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Abstract

Let X be a normal del Pezzo surface of rank one with only rational log canon-

ical singular points defined over C, π : V → X the minimal resolution of X and

D the reduced exceptional divisor of π. We prove that, if there exists a (−1)-

curve C on V such that CD = 1 and X has a non-KLT singular point, then

V \ Supp(C + D)(= X \ (SingX ∪ π(C))) is affine ruled. Furthermore, we deter-

mine the surface X of type (IIb) with a non-KLT singular point.

1. Introduction

This paper is a continuation of the authors’ papers [11], [12], [5], [6], [9] and

[10] on normal del Pezzo surfaces of rank one with only rational log canonical sin-

gular points. We work over the complex number field C and use the intersection

theory for normal surfaces due to Mumford [18] and Sakai [20]. In this paper, a

normal del Pezzo surface means a normal projective surface whose anticanonical

divisor is an ample Q-Cartier divisor. A normal del Pezzo surface is said to have

rank one if its Picard number equals one. A normal del Pezzo surface with only

KLT (Kawamata log terminal) singular points is usually called a log del Pezzo

surface. We call a normal del Pezzo surface with only rational log canonical

singular points an l.c. del Pezzo surface.

Let X be an l.c. del Pezzo surface of rank one and let π : V → X be the

minimal resolution of X, here we assume that SingX �= ∅. Let D =
∑

i Di be

the reduced exceptional divisor of π, where the Di are irreducible components

of D. Here we note that X is a rational surface by [11, Lemma 3.1] and that D

is an SNC-divisor (a simple normal crossing divisor) by [2]. We have a unique

effective Q-divisor D# =
∑

i αiDi such that KV +D# ≡ π∗KX . By [11, Lemma

3.2], we know that −(KV +D#) is nef and big and that, for an irreducible curve

E on V , E(KV +D#) = 0 if and only if E ⊂ SuppD. So, for a curve C on V not

contained in SuppD, −C(KV +D#) ∈ {n/p | b ∈ Z>0}, where p is the smallest

positive integer such that pD# is an integral divisor. We can find irreducible
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curves C such that −C(KV +D#) attains the smallest positive value. We denote

the set of all such curves by MV(V,D).

Definition 1.1. (cf. [12, Definition 2.4])

(1) X (or (V,D)) is said to be of the first kind if there exists a curve

C ∈ MV(V,D) such that |KV + C + D| �= ∅. It is said to be of the

second kind if it is not of the first kind, i.e., |KV + C +D| = ∅ for every

curve C ∈ MV(V,D).

(2) Assume thatX (or (V,D)) is of the second kind. It is said to be of type (IIa)

if there exists a curve C ∈ MV(V,D) meeting at least two (−2)-curves in

SuppD. It is said to be of type (IIb) if there exists a curve C ∈ MV(V,D)

meeting only one component of D but it is not of type (IIa). It is said to

be of type (IIc) if there exists a curve C ∈ MV(V,D) such that CD ≥ 3

but it is neither of type (IIa) nor of type (IIb). It is said to be of type (IId)

if it is neither of type (IIa), of type (IIb) nor of type (IIc).

Let X and (V,D) be the same as above. If X is of the first kind, then it

has only KLT singular points by [11, Corollary 3.5]. In this case, Zhang [21, Sec-

tion 3] studied its structure and proved that X0 := X \ SingX is affine uniruled,

namely, there exists a dominant morphism φ : A1
C
×U → X0, where U is a smooth

curve. Assume that X is of the second kind. In [12], the authors determined the

surfaces of type (IIa). Later on, the first author [10] determined the surfaces of

type (IIc) containing at least one non-KLT singular points. In fact, every l.c. del

Pezzo surface of rank one can have at most one non-KLT singular point by [9,

Theorem 1]. For more details on l.c. del Pezzo surfaces of rank one and related

results, see [9], [10] and their references.

In this paper, we study l.c. del Pezzo surfaces of rank one and type (IIb). In

Section 2, we recall some elementary results on l.c. del Pezzo surfaces of rank one

and some results on open algebraic surfaces. In Section 3, we prove the following

result.

Theorem 1.1. Let X be an l.c. del Pezzo surface of rank one, π : V → X the

minimal resolution of X and D the reduced exceptional divisor of π. Assume

that there exists a (−1)-curve C on V such that CD = 1. Then the following

assertions hold true.

(1) V \ Supp(C +D)(= X \ (SingX ∪ π(C))) is affine uniruled.

(2) If X has a non-KLT singular point P , then V \Supp(C+D) is affine ruled

(namely, it contains a surface isomorphic to A1
C
×U0, where U0 is a smooth

curve, as a Zariski open subset) and every singular point of X other than

P is a cyclic quotient singular point.

Note that X as in Theorem 1.1 may not be of type (IIb) since the (−1)-curve
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C may not be an element of MV(V,D). In [22], Zhang proved the following re-

sult: for a normal algebraic surface S with only log canonical singularities and

with nef and big anticanonial divisor, its smooth part is affine ruled or has finite

fundamental group. We do not use this result in Section 3.

In Section 4, we determine the l.c. del Pezzo surfaces of rank one and type

(IIb) with at least two singular points and non-KLT singular points. We prove

the following result.

Theorem 1.2. Let X be an l.c. del Pezzo surface of rank one and type (IIb),

π : V → X the minimal resolution of X and D the reduced exceptional divisor of

π. Assume further that #SingX ≥ 2 and X has a non-KLT singular point. Let

C ∈ MV(V,D) be a curve such that CD = 1. Then the following assertions hold.

(1) The divisor C +D is an SNC-divisor and the dual graph of D is given as

in (n) for n = 1, . . . , 8 in Figure 5.1.

(2) There exists a P1-fibration Φ : V → P1 in such a way that the configuration

of C +D as well as all singular fibers of Φ can be explicitly described. The

configuration is given in the configuration (n) for n = 1, . . . , 8 in Figure

5.2.

In [4] and [6], the first author determined the l.c. del Pezzo surfaces of rank

one with unique singular points. That is why we assume in Theorem 1.2 that

#SingX ≥ 2.

2. Preliminaries

We recall some elementary results on l.c. del Pezzo surfaces of rank one and

some results on open algebraic surfaces. All the results of this section are well-

known.

We employ the following notations.

Σm: the Hirzebruch surface of degree m.

KV : the canonical divisor on V .

ρ(V ): the Picard number of V .

κ(S): the logarithmic Kodaira dimension of S. (See [15] for its definition.)

Fred: the reduced part of an effective divisor F .

#D(= #Dred): the number of irreducible components of Dred of an effective

divisor D.


L�: the integral part of an effective Q-divisor L.

2.1 Some results on l.c. del Pezzo surfaces of rank one

Let X be an l.c. del Pezzo surface of rank one and π : V → X the minimal

resolution of X, here we assume that SingX �= ∅. Let D =
∑

i Di be the re-

duced exceptional divisor of π, where the Di are irreducible components of D.
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Figure 2.1

Since X has only rational singular points, D is an SNC-divisor (a simple nor-

mal crossing divisor) and consists only of smooth rational curves (cf. [2]). We

often denote (V,D) and X interchangeably. There is a unique effective Q-divisor

D# =
∑

i αiDi such that KV +D# ≡ π∗KX .

We recall some elementary results given in [11] and [12]. They are originally

given in [21] for log del Pezzo surfaces of rank one.

Lemma 2.1. With the same notations and assumptions as above, the following

assertions hold true.

(1) X is a rational surface.

(2) For any irreducible curve F , −F (KV + D#) = 0 if and only if F is a

component of D.

(3) Any (−n)-curve with n ≥ 2 is a component of D.

Proof. See [11, Lemmas 3.1 and 3.2].

Lemma 2.2. Let Φ : V → P1 be a P1-fibration (i.e., Φ is a fibration from V onto

P1 whose general fiber is isomorphic to P1). Then the following assertions hold

true.

