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Abstract

The discrete Sobolev inequality shows that the maximum of deviation of a

string is estimated from above by a constant multiples of the potential energy. We

have found the best constant and the vector, which attain the equality. In the back-

ground, there is five boundary value problems of the 2nd-order difference equation,

which describes a discrete version of a string bending problem. The solution is

expressed by using Green or pseudo Green matrices. The best constant and vector

are given by investigating the matrices. Moreover, we show the positivity and the

hierarchical structure of Green matrices.

1. Introduction

For N = 2, 3, 4, · · · , we consider the following boundary value problems of

2nd-order difference equation:

DBVP(X; a)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u(i− 1) + (2 + a)u(i)− u(i+ 1) = f(i) (0 ≤ i ≤ N − 1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(−1) = 0, u(N) = 0 (X) = (0, 0)

u(−1) = 0, u(N − 1)− u(N) = 0 (X) = (0, 1)

u(−1)− u(0) = 0, u(N) = 0 (X) = (1, 0)

u(−1)− u(0) = 0, u(N − 1)− u(N) = 0 (X) = (1, 1)

u(−1) = u(N − 1), u(0) = u(N) (X) = (P)

.

The physical meaning of the above equation is as follows. A string is supported

by uniformly distributed springs with spring constant a on a fixed ceiling. Let

f(i) be a given function which means the load at i (0 ≤ i ≤ N−1) and u(i) be the

bending displacement at i (0 ≤ i ≤ N − 1). (X) means a boundary condition in

which (0, 0) is Clamped-Clamped, (0, 1) is Clamped-Free, (1, 0) is Free-Clamped,

(1, 1) is Free-Free and (P) is Periodic boundary conditions. The Clamped and

Free boundary conditions are called Dirichlet and Neumann boundary conditions

in other words, respectively. We call DBVP(X; a) the discrete bending problem
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of a string.

We set hyperbolic functions ch(x) = cosh(x) and sh(x) = sinh(x) for short.

For later convenience sake, we introduce constants x and y defined by

x =
2 + a

2
= cos(

√−1y) = ch(y) ⇔ a = 2(x− 1) = 4sh2(y/2) (1.1)

(1 < x < ∞, 0 < a < ∞, 0 < y < ∞).

Results are sometimes described by means of x or y in (1.1), instead of a. We

note that the limit of a → 0 is equivalent to x → 1 and y → 0.

Introducing vectors

u = t(u(0), · · · , u(N − 1)) ∈ CN , f = t(f(0), · · · , f(N − 1)) ∈ CN

and N ×N identity matrix I, we can rewrite DBVP(X; a) as

DBVP(X; a)

(A+ aI)u = f ,

where A = A(X) is a discrete Laplacian. A = A(X) is an N ×N matrix. Using

2 + a = 2x in (1.1), we have the concrete form of A(X) + aI as

A(m,n) + aI =

⎛⎜⎜⎜⎜⎜⎝
2x−m −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− n

⎞⎟⎟⎟⎟⎟⎠
N×N

,

for (m,n) = (0, 0), (0, 1), (1, 0), (1, 1) and

A(P) + aI =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2x −2

−2 2x

)
(N = 2)

⎛⎜⎜⎜⎜⎜⎝
2x −1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 −1 2x

⎞⎟⎟⎟⎟⎟⎠
N×N

(N = 3, 4, 5, · · · )
.

5 kinds of A(X) + aI are positive definite Hermitian matrices. Taking limit as

a → 0 (that is x → 1) for A(X) + aI, we have the concrete form of A(X).

A(0, 0), A(0, 1), A(1, 0) are positive definite Hermitian matrices. A(1, 1) and

A(P) are non-negative definite and singular Hermitian matrices. In particular,

A(P) is a cyclic matrix.
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We introduce the maximum and minimum function defined by⎧⎨⎩ x ∨ y = max{x, y}
x ∧ y = min{x, y}

⇔

⎧⎪⎨⎪⎩
i ∨ j =

1

2
(i+ j + |i− j|)

i ∧ j =
1

2
(i+ j − |i− j|)

.

The following Lemma 1.1 states the uniqueness of the solution for DBVP(X; a).

Lemma 1.1. For arbitrary f ∈ CN , DBVP(X; a) has a unique solution u =

G(a)f . We call G(a) “Green matrix”. Green matrix G(a) is expressed as

G(a) = (A+ aI)−1 =

(
g(X; a; i, j)

)
0≤i,j≤N−1

,

where (i, j)-th entries g(X; a; i, j) are given by

g(0, 0; a; i, j) =
Ui∧j+1(x)UN−i∨j(x)

UN+1(x)
=

sh((i ∧ j + 1)y) sh((N − i ∨ j)y)

sh((N + 1)y) sh(y)
=

1

2sh((N + 1)y) sh(y)

[
ch((N + 1− |i− j|)y)− ch((N − 1− i− j)y)

]
,

g(0, 1; a; i, j) =
Ui∧j+1(x) (UN−i∨j(x)− UN−1−i∨j(x))

UN+1(x)− UN (x)
=

sh((i ∧ j + 1)y) ch((N − 1/2− i ∨ j)y)

ch((N + 1/2)y) sh(y)
=

1

2ch((N + 1/2)y) sh(y)

[
sh((N + 1/2− |i− j|)y)− sh((N − 3/2− i− j)y)

]
,

g(1, 0; a; i, j)=g(0, 1; a;N−1−i,N−1−j)=
(Ui∧j+1(x)−Ui∧j(x))UN−i∨j(x)

UN+1(x)−UN (x)
=

ch((i ∧ j + 1/2)y) sh((N − i ∨ j)y)

ch((N+1/2)y) sh(y)
=

1

2ch((N + 1/2)y) sh(y)

[
sh((N + 1/2−|i−j|)y)+sh((N−1/2−i−j)y)

]
,

g(1, 1; a; i, j) =
(Ui∧j+1(x)− Ui∧j(x)) (UN−i∨j(x)− UN−1−i∨j(x))

UN+1(x)− 2UN (x) + UN−1(x)
=

ch((i ∧ j + 1/2)y) ch((N − 1/2− i ∨ j)y)

sh(Ny) sh(y)
=

1

2sh(Ny) sh(y)

[
ch((N − |i− j|)y) + ch((N − 1− i− j)y)

]
,

g(P; a; i, j) =
UN−|i−j|(x) + U|i−j|(x)

2(TN (x)− 1)
=

ch((N/2− |i− j|)y)
2sh(Ny/2) sh(y)

=

1

4sh2(Ny/2) sh(y)

[
sh((N − |i− j|)y) + sh(|i− j|y)

]
.
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In the above expressions, TN (x) and UN (x) are Chebyshev polynomials of the first

and second kinds defined by

TN (cos(θ)) = cos(Nθ), UN (cos(θ)) =
sin(Nθ)

sin(θ)
(N = 0, 1, 2, · · · ). (1.2)

We use constants x, y in (1.1) instead of a.

