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Abstract

Following Getzler’s idea from the geometric viewpoint as to symbol calculus on a
spin manifold, we introduce a new symbol calculus ofH-pseudodifferential operators
on a contact Riemannian manifold with contact distribution H, which will turn
out to be an effective tool for understanding the contact Riemannian structure
from the viewpoint of calculus. An explicit formula for the top grading part of
the symbol of composition of H-differential operators is presented. For general
H-pseudodifferential operators, we introduce a method of computing that of their
composition.

0 Introduction

On a spin manifold, Getzler [7] introduced a new symbol calculus of pseudodifferential
operators by unifying two kinds of ideas: that of Widom ([14], [15]) about symbol
calculus on Riemannian manifold and that of Alvarez-Gaumé ([1]) who used the Clifford
variables to propose a suitable filtration of symbol space. Getzler’s symbol calculus
simplifies the calculation of the principal part, or the top grading part (cf. [4]), of
the composition of symbols ([7, Theorems 2.7 and 3.5]) and consequently provides a
remarkably short proof of the Atiyah-Singer index theorem for the Dirac operator ([7,
§3], [8], [1]).

In this paper, on a contact Riemannian manifold with contact distribution H, fol-
lowing Getzler’s idea we will introduce a similar symbol calculus of H-pseudodifferential
operators, which will turn out to be an effective tool for understanding the contact
Riemannian structure from the viewpoint of calculus. The manifold possesses canonical
Spinc structure, the Clifford variables associated with which provide similarly a filtration
of symbol space, so that Getzler’s idea can be applicable. The first result in this paper
is Theorem 3.5, which offers an explicit formula for the top grading part (cf. (2.13)) of
the composition of polynomial symbols, that is, the symbols of H-differential operators.
In the spin manifold case its counterpart is [7, Theorem 2.7], which was certified by
using the Campbell-Hausdorff formula. To prove Theorem 3.5, we will employ not the
CH formula but the formula (1.1), which gives an explicit expression of the connection
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coefficients of the hermitian Tanno connection. The CH formula is so daunting that
Benameur-Heitsch [4], who applied Getzler’s idea to the case of foliated spin manifold,
used Atiyah-Bott-Patodi’s formula [2, Proposition 3.7] for the proof of [4, Theorem 4.6]
which is a foliation version of [7, Theorem 2.7]. Their idea led us to the use of (1.1).
The author is actually uncertain whether the CH formula works for our case.

We have to be careful about an extension of Theorem 3.5 to general symbols. In
the spin manifold case, the formula for polynomial symbols ([7, Theorem 2.7]) and
Widom’s formula [15, Proposition 3.6] lead almost automatically to the general formula
([7, Theorem 3.5]). Since Beals-Greiner’s formula [3, Theorems 14.1 and 14.7] must
be the counterpart of Widom’s one in the contact Riemannian manifold case, it will
be natural to expect that a general composition formula will be derived easily from
Theorem 3.5 and Beals-Greiner’s one. But the situation is not so simple. The author
thinks it hard to present a concise general formula, but in fact we have a method of
computing the top grading part of composition, that is, if two general ones are given
concretely, then that of their composition can be computed exactly: refer to §4. Last
the author want to state that he has a plan to apply the study in this paper to that of
the Kohn-Rossi Laplacian (cf. [10]), the Toeplitz operator (cf. [9]), etc.

1 Preliminaries: contact Riemannian manifold and the
canonical Spinc structure

Let M = (M, e0, e0, J, g) be a (2n + 1)-dimensional contact Riemannian manifold.
Here e0 is a contact 1-form and e0 is the unique vector field satisfying e0c e0 := e0(e0) =
1, e0c de0 := de0(e0, ) = 0, and (J, g) is a pair of (1, 1)-tensor field and Riemannian
metric satisfying g(e0, X) = e0(X), g(X, JY ) = −de0(X,Y ) := −X(e0(Y ))−Y (e0(X))+
e0([X,Y ]) and J2X = −X + e0(X)e0. Referring to [10], [11] and [12], we will review
briefly some basic properties of the hermitian Tanno connection and the canonical Spinc

structure on M , which are tools crucial for our study.