(1) The number of irreducible components of D not in any fiber of Φ equals

1+
∑

F (#{(−1)−curves in F }−1), where F moves over all singular fibers

of Φ.

(2) If a singular fiber F of Φ consists only of (−1)-curves and (−2)-curves, then

the dual graph of F is given as one of the graphs (i)–(iii) in Figure 2.1.

Proof. See [21, Lemma 1.5].

Lemma 2.3. Let Φ : V → P1 be a P1-fibration. Assume that there exists a

singular fiber F such that its weighted dual graph is given as one of (i) and (ii) in

Figure 2.1 and that C ∈ MV(V,D), where C is the unique (−1)-curve in SuppF .

Then every singular fiber G consists only of (−1)-curves and (−2)-curves and so

the dual graph of G is given as one of (i)–(iii) in Figure 2.1. Moreover, every

(−1)-curve in SuppG is an element of MV(V,D).
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Proof. See [11, Lemma 3.7].

Lemma 2.4. Let Φ : V → P1 be a P1-fibration and let C be a (−1)-curve in

MV(V,D). Assume that Φ has a singular fiber F such that F = 3C +Δ, where

Δ is an effective divisor with SuppΔ ⊂ SuppD. Then every singular fiber of Φ

consists of (−1)-curves, (−2)-curves and at most one (−3)-curve.

Proof. See [11, Lemma 3.8]. The assertion can be proved by using the same

argument as in the proof of [21, Lemma 1.6].

2.2 Some results on open algebraic surfaces

A reduced effective divisor on a smooth algebraic variety is called an SNC-

divisor if it has only simple normal crossings. Let A = A1 + · · ·+Ar be a linear

chain of smooth projective rational curves on a smooth projective surface such

that A1A2 = A2A3 = · · · = Ar−1Ar = 1 and set ai = A2
i (i = 1, . . . , r). Then

we denote the weighted dual graph of A by [a1, a2, . . . , ar]. For an integer a

and a positive integer s, we use the abbreviation [as] = [a, a, . . . , a] that is the

weighted dual graph of a linear chain consisting of s smooth rational curves with

self-intersection number a.

We recall some notions and results on open algebraic surfaces. For more

details, see [15, Chapter 2] and [16, Chapter 1].

Let V be a smooth projective surface and D an SNC-divisor on V . We call

such a pair (V,D) an SNC-pair. A connected curve consisting only of irreducible

components of D is called a connected curve in D for shortness. A connected

curve T in D is said to be admissible (resp. rational) if there are no (−1)-curves

in SuppT and the intersection matrix of T is negative definite (resp. if it consists

only of rational curves). A connected curve T in D is called a twig if its dual

graph is a linear chain and T meets D − T in a single point at one of the end

components of T . An admissible rational twig in D is said to be maximal if it

is not extended to an admissible rational twig with more irreducible components

of D. A connected curve in D is called a rod (resp. a fork) if it is a connected

component of D and its dual graph is a linear chain (resp. its dual graph is that

of the exceptional curves of the minimal resolution of a KLT singular point and

is not a linear chain).

Let {Tλ} (resp. {Rμ}, {Fν}) be the set of all admissible rational maximal

twigs (resp. all admissible rational rods, all admissible rational forks), where no

irreducible components of Tλ’s belong to Rμ’s or Fν ’s. Then there exists a unique

decomposition of D as a sum of effective Q-divisors D = D# +Bk(D) such that

the following two conditions (i) and (ii) are satisfied:

(i) Supp(Bk(D)) = (∪λTλ) ∪ (∪μRμ) ∪ (∪νFν).

(ii) (KV +B#)Z = 0 for every irreducible component Z of Supp(Bk(D)).

Remark 2.1. Let X be a normal projective surface with only rational log canon-
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ical singular points, π : V → X the minimal resolution of X and D the reduced

exceptional divisor of π. Then D is an SNC-divisor. Since X has only log canoni-

cal singular points, the Q-divisor D# defined as in the last paragraph is the same

as that defined in Introduction and Section 2.1. Namely, π∗(KX) ≡ KV +D#.

Definition 2.1. An SNC-pair (V,D) is said to be almost minimal if, for every

irreducible curve C on V , either C(KV +D#) ≥ 0 or C(KV +D#) < 0 and the

intersection matrix of C + Bk(D) is not negative definite.

For an SNC-pair (V,D), there exists a birational morphism μ : V → W onto

a smooth projective surface W such that the following conditions are satisfied:

(1) Δ := μ∗(D) is an SNC-divisor.

(2) For any (−1)-curve E ⊂ Δ, E(Δ − E) ≥ 2 and the equality holds if and

only if E meets a unique irreducible component of Δ−E. (Δ is then said

to be SNC-minimal.)

(3) κ(V \ SuppD) = κ(X \ SuppB).

(4) (V,D) is almost minimal.

See [15, Theorem 2.3.11.1 (p. 107)], which is the same as [16, Theorem 1.11], for

its proof. We call the pair (W,Δ) an almost minimal model of (V,D).

We recall the following result on the almost minimal SNC-pairs of κ = −∞.

Lemma 2.5. Let (V,D) be an almost minimal SNC-pair of κ(V \ SuppD) = −∞
and assume further that D is SNC-minimal. Let π : V → V be the contraction of

Supp(Bk(D)) to normal points and set D := π∗(D). (Here we note that V has

only KLT singular points.) Then one of the following cases takes place.

(A) There exists a P1-fibration h : V → C onto a smooth projective curve C

such that every fiber of h is irreducible and DF ≤ 1 for a fiber F of h.

(B) ρ(V ) = 1 and −(KV +D) is an ample Q-Cartier divisor.

Proof. See [15, Lemmas 2.3.14.3 and 2.3.14.4 (pp. 113–114)], which is the same

as [16, Lemmas 2.7 and 2.8].

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Let X, π : V → X, D and C be the

same as in Theorem 1.1. Let P1, . . . , P� (� = #SingX) be all singular points of

X and D =
∑�

k=1 D
(k) the decomposition of D into connected components such

that D(k) = π−1(Pk) (k = 1, . . . , �) as a reduced divisor. We may assume that

CD = CD(1) = 1. Set S := X \ π(C).

Lemma 3.1. With the same notations and assumptions as above, the following

assertions hold true.
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(1) κ(V \ Supp(C +D))(= κ(S \ SingS)) = −∞.

(2) S is a Q-homology plane, i.e., it is a normal affine surface with Betti num-

bers of the affine plane A2
C
.

Proof. By [9, Lemma 2], κ(V \ SuppD) = −∞. Since CD = 1, we have

κ(V \ Supp(C +D)) = κ(V \ SuppD) = −∞,

which proves the assertion (1). The assertion (2) follows from [12, Lemma

3.7].

We consider the case where P1 is a non-KLT singular point. Then the

weighted dual graph of D(1) is given as one of the dual graphs (6)–(8) in [1,

p. 58]. Then we have the following lemma.

Lemma 3.2. Assume that P1 is a non-KLT singular point. Then there exists a

birational morphism μ : Ṽ → V from a smooth projective surface Ṽ such that the

following conditions (1) and (2) are satisfied:

(1) μ is a composite of blowing-ups at a point on Supp(C +D(1)) and its in-

finitely near points.

(2) There exists a P1-fibration Φ : Ṽ → P1 such that Fμ∗(C +D)red = 1 for a

fiber F of Φ.

In particular, V \ Supp(C +D) is affine ruled and P2, . . . , P� are cyclic quotient

singular points.

Proof. The existence of μ : Ṽ → V satisfying the conditions (1) and (2) follows

from [9, Lemma 4]. Here, the curve E in [9, Lemma 4] is a (−1)-curve on V and

ED = ED(1) = 1 with the notations in [9]. In fact, the curve E satisfies the

conditions which are E(KV +D#) < 0 and the intersection matrix of E+Bk(D)

is negative definite. However, the proof of [9, Lemma 4] does not use the latter

condition.