Lemma 1.1 shows that the element of Green matrix g(X; a; i, j) can be writ-

ten by employing Chebyshev polynomials or hyperbolic functions in section 4.

We call the former Chebyshev polynomial expression and the latter hyperbolic

function expression in this paper. In particular, 4 kinds of Chebyshev polynomial

expression g(m,n; a; i, j) are given as

g(m,n; a; i, j) =

(Ui∧j+1(x)−mUi∧j(x)) (UN−i∨j(x)− nUN−1−i∨j(x))

UN+1(x)− (m+ n)UN (x) +mnUN−1(x)
(0 ≤ i, j ≤ N − 1).

(1.3)

Next, we take the limit a → 0. In the case of (X) = (0, 0), (0, 1), (1, 0), all

the eigenvalues of A are positive eigenvalues, as is shown later in Lemma 5.1.

Hence, taking limit as a → 0 for Lemma 1.1, we have the following lemma.

Lemma 1.2 ((X) = (0, 0), (0, 1), (1, 0)). For arbitrary f ∈ CN , DBVP(X; 0) has

a unique solution

u = G(0)f ,

where

G(0) = A−1 =

(
g(X; 0; i, j)

)
0≤i,j≤N−1

.

(i, j)-th entries of g(X; 0; i, j) are given as

g(0, 0; 0; i, j) =
(i ∧ j + 1) (N − i ∨ j)

N + 1
,

g(0, 1; 0; i, j) = i ∧ j + 1,

g(1, 0; 0; i, j) = g(0, 1; 0;N − 1− i,N − 1− j) = N − i ∨ j.

In the case of (X) = (1, 1) and (P), A has an eigenvalue 0 whose correspond-

ing eigenvector is 1 = t(1, 1, · · · , 1) ∈ CN , as is shown later in Lemma 5.1. In

order to guarantee the existence and uniqueness of the solution for DBVP(X; 0),

we impose additional two condition as the following lemma.
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Lemma 1.3 ((X)=(1,1), (P)). For arbitrary f ∈ CN with the solvability condi-

tion t1f = 0, DBVP(X; 0) with the orthogonality condition t1u = 0 has a unique

solution

u = G∗f ,

where

G∗ = lim
a→0

(
G(a)− a−1E0

)
=

(
g∗(X; i, j)

)
0≤i,j≤N−1

, (1.4)

where E0 = N−11t1 is a projection matrix to the eigenspace associated with the

eigenvalue 0 [10, §2]. (i, j)-th entries of g∗(X; i, j) are given as

g∗(1, 1; i, j) = b2(2N ; |i− j|) + b2(2N ; 1 + i+ j) =

1

6N

[
(N − 1)(2N − 1)− 3(i ∨ j)(2N − 1− i ∨ j) + 3(i ∧ j)(i ∧ j + 1)

]
,

g∗(P; i, j) = b2(N ; |i− j|) = 1

2N
|i− j|2 − 1

2
|i− j|+ N2 − 1

12N
,

where b2(N ; i) is the discrete Bernoulli polynomial [1] given as

b2(N ; i) =
1

2N
i2 − 1

2
i+

N2 − 1

12N
(0 ≤ i ≤ N − 1). (1.5)

The matrix G∗ is a Moore-Penrose generalized inverse matrix of A [10, §3].
G∗ satisfies the relations

AG∗ = G∗A = I −E0, G∗E0 = E0G∗ = O,

where O is the zero matrix.

Lemma 1.1, 1.2 and 1.3 show the uniqueness of the solution of DBVP(X; a)

and DBVP(X; 0), respectively. Continuous versions of Lemma 1.1, 1.2 and 1.3

are given in [4, Lemma 2.1] and [5, Theorem 3.1].

The main purpose of this paper is to find the best constant of discrete Sobolev

inequalities corresponding to 2nd-order difference equation which represents a

string bending problem. The best constant and the best vector, which attains

the equality in discrete Sobolev inequalities, are given by employing Chebyshev

or discrete Bernoulli polynomials.

This paper is composed of five sections. In section 2, we state main results

of this paper. In section 3, we show the determinant expressions of Chebyshev

polynomials, which play important roles in the expressions of Green matrices. In

section 4, we prove lemmas and theorems. Finally, in section 5, we consider the

eigenvalue problem for the bending of a string. From spectral decompositions of

Green or pseudo Green matrices, we obtain nontrivial and interesting equalities
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concerning trigonometric functions.

2. Main results

First, we state the positivity and hierarchical structure of Green matrices

G(a) and G(0).

Theorem 2.1. The elements g(X; a; i, j) (0 ≤ i, j ≤ N − 1) of Green matrix

G(a) satisfy the following inequalities:

g(X; a; i, j) > 0 (0 < a < ∞) (X) = (0, 0), (0, 1), (1, 0), (1, 1), (P), (2.1)

0 < g(0, 0; a; i, j) <

{
g(0, 1; a; i, j)

g(1, 0; a; i, j)

}
< g(1, 1; a; i, j) (0 < a < ∞), (2.2)

g(X; 0; i, j) > 0 (X) = (0, 0), (0, 1), (1, 0), (2.3)

0 < g(0, 0; 0; i, j) <

{
g(0, 1; 0; i, j)

g(1, 0; 0; i, j)

}
. (2.4)

(2.1) and (2.3) show the positivity of Green matrices G(a) and G(0), respectively.

(2.2) and (2.4) show the hierarchical structure of Green matrices G(a) and G(0).

The hierarchical structure of Green matrices (2.2) shows that if boundary

condition (X) becomes looser as (0, 0) → (0, 1) or (1, 0) → (1, 1), Green matrix

gets larger. The continuous version is given in [3, Theorem 0.3]. It should be noted

that G∗ takes negative value owing to the orthogonality condition G∗E0 = O.

Hence, we remove G∗ from the hierarchical structure.

Next, we state the best constant of the discrete Sobolev inequality corre-

sponding to Lemma 1.1 and 1.2. For u,v ∈ CN , we introduce the inner products

and norms as

(u,v) = v∗u, ‖u‖2 = (u,u),

(u,v)H = ((A+ aI)u,v) = v∗(A+ aI)u, ‖u‖2H = (u,u)H ,

where u∗ = tu. We prepare vector spaces

H(X) =

{
u ∈ CN

∣∣∣∣ { nothing (X) = (0, 0), (0, 1), (1, 0)
t1u = 0 (X) = (1, 1), (P)

}}
.

For u,v ∈ H(X), we introduce the inner product and norm as

(u, v)A = (Au,v) = v∗Au, ‖u‖2A = (u,u)A.