We set H = ker e0, H± = {X ∈ CH | JX = ±
√
−1X} (CH := H ⊗ C). Without

the assumption that J is integrable (i.e., [Γ(H+),Γ(H+)] ⊂ Γ(H+)), we will equip M
with the hermitian Tanno connection ♯∇ ([10]), which is known to be appropriate for
the study of such a manifold and is characterized by the following conditions:

♯∇e0 = 0, ♯∇g = 0, ♯∇J = 0,

π+T (
♯∇)(Z,W ) = 0 (Z ∈ H+, W ∈ CTM),

where T (♯∇) is the torsion tensor and π+ : CTM = Ce0 ⊕ H+ ⊕ H− → H+ is the
natural projection (cf. [10, Lemma 1.1], [12, §2]). Notice that it coincides with the
Tanaka-Webster connection ([6, §1.2]) provided that J is integrable. Near each point
P ∈ M , we always take a local unitary frame eC• = (eC0 , e

C
1 , . . . , e

C
n , e

C
1̄
, . . . , eCn̄) of CTM

(eC0 := e0, e
C
ᾱ = eCα ∈ H−, g(e

C
α, e

C
β̄
) = δαβ, 1 ≤ α, β ≤ n) which is ♯∇-parallel along all

the ♯∇-geodesics from P. Its dual frame is denoted by e•C = (e0C, e
1
C, . . . , e

n
C, e

1̄
C, . . . , e

n̄
C)

(hence, e0C = e0). We assume that the Greek indices α, β, . . . vary from 1 to n, so that

g = e0C ⊗ e0C +
∑

(eαC ⊗ eᾱC + eᾱC ⊗ eαC)
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and the connection ♯∇ can be expressed as

♯∇eC0 = 0, ♯∇eCβ =
∑

eCα · ω(♯∇)αβ ,
♯∇eCβ̄ =

∑
eCᾱ · ω(♯∇)ᾱβ̄ , ω(♯∇)ᾱβ̄ = −ω(♯∇)βα.

The associated orthonormal frames e• = (e0, e1, · · · , e2n), e• = (e0, e1, · · · , e2n) with
respect to the underlying Riemannian metric are given by

eα =
eCα + eCᾱ√

2
, en+α = Jeα, eα =

eαC + eᾱC√
2

, en+α = −Jeα.

Certainly these frames are also ♯∇-parallel along the ♯∇-geodesics from P. We denote
the ♯∇-exponential map from P by exp = expP : TPM → M , and, as coordinates near
P, we always adopt the associated ♯∇-normal coordinates x = t(x0, x1 . . . , x2n) with
∂/∂xj = ej at 0 = P. Then [10, (2.2)] says that there is a Taylor expansion

ω(♯∇)αβ(∂/∂xj) = −
∞∑
ℓ=1

`

(`+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−1F (♯∇)αβ(∂/∂xj , ∂/∂xj1)
∂xj2 · · · ∂xjℓ

(0),(1.1)

where F (♯∇) is the curvature 2-form of ♯∇. Further, if we set

e• = (∂/∂x•) · v•, e• = (dx•) · v• (i.e., ej =
∑
vkj ∂/∂xk, etc.),(1.2)

then the matrix-valued functions v•, v
• are also expanded explicitly: Let us set z0 = x0,

zα = (xα + ixn+α)/
√
2, zᾱ = zα, ∂/∂z0 = ∂/∂x0, ∂/∂zα = (∂/∂xα − i∂/∂xn+α)/

√
2,

∂/∂zᾱ = ∂/∂zα and (∂/∂z•) = (∂/∂z0, . . . , ∂/∂zn, ∂/∂z1̄, . . . , ∂/∂zn̄). Then, in [10,
(2.4)] we presented carefully the Taylor expansions of the complex ones V•, V

• defined
by eC• = (∂/∂z•) · V•, e•C = (dz•) · V •. For later use, we will record here the beginnings
of that of V•, instead of that of v•:

V• =


1

zβ̄
i
2

(0, β)-th entry

zβ
−i
2

(0, β̄)-th entry∑
zγ̄

T̃ᾱ0γ̄

2
(α, 0)-th entry

En
z0

−T̃ᾱ0β̄

2 +
∑
zγ̄

−T̃ᾱγ̄β̄

2
(α, β̄)-th entry∑

zγ
T̃α0γ

2
(ᾱ, 0)-th entry

z0
−T̃α0β

2 +
∑
zγ

−T̃αγβ

2
(ᾱ, β)-th entry

En

+O(|z|2),(1.3)

where we set T̃αγβ = g(T (♯∇)(eCγ , eCβ ), eCα)(0), etc.
Next, referring to [12, §2], let us recall that the hermitian vector bundle (H, g|H , J |H)

yields the canonical Spinc structure over M with spinor bundle

6Sc = ∧0,∗H T ∗M := {ω ∈ ∧∗CT ∗M | Xcω = 0 (X ∈ Re0 ∪H+)}

accompanied with the Clifford action of Cl(T ∗M) given by

e0C� = (−1)∗+1i, eαC� =
√
2 eᾱC∧, eᾱC� = −

√
2 eᾱC ∨ ,(1.4)

where we set eᾱC ∨ = eCᾱc. Obviously the spinor metric coincides with the canonical one

on the right hand side, i.e., g ̸S
c
= g∧

0,∗
H , and [12, Proposition 2.4] says that so does the

spinor connection, that is,

∇ ̸Sc
= ♯∇∧0,∗

H , ω(♯∇∧0,∗
H ) :=

∑
ω(♯∇)αβ · eᾱC ∧ e

β̄
C ∨ .

Hence the curvature 2-form F (∇ ̸Sc
) = F (♯∇∧0,∗

H ) is expressed as

F (♯∇∧0,∗
H )(X,Y ) =

∑
F (♯∇)αβ(X,Y ) eᾱC ∧ e

β̄
C ∨ .
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2 Intrinsic symbol spaces S∞H , SC∞H and H-pseudodifferential
operators

Let us take a hermitian vector bundle (E, gE) over M with connection ∇E and set

F = 6Sc ⊗ E = ∧0,∗H T ∗M ⊗ E

with canonically defined metric and connection (gF ,∇F ). In this section, we will in-
troduce two kinds of End(F )-valued symbol spaces and associated H-pseudodifferential
operators.

We set

FHm = FHm (M ; End(F )) = {f ∈ C∞(π∗End(F )\{0}) | f(P, λT ) = λmf(P, T )},(2.1)

where π : T ∗M →M is the projection and λT denotes the Heisenberg dilation

T ∗M = Re0 ⊕H∗ 3 T = (T 0, TH) 7→ λT := (λ2T 0, λTH).

By using the ∇F -parallel transport along the ♯∇-geodesic from P′ to P

T P
P′ = T∇F (P,P′) : FP′ → FP,(2.2)

the bundle F is trivialized on a neighborhood UP of P as

F |UP
∼= UP × FP, uP′ ↔ (P′, T P

P′(uP′)).(2.3)

Together with the trivialization

T ∗UP ∼= UP × T ∗
PM = (UP × R2n+1, (x, σ)), e•(x)·σ ↔ (x, e•(0)·σ) = (x, σ),(2.4)

it induces naturally a local expression of q ∈ C∞(π∗End(F )), which we denote by

q(P, e•;x, σ) ∈ End(F )P.

The parallel transports for TM , T ∗M , etc., are similarly defined and denoted also by
T P
P′ : therefore, T P

exp(x)(e
•(x)) = e•(0).

Let us define now one of the intrinsic symbol spaces, following the ideas due to
Beals-Greiner ([3]) and Widom ([14], [15]), as

SmH = SmH (M ; End(F ))(2.5)

=
{
q ∈ C∞(π∗End(F ))

∣∣∣ there exist qk ∈ FHk (k ≤ m) such that,

for each P, q ∼
∑
k≤m

qk at P
}
.