As seen from the conditions (1) and (2), we easily see that V \ Supp(C +D)

is affine ruled. The last assertion then follows from [13, Theorem 1].

From now on, we consider the case where P1 is a KLT singular point. We note

that the intersection matrix of C +D(1) is neither negative definite nor negative

semi-definite because C + D(1) supports a big divisor. We prove the following

lemma.

Lemma 3.3. Suppose that P1 is a KLT singular point. Then X is a log del Pezzo

surface of rank one, i.e., every singular point on X is a KLT singular point.

Proof. Let f : V → W be the contraction of C and all subsequently (smoothly)

contractible curves in Supp(D(1)) such that f∗(C+D(1))(= f∗(D(1))) is an SNC-

divisor and E′(f∗(C+D(1))−E′) ≥ 3 for any (−1)-curve E′ ⊂ Supp(f∗(C+D(1)))
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(i.e., f∗(C +D(1)) is SNC-minimal). Since the weighted dual graph of C +D(1)

is a tree (i.e., C + D(1) is a connected tree of P1’s), such a birational mor-

phism f exists. Set Δ := f∗(D) and Δ(i) := f∗(D(i)) for i = 2, . . . , �. Then

W \ SuppΔ = V \ Supp(C + D). So #Δ = ρ(W ) and κ(V \ SuppΔ) =

κ(V \ Supp(C +D)) = −∞.

Suppose to the contrary that X has a non-KLT singular point. We may

assume that � ≥ 2 and P2 is a non-KLT singular point.

Claim 1. The SNC-pair (W,Δ) is almost minimal.

Proof. Suppose to the contrary that (W,Δ) is not almost minimal. Then there

exists an irreducible curve, say Ẽ, on W such that Ẽ(KW + Δ#) < 0 and the

intersection matrix of Ẽ+Bk(Δ) is negative definite. Since S = X \π(C), which

can be constructed by contracting Δ(2), . . . ,Δ(�) from W \ Supp(Δ(1)), is a nor-

mal affine surface, we have ẼΔ(1) > 0. By [15, Lemmas 2.3.6.3 and 2.3.8.4 (p.

96, p. 102)] (that is the same as [16, Lemmas 1.6.2 and 1.8.3]), we know that:

(a) ẼΔ ≤ 2.

(b) ẼΔ(1) = 1. In particular, Ẽ meets an admissible rational maximal twig,

say T , in Δ(1).

(c) If ẼΔ = 2, then the connected component Δ(j) of Δ−Δ(1) meeting Ẽ is

an admissible rational rod, i.e., Pj is a cyclic quotient singular point, and

Ẽ + T + Δ(j) can be contracted to either an admissible rational rod or a

smooth point.

(d) κ(W \ Supp(Ẽ +Δ)) = κ(W \ SuppΔ) = −∞.

By (d) and #(Ẽ+Δ) = 1+ ρ(W ), we infer from [8, Lemma 2.8] that the surface

W \ Supp(Ẽ + Δ) is affine ruled. Hence S \ SingS is affine ruled, too. By [13,

Theorem 1], every singular point of S is a cyclic quotient singular point. How-

ever, this is a contradiction because Sing S = {P2, . . . , P�} and P2 is not a KLT

singular point.

We set Δ# =
∑�

k=1 Δ
(k)#. Since Δ(2) can be contracted to the non-KLT sin-

gular point P2, 
Δ(2)#� �= 0. Further, since the intersection matrix of Δ(1) is not

negative definite, we have 
Δ(1)#� �= 0. So 
Δ(1)#� and 
Δ(2)#� are contained

in Supp(
Δ#�).
Let π′ : W → W be the contraction of Supp(Bk(Δ)) = Supp(Δ − 
Δ#�).

Then W is a normal projective surface with only KLT singular points. By Lemma

2.5, one of the following cases (A) and (B) takes place.

(A) There exists a P1-fibration Φ : W → P1 onto P1 such that every fiber of Φ is

irreducible and π′
∗(
Δ#�)F ≤ 1 for a fiber F of Φ. In fact, π′

∗(
Δ#�)F = 1

since the intersection matrix of Δ is neither negative definite nor negative

semi-definite.

(B) ρ(W ) = 1 and −(KW + π′
∗(
Δ#�)) is an ample Q-Cartier divisor.
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If the case (A) takes place, then W \ SuppΔ is affine ruled. However, by us-

ing the argument as in the last paragraph of the proof of Claim 1, we derive a

contradiction.

Suppose that the case (B) takes place. We may assume further that

U := W \ SuppΔ is not affine ruled.

Claim 2. The surface U has a structure of platonic A1
∗-fiber space over P

1, where

A1
∗ = A1

C
\ {0}. More precisely, there exists a surjective morphism g : U → P1

from U onto P1 such that the following conditions are satisfied:

(i) g has no singular fibers except for three multiple fibers Fi = μiGi,

i = 1, 2, 3, such that Gi
∼= A1

∗ and that {μ1, μ2, μ3} = {2, 2,m} (m ≥ 2),

{2, 3, 3}, {2, 3, 4} or {2, 3, 5}.
(ii) There exist an SNC-pair (U,B) and a P1-fibration g : U → P1 such that:

(a) U \ SuppB = U .

(b) B contains two irreducible components B1 and B2 that are sections of

g with B1 ∩ B2 = ∅, and the other irreducible components of B are

contained in fibers of g.

(c) Every fiber of g has a linear chain as its weighted dual graph and

contains a unique (−1)-curve if the fiber is reducible.

Proof. Since 
Δ#� �= 0 and (W,Δ) is not affine ruled, we infer from Claim 1

and [15, Theorem 2.5.1.2 (p. 143)] (that is the same as [17, Main Theorem]) that

U has a structure of platonic A1
∗-fiber space over P1. The other assertion follows

from the definition of a platonic A1
∗-fiber space over P1.

We can determine the weighted dual graph of B. For more details, see [14,

Section 2] (see also [7, pp. 37–38]). We may assume that B2
2 = −b ≤ −2 by inter-

changing the role of B1 and B2. Then B consists of two connected components,

say B(1) and B(2), containing B1 and B2, respectively. Furthermore, the weighted

dual graph of B(1) looks like that in Figure 3.1 and that B(2) is an admissible

rational fork. In Figure 3.1, b
(j)
i ≥ 2 for i = 1, . . . , sj and j = 1, 2, 3. (In fact, we

can determine the weighted dual graph of B more precisely. However, we do not

need the precise result.)

We easily see that SuppB contains no irreducible components B′ with

B′2 ≥ 0 and B′(B−B′) ≤ 2. Since the divisor Δ satisfies the same conditions as

B, we know that the pair (U,B) is isomorphic to (W,Δ). Namely, there exists

an isomorphism Ψ : U → W whose restriction on B gives rise to an isomorphism

between B and Δ. Since Δ(1) supports a big divisor, the weighted dual graph of

Δ(1) is the same as that of B(1). So � = 2 and Δ(2) is an admissible rational fork.

This is a contradiction because Δ(2) can be contracted to the non-KLT singular

point P2.

Therefore, every singular point of X is a KLT-singular point.
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Figure 3.1

The assertion (2) of Theorem 1.1 is thus verified. The assertion (1) of Theo-

rem 1.1 follows from the assertion (2) and [21, Theorem 6.1]. Here we note that,

in [21, Section 6], the (−1)-curve C is an element of MV(V,D) and CD = 1, but

the condition C ∈ MV(V,D) is not used in the proof of [21, Theorem 6.1].

The proof of Theorem 1.1 is thus completed.