‖u‖2, ‖u‖2H and ‖u‖2A are also expressed as

‖u‖2 =

N−1∑
i=0

|u(i)|2,
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‖u‖2H = ‖u‖2A + a‖u‖2,

‖u‖2A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|u(0)|2 +
N−2∑
i=0

|u(i)− u(i+ 1)|2 + |u(N − 1)|2 (X) = (0, 0)

|u(0)|2 +
N−2∑
i=0

|u(i)− u(i+ 1)|2 (X) = (0, 1)

N−2∑
i=0

|u(i)− u(i+ 1)|2 + |u(N − 1)|2 (X) = (1, 0)

N−2∑
i=0

|u(i)− u(i+ 1)|2 (X) = (1, 1)

N−2∑
i=0

|u(i)− u(i+ 1)|2 + |u(N − 1)− u(0)|2 (X) = (P)

.

We set Kronecker delta symbol δ(i) = 1 (i = 0), 0 (i �= 0). For any fixed

0 ≤ j ≤ N − 1, we introduce the delta vector

δj =
t(δ(−j), δ(1− j), · · · , δ(N − 1− j)) ∈ CN .

We state the best constant of 2 kinds of the discrete Sobolev inequalities in two

cases a > 0 and a = 0, corresponding to the bending problem of a string.

Theorem 2.2. Let a be a positive constant. There exists a positive constant C

such that for any u ∈ CN the discrete Sobolev inequality(
max

0≤j≤N−1
|u(j) |

)2

≤ C ‖u ‖2H

holds. Among such C, the best (least) constant C0(a) is

C0(a) = max
0≤j≤N−1

tδjG(a)δj =
tδj0G(a)δj0 = g(X; a; j0, j0).

Here, G(a) is given in Lemma 1.1. The concrete forms of C0(a) = C0(X; a) are

given as

C0(0, 0; a)=g(0, 0; a; j0, j0)=
U�N+1

2 �(x)U�N+2
2 �(x)

UN+1(x)
=

sh(�N+1
2 
y) sh(�N+2

2 
y)
sh((N + 1)y) sh(y)

,

j0 =

⎧⎪⎨⎪⎩
N − 2

2
,

N

2
(N = 2, 4, 6, · · · )

N − 1

2
(N = 3, 5, 7, · · · )

,

C0(0, 1; a) = g(0, 1; a; j0, j0)
∣∣∣
j0=N−1

=
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UN (x)

UN+1(x)− UN (x)
=

sh(Ny)

2 ch((N + 1/2)y) sh(y/2)
,

C0(1, 0; a) = g(1, 0; a; j0, j0)
∣∣∣
j0=0

=

UN (x)

UN+1(x)− UN (x)
=

sh(Ny)

2 ch((N + 1/2)y) sh(y/2)
,

C0(1, 1; a) = g(1, 1; a; j0, j0)
∣∣∣
j0=0,N−1

=

UN (x)− UN−1(x)

UN+1(x)− 2UN (x) + UN−1(x)
=

ch((N − 1/2)y)

2 sh(Ny) sh(y/2)
,

C0(P; a) = g(P; a; j0, j0) =
UN (x)

2(TN (x)− 1)
=

ch(Ny/2)

2 sh(Ny/2) sh(y)
,

for any 0 ≤ j0 ≤ N − 1.

If we replaces C by C0(a) in the above inequality, the equality holds if and only

if the constant multiple of

u = G(a)δj0 = t( g(X; a; i, j0) )0≤i≤N−1.

In the case of (X) = (0, 0), �x
 is an integer part of a real number x as

�x
 = sup{n ∈ Z |n ≤ x }. (2.5)

We use constants x, y in (1.1) instead of a.

The following theorem states the case a = 0.

Theorem 2.3. There exists a positive constant C such that for any u ∈ H(X)

the discrete Sobolev inequality(
max

0≤j≤N−1
|u(j) |

)2

≤ C ‖u ‖2A

holds. Among such C, the best constant C0 is given as

C0 =⎧⎨⎩ max
0≤j≤N−1

tδjG(0)δj=
tδj0G(0)δj0=g(X; 0; j0, j0) (X)=(0, 0), (0, 1), (1, 0)

max
0≤j≤N−1

tδjG∗δj = tδj0G∗δj0 =g∗(X; j0, j0) (X)=(1, 1), (P)
.

Here, G(0) and G∗ are given in Lemma 1.2. The concrete forms of C0 = C0(X)

are given as

C0(0, 0) = g(0, 0; 0; j0, j0) =
1

N + 1

⌊
N + 1

2

⌋⌊
N + 2

2

⌋
,



THE BEST CONSTANT OF DISCRETE SOBOLEV INEQUALITY CORRESPONDING TO A DISCRETE BENDING PROBLEM OF A STRING 27

j0 =

⎧⎪⎨⎪⎩
N − 2

2
,

N

2
(N = 2, 4, 6, · · · )

N − 1

2
(N = 3, 5, 7, · · · )

,

C0(0, 1) = g(0, 1; 0; j0, j0)
∣∣∣
j0=N−1

= N,

C0(1, 0) = g(1, 0; 0; j0, j0)
∣∣∣
j0=0

= N,

C0(1, 1)=g∗(1, 1; j0, j0)
∣∣∣
j0=0,N−1

=b2(2N ; 0)+b2(2N ; 1)=
1

6N
(N−1)(2N−1),

C0(P) = g∗(P; j0, j0) = b2(N ; 0) =
N2 − 1

12N
, for any 0 ≤ j0 ≤ N − 1.

If we replace C by C0 in the above inequality, the equality holds if and only if the

constant multiple of

u =

{
G(0)δj0 = t( g(X; 0; i, j0) )0≤i≤N−1 (X) = (0, 0), (0, 1), (1, 0)

G∗δj0 = t( g∗(X; i, j0) )0≤i≤N−1 (X) = (1, 1), (P)
.

In the case of (X) = (0, 0), we use (2.5).

The engineering meaning of the discrete Sobolev inequality is that the square

of the maximum bending displacement of a string u(i) is estimated from above

by the constant multiple of its potential energy ‖u ‖2H or ‖u ‖2A. In this paper,

we have the best constants of discrete Sobolev inequalities which are obtained

through the construction of Green matrix and the pseudo Green matrix. If we

have the best constant of discrete Sobolev inequality, then we estimate the max-

imum of the bending of a string and have the shape of a string from the best

vector.

We note that the main results concerning continuous and discrete cases are

partially solved in our previous papers which are shown in Table 1. Although

some results of this paper in the discrete cases of a > 0 and a = 0 are par-

tially solved, as are shown in the above table, we also treat them for the sake of

self-containedness.