Here “ q ∼
∑

k≤m qk at P ” means that, for all multi-indices A, B and all N > 0, we
have ∣∣∣∂Ax ∂Bσ (q − ∑

k>m−N
qk

)
(P, e•; 0, σ)

∣∣∣ ≤ cABN |σ|m−|B|H−N
H (|σ|H ≥ 1)(2.6) (

|σ|H := {|σ0|2 +
∑
j≥1

|σj |4}1/4, |B|H := 2B0 +
∑
j≥1

Bj = B0 + |B|
)
,

where cABN = cABN (P) > 0 are bounded functions. Further we set S∞H =
⋃
m SmH ,

S−∞
H =

⋂
m SmH as usual.
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Lemma 2.1 The symbol space SmH coincides with the one given by Beals-Greiner
[3, §10].

Proof. It will suffice to show that (2.6) holds not only for (0, σ) but also for any
(y, σ). At the point P(y) := expP(e•(0) · y), let us check the relation between the
frame (∂/∂x•, ∂/∂σ•) induced from the coordinates (x, σ) centered at P, and the frame
(∂/∂w•, ∂/∂η•) induced from the ones (w, η) centered at P(y). We have

P(x) = P(y)(w) := expP(y)(e•(y) · w) : w = w(y, x) = O(|x− y|),

e•(0) · η = T P
P(y)T

P(y)
P(x) T

P(x)
P (e•(0) · σ) : η = η(y, x, σ) = a(y, x) · σ, a(y, y) = E.

(2.7)

Since ♯∇e0 = 0, etc., obviously we have

a(y, x)−1 = ta(y, x), a(y, x)0k = a(y, x)k0 =

{
1 (k = 0),
0 (k ≥ 1),

so that

∂

∂xi
=

∑ ∂wj
∂xi

∂

∂wj
+

∑
j,k,ℓ≥1

∂ajk
∂xi

aℓkηℓ
∂

∂ηj
,

∂

∂σi
=


∂

∂η0
(i = 0),∑

j≥1

aji
∂

∂ηj
(i ≥ 1).

Consequently, for example we have

∂xi

(
q −

∑
k>m−N

qk

)
(e•(P); y, σ) =

∑ ∂wj
∂xi

∂wj

(
q −

∑
k>m−N

qk

)
(e•(P(y)); 0, η)

+
∑
j,ℓ≥1

∂ajℓ
∂xi

ηℓ ∂ηj

(
q −

∑
k>m−N

qk

)
(e•(P(y)); 0, η).

Here (P, e•; y, σ), etc., are abbreviated to (e•(P); y, σ), etc. We know it certainly satisfies
(2.6).

By further consideration we notice that the estimate at (2.7) is refined into

w = tv•(y)(x− y) +O(|x− y|2), x = y + v•(y)w +O(|w|2).(2.8)

Next, let us introduce a class of pseudodifferential operators on M and associated
intrinsic symbols. We adopt another trivialization

T ∗UP ∼= UP × T ∗
P = (UP × R2n+1, (x, ξ)), dx•(x) · ξ ↔ (x, dx•(0) · ξ) = (x, ξ),

which gives another local expression of q ∈ C∞(π∗End(F )):

q(x, ξ) = q(P, dx•;x, ξ) = q(P, e•;x, σ(x, ξ)) ∈ FP,

hence, q(P, ξ) := q(0, ξ) = q(P, e•; 0, σ(0, ξ)) = q(P, e•; 0, ξ).

Referring to (1.2), we know that the transition rule between ξ and σ = σ(x, ξ) is

(dx•)(x) · ξ = e•(x) · σ(x, ξ) : σ(x, ξ) = v•(x)−1ξ = tv•(x)ξ.(2.9)
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For a symbol p ∈ SmH and a smooth bump function φ on M ×M which is supported
in a small neighborhood of the diagonal set and is equal to 1 on a still smaller one, we
define the H-pseudodifferential operator

θ(p) = θϕ(p) : Γ(F )→ Γ(F )

as follows: For u ∈ Γ(F ), at each P ∈M we set

(θ(p)u)(P) =
1

(2π)2n+1

∫
TPM×T ∗

PM∋(x,ξ)
e−i⟨x,ξ⟩ p(0, ξ)uP(x) dxdξ

=
1

(2π)2n+1

∫
T ∗
PM∋ξ

p(0, ξ) ûP(ξ) dξ,

uP :=
(
TPM 3 x 7→ φ(P, exp(x)) T P

exp(x)(u(exp(x))) ∈ FP

)
,

where ûP is the Fourier transform of uP. The set of such operators is denoted by OpSmH .
By referring to [3, §10], it is certain that OpS−∞

H consists of operators with C∞-kernels
and, if we define the operator by using another bump function ψ, we have

θϕ(p) = θψ(p) (mod OpS−∞
H ).