Remark 3.1. We can prove Lemma 3.3 by using Palka’s result on the classification

of Q-homology planes with non-KLT singular points in [19, Theorem 4.5] instead

by using [15, Theorem 2.5.1.2 (p. 143)] (that is the same as [17, Main Theorem]).

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Let X, π, V , D and C ∈ MV(V,D) be

the same as in Theorem 1.2. Let P1, . . . , P� (� = #SingX) be all singular points

of X and D =
∑�

k=1 D
(k) the decomposition of D into connected components

such that D(k) = π−1(Pk) (k = 1, . . . , �) as a reduced divisor. We may assume

that CD = CD(1) = 1. Since X contains a non-KLT singular point, we infer

from Lemma 3.3 that P1 is not a KLT singular point. Further, by [9, Theorem

1], P2, . . . , P� are KLT singular points. The weighted dual graph of D(1) is given

as one of the graphs (6)–(8) in [1, p. 58].

4.1

In this section, we consider the case where the weighted dual graph of D(1) is

given as one of (6) and (7) in [1, p. 58]. Let D(1) =
∑r

i=1 Di be the decomposition

of D(1) into irreducible components and set ai := −D2
i for i = 1, . . . , r. In this

case, r ≥ 5 and the weighted dual graph of D(1) is given as in Figure 4.1.

ThenD(1)# = 1
2 (D1+D2+Dr−1+Dr)+

∑r−2
i=3 Di and max{a3, . . . , ar−2} ≥ 3

since the intersection matrix of D(1) is negative definite. Since CD(1) = 1 and

CD# < −CKV = 1, we may assume that CD(1) = CD1 = 1. Then CD# = 1
2 .

Since the intersection matrix of C + D(1) (resp. D(1)) is not negative definite

(resp. negative definite), we know that a3 = a4 = 2 and r ≥ 7. Then the divisor
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F0 := 2(C +D1 +D3) +D2 +D4 defines a P1-fibration Φ := Φ|F0| : V → P1, D5

becomes a section of Φ and D −D5 is contained in fibers of Φ. By Lemma 2.3,

every fiber of Φ consists only of (−1)-curves and (−2)-curves. By Lemma 2.2, we

know that the weighted dual graph of every singular fiber of Φ is given as one of

(i) and (ii) in Figure 2.1. If Φ has a singular fiber F1 whose weighted dual graph

is given as (i) in Figure 2.1, then the (−1)-curve E in SuppF1 is an element of

MV(V,D) and E meets at least two (−2)-curves in SuppD. So the pair (V,D) is

of type (IIa), which is a contradiction. Hence, the weighted dual graph of every

fiber of Φ is given as (ii) in Figure 2.1.

We know that D = D(1) is connected, which contradicts the hypothesis

#SingX ≥ 2. Therefore, this case does not take place.

4.2

In Sections 4.2–4.4, we consider the case where the weighted dual graph of

D(1) is given as (6) in [1, p. 58]. Then (Δ1,Δ2,Δ3) = (3, 3, 3), (2, 4, 4), (2, 3, 6)

with the notations in [1, p. 58].

In this section, we consider the case (Δ1,Δ2,Δ3) = (3, 3, 3). Then the

weighted dual graph of D(1) is given as one of (1)–(4) in Figure 4.2, where we omit

the self-intersection number corresponding to a (−2)-curve and set a0 = −D2
0.

We consider the following four cases 1–4 separately.

Case 1: The weighted dual graph of D(1) is given as (1) in Figure 4.2.

In this case, D(1)# = D0 + 2
3 (D1 + D2 + D3) and so CD(1) = CDi = 1
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for some i ∈ {1, 2, 3}. This is a contradiction because the intersection matrix of

C +D(1) is then negative definite. Therefore, this case does not take place.

Case 2: The weighted dual graph of D(1) is given as (2) in Figure 4.2.

In this case, D(1)# = D0 + 2
3 (D1 + D3 + D4) +

1
3D2. Since CD(1)# < 1

and the intersection matrix of C + D(1) is not negative definite, we know that

CD(1) = CD1 = 1 and a0 = 2. Then the divisor F0 = 2(C + D1) + D0 + D2

defines a P1-fibration Φ := Φ|F0| : V → P1, D3 and D4 become sections of

Φ and D − (D3 + D4) is contained in fibers of Φ. Let F0, F1, . . . , Fr exhaust

all singular fibers of Φ, here we note that r ≥ 1 since #SingX ≥ 2. Then

each Supp(Fi) (i = 1, . . . , r) contains at least two (−1)-curves because the ir-

reducible component of Supp(Fi) meeting D3, which is a section of Φ, is a

(−1)-curve. We infer from Lemmas 2.2 and 2.3 that the weighted dual graph

of Fi (i = 1, . . . , r) is given as (iii) in Figure 2.1 and that r = 1. Write

F1 = E1 + G1 + · · · + Gk + E2, where E1G1 = G1G2 = · · · = GkE2 = 1,

E1 and E2 are (−1)-curves and G1, . . . , Gk are (−2)-curves. By Lemma 2.3,

E1, E2 ∈ MV(V,D) and so E1D
(1)# = E2D

(1)# = CD# = 2
3 . Hence we may

assume that E1D3 = E2D4 = 1. Then E1D
(1) = E1D3 = 1, E2D

(1) = E2D4 = 1.

Let u : V → Σ3 be the contraction of all (−1)-curves and consecutively

(smoothly) contractible curves in fibers of Φ except for those meeting D3. Then

we have

(3 =)u(D4)
2 = −3 + 1 + k, u(D4)u(D3) = 0.

So, k = 5. Hence the weighted dual graph of D (resp. the configuration of C +D

and all the singular fibers of Φ) is given as (1) in Figure 5.1 (resp. Figure 5.2).

Case 3: The weighted dual graph of D(1) is given as (3) in Figure 4.2.

In this case, D(1)# = D0+
2
3 (D1+D3+D5)+

1
3 (D2+D4). Since CD(1)# < 1

and the intersection matrix of C +D(1) is not negative definite, we may assume

that CD(1) = CD1 = 1 and a0 = 2. Then the divisor F0 = 2(C +D1) +D0 +D2

defines a P1-fibration Φ := Φ|F0| : V → P1, D3 and D5 become sections of Φ and

D − (D3 + D5) is contained in fibers of Φ. Let F1 be the fiber of Φ containing

D4. By Lemmas 2.2 and 2.3, we know that:

• F0 and F1 exhaust all singular fibers of Φ.

• The weighted dual graph of F1 is one of (i) and (iii) in Figure 2.1.

Since D4 is isolated in Supp(D−(D0+D1+D2+D3+D5)), we see that #F1 = 3.

Let E be a (−1)-curve in Supp(F1). Then ED4 = 1 and E ∈ MV(V,D) by Lemma

2.3. Since ED(1)# < 1 and the coefficient of D5 in D(1)# equals 2
3 , ED5 = 0.

Hence we conclude that ED# = 1
3ED4 = 1

3 . This is a contradiction because

E ∈ MV(V,D) and CD# = CD(1)# = 2
3CD1 = 2

3 . Therefore, this case does not

take place.

Case 4: The weighted dual graph of D(1) is given as (4) in Figure 4.2.
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In this case, D(1)# = D0 + 2
3 (D1 + D3 + D5) +

1
3 (D2 + D4 + D6). Since

the intersection matrix of D(1) is negative definite, a0 = −D2
0 ≥ 3. Since

CD(1)# < 1 and the intersection matrix of C + D(1) is not negative defi-

nite, we may assume that CD(1) = CD1 = 1 and a0 = 3. Then the divisor

F0 := 4(C+D1)+2(D0+D2)+D3+D5 defines a P
1-fibration Φ := Φ|F0| : V → P1,

D4 and D6 become sections of Φ and D − (D4 +D6) is contained in fibers of Φ.

