme Y ,

X+(Y ) ∼= {ϕ : A1
k ×k Y → X | ϕ is Gm-equivariant}.

The scheme of attractors exists and it is locally of finite type over k [Dri13,

Corollary 1.4.3], [JS18, Theorem 6.17].

Proposition 5.1. The scheme of fixed points of the Hilbert scheme HilbP
n satis-

fies (HilbP
n )Gm(k) = {ProjS/J | J ∈ MP,n}.
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Proof. Consider the Gröbner decomposition, we have∐
J∈MP,n

{J} =
∐

J∈MP,n

(GröbJ
≺)Gm(k) = (HilbP

n )Gm(k).

The right side equality comes from (GröbJ
≺)Gm = (HilbP

n )Gm ∩ GröbJ
≺ since

GröbJ
≺ → HilbP

n is Gm-equivalent (Proposition 4.1).

We obtain a canonical morphism iX : X+ → X by taking restrictions to 1:

iX(Y ) : X+(Y ) → X(Y )

ϕ �→ ϕ|{1}×kY .

If X is separated, then this map iX(Y ) is an injection for any Y [Dri13, Propo-

sition 1.4.11], i.e. iX is a monomorphism in (k -Sch).

We also obtain a canonical morphism πX : X+ → XGm by taking restrictions

to 0:

πX(Y ) : X+(Y ) → XGm(Y )

ϕ �→ ϕ|{0}×kY .

This morphism πX is Gm-equivariant and affine of finite type over k [JS18, The-

orem 6.17].

We describe the connected components of XGm by F1, . . . , Fr. The

Bia�lynicki-Birula schemes are defined as the preimages of components under πX .

More precisely, the Bia�lynicki-Birula scheme X+
i is the subscheme of X+ such

that

X+
i (Y ) = {ϕ ∈ X+(Y ) | πX(ϕ) ∈ Fi(Y )}.

For short, we call a Bia�lynicki-Birula scheme by BB scheme.

If X is the Hilbert scheme HilbP
n , then each connected component of XGm is

a point corresponding to a monomial ideal in MP,n (see Section 6). We denote

the BB scheme for J ∈ MP,n by BBJ
ω, where ω is fixed vector induced by fixed

term order ≺ in Proposition 3.2.

Theorem 5.2. Let J ∈ MP,n. Then

BBJ
ω(k) = GröbJ

≺(k)

in HilbP
n (k).

Proof. Taking Gröbner degenerations [Bay82, Proposition 2.12], there exists a

monomorphism GröbJ
≺ → BBJ

ω. Then we obtain GröbJ
≺(k) ⊂ BBJ

ω(k). Con-

versely, for any ϕ ∈ BBJ
ω(k), put Y = ϕ|{1} ∈ HilbP

n (k) and assume that
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Y ∈ GröbJ ′
≺ (k) for some J ′ ∈ MP,n. Then taking the Gröbner degeneration of

Y , there exists a Gm-equivariant morphism ψ : A1
k → HilbP

n such that ψ|{1} = Y

and ψ|{0} = ProjS/J ′. Since iHilbP
n

: (HilbP
n )+ → HilbP

n ; ρ �→ ρ|{1} is a monomor-

phism, we obtain ϕ = ψ. Therefore J = J ′.

6. Topologies on base spaces

The schemes HilbP
n , GröbJ

≺ and BBJ
ω are universal for base changes. Namely,

we have

HilbP
n,k(K) ∼= (HilbP

n ×k SpecK)(K) ∼= HilbP
n,K(K)

and so on for any field extension k ⊂ K. Then the representation (1.1), the

Gröbner decomposition, Proposition 5.1 and Theorem 5.2 are still true on K-

rational points for any field extension k ⊂ K. In particular, those propositions

are true on geometric points. Our purpose in this section is to discuss about

topologies on base spaces of HilbP
n , GröbJ

≺ and BBJ
ω using the following lemma.

Lemma 6.1. ([Sta20, Tag 0485]) Let S be a scheme. Let f : X → Y be a

morphism of algebraic spaces over S. Assume f is locally of finite type. Then

following are equivalent:

(1) f is surjective, and

(2) for every algebraically closed field k over S the induced map X(k) → Y (k)

is surjective.

Proposition 6.2. The scheme of fixed points (HilbP
n )Gm is 0-dimensional. In

particular, (HilbP
n )Gm is finite and discrete.

Proof. Put X =
∐

J∈MP,n
(GröbJ

≺)Gm . Clearly we have dimX = 0. In particu-

lar, X is finite over k. Thus the morphism f : X → (HilbP
n )Gm is of finite type

over k. By Lemma 6.1 and Proposition 5.1, we obtain that f is surjective. Then

for any irreducible closed subset V in (HilbP
n )Gm consists of only one point since

V = f(f−1(V )) with a finite set f−1(V ). Therefore dim(HilbP
n )Gm = 0.