For an operator P : Γ(F )→ Γ(F ), its intrinsic symbol (according to the idea of Widom
[14], [15]) ς(P ) ∈ C∞(T ∗M, π∗End(F )) is now defined by

ς(P )(P, ξ)(uP) = P
(
M 3 exp(x) 7→ ei⟨x,ξ⟩ φ(P, exp(x)) T exp(x)

P (uP)
)∣∣∣
x=0

.

Then obviously we have

ς(θ(p)) = p (mod S−∞
H ),

θ(ς(θ(p))) = θ(p) (mod OpS−∞
H ),

SmH /S−∞
H

θ⇌
ς
OpSmH /OpS−∞

H .

(2.10)

In a way similar to the idea of Getzler ([7]) (and Alvarez-Gaumé ([1])), let us define
here another symbol space SCmH . By (1.4), we know there are the identifications

End(6Sc) = End(∧0,∗H T ∗M) ∼= Cl(H∗) ∼= ∧∗CH∗ ⊂ ∧∗CT ∗M,

ej1 � ej2 � · · · ↔ ej1 ∧ ej2 ∧ · · ·
(j1<j2<···)

eαC�
eᾱC�

=

√
2 · eᾱC∧

−
√
2 · eᾱC ∨

↔ eαC
eᾱC

End(F ) = End(∧0,∗H T ∗M ⊗ E) ∼= ∧∗CH∗ ⊗ End(E).

For example, accordingly we have

F (♯∇∧0,∗
H )(X,Y ) =

1

2

∑
F (♯∇)β̄ᾱ(X,Y ) eαC ∧ e

β̄
C =:

1

2
F (♯∇;∧)(X,Y ),(2.11)

F (∇F )(X,Y ) = F (♯∇∧0,∗
H )(X,Y ) + F (∇E)(X,Y )(2.12)

=
1

2
F (♯∇;∧)(X,Y ) + F (∇E)(X,Y ).
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We set

SCmH = SCmH(M ; End(F )) =

2n∑
k=0

Sm−k
H (M ;∧kH∗ ⊗ End(E)))(2.13)

:=

2n∑
k=0

Sm−k
H ∩ C∞(T ∗M, π∗(∧kH∗ ⊗ End(E))),

the element of which is said to have grading m (according to the naming in [4]). For
p ∈ SC∞H , the H-pseudodifferential operator θ(p) ∈ OpSC∞H is defined by regarding p as
an element of S∞H via the canonical identification

S∞H ↔ SC∞H∑
Sm−k
H ←↩

∑
Sm−k
H (M ;∧kH∗ ⊗ End(E)) = SCmH ,

so that (2.10) holds also for SCmH , etc.

3 Formula for the composition of polynomial intrinsic sym-
bols ∈ PC∞H

In this section, we concentrate on the space of polynomial intrinsic symbols, that is,
the space of intrinsic symbols associated with H-differential operators,

PCmH = {p ∈ SCmH | p(P, ξ) is a polynomial in ξ},

and consider the composition

PC∞H × PC∞H → PC∞H , (p, q) 7→ p ◦ q := ς(θ(p) ◦ θ(q)).

As was mentioned in Introduction, Getzler [7, Theorem 2.7] (and Block-Fox [5, Theorem
2.1]) derived an explicit expression of such a composition on spin manifold by means
of the Campbell-Hausdorff formula, and so did Benameur-Heitsch [4, Theorem 4.6] on
foliated spin manifold but by means of Atiyah-Bott-Patodi’s formula [2, Proposition
3.7]. Stimulated by the latter method, the author tries to examine the composition in
the contact Riemannian case by using the following formula (cf. (1.1)): Let (u1, u2, . . .)
be a local frame of F which is ∇F -parallel along all the ♯∇-geodesics from P and let us
set ∇Fui2 =

∑
ω(∇F )i1i2(∂/∂xj)ui1 ⊗ dxj . Then, at x = 0, the connection coefficients

are expanded as

ω(∇F )i1i2(∂/∂xj) = −
∞∑
ℓ=1

`

(`+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−1F (∇F )i1i2(∂/∂xj , ∂/∂xj1)
∂xj2 · · · ∂xjℓ

(0).(3.1)

Let us start with calculating symbols of some H-differential operators.