Let F1 be the fiber of Φ containing D(2), which exists by #SingX ≥ 2. Then

the curve E1 of Supp(F1) meeting D4 (that is a section of Φ) is a (−1)-curve. So

there exists a (−1)-curve E2 ( �= E1) in Supp(F1). By Lemma 2.2 (1), we know

that E1 and E2 exhaust all (−1)-curves in Supp(F1) and that F0 and F1 exhaust

all singular fibers of Φ.

Suppose that E1 meets D6. Then

E1D
# ≥ E1D

(1)# ≥ 1

3
E1(D4 +D6) =

2

3
= CD#.

So E1 ∈ MV(V,D) and E1 meets two (−2)-curves D4 and D6. Hence (V,D) is

of type (IIa), a contradiction. Therefore, E1D6 = 0 and E2D6 = 1.

Set #F1 = 2 +m. Then m = #(D −D(1)). Let u : V → Σ2 be the contrac-

tion of all (−1)-curves and consecutively (smoothly) contractible curves in fibers

of Φ except for those meeting D4. Then u∗(F0) = u(D3) and u∗(F1) = u(E1).

Further, u(D4)u(D6) = 0. So 2 = u(D6)
2 = −2 + 1 +m+ 1 and hence m = 2.

Since #F1 = 4, Supp(F1) contains two (−1)-curves E1 and E2 and the coef-

ficients of E1 and E2 in F1 are equal to one, we know that Supp(F1) is a linear

chain of four P1’s, E1 and E2 are end components of Supp(F1) and the other

two irreducible components of Supp(F1) are (−2)-curves. Namely, the weighted

dual graph of F1 is [−1,−2,−2,−1] (see Section 2.2 for this notion). Hence the

weighted dual graph of D (resp. the configuration of C +D and all the singular

fibers of Φ) is given as (2) in Figure 5.1 (resp. Figure 5.2).

4.3

In this section, we consider the case (Δ1,Δ2,Δ3) = (2, 4, 4). Then the

weighted dual graph of D(1) is given as one of (1)–(3) in Figure 4.3, where we omit

the self-intersection number corresponding to a (−2)-curve and set a0 = −D2
0.

We consider the following three cases 1–3 separately.

Case 1: The weighted dual graph of D(1) is given as (1) in Figure 4.3.

By using the same argument as in Case 1 in Section 4.2, we know that this

case does not take place.

Case 2: The weighted dual graph of D(1) is given as (2) in Figure 4.3.

In this case, D(1)# = D0+
3
4 (D2+D5)+

1
2 (D1+D3)+

1
4D4. Since CD(1)# < 1

and the intersection matrix of C +D(1) is neither negative definite nor negative

semi-definite, we know that CD(1) = CDi = 1 for some i ∈ {2, 3}.
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Suppose that i = 3, i.e., CD3 = 1. Then the divisor F = 2(C+D3)+D2+D4

defines a P1-fibration Φ|F | : V → P1. Then D5, which is a (−4)-curve, becomes

a fiber component of Φ|F |. This is a contradiction by Lemma 2.3. Hence, i = 2,

i.e., CD2 = 1. Then a0 ∈ {2, 3} since the intersection matrix of C + D(1) is

neither negative definite nor negative semi-definite.

Suppose that a0 = 2. Then the divisor F ′ := 2(C +D2) +D0 +D3 defines

a P1-fibration Φ′ := Φ|F ′| : V → P1, D1, D4 and D5 become sections of Φ′

and D − (D1 + D4 + D5) is contained in fibers of Φ′. Since #SingX ≥ 2, Φ′

has a singular fiber F ′
1 �= F ′. By Lemma 2.3, the weighted dual graph of F ′

1 is

one of (i)–(iii) in Figure 2.1 and every (−1)-curve in Supp(F ′
1) is an element of

MV(V,D). Since the irreducible component of Supp(F ′
1) meeting D1, which is

a section of Φ′, is a (−1)-curve, Supp(F ′
1) has at least two (−1)-curves. So the

weighted dual graph of F ′
1 is given as (iii) in Figure 2.1. Let E′

1 and E′
2 be the

two (−1)-curves in Supp(F ′
1). Then either E′

1 or E′
2 meets at least two of D1, D4

and D5. We may assume that E′
1(D1 +D4 +D5) ≥ 2. Then

E′
1D

# ≥ E′
1D

(1)# ≥ 1

2
+

1

4
=

3

4
= CD#.

Then, E′
1 ∈ MV(V,D) and E′

1 meets D1 and D4, which are (−2)-curves. Hence

(V,D) is of type (IIa), which is a contradiction. Therefore, a0 = 3.

Then the divisor F0 := 3(C + D2) + 2D3 + D0 + D4 defines a P1-fibration

Φ := Φ|F0| : V → P1, D1 and D5 become sections of Φ and D − (D1 + D5) is

contained in fibers of Φ. Let F1 be the fiber of Φ containing D(2), which exists.

Then F1 contains at least two (−1)-curves (see the preceding paragraph). By

Lemma 2.2 (1), we know that F0 and F1 exhaust all singular fibers of Φ and

Supp(F1) contains just two (−1)-curves, say E1 and E2.

We may assume that E1D5 = 1. Then E1D
# ≥ 3

4E1D5 = 3
4 = CD#. So

E1 ∈ MV(V,D). Then E1D1 = 0 and E2D1 = 1. Since the coefficients of E1 and

E2 in F1 are equal to one, we know that Supp((F1)red − (E1 +E2)) is connected,

namely, D(2) = (F1)red − (E1 + E2).
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If D(2) contains a curve of self-intersection number ≤ −3, then the coefficient

of every component of D(2) in D(2)# > 0 and so

E1D
# = E1(D

(1)# +D(2)#) > E1D
(1)# =

3

4
= CD#.

This is a contradiction. Hence D(2) consists only of (−2)-curves. By Lemma 2.2

(2), the weighted dual graph of F1 is given as (iii) in Figure 2.1. In particular,

F1 = E1 + D(2) + E2 is a linear chain and E1 and E2 are end components of

Supp(F1). By the same argument as in Case 2 in Section 4.2 (the last paragraph

in Case 2 in Section 4.2), we know that the weighted dual graph of D (resp. the

configuration of C +D and all the singular fibers of Φ) is given as (3) in Figure

5.1 (resp. Figure 5.2).

Case 3: The weighted dual graph of D(1) is given as (3) in Figure 4.3.

In this case, D(1)# = D0 +
3
4 (D2 +D5) +

1
2 (D1 +D3 +D6) +

1
4 (D4 +D7).

Since the intersection matrix of D(1) is negative definite, a0 = −D2
0 ≥ 3. Since

CD(1)# < 1 and the intersection matrix of C + D(1) is not negative definite,

we may assume that CD(1) = CDi = 1 for some i ∈ {2, 3}. We consider the

following two subcases 3-1 and 3-2 separately.

Subcase 3-1: i = 3, i.e., CD3 = 1. (The argument of this subcase is slightly

different from that in the second paragraph in Case 2.) In this subcase, the di-

visor F0 := 2(C +D3) +D2 +D4 defines a P1-fibration Φ := Φ|F0| : V → P1, D0

becomes a section of Φ and D−D0 is contained in fibers of Φ. Let F1 (resp. F2)

be the fiber of Φ containing D1 (resp. D5+D6+D7), here we note that F1 �= F2.

By Lemmas 2.2 and 2.3, we know that:

• F0, F1 and F2 exhaust all singular fibers of Φ.

• For j = 1, 2, the weighted dual grapf of Fj is given as one of (i) and (ii) in

Figure 2.1 and the (−1)-curve in Supp(Fj) is an element of MV(V,D).

Since F1 contains D1, we know that the weighted dual graph of F1 is given as

(i) in Figure 2.1. So the (−1)-curve in Supp(F1) is an element of MV(V,D) and

meets at least two (−2)-curves, which imply that (V,D) is of type (IIa). This is

a contradiction. Therefore, this subcase does not take place.