Table 1 Concerning this paper and previous paper.

(X) Continuous (a > 0) Continuous (a = 0) Discrete (a > 0) Discrete (a = 0)

(0, 0) [4] [5] This paper This paper
(0, 1) [4] [5] This paper [5]
(1, 0) [4] [5] This paper This paper
(1, 1) [4] [5] This paper This paper
(P) [4] [5] [7] [1, 7]
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3. Chebyshev polynomials

For N = 0, 1, 2, · · · , we introduce Chebyshev polynomials TN (x) and UN (x).

TN (x) is defined by the recurrence relation{
TN (x)− 2xTN−1(x) + TN−2(x) = 0 (N = 2, 3, 4, · · · )
T0(x) = 1, T1(x) = x

. (3.1)

From this recurrence relation, we have

T2(x)=2x2−1, T3(x)=4x3−3x, T4(x)=8x4−8x2+1, T5(x)=16x5−20x3+5x.

UN (x) is defined by the recurrence relation{
UN (x)− 2xUN−1(x) + UN−2(x) = 0 (N = 2, 3, 4, · · · )
U0(x) = 0, U1(x) = 1

. (3.2)

From this recurrence relation, we have

U2(x) = 2x, U3(x) = 4x2 − 1, U4(x) = 8x3 − 4x, U5(x) = 16x4 − 12x2 + 1.

We note that

TN (1) = 1, UN (1) = N (N = 0, 1, 2, · · · ). (3.3)

Chebyshev polynomials TN (x) and UN (x) are also defined by (1.2). From the

definition of Chebyshev polynomials (1.2), we have

TN (x)
∣∣∣
x= 2+a

2 =cos(
√−1y)=ch(y)

= TN (cos(
√−1y)) = cos(

√−1Ny) = ch(Ny),

(3.4)

UN (x)
∣∣∣
x= 2+a

2 =cos(
√−1y)=ch(y)

= UN (cos(
√−1y)) =

sin(
√−1Ny)

sin(
√−1y)

=
sh(Ny)

sh(y)
.

(3.5)

Taking a difference with respect to N , we have

(UN+1(x)− UN (x))
∣∣∣
x= 2+a

2 =cos(
√−1y)=ch(y)

=

sh((N + 1)y)− sh(Ny)

sh(y)
=

2ch((N + 1/2)y)sh(y/2)

2sh(y/2)ch(y/2)
=

ch((N + 1/2)y)

ch(y/2)
, (3.6)

(UN+1(x)− UN−1(x))
∣∣∣
x= 2+a

2 =cos(
√−1y)=ch(y)

=

sh((N + 1)y)− sh((N − 1)y)

sh(y)
=

2ch(Ny)sh(y)

sh(y)
= 2ch(Ny) = 2TN (x) (3.7)



THE BEST CONSTANT OF DISCRETE SOBOLEV INEQUALITY CORRESPONDING TO A DISCRETE BENDING PROBLEM OF A STRING 29

by used (3.4) and (3.5). The following Lemma 3.1 states a determinant expression

of Chebyshev polynomials.

Lemma 3.1. TN (x) and UN (x), together with their difference, possess the fol-

lowing determinant expressions:

UN (x) =

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

, (3.8)

UN+1(x)− UN (x) =

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
N×N

, (3.9)

UN+1(x)− UN (x) =

∣∣∣∣∣∣∣∣∣∣∣

2x− 1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣∣∣∣
N×N

, (3.10)

UN+1(x)− 2UN (x) + UN−1(x) =

∣∣∣∣∣∣∣∣∣∣∣

2x− 1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
N×N

,

(3.11)

2(TN (x)− 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣ 2x −2

−2 2x

∣∣∣∣
2×2

(N = 2)

∣∣∣∣∣∣∣∣∣∣∣

2x −1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣∣∣∣
N×N

(N = 3, 4, 5, · · · )
, (3.12)

where N = 3, 4, 5, · · · in (3.8) and N = 2, 3, 4, · · · in (3.9)∼ (3.12).
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Proof of Lemma 3.1 We first prove (3.8). We introduce an (N −1)× (N −1)

determinant defined by

VN (x) =

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

.

From the expansion with respect to the first row, we have

VN (x) = 2xVN−1(x)− VN−2(x)

which is equivalent to recurrence relations of (3.1) and (3.2). Putting N = 3, 4,

we have

V3(x) =

∣∣∣∣ 2x −1

−1 2x

∣∣∣∣ = 4x2 − 1, V4(x) =

∣∣∣∣∣∣
2x −1 0

−1 2x −1

0 −1 2x

∣∣∣∣∣∣ = 8x3 − 4x.

From the uniqueness of difference equation, we obtain VN (x) = UN (x).

Using the recurrence relation (3.2) and the determinant (3.8), (3.9) is ob-

tained from

UN+1(x)−UN (x) = 2xUN (x)−UN−1(x)−UN (x) = (2x−1)UN (x)−UN−1(x) =

(2x− 1)

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

+

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

0 −1

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

=

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
N×N

.
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(3.10) is shown in a similar way. Using the recurrence relation (3.2) and the

determinant (3.8), (3.11) is obtained from

UN+1(x)− 2UN (x) + UN−1(x) = (UN+1(x)− UN (x))− (UN (x)− UN−1(x)) =

(2x− 1) (UN (x)− UN−1(x))− (UN−1(x)− UN−2(x)) =

(2x− 1)

∣∣∣∣∣∣∣∣∣∣∣

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

+

∣∣∣∣∣∣∣∣∣∣∣

−1 0

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

=

∣∣∣∣∣∣∣∣∣∣∣

2x− 1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x− 1

∣∣∣∣∣∣∣∣∣∣∣
N×N

.

We finally prove (3.12). In the case N = 2, 3, it is shown through simple

calculations. We prove the case of N ≥ 4. Using (3.7), the recurrence relation

(3.2) and the determinant (3.8),

2(TN (x)− 1) = UN+1(x)− UN−1(x)− 2 = 2xUN (x)− 2UN−1(x)− 2 =

2xUN (x)− UN−1(x)− 1− 1− UN−1(x) =

2xUN (x)+∣∣∣∣∣∣∣∣∣∣∣

−1 0 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

+(−1)N

∣∣∣∣∣∣∣∣∣∣∣

−1 −1

2x −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

∣∣∣∣∣∣∣∣∣∣∣
(N−1)×(N−1)

=

∣∣∣∣∣∣∣∣∣∣∣

2x −1 −1

−1 2x −1
. . .

. . .
. . .

−1 2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣∣∣∣
N×N

.