Corollary 6.3. The BB scheme BBJ
ω is an affine scheme of finite type over k.

Proof. It is immediate by that πHilbP
n

: (HilbP
n )+ → (HilbP

n )Gm is affine of finite

type over k and Proposition 6.2

We show that GröbJ
≺ and BBJ

ω are homeomorphic.

Theorem 6.4. The morphism taking Gröbner degenerations

GröbJ
≺ → BBJ

ω
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is a homeomorphism on base spaces.

Proof. Since

GröbJ
≺ ��

���
��

��
��

�
BBJ

ω

i

��
HilbP

n

is commutative, if i = iHilbP
n

: BBJ
ω → HilbP

n is separated, then GröbJ
≺ → BBJ

ω is

also a locally closed immersion [Sta20, Tag 03HB], and therefore GröbJ
≺ → BBJ

ω

is a homeomorphism (Theorem 5.2, Lemma 6.1). Hence it is enough to show

that i : BBJ
ω → HilbP

n is separated. Indeed, BBJ
ω and HilbP

n are separated over

Spec k (Corollary 6.3) and i : BBJ
ω → HilbP

n is a k-scheme morphism. Therefore

i : BBJ
ω → HilbP

n is also separated by basic properties on separated morphisms

[Har77, II. Corollary 4.6].

7. Smoothness at monomial schemes

We recall the following Bia�lynicki-Birula’s result.

Theorem 7.1. ([BB73, BB76], see also [Dri13, JS18]) Let X be a smooth projec-

tive scheme over an algebraically closed field k equipped with a Gm-action. We

assume that dimXGm = 0. Then there exist closed subschemes Z0 ⊃ · · · ⊃ Zq

such that

• Z0 = X and Zq = ∅,

• each Zi \ Zi+1 is a BB scheme in X,

• any BB scheme is isomorphic to an affine space over k.

Therefore X has a cell decomposition (see [Ful98] for the definition).

A part of the above Bia�lynicki-Birula’s result is generalized as follows.

Theorem 7.2. ([JS18, Corollary 7.3]) Suppose that X is smooth over k. Then

πX : X+ → XGm is an affine fiber bundle. Moreover, both XGm and X+ are

smooth.

Using Theorem 7.2, the next purpose is to show that the smoothness of HilbP
n

at J ∈ MP,n implies the smoothness of GröbJ
≺.

Theorem 7.3. For any J ∈ MP,n, if BBJ
ω is smooth at ProjS/J , then GröbJ

≺
is isomorphic to an affine space.

Proof. Let TG be the Zariski tangent space on GröbJ
≺ at J and TB the Zariski
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tangent space on BBJ
ω at ProjS/J . We claim that the k-linear map TG → TB in-

duced by GröbJ
≺ → BBJ

ω is injective. Indeed, we can naturally regard TG and TB
as the subsets of Homk(Spec k[ε]/〈ε2〉,GröbJ

≺) and Homk(Spec k[ε]/〈ε2〉,BBJ
ω)

respectively [Har77], and the morphism GröbJ
≺ → BBJ

ω is a monomorphism since

J ∈ MP,n. In fact, there exists a closed immersion GröbJ
≺ → TG as schemes and

it is an isomorphism if dim GröbJ
≺ = dimk TG [FR09, RT10]. Therefore we obtain

dim GröbJ
≺ ≤ dimk TG ≤ dimk TB ≤ dim BBJ

ω = dim GröbJ
≺.

Note that the last equality comes from Theorem 6.4. Then GröbJ
≺ is an affine

space.

Proposition 7.4. ([JS18, Proposition 5.2]) Let f : X → Y be a Gm-equivariant

morphism. If f is an open immersion, then the induced morphism f+ : X+ → Y +

is also an open immersion.

Proposition 7.5. Let X be a locally of finite type scheme over k equipped with

a Gm-action and x ∈ XGm . Assume that dimXGm = 0 and X is smooth at x.

Then the BB scheme X+
x for x is smooth at x.

Proof. Let U be the smooth locus of X. Then U is Gm-invariant, smooth and

open in X. By Proposition 7.4, U+ is open in X+. Then the BB scheme

U+
x = (πU )−1(x) = U+ ∩ (πX)−1(x) is also open in X+

x . Since U+
x is smooth

by Theorem 7.2, X+
x is smooth at x.

Therefore we obtain the following corollary by Theorem 7.3 and Proposi-

tion 7.5.

Corollary 7.6. For any J ∈ MP,n, if the Hilbert scheme HilbP
n is smooth at

ProjS/J , then the Gröbner scheme GröbJ
≺ is isomorphic to an affine space.