Subcase 3-2: i = 2, i.e., CD2 = 1. Since the intersection matrix of C +D(1) is

not negative definite, a0 ∈ {3, 4}.
Suppose that a0 = 3. Then the divisor F := 3(C + D2) + 2D3 + D0 + D4

defines a P1-fibration Ψ := Φ|F | : V → P1, D1 and D5 become sections of Ψ and

D − (D1 + D5) is contained in fibers of Ψ. Let G be the fiber of Ψ containing

D6 + D7. Then the irreducible component of SuppG meeting D1 is a (−1)-

curve. Since D1 is a section of Ψ, SuppG contains at least two (−1)-curves. By

Lemma 2.2 (1), we know that F and G exhaust all singular fibers of Ψ and that

SuppG contains just two (−1)-curves, say E and E′. Since D is not connected,
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Supp(D−D(1)) is contained in SuppG. We may assume that E meets D6 +D7.

Then E(D6+D7) = 1. Since Supp(E+E′+D6+D7) �= Supp(G), we know that

E′(D6 +D7) = 0. If E meets D1, then

ED# ≥ ED(1)# ≥ E

(
1

2
(D1 +D6) +

1

4
D7

)
≥ 1

2
+

1

4
=

3

4
= CD#.

So E ∈ MV(V,D) and E meets at least two (−2)-curves, which imply that

(V,D) is of type (IIa), a contradiction. Hence, ED1 = 0. We know that E

meets a component, say D′, in Supp(D −D(1)). Since the intersection matrix of

E +D6 +D7 +D′ is negative definite, D′2 ≤ −4. However, by Lemma 2.4, this

is a contradiction. Therefore, a0 = 4.

Then the divisor F0 := 6(C + D2) + 4D3 + 2(D0 + D4) + D1 + D5 defines

a P1-fibration Φ := Φ|F0| : V → P1, D6 becomes a section of Φ and D − D6 is

contained in fibers of Φ. Let F1 be the fiber of Φ containing D7. By Lemma 2.2

(1), we know that:

• F0 and F1 exhaust all singular fibers of Φ.

• Supp(F1) contains a unique (−1)-curve, say E1.

It is clear that E1D7 = 1. Since the coefficient of D7 in F1 is equal to one, we

know that F1 = 2E1+D7+D8, where D8 is a (−2)-curve and is not a component

of D(1) and D8E1 = D7E1 = 1. So D = D(1) + D(2) and D(2) = D8. There-

fore, the weighted dual graph of D (resp. the configuration of C +D and all the

singular fibers of Φ) is given as (4) in Figure 5.1 (resp. Figure 5.2).

4.4

We finally consider the case (Δ1,Δ2,Δ3) = (2, 3, 6). Then the weighted

dual graph of D(1) is given as one of (1)–(4) in Figure 4.4, where we omit the

self-intersection number corresponding to a (−2)-curve and set a0 = −D2
0.

We consider the following four cases 1–4 separately.

Case 1: The weighted dual graph of D(1) is given as (1) in Figure 4.4.

By using the same argument as in Case 1 in Section 4.2, we know that this

case does not take place.

Case 2: The weighted dual graph of D(1) is given as (2) in Figure 4.4.

In this case, D(1)# = D0 + 1
2D1 + 2

3D2 + 1
3D3 + 5

6D4. Since CD(1)# < 1

and the intersection matrix of C + D(1) is not negative definite, we know that

CD(1) = CD2 = 1 and a0 = 2. Then the divisor F0 := 2(C + D2) + D0 + D3

defines a P1-fibration Φ := Φ|F0| : V → P1, D1 and D4 become sections of Φ and

D − (D1 + D4) is contained in fibers of Φ. Let F1 be the fiber of Φ containing

D(2), which exists by #SingX ≥ 2. The irreducible component E1 of Supp(F1)

meeting D4, a section of Φ, is a (−1)-curve. We have
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E1D
# ≥ E1D

(1)# ≥ 5

6
E1D4 =

5

6
>

2

3
= CD#,

which is a contradiction. Therefore, this case does not take place.

Case 3: The weighted dual graph of D(1) is given as (3) in Figure 4.4.

In this case, D(1)# = D0 +
5
6D2 +

2
3 (D3 +D7) +

1
2 (D1 +D4) +

1
3D5 +

1
6D6.

Since CD(1)# < 1 and the intersection matrix of C + D(1) is not negative defi-

nite, we know that CD(1) = CDi = 1 for some i ∈ {1, 2, 3, 4, 5}. We consider the

following three subcases 3-1–3-3 separately.

Subcase 3-1: i ∈ {3, 4, 5}. (See the second paragraph in Case 2 in Section 4.3.)

In this subcase, the divisor F0 := 2(C +Di)+Di−1 +Di+1 defines a P1-fibration

Φ|F0| : V → P1. Then, D7, which is a (−3)-curve, is a fiber component of Φ|F0|.
This is a contradiction by Lemma 2.3. Hence, this subcase does not take place.

Subcase 3-2: i = 1. Then a0 = 2 since the intersection matrix of C+D(1) is not

negative definite. So the divisor F0 := 3(C +D1 +D0) + 2D2 +D3 +D7 defines

a P1-fibration Φ := Φ|F0| : V → P1, D4 becomes a section of Φ and D − D4 is

contained in fibers of Φ. Let F1 be the fiber of Φ containing D5+D6. By Lemma

2.2 (1), we know that:

• F0 and F1 exhaust all singular fibers of Φ.

• Supp(F1) contains a unique (−1)-curve, say E1.

Since � = #SingX ≥ 2, Supp(F1) consists of E1, D5, D6 and the components of

D(2) + · · ·+D(�). Since E1(D5 +D6) = E1(D
(2) + · · ·+D(�)) = 1 and E1 is the

unique (−1)-curve in Supp(F1), we have � = 2. It follows from Lemma 2.4 that

D(2) consists of (−2)-curves and at most one (−3)-curve. Since E1+D5+D6+D(2)



64 H. Kojima and T. Takahashi

has negative semi-definite intersection matrix, we know that the irreducible com-

ponent of D(2) meeting E1 is a (−3)-curve. Further, D(2) is an irreducible (−3)-

curve and D(2)# = 1
3D

(2). Since E1D
# = E1D

(1)#+ 1
3 ≤ CD# = 1

2 , we conclude

that E1D6 = 1. Therefore, the weighted dual graph of D (resp. the configuration

of C + D and all the singular fibers of Φ) is given as (5) in Figure 5.1 (resp.

Figure 5.2).

Subcase 3-3: i = 2. Then a0 ∈ {2, 3, 4, 5} since the intersection matrix of

C + D(1) is not negative definite. Let f : V → W ′ be the contraction of

C,D2, D3, D4, D5, D6. Then f∗(C + D(1)) = f(D1) + f(D0) + f(D7) is a lin-

ear chain of three P1’s and has the weighted dual graph [−2, 5 − a0,−3], where

f(D1)
2 = −2, f(D0)

2 = 5− a0 and f(D7)
2 = −3.

Then we obtain a birational morphism g : W̃ → W ′ from a smooth projective

surface W̃ such that the following conditions are satisfied:

• g is a composite of blowing-ups at f(D0)∩f(D7) and its infinitely near points.

• g−1(f∗(D(1))) is a linear chain and its weighted dual graph is{
[−2,−1,−2,−1,−3, (−2)4−a0

,−4] (2 ≤ a0 ≤ 4),

[−2,−1,−2,−1,−5] (a0 = 5),

where g′(f(D1)) is a (−2)-curve and is one of the end components of

g−1(f∗(D(1))) and g′(f(D0)) is a (−1)-curve next to g′(f(D1)). The sub-

graph [(−2)4−a0
] means the weighted dual graph of the linear chain consisting

of (4− a0) vertices of weight (−2).