32 H. Yamagishi and A. Nagai

This completes the proof of Lemma 3.1. �

4. Proof of lemmas and theorems

Proof of Lemma 1.1 We show the elements of G(a). We use the definition of

the inverse matrix [2, p.61]

g(X; a; i, j) =
Δji(X)

Δ(X)
(0 ≤ i, j ≤ N − 1),

Δij(X) = (i, j) cofactor of (A(X) + aI), Δ(X) = det(A(X) + aI).

Since it loses essentially nothing, we illustrate through the case N = 5. First, we

show Δ(X). From Lemma 3.1, we have

Δ(m,n) =

⎧⎨⎩
U6(x) (m,n) = (0, 0)

U6(x)− U5(x) (m,n) = (0, 1), (1, 0)

U6(x)− 2U5(x) + U4(x) (m,n) = (1, 1)

⎫⎬⎭
= U6(x)− (m+ n)U5(x) +mnU4(x),

Δ(P) = 2(T5(x)− 1).

Next, we show Δij(X). Because A(X) + aI is a symmetric matrix, we consider

Δij(X) (0 ≤ i ≤ j ≤ 4). For the case of (X) = (m,n), we have

Δ00(m,n) =

(−1)0+0

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U1(x)−mU0(x)) (U5(x)− nU4(x)) ,

Δ01(m,n) =

(−1)0+1

∣∣∣∣∣∣∣∣
−1 −1

2x −1

−1 2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U1(x)−mU0(x)) (U4(x)− nU3(x)) ,

Δ02(m,n) =

(−1)0+2

∣∣∣∣∣∣∣∣
−1 2x

−1 −1

2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U1(x)−mU0(x)) (U3(x)− nU2(x)) ,



THE BEST CONSTANT OF DISCRETE SOBOLEV INEQUALITY CORRESPONDING TO A DISCRETE BENDING PROBLEM OF A STRING 33

Δ03(m,n) =

(−1)0+3

∣∣∣∣∣∣∣∣
−1 2x −1

−1 2x

−1 −1

2x− n

∣∣∣∣∣∣∣∣ = (U1(x)−mU0(x)) (U2(x)− nU1(x)) ,

Δ04(m,n) =

(−1)0+4

∣∣∣∣∣∣∣∣
−1 2x −1

−1 2x −1

−1 2x

−1

∣∣∣∣∣∣∣∣ = (U1(x)−mU0(x)) (U1(x)− nU0(x)) ,

Δ11(m,n) =

(−1)1+1

∣∣∣∣∣∣∣∣
2x−m

2x −1

−1 2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U2(x)−mU1(x)) (U4(x)− nU3(x)) ,

Δ12(m,n) =

(−1)1+2

∣∣∣∣∣∣∣∣
2x−m −1

−1 −1

2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U2(x)−mU1(x)) (U3(x)− nU2(x)) ,

Δ13(m,n) =

(−1)1+3

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x

−1 −1

2x− n

∣∣∣∣∣∣∣∣ = (U2(x)−mU1(x)) (U2(x)− nU1(x)) ,

Δ14(m,n) =

(−1)1+4

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 2x

−1

∣∣∣∣∣∣∣∣ = (U2(x)−mU1(x)) (U1(x)− nU0(x)) ,

Δ22(m,n) =

(−1)2+2

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x

2x −1

−1 2x− n

∣∣∣∣∣∣∣∣ = (U3(x)−mU2(x)) (U3(x)− nU2(x)) ,
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Δ23(m,n) =

(−1)2+3

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 −1

2x− n

∣∣∣∣∣∣∣∣ = (U3(x)−mU2(x)) (U2(x)− nU1(x)) ,

Δ24(m,n) =

(−1)2+4

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 2x

−1

∣∣∣∣∣∣∣∣ = (U3(x)−mU2(x)) (U1(x)− nU0(x)) ,

Δ33(m,n) =

(−1)3+3

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 2x

2x− n

∣∣∣∣∣∣∣∣ = (U4(x)−mU3(x)) (U2(x)− nU1(x)) ,

Δ34(m,n) =

(−1)3+4

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 2x −1

−1

∣∣∣∣∣∣∣∣ = (U4(x)−mU3(x)) (U1(x)− nU0(x)) ,

Δ44(m,n) =

(−1)4+4

∣∣∣∣∣∣∣∣
2x−m −1

−1 2x −1

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣ = (U5(x)−mU4(x)) (U1(x)− nU0(x)) .

Hence we have

G(a) =

(
(Ui∧j+1(x)−mUi∧j(x)) (U5−i∨j(x)− nU4−i∨j(x))

U6(x)− (m+ n)U5(x) +mnU4(x)

)
0≤i,j≤4

.

For the case of (X) = (P), we have

Δ00(P) = (−1)0+0

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣ = U5(x) + U0(x),
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Δ01(P) = (−1)0+1

∣∣∣∣∣∣∣∣
−1 −1

2x −1

−1 2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣ = U4(x) + U1(x),

Δ02(P) = (−1)0+2

∣∣∣∣∣∣∣∣
−1 2x

−1 −1

2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣ = U3(x) + U2(x),

Δ03(P) = (−1)0+3

∣∣∣∣∣∣∣∣
−1 2x −1

−1 2x

−1 −1

−1 2x

∣∣∣∣∣∣∣∣ = U2(x) + U3(x),

Δ04(P) = (−1)0+4

∣∣∣∣∣∣∣∣
−1 2x −1

−1 2x −1

−1 2x

−1 −1

∣∣∣∣∣∣∣∣ = U1(x) + U4(x),

Δ11(P) = (−1)1+1

∣∣∣∣∣∣∣∣
2x −1

2x −1

−1 2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣ = U5(x) + U0(x),

Δ12(P) = (−1)1+2

∣∣∣∣∣∣∣∣
2x −1 −1

−1 −1

2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣ = U4(x) + U1(x),

Δ13(P) = (−1)1+3

∣∣∣∣∣∣∣∣
2x −1 −1

−1 2x

−1 −1

−1 2x

∣∣∣∣∣∣∣∣ = U3(x) + U2(x),

Δ14(P) = (−1)1+4

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x

−1 −1

∣∣∣∣∣∣∣∣ = U2(x) + U3(x),
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Δ22(P) = (−1)2+2

∣∣∣∣∣∣∣∣
2x −1 −1

−1 2x

2x −1

−1 −1 2x

∣∣∣∣∣∣∣∣ = U5(x) + U0(x),

Δ23(P) = (−1)2+3

∣∣∣∣∣∣∣∣
2x −1 −1

−1 2x −1

−1 −1

−1 2x

∣∣∣∣∣∣∣∣ = U4(x) + U1(x),

Δ24(P) = (−1)2+4

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x

−1 −1

∣∣∣∣∣∣∣∣ = U3(x) + U2(x),

Δ33(P) = (−1)3+3

∣∣∣∣∣∣∣∣
2x −1 −1

−1 2x −1

−1 2x

−1 2x

∣∣∣∣∣∣∣∣ = U5(x) + U0(x),

Δ34(P) = (−1)3+4

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x −1

−1 −1

∣∣∣∣∣∣∣∣ = U4(x) + U1(x),

Δ44(P) = (−1)4+4

∣∣∣∣∣∣∣∣
2x −1

−1 2x −1

−1 2x −1

−1 2x

∣∣∣∣∣∣∣∣ = U5(x) + U0(x).