Lemma 3.1 For X = X0 + XH =
∑
Xjej ∈ Γ(TM = Re0 ⊕ H), ξ = ξ0 + ξH =∑

ξje
j(P) ∈ T ∗

PM = Re0(P)⊕H∗
P, we have

ς(∇FX)(P, ξ) = 〈iXP, ξ〉 =
∑

iXj(P) ξj = 〈iXH
P , ξH〉+ 〈iX0

P, ξ0〉,(3.2)

θ(〈iX, ξ〉) = ∇FX .(3.3)



Getzler’s symbol calculus and the composition of pseudodifferential operators 8

Proof. We have φ(P, x) = 1 near x = 0, so that we may ignore the bump function
φ. Since

X〈exp−1(x), ξ〉
∣∣∣
x=0

=
d

dt

∣∣∣
t=0
〈exp−1(exp(tXP)), ξ〉 =

d

dt

∣∣∣
t=0

t〈XP, ξ〉 = 〈XP, ξ〉,

∇FX(T xP (uP))
∣∣∣
x=0

= 0 (T xP := T exp(x)
P ),

(3.4)

we have

ς(∇FX)(P, ξ)(uP) = ∇FX
(
ei⟨exp

−1(x),ξ⟩ T xP (uP)
)∣∣∣
x=0

= X(i〈exp−1(x), ξ〉)
∣∣∣
x=0
· uP +∇FX(T xP (uP))

∣∣∣
x=0

= 〈iXP, ξ〉 · uP,

that is, (3.2) is valid. Next, we have

(θ(〈iX, ξ〉)u)(P) =
∑

Xj(P)
1

(2π)2n+1

∫
e−i⟨Y,ξ⟩ iξj uP(Y ) dY dξ

=
∑

Xj(P)
∂

∂Yj

∣∣∣
Y=0

(uP(Y )) =
∂

∂t

∣∣∣
t=0
T P
exp(tXP)

(u(exp(tXP))) = ∇FXPu.

Namely, (3.3) is also valid.

Proposition 3.2 We have

ς(∇FX∇FY )(P, ξ) = 〈iXH
P , ξH〉 〈iY H

P , ξH〉+
1

4
F (♯∇;∧)(XH

P , Y
H
P )︸ ︷︷ ︸

grading 2

(3.5)

+ 〈iX0
P, ξ0〉 〈iY 0

P , ξ0〉︸ ︷︷ ︸
grading 4

+ 〈iXH
P , ξH〉 〈iY 0

P , ξ0〉+ 〈iX0
P, ξ0〉 〈iY H

P , ξH〉︸ ︷︷ ︸
grading 3

+
1

4
F (♯∇;∧)(X0

P, Y
H
P ) +

1

4
F (♯∇;∧)(XH

P , Y
0
P )︸ ︷︷ ︸

grading 2

+ iXP(Yx〈exp−1(x), ξH〉)︸ ︷︷ ︸
grading 1

+ iXP(Yx〈exp−1(x), ξ0〉)︸ ︷︷ ︸
grading 2

+
1

2
F (∇E)(XP, YP)︸ ︷︷ ︸

grading 0

and

iXH
P (Y H

x 〈exp−1(x), ξ0〉) =
ξ0
2i
de0(XH

P , Y
H
P ) =

ξ0
2i
de0(XP, YP).(3.6)

Here note that de0 = i
∑
eαC ∧ eᾱC =

∑
eα ∧ en+α.