Let Ẽ be the (−2)-curve in Supp(g−1(f∗(D(1))) that is next to g′(f(D0)) but

not g′(f(D1)). Let h := W̃ → W be the contraction of g′(f(D0)) and Ẽ. Then

Γ(1) := h∗(g−1(f∗(D(1)))) is a linear chain whose weighted dual graph is{
[0, 0,−3, (−2)4−a0

,−4] (2 ≤ a0 ≤ 4),

[0, 0,−5] (a0 = 5).

Let Γ(1) = Γ0 + Γ1 + · · · + Γ7−a0
be a decomposition of Γ(1) into irreducible

components such that Γ0 = h(g′(f(D1))), Γ0Γ1 = Γ1Γ2 = · · · = Γ6−a0
Γ7−a0

= 1.

Set φ := h ◦ g−1 ◦ f : V · · · → W and let Γ be the total transform of C +D

via φ. We note that all the components of D − D(1) are not affected by the

birational map φ and ρ(W ) = #Γ = 8−a0+#(D−D(1)). The divisor Γ0 defines

a P1-fibration Ψ := Φ|Γ0| : W → P1, Γ1 becomes a section of Ψ and Γ − Γ1 is

contained in fibers of Ψ. Let G1 be the fiber of Ψ containing Γ2+Γ3+ · · ·+Γ7−a0
.

We prove the following claim.

Claim. (1) G1 is the unique singular fiber of Ψ.

(2) Supp(G1) is a linear chain of P1’s and contains a unique (−1)-curve, say

E1.
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Proof. Let G1, . . . , Gk (k ≥ 1) exhaust all singular fibers of Ψ. Each Supp(Gj)

(j = 1, . . . , k) contains at least one (−1)-curve, which is not contained in the

image of D−D(1) via φ. Since all components of Γ−Γ0 are fiber components of

Ψ, we have

ρ(W )− 2 =

k∑
j=1

(#Gj − 1) ≥ #(D −D(1)) + (#Γ(1) − 2) = ρ(W )− 2.

Hence, for each j = 1, . . . , k, we know that:

• Supp(Gj) contains a unique (−1)-curve, say Ej .

• The proper transform of Ej on V is not a component of D.

• The proper transform of every component of (Gj)red−Ei on V is a component

of D.

Suppose that k ≥ 2. Then Supp(G2) consists only of E2 and some components

of the image of Supp(D−D(1)) by φ. Then the component of Supp(G2) meeting

Γ1, which is a section of Ψ, must be E2. So Supp(G2) contains at least two (−1)-

curves. This is a contradiction. Therefore, k = 1, which proves the assertion

(1).

We prove the assertion (2). It is clear that E1(Γ2 + Γ3 + · · · + Γ7−a0
) = 1.

Let μ : W → Z be a successive contraction of E1 and consecutively (smoothly)

contractible curves in Supp(G1) such that μ(Γ2) becomes a (−1)-curve. Since

the coefficient of Γ2 in G1 is equal to one and Supp(G1) contains a unique (−1)-

curve, it follows that μ∗(G1) consists only of two (−1)-curves. By considering

the possibility of μ, we obtain the assertion (2).

By virtue of Claim, we know that #SingX = 2, D(2) is an admissible ratio-

nal rod and its weighted dual graph is [−2,−2, a0 − 7,−2], which is the adjoint

of the dual graph of Γ2 + Γ3 + · · · + Γ7−a0
(see [3, (3.9)] for its definition). Let

D(2) = D8 +D9 +D10 +D11 be the irreducible decomposition of D(2) such that

D2
8 = D2

9 = D2
11 = −2, D2

10 = a0 − 7, D8D9 = D9D10 = D10D11 = 1. Let

E be the proper transform of E1 on V . Then E is a (−1)-curve, ED = 2 and

ED7 = ED8 = 1. By simple computation, we know that the coefficient α8 of D8

in D# equals 10−2a0

35−6a0
. Since C ∈ MV(V,D),

CD# =
5

6
≥ ED# ≥ 2

3
ED7 + α8ED8 =

2

3
+ α8.

Hence, a0 = 5.

The divisor F0 := 5(C + D2) + 4D3 + 3D4 + 2D5 + D0 + D6 defines a P1-

fibration Φ := Φ|F0| : V → P1, D1 andD7 become sections of Φ andD−(D1+D7)

is contained in fibers of Φ. By using the argument similar to that in Case 2 in

Section 4.2 (see also Case 4 in Section 4.2 and Case 2 in Section 4.3), we know

that the weighted dual graph of D (resp. the configuration of C +D and all the



66 H. Kojima and T. Takahashi

singular fibers of Φ) is given as (6) in Figure 5.1 (resp. Figure 5.2).

Case 4: The weighted dual graph of D(1) is given as (4) in Figure 4.4.

In this case, D(1)# = D0+
5
6D4+

2
3 (D2+D5)+

1
2 (D1+D6)+

1
3 (D3+D7)+

1
6D8

and a0 ≥ 3 since the intersection matrix of D(1) is negative definite. Since

CD(1)# < 1 and the intersection matrix of C +D(1) is not negative definite, we

know that CD(1) = CDi = 1 for some i ∈ {2, 4, 5, 6, 7}. We consider the following

three subcases 4-1–4-3 separately.

Subcase 4-1: i ∈ {5, 6, 7}. In this subcase, the divisor F0 := 2(C+Di)+Di−1+

Di+1 defines a P1-fibration Φ := Φ|F0| : V → P1. Since a0 ≥ 3, D0 is not a fiber

component of Φ by Lemma 2.3 (see Subcase 3-1 in Case 3). Hence i = 5, D0 and

D7 become sections of Φ and D − (D0 +D7) is contained in fibers of Φ. Let F1

(resp. F2) be the fiber of Φ containing D1 (resp. D2 + D3), here F1 �= F2. By

Lemmas 2.2 and 2.3, we know that:

• F0, F1 and F2 exhaust all singular fibers of Φ.

• For j = 1, 2, the weighted dual grapf of Fj is given as one of (i)–(iii) in

Figure 2.1 and every (−1)-curve in Supp(Fj) is an element of MV(V,D).

Since F1 contains D1, we know that the weighted dual graph of F1 is given

as one of (i) and (iii) in Figure 2.1. If it is given as (iii) in Figure 2.1, then

F1 = E1 +D1 + E′
1, where E1 and E′

1 are (−1)-curves and E1D1 = E′
1D1 = 1.

We may assume that E1D7 = 1 since D7 is a section of Φ. Then

E1D
# ≥ E1

(
1

2
D1 +

1

3
D7

)
=

5

6
>

2

3
= CD#,

which is a contradiction. So the weighted dual graph of F1 is given as (i) in

Figure 2.1. In particular, Supp(F1) has a unique (−1)-curve, say E1. Since E1

has coefficient two in F1, E1D7 = 0. So Supp(F1) contains D8, in particular,

F1 = 2E1 +D1 +D8 and E1D1 = E1D8 = 1. Then

E1D
# ≥ E1

(
1

2
D1 +

1

6
D8

)
=

2

3
= CD#.

So E1 ∈ MV(V,D) and E1 meets two (−2)-curves D1 and D8, which imply that

(V,D) is of type (IIa). This is a contradiction. Therefore, this subcase does not

take place.

Subcase 4-2: i = 2. Then a0 = 3 since the intersection matrix of C+D(1) is not

negative definite. So the divisor F0 := 4(C+D2)+2(D0+D3)+D1+D4 defines

a P1-fibration Φ := Φ|F0| : V → P1, D5 becomes a section of Φ and D − D5 is

contained in fibers of Φ. By the same argument as in Subcase 3-2 in Case 3, we

know that:

• F0 and F1 exhaust all singular fibers of Φ.
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• Supp(F1) contains a unique (−1)-curve, say E1.