Hence we have

G(a) =

(
U5−|i−j|(x) + U|i−j|(x)

2(T5(x)− 1)

)
0≤i,j≤4

.

Thus we have g(X; a; i, j) of Chebyshev polynomial expression. The hyper-

bolic function expression follows from Chebyshev polynomial expression and

(3.4)∼ (3.7). This proves Lemma 1.1. �

Proof of Lemma 1.2 We show the elements of G(0) in the case of (X) =



THE BEST CONSTANT OF DISCRETE SOBOLEV INEQUALITY CORRESPONDING TO A DISCRETE BENDING PROBLEM OF A STRING 37

(0, 0), (0, 1), (1, 0). Taking limit as a → 0 for Chebyshev polynomial expression

of g(X; a; i, j) in Lemma 1.1 and using (3.3), we have g(X; 0; i, j). �

Proof of Lemma 1.3 We show the elements of G∗. First, we treat the case of
(X) = (P). We calculate G∗ which is based on (1.4). Using hyperbolic function

expression of g(P; a; i, j) in Lemma 1.1 and noting (1.1), we have

g(P; a; i, j)− 1

aN
=

ch((N/2− |i− j|)y)
4 sh(Ny/2) sh(y/2) ch(y/2)

− 1

4Nsh2(y/2)
=

Ny/2

sh(Ny/2)

(
y/2

sh(y/2)

)2
1

ch(y/2)

2

N2y3
h(y),

h(y) = N ch((N/2− |i− j|)y) sh(y/2)− sh(Ny/2) ch(y/2).

Using Taylor expansion of h(y) as

h(y) =

N

(
1 +

1

2!

(
N

2
− |i− j|

)2

y2 +O(y4)

)(
y

2
+

1

3!

(y
2

)3
+O(y5)

)
−(

Ny

2
+

1

3!

(
Ny

2

)3

+O(y5)

)(
1 +

1

2!

(y
2

)2
+O(y4)

)
=(

N

4
|i− j|2 − N2

4
|i− j|+ 1

24
N(N2 − 1)

)
y3 +O(y5) (y → 0),

we have

g∗(P; i, j) = lim
a→0

(
g(P; a; i, j)− 1

aN

)
=

lim
a→0

(
ch((N/2− |i− j|)y)
2sh(Ny/2) sh(y)

− 1

4Nsh2(y/2)

)
=

1

2N
|i− j|2 − 1

2
|i− j|+ N2 − 1

12N
= b2(N ; |i− j|),

where b2(N ; i) is given as (1.5). Next, we treat the case of (X) = (1, 1). We

calculate G∗ which is based on (1.4). Using hyperbolic function expression of

g(1, 1; a; i, j) in Lemma 1.1 and noting (1.1), we have

g(1, 1; a; i, j)− 1

aN
=

1

2sh(Ny) sh(y)

[
ch((N − |i− j|)y) + ch((N − 1− i− j)y)

]
− 1

4Nsh2(y/2)
=

ch((N − |i− j|)y)
2sh(Ny) sh(y)

− 1

8Nsh2(y/2)
+

ch((N − 1− i− j)y)

2sh(Ny) sh(y)
− 1

8Nsh2(y/2)
.
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Using the relation

b2(N ; i) = lim
a→0

(
ch((N/2− i)y)

2sh(Ny/2) sh(y)
− 1

4Nsh2(y/2)

)
,

we have g∗(1, 1; i, j). This completes the proof of Lemma 1.2. �

Proof of Theorem 2.1 We use the hyperbolic function expression of Green

matrix G(a) in Lemma 1.1. The positivity (2.1) and (2.3) are obvious. We treat

the hierarchical structure (2.2) and (2.4). We show the upper berth of (2.2) as

g(0, 1; a; i, j)− g(0, 0; a; i, j) =
sh((i ∧ j + 1)y)

sh(y) sh((N + 1)y) ch((N + 1/2)y)
p(y),

g(1, 1; a; i, j)− g(0, 1; a; i, j) =
ch((N − 1/2− i ∨ j)y)

sh(y) sh(Ny) ch((N + 1/2)y)
q(y),

where p(y) and q(y) are

p(y) =

sh((N + 1)y) ch((N − 1/2− i ∨ j)y)− ch((N + 1/2)y) sh((N − i ∨ j)y) =

1

2

[
sh((3/2 + i ∨ j)y) + sh((1/2 + i ∨ j)y)

]
> 0,

q(y) =

ch((N + 1/2)y)ch((i ∧ j + 1/2)y)− sh(Ny)sh((i ∧ j + 1)y) =

1

2

[
ch((N − i ∧ j)y) + ch((N − 1− i ∧ j)y)

]
> 0.

We can show the lower berth of (2.2) in the same way. Taking limit as a → 0 for

(2.2), we have (2.4). This completes the proof of Theorem 2.1. �

The basic idea for the best constant of the discrete Sobolev inequality can

be seen in, for example, [1, 5, 6, 7, 8]. However, for the sake of self-containedness

we give a proof. We prepare Lemma 4.1 and 4.2 which show that G and G∗ are

reproducing matrix for CN with (·, ·)H and H(X) with (·, ·)A, respectively. We

set G = G(a) for short.

Lemma 4.1. For any u ∈ CN and fixed j (0 ≤ j ≤ N − 1), we have the

reproducing relations:

u(j) = (u,Gδj)H . (4.1)

In particular, putting u = Gδj, we have

tδjGδj = ‖Gδj‖2H . (4.2)
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Lemma 4.2. For any u ∈ H(X) and fixed j (0 ≤ j ≤ N − 1), we have the

reproducing relations:

u(j) = (u, G∗δj)A. (4.3)

In particular, putting u = G∗δj, we have

tδjG∗δj = ‖G∗δj‖2A. (4.4)

Proof of Lemma 4.1 Noting G∗ = G, we have (4.1) as

(u,Gδj)H = ((A+ aI)u,Gδj) =
tδjG(A+ aI)u = tδju = u(j),

which completes the proof of Lemma 4.1. �

Proof of Lemma 4.2 In the case of (X) = (0, 0), (0, 1), (1, 0), taking the limit

as a → 0 for Lemma 4.1, we have Lemma 4.2. In the case of (X) = (1, 1), (P),

noting G∗
∗ = G∗ and E0u = 0, we have (4.3) as

(u, G∗δj)A = (Au, G∗δj) = tδjG∗Au = tδj(I −E0)u = tδju = u(j),

which completes the proof of Lemma 4.2. �

Proof of Theorem 2.2 Applying Schwarz inequality to (4.1) and using (4.2),

we have

|u(j)|2 ≤ ‖u‖2H‖Gδj‖2H = tδjGδj‖u‖2H . (4.5)