Proof. We have

∇FX∇FY
(
ei⟨exp

−1(x),ξ⟩ T xP (uP)
)∣∣∣
x=0

=
(
i(∇FX∇FY 〈exp−1(x), ξ〉) ei⟨exp−1(x),ξ⟩ T xP (uP)

+ i(∇FX〈exp−1(x), ξ〉) i(∇FY 〈exp−1(x), ξ〉) ei⟨exp−1(x),ξ⟩ T xP (uP)
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+ i(∇FY 〈exp−1(x), ξ〉) ei⟨exp−1(x),ξ⟩∇FXT xP (uP)

+ i(∇FX〈exp−1(x), ξ〉) ei⟨exp−1(x),ξ⟩∇FY T xP (uP)

+ ei⟨exp
−1(x),ξ⟩∇FX∇FY T xP (uP)

)∣∣∣
x=0

= i∇FXP∇
F
Y 〈exp−1(x), ξ〉uP + 〈iX, ξ〉〈iY, ξ〉uP +∇FX∇FY T xP (uP)

∣∣∣
x=0

and, by (3.1), (2.2), (2.3) and (2.12), we have

∇FX∇FY T xP (uP)
∣∣∣
x=0

= ∇FX∇FY T xP
(∑

ai2(P)ui2(P)
)∣∣∣
x=0

=
∑

ai2(P)∇FX
(∑
i1,j

ω(∇F )i1i2(∂/∂xj)dxj(Y )ui1(x)
)∣∣∣
x=0

=
∑

ai2(P)∇FX
(∑
i1,j

{
− 1

2

∑
xj1F (∇F )

i1
i2
(∂/∂xj , ∂/∂xj1)(P)

+ · · ·
}
dxj(Y )ui1(x)

)∣∣∣
x=0

=
∑

i1.i2,j,j1

ai2(P)
{
− 1

2
X(xj1)F (∇F )

i1
i2
(∂/∂xj , ∂/∂xj1)(0)

}
dxj(Y )ui1(0)

= −1

2

∑
i1,i2,j

ai2(P)F (∇F )
i1
i2
(Y,X)(0)ui1(P) = −

1

2
F (∇F )(Y,X)uP

=
1

4
F (♯∇;∧)(X,Y )uP +

1

2
F (∇E)(X,Y )uP.

They imply

ς(∇FX∇FY )(P, ξ)

= 〈iX, ξ〉〈iY, ξ〉+ 1

4
F (♯∇;∧)(X,Y ) + iXP(Y 〈exp−1(x), ξ〉) + 1

2
F (∇E)(X,Y ).

Considering the gradings of the terms, we obtain (3.5). Next, (2.8) says

XP(Yx〈exp−1(x), ξ〉) = d

dt

∣∣∣
t=0

(
Yx〈exp−1(x), ξ〉

∣∣∣
x=exp(tXP)

)
=

d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0
〈tXP + v•(tXP) · sYx + · · · , ξ〉 =

d

dt

∣∣∣
t=0
〈v•(tXP) · Yx, ξ〉

= 〈 d
dt

∣∣∣
t=0

v•(tXP) · YP +
d

dt

∣∣∣
t=0

Yexp(tXP), ξ〉.

Hence, by (1.3) we have

iXH
P (Y H

x 〈exp−1(x), ξ0〉 = 〈
d

dt

∣∣∣
t=0

v•(tX
H
P ) · Y H

P , ξ0〉

=
i

2

∑{
Xn+β(P)Yβ(P)−Xβ(P)Yn+β(P)

}
ξ0

=
ξ0
2i
de0(XP, YP).

Thus we obtain (3.6).
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Set

F (♯∇;∧) = F (♯∇;∧) + 2ξ0√
−1

de0.(3.7)

Then Proposition 3.2 yields

Corollary 3.3 Denoting the grading of ς(∇FX)(P, ξ) by mX , we have

(ς(∇FX) ◦ ς(∇FY ))(P, ξ) = 〈iXP, ξ〉 〈iYP, ξ〉+
1

4
F (♯∇;∧)(XP, YP)(3.8)

+ (terms of grading < mX +mY ).

This will suggest a formula for general polynomial symbols.