Since � = #SingX ≥ 2, Supp(F1) consists of E1, D6, D7, D8 and the components

of D(2) + · · ·+D(�). It is clear that � = 2 and E1(D6 +D7 +D8) = ED(2) = 1.

Let Dj be the irreducible component of D(2) meeting E1. Since the intersection

matrix of E1 +D6 +D7 +D8 is negative definite, we know that E1D7 = 0 and

D2
j ≤ −4. Then the coefficient αj of Dj in D# ≥ 1

2 and the equality holds if

and only if Dj = D(2) and D2
j = −4. Since CD# = 2

3 and CD# ≥ E1D
#,

we know that E1D8 = 1 and D2
j = −4. So, we may set j = 9 and have

F1 = 4E1 + 3D8 + 2D7 + D6 + D9. Therefore, we know that the weighted

dual graph of D (resp. the configuration of C +D and all the singular fibers of

Φ) is given as (7) in Figure 5.1 (resp. Figure 5.2).

Subcase 4-3: i = 4. Then a0 ∈ {3, 4, 5, 6} since the intersection matrix of

C + D(1) is not negative definite. Suppose that a0 = 6. Then the divisor

F := 10(C+D4)+8D5+6D6+4D7+2(D0+D8)+D1+D2 defines a P1-fibration

Φ|F | : V → P1, D3 becomes a section of Φ andD−D3 is contained in fibers of Φ|F |.
Let F ′ be the singular fiber of Φ|F | containing D(2), which exists by #SingX ≥ 2.

Then the irreducible component of Supp(F ′) meeting D3, a section of Φ|F |, must

be a (−1)-curve. So Supp(F ′) contains at least two (−1)-curves. This is a contra-

diction by Lemma 2.2 (1). Therefore, 3 ≤ a0 ≤ 5. Let f : V → W ′ be the contrac-
tion of C,D4, D5, D6, D7, D8. Then f∗(C+D(1)) = f(D1)+f(D0)+f(D2)+f(D3)

is a linear chain of four P1’s and has the weighted dual graph [−2, 5−a0,−2,−2],

where f(D1)
2 = f(D2)

2 = f(D3)
2 = −2 and f(D0)

2 = 5− a0.

Then we obtain a birational morphism g : W̃ → W ′ from a smooth projective

surface W̃ such that the following conditions are satisfied:

• g is a composite of blowing-ups at f(D0)∩f(D2) and its infinitely near points.

• g−1(f∗(D(1))) is a linear chain and its weighted dual graph is

⎧⎪⎨
⎪⎩
[−2,−1,−2,−1,−3,−2,−3,−2] (a0 = 3),

[−2,−1,−2,−1,−3,−3,−2] (a0 = 4),

[−2,−1,−2,−1,−4,−2] (a0 = 5),

where g′(f(D1)) is a (−2)-curve and is one of the end components of

g−1(f∗(D(1))) and g′(f(D0)) is a (−1)-curve next to g′(f(D1)).

Let Ẽ be the (−2)-curve in Supp(g−1(f∗(D(1)))) that is next to g′(f(D0)) but

not g′(f(D1)). Let h := W̃ → W be the contraction of g′(f(D0)) and Ẽ. Then

Γ(1) := h∗(g−1(f∗(D(1)))) is a linear chain whose weighted dual graph is

⎧⎪⎨
⎪⎩
[0, 0,−3,−2,−3,−2] (a0 = 3),

[0, 0,−3,−3,−2] (a0 = 4),

[0, 0,−4,−2] (a0 = 5).
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In particular, #Γ(1) = 9 − a0. Let Γ(1) = Γ0 + Γ1 + · · · + Γ8−a0
be a de-

composition of Γ(1) into irreducible components such that Γ0 = h(g′(f(D1))),

Γ0Γ1 = Γ1Γ2 = · · · = Γ7−a0
Γ8−a0

= 1.

Set φ := h ◦ g−1 ◦ f : V · · · → W and let Γ be the total transform of C +D

via φ. We note that all the components of D − D(1) are not affected by the

birational map φ and ρ(W ) = #Γ = 9−a0+#(D−D(1)). The divisor Γ0 defines

a P1-fibration Ψ := Φ|Γ0| : W → P1, Γ1 becomes a section of Ψ and Γ − Γ1 is

contained in fibers of Ψ. Let G1 be the fiber of Ψ containing Γ2+Γ3+ · · ·+Γ8−a0
.

By using the same argument as in the proof of Claim in Subcase 3-3 in Case 3,

we obtain the following claim.

Claim. (1) G1 is the unique singular fiber of Ψ.

(2) Supp(G1) is a linear chain of P1’s and contains a unique (−1)-curve, say

E1.

By virtue of Claim, we know that #SingX = 2 and D(2) is an admissible

rational rod and its weighted dual graph is [−3, a0 − 7,−2], which is the adjoint

of the dual graph of Γ2 + Γ3 + · · · + Γ8−a0
. Let D(2) = D9 +D10 +D11 be the

irreducible decomposition of D(2) such that D2
9 = −3, D2

10 = a0 − 7, D2
11 = −2,

D9D10 = D10D11 = 1. Let E be the proper transform of E1 on V . Then E is

a (−1)-curve, ED = 2 and ED3 = ED9 = 1. By simple computation, we know

that the coefficient α9 of D9 in D# equals 23−4a0

37−6a0
. Since C ∈ MV(V,D),

CD# =
5

6
≥ ED# ≥ 1

3
ED3 + α9ED9 =

1

3
+ α9.

Hence, a0 = 5. Furthermore, ED1 = 0.

The divisor F0 := 5(C + D4) + 4D5 + 3D6 + 2D7 + D0 + D8 defines a P1-

fibration Φ := Φ|F0| : V → P1, D1 andD2 become sections of Φ andD−(D1+D2)

is contained in fibers of Φ. Let F1 be the fiber of Φ containing D3. Then the

component of Supp(F1) meeting D1 is a (−1)-curve. So, Supp(F1) contains at

least two (−1)-curves. By Lemma 2.2, we know that:

• F0 and F1 exhaust all singular fibers of Φ.

• Supp(F1) contains just two (−1)-curves.

Hence, Supp(F1) contains E and D(2) = D9 +D10 +D11. By using the similar

argument to that in Case 2 in Section 4.2 (see also Case 4 in Section 4.2 and

Case 2 in Section 4.3), we know that F1 = 2E + D9 + D10 + D11 + D1 + E′,
E′D11 = 1 and Supp(F1) is a linear chain. Therefore, the weighted dual graph

of D (resp. the configuration of C +D and all the singular fibers of Φ) is given

as (8) in Figure 5.1 (resp. Figure 5.2).

The proof of Theorem 1.2 is thus completed.
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5. The dual graphs and the configurations in Theorem 1.2

In Figure 5.1, the numbers in brackets coincide with the classifying numbers

(1)

−3

−3

(2)

−3

(3)

−4

−3

(4)

−4

(5)

−3 −3

(6)

−3

−5

(7)

−3

−4

(8)

−5

−3

Figure 5.1
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(1)

∗

∗

−3

−3

C

(2)

∗

∗

−3

C

(3)

∗

∗

−4

−3

C

(4)

∗

−4

C

(5)

∗

C

−3

−3

(6)

∗

∗

−3

−5

C

(7)

∗

−3

C

−4

(8)

∗

∗

−5

C

−3

Figure 5.2
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in Theorem 1.2; we omit the weight corresponding to a (−2)-curve.

In Figure 5.2, the numbers in brackets coincide with the classifying numbers

in Theorem 1.2; a dotted line stands for a (−1)-curve; a solid line stands for a

component of D; the self-intersection number of a (−2)-curve is omitted; a line

with ∗ on it is a section of the vertical P1-fibration on V .
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