It should be noted that in performing Schwarz inequality in (4.5), the equality

holds if and only if u = kGδj (k �= 0, 0 ≤ j ≤ N − 1). Taking the maximum

with respect to j on both sides, we have the discrete Sobolev inequality(
max

0≤j≤N−1
|u(j)|

)2

≤ C0(a)‖u‖2H , (4.6)

where

C0(a) = max
0≤j≤N−1

tδjGδj =
tδj0Gδj0 . (4.7)

The inequality (4.6) implies that ‖u‖H = 0 holds if and only if u = 0, which

shows the positive definiteness of inner product (·, ·)H . If we take u = Gδj0 in

(4.6), then we have(
max

0≤j≤N−1
|tδjGδj0 |

)2

≤ C0(a)‖Gδj0‖2H = (C0(a))
2.
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Combining this with the trivial inequality

(C0(a))
2 = (tδj0Gδj0)

2 ≤
(

max
0≤j≤N−1

|tδjGδj0 |
)2

,

we have (
max

0≤j≤N−1
|tδjGδj0 |

)2

= C0(a) ‖Gδj0‖2H .

This shows that (4.7) is the best constant of (4.6) and the equality holds for Gδj0 .

Next, we search for j0 which satisfies (4.7). We use the hyperbolic function

expression of g(X; a; j, j) in Lemma 1.1. The maximum of

g(0, 0; a; j, j) =
ch((N + 1)y)− ch((N − 1− 2j)y)

2sh((N + 1)y)sh(y)

is attained at j = (N − 2)/2 or N/2 if N is even and at j = (N − 1)/2 if N is

odd. The maximum of

g(0, 1; a; j, j) =
sh((N + 1/2)y)− sh((N − 3/2− 2j)y)

2ch((N + 1/2)y)sh(y)

is attained at j = N − 1. The maximum of

g(1, 0; a; j, j) =
sh((N + 1/2)y) + sh((N − 1/2− 2j)y)

2ch((N + 1/2)y)sh(y)

is attained at j = 0. The maximum of

g(1, 1; a; j, j) =
ch(Ny) + ch((N − 1− 2j)y)

2sh(Ny) sh(y)

is attained at j = 0 or N − 1. The maximum of g(P; a; j, j) is attained at any

j0 (0 ≤ j0 ≤ N − 1), because g(P; a; j, j) is independent of j. This completes the

proof of Theorem 2.2. �

Proof of Theorem 2.3 In the case of (X) = (0, 0), (0, 1), (1, 0), Theorem 2.3

follows from Theorem 2.2 by taking limit as a → 0. Using (3.3), we have the

concrete value of C0.

We show the case of (X) = (1, 1) and (P). Applying Schwarz inequality to

(4.3) and using (4.4), we have

|u(j)|2 ≤ ‖u‖2A‖G∗δj‖2A = tδjG∗δj‖u‖2A. (4.8)

It should be noted that in performing Schwarz inequality in (4.8), the equality

holds if and only if u = kG∗δj (k �= 0, 0 ≤ j ≤ N − 1). Taking the maximum
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with respect to j on both sides, we obtain the discrete Sobolev inequality(
max

0≤j≤N−1
|u(j)|

)2

≤ C0‖u‖2A, (4.9)

where

C0 = max
0≤j≤N−1

tδjG∗δj = tδj0G∗δj0 . (4.10)

The inequality (4.9) implies that ‖u‖A = 0 holds if and only if u = 0, which

shows the positive definiteness of inner product (·, ·)A. Here, j0 is the same in

Theorem 2.2 because of the definition of G∗ shown in (1.4). If we take u = G∗δj0
in (4.9), then we have(

max
0≤j≤N−1

|tδjG∗δj0 |
)2

≤ C0‖G∗δj0‖2A = C2
0 .

Combining this with the trivial inequality

C2
0 = (tδj0G∗δj0)

2 ≤
(

max
0≤j≤N−1

|tδjG∗δj0 |
)2

,

we have (
max

0≤j≤N−1
|tδjG∗δj0 |

)2

= C0 ‖G∗δj0‖2A.

This shows that (4.10) is the best constant of (4.9) and the equality holds for

G∗δj0 . If we apply j = j0 which is the same in Theorem 2.2 to g(X; 0; j, j) and

g∗(X; j, j), then we have the concrete form of C0. This completes the proof of

Theorem 2.3. �
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5. Eigenvalue problem of bending of a string

We consider the following discrete string bending problem,

DEVP(X)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−u(i− 1) + 2u(i)− u(i+ 1) = λu(i) (0 ≤ i ≤ N − 1)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u(−1) = 0, u(N) = 0 (X) = (0, 0)

u(−1) = 0, u(N − 1)− u(N) = 0 (X) = (0, 1)

u(−1)− u(0) = 0, u(N) = 0 (X) = (1, 0)

u(−1)− u(0) = 0, u(N − 1)− u(N) = 0 (X) = (1, 1)

u(−1) = u(N − 1), u(0) = u(N) (X) = (P)

or equivalently the following matrix eigenvalue problem,

DEVP(X)

Au = λu.

We state the eigenvalues and eigenvectors of A = A(X) as the following

Lemma 5.1.

Lemma 5.1. DEVP(X) has the eigenvalues λ = λk (0 ≤ k ≤ N − 1) whose

normalized orthogonal eigenvectors u = ϕk (0 ≤ k ≤ N −1). The concrete forms

of λk and ϕk are as follows:

(X) = (0, 0)

λk = 4 sin2
(

k + 1

2(N + 1)
π

)
, 0 < λ0 < λ1 < · · · < λN−1 < 4,

ϕk =

√
2

N + 1
t

(
· · · , sin

(
(i+ 1)(k + 1)

N + 1
π

)
, · · ·
)

0≤i≤N−1

.

(X) = (0, 1)

λk = 4 sin2
(

k + 1/2

2(N + 1/2)
π

)
, 0 < λ0 < λ1 < · · · < λN−1 < 4,

ϕk =

√
2

N + 1/2
t

(
· · · , sin

(
(i+ 1)(k + 1/2)

N + 1/2
π

)
, · · ·
)

0≤i≤N−1

.