The converse is not true by the following example.

Example 7.7. In [Ser06], Sernesi shows that the Hilbert scheme Hilb2t+2
3 is sin-

gular at a point defined by a monomial ideal. To find other singular points, let

us compute the Gröbner decomposition of Hilb2t+2
3 with respect to the reverse

lexicographic order ≺=≺rvlex on k[x, y, z, w] such that x � y � z � w. Then we

obtain:

• #(M2t+2,3) = 159.

• The 144 monomial ideals in M2t+2,3 define smooth Gröbner schemes. The

dimensions are in Table 2.

• The following 15 monomial ideals in M2t+2,3 define singular Gröbner

schemes:
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J1 = 〈w3, zw2, yw2, yzw, y2w, y2z, y3, xw2, xyw, xyz, xy2, x2y〉,
J2 = 〈w3, zw2, yw2, xw2, xzw, xz2, xyw, xyz, x2w, x2z, x2y, x3〉,
J3 = 〈w3, zw2, yw2, xw2, xzw, xyw, xyz, xy2, x2w, x2z, x2y, x3〉,
J4 = 〈zw2, z2w, yzw, xw2, xzw, xz2, xyw, xyz, x2w, x2z, x2y, x3〉,
J5 = 〈z2w, z3, yzw, yz2, y2w, y2z, y3, xzw, xz2, xyz, xy2, x2z〉,
J6 = 〈z2w, z3, yzw, yz2, y2w, y2z, y3, xz2, xyw, xyz, xy2, x2y〉,
J7 = 〈z2w, z3, yzw, yz2, y2z, xzw, xz2, xyw, xyz, xy2, x2z, x2y〉,
J8 = 〈z2w, z3, yzw, yz2, y2z, xzw, xz2, xyz, x2w, x2z, x2y, x3〉,
J9 = 〈z2w, z3, yz2, xzw, xz2, xyw, xyz, xy2, x2w, x2z, x2y, x3〉,
J10 = 〈yw2, yzw, y2w, y2z, y3, xw2, xzw, xyw, xyz, xy2, x2w, x2y〉,
J11 = 〈yw2, yzw, y2w, xw2, xzw, xyw, xyz, xy2, x2w, x2z, x2y, x3〉,
J12 = 〈yzw, yz2, y2w, y2z, y3, xzw, xz2, xyw, xyz, xy2, x2z, x2y〉,
J13 = 〈yzw, yz2, y2w, y2z, y3, xyw, xyz, xy2, x2w, x2z, x2y, x3〉,
J14 = 〈yzw, yz2, y2z, xzw, xz2, xyw, xyz, xy2, x2w, x2z, x2y, x3〉,
J15 = 〈y2w, y2z, y3, xzw, xz2, xyw, xyz, xy2, x2w, x2z, x2y, x3〉.

Therefore Hilb2t+2
3 includes 15 singular points defined by the above 15 monomial

ideals.

Let us change the monomial order to the lexicographic order ≺=≺lex. Then:

• The 143 monomial ideals in M2t+2,3 define smooth Gröbner schemes. The

dimensions are in Table 2.

• The following 16 monomial ideals in M2t+2,3 define singular Gröbner

schemes:

J1, J2, J3, J4, J5, J6, J7, J9, J10, J11, J12, J14, J15 and

J16 = 〈w3, zw2, yw2, yzw, y2w, y2z, y3, xw2, xzw, xyw, xy2, x2w〉,
J17 = 〈z2w, z3, yz2, xw2, xzw, xz2, xyw, xyz, x2w, x2z, x2y, x3〉,
J18 = 〈y2w, y2z, y3, xw2, xzw, xyw, xyz, xy2, x2w, x2z, x2y, x3〉.

The consequence is that Hilb2t+2
3 includes 18 singular points defined by the above

18 monomial ideals. The Sernesi’s example is defined by a saturated mono-

mial ideal J = 〈yz, yw, zw,w2〉. In fact, the Gröbner scheme determined by

J≥3 ∈ M2t+2,3 with respect to the lexicographic order or the reverse lexico-

graphic order is smooth. Therefore the monomial ideals J1, . . . , J18 does not

define the same point with J in Hilb2t+2
3 .

One may care about the locus of these singular points. For example, are

these singular points in intersections of irreducible components? However, we do
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Table 2 The numbers of J ∈ M2t+2,3 such that GröbJ≺ ∼= A
m
k

≺ \m 0 1 2 3 4 5 6 7 8 9 10 11

≺rvlex 1 3 8 18 23 24 25 20 14 6 2 0

≺lex 1 3 9 17 22 24 23 19 15 6 3 1

not have investigated it yet.
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