(X) = (1, 0)

λk = 4 sin2
(

k + 1/2

2(N + 1/2)
π

)
, 0 < λ0 < λ1 < · · · < λN−1 < 4,

ϕk =

√
2

N + 1/2
t

(
· · · , cos

(
(i+ 1/2)(k + 1/2)

N + 1/2
π

)
, · · ·
)

0≤i≤N−1

.
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(X) = (1, 1)

λk = 4 sin2
(

k

2N
π

)
, 0 = λ0 < λ1 < · · · < λN−1 < 4,

ϕk =

⎧⎪⎪⎨⎪⎪⎩
1√
N

t (1, 1, · · · , 1)0≤i≤N−1 (k = 0)√
2

N
t

(
· · · , cos

(
(i+ 1/2)k

N
π

)
, · · ·
)

0≤i≤N−1

(1 ≤ k ≤ N − 1)
.

(X) = (P)

λk = 4 sin2
(

k

N
π

)
,

N = 2n+ 1 + ε (n = 1, 2, 3, · · · , ε = 0, 1),

λ0 = 0 < λ1 = λN−1 < · · · < λn = λN−n

{
< 4 (ε = 0)

< λN/2 = 4 (ε = 1)
,

ϕk =

⎧⎪⎪⎨⎪⎪⎩
1√
N

t (1, 1, · · · , 1)0≤i≤N−1 (k = 0)

1√
N

t

(
· · · , exp

(√−12ik

N
π

)
, · · ·
)

0≤i≤N−1

(1 ≤ k ≤ N − 1)
.

In the case of (X) = (0, 0), (0, 1), (1, 0), (1, 1), since A is a real symmetric ma-

trix tA = A, the eigenvalues λk are distinct and the eigenvectors ϕk satisfy

ϕ∗
kϕ� = δ(k− �). In the case of (X) = (P), we have λk = λN−k (k = 1, 2, · · · , n)

and the corresponding eigenspace is two-dimensional. In this case, the eigenvec-

tors ϕk also satisfy ϕ∗
kϕ� = δ(k − �).

The proof of the above lemma in the case of (X) = (0, 0) and (P) are given

in [9] and [7, Lemma 2.1], respectively. Since the outline of the proof is basically

similar, we omit the proof.

For 5 kinds of DEVP(X), we introduce the diagonal matrix Â =

diag{λ0, · · · , λN−1}, the unitary N × N matrix W = (ϕ0, · · · ,ϕN−1) and the

orthogonal projection matrices Ek = ϕkϕ
∗
k (0 ≤ k ≤ N − 1).

We have the relation

W ∗W = WW ∗ = I, EkEl = δ(k − l)Ek, E∗
k = Ek.

Using Ek, we have the spectral decomposition of I, A and A+ aI as

I = WW ∗ =
N−1∑
k=0

ϕkϕ
∗
k =

N−1∑
k=0

Ek,
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A = WÂW ∗ =

N−1∑
k=0

λkϕkϕ
∗
k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N−1∑
k=0

λkEk (X) = (0, 0), (0, 1), (1, 0)

N−1∑
k=1

λkEk (X) = (1, 1), (P)

,

A+ aI = W (Â+ aI)W ∗ =
N−1∑
k=0

(λk + a)ϕkϕ
∗
k =

N−1∑
k=0

(λk + a)Ek,

(X) = (0, 0), (0, 1), (1, 0), (1, 1), (P).

We note that λ0 = 0 in the case of (X) = (1, 1) and (P). Using the eigenvalues

λk (0 ≤ k ≤ N − 1) and the eigenvectors ϕk (0 ≤ k ≤ N − 1), we have the

spectral decomposition of G(a) and G∗ [6, 8] as

G(a) =

N−1∑
k=0

1

λk + a
Ek, G∗ =

N−1∑
k=1

1

λk
Ek. (5.1)

Combining the expression of G(a) and G∗ given in Lemma 1.1 and 1.2 with the

spectral decomposition of G(a) and G∗ given in (5.1), we have the non-trivial

identities of trigonometric functions shown as Proposition 5.1 and 5.2.

Proposition 5.1. Combining G(a) in Lemma 1.1 with G(a) in (5.1) and putting

a = sh2(y/2) in (1.1), we have the following identities.

g(0, 0; a; i, j) =
sh((i ∧ j + 1)y) sh((N − i ∨ j)y)

sh((N + 1)y) sh(y)
=

1

2(N + 1)

N−1∑
k=0

sin
(

(i+1)(k+1)
N+1 π

)
sin
(

(j+1)(k+1)
N+1 π

)
sin2
(

k+1
2(N+1)π

)
+ sh2(y/2)

,

g(0, 1; a; i, j) =
sh((i ∧ j + 1)y) ch((N − 1/2− i ∨ j)y)

ch((N + 1/2)y) sh(y)
=

1

2(N + 1/2)

N−1∑
k=0

sin
(

(i+1)(k+1/2)
N+1/2 π

)
sin
(

(j+1)(k+1/2)
N+1/2 π

)
sin2
(

k+1/2
2(N+1/2)π

)
+ sh2(y/2)

,

g(1, 0; a; i, j) =
ch((i ∧ j + 1/2)y) sh((N − i ∨ j)y)

ch((N + 1/2)y) sh(y)
=

1

2(N + 1/2)

N−1∑
k=0

cos
(

(i+1/2)(k+1/2)
N+1/2 π

)
cos
(

(j+1/2)(k+1/2)
N+1/2 π

)
sin2
(

k+1/2
2(N+1/2)π

)
+ sh2(y/2)

,
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g(1, 1; a; i, j) =
ch((i ∧ j + 1/2)y) ch((N − 1/2− i ∨ j)y)

sh(Ny) sh(y)
=

1

4Nsh2(y/2)
+

1

2N

N−1∑
k=1

cos
(

(i+1/2)k
N π

)
cos
(

(j+1/2)k
N π

)
sin2
(

k
2N π
)
+ sh2(y/2)

,

g(P; a; i, j)=
ch((N/2−|i−j|)y)
2sh(Ny/2) sh(y)

=
1

4Nsh2(y/2)
+

1

4N

N−1∑
k=1

exp
(√−12(i−j)k

N π
)

sin2
(

k
N π
)
+sh2(y/2)

.

Proposition 5.2. Combining G∗ in Lemma 1.2 with G∗ in (5.1), we have the

following identities.

g∗(1, 1; i, j) = b2(2N ; |i− j|) + b2(2N ; 1 + i+ j) =

1

2N

N−1∑
k=1

cos
(

(i+1/2)k
N π

)
cos
(

(j+1/2)k
N π

)
sin2
(

k
2N π
) ,

g∗(P; i, j) = b2(N ; |i− j|) = 1

4N

N−1∑
k=1

exp
(√−12(i−j)k

N π
)

sin2
(

k
N π
) .

We note that b2(N ; i) is the discrete Bernoulli polynomial (1.5).
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