Definition 3.4 For p, q ∈ PC∞H , we set

F (♯∇;∧)( ∂
∂ξ
,
∂

∂ξ′
)p(P, ξ) ∧ q(P, ξ′)

=
∑
i,j

F (♯∇;∧)(∂/∂xi, ∂/∂xj)(P)
∂

∂ξi
p(P, ξ) ∧ ∂

∂ξ′j
q(P, ξ′)

=
∑
i,j

{∑
α,β

F (♯∇)β̄ᾱ(∂/∂xi, ∂/∂xj)(P) eαC(P) ∧ e
β̄
C(P) ∧

+
2ξ0√
−1

de0(∂/∂xi, ∂/∂xj)(P)
} ∂

∂ξi
p(P, ξ) ∧ ∂

∂ξ′j
q(P, ξ′),

e
− 1

4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )p(P, ξ) ∧ q(P, ξ′)

∣∣∣
ξ′=ξ

=

∞∑
k=0

1

k!

(
− 1

4
F (♯∇;∧)( ∂

∂ξ
,
∂

∂ξ′
)
)k
p(P, ξ) ∧ q(P, ξ′)

∣∣∣
ξ′=ξ

.

Note that the summation in the last line is actually finite and the action of F (♯∇;∧)( ∂∂ξ ,
∂
∂ξ′ )

may lower the grading (cf. [13,Proposition 1.2(2)]).

The formula (3.8) then becomes

(ς(∇FX) ◦ ς(∇FY ))(P, ξ) = e
− 1

4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )ς(∇FX)(P, ξ) ∧ ς(∇FY )(P, ξ′)

∣∣∣
ξ′=ξ

+ (terms of grading < mX +mY )

and the general one is given as follows.

Theorem 3.5 There exists a series of bilinear differential operators

ak : PC∞H × PC∞H → PC∞H (k = 0, 1, 2, . . .)

such that

ak(PCmH ,PCm
′

H ) ⊂ PCm+m′−k
H ,

p ◦ q =
∞∑
k=0

ak(p, q),

a0(p, q)(P, ξ) = e
− 1

4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )p(P, ξ) ∧ q(P, ξ′)

∣∣∣
ξ′=ξ

.(3.9)
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It suffices to prove Theorem 3.5 at P for p, q ∈ PC∞H with

p = g〈iX, ξ〉m, q = h〈iY, ξ〉m′
,(3.10)

where g, h ∈ Γ(∧∗H∗ ⊗ End(E)), X =
∑2n

j=0 cj ∂/∂xj and Y =
∑2n

j=0 dj ∂/∂xj (the
coefficients cj , dj are constant) near P (cf. the comment in [4, §3]). In the following, X,
Y , p, q are such ones if not specified. The grading of 〈iX, ξ〉 will be denoted by mX and
we will denote ∇F simply by ∇.

Lemma 3.6 We have

ς(g∇mX)(P, ξ) = g(P)〈iXP, ξ〉m,(3.11)

θ(ς(g∇mX)) = g∇mX .(3.12)

Proof. As for (3.11): We have

Xm〈Z, ξ〉
∣∣∣
Z=0

= Xm〈exp−1(x), ξ〉
∣∣∣
x=0

=

{
〈iXP, ξ〉 (m = 1),
0 (m ≥ 2).

(3.13)

Indeed, (3.4) says it holds when m = 1, and we have

X2〈Z, ξ〉
∣∣∣
Z=0

= X2〈exp−1(x), ξ〉
∣∣∣
x=0

= X0

(
Xx〈exp−1(x), ξ〉

)∣∣∣
x=0

=
d

dt

∣∣∣
t=0

( d

dt2

∣∣∣
t2=0
〈exp−1(exp((t+ t2)X0)), ξ〉

)
=

d

dt

∣∣∣
t=0

( d

dt2

∣∣∣
t2=0
〈(t+ t2)X0, ξ〉

)
=

d

dt

∣∣∣
t=0

(
〈X0, ξ〉

)
= 0,

etc. Thus (3.13) was shown. Hence, ignoring the bump function φ, we have

ς(∇mX)(P, ξ)(uP) = ∇mX
(
ei⟨exp

−1(x),ξ⟩ T xP (uP)
)∣∣∣
x=0

(3.14)

=

m∑
k=0

(
m

k

)(
∇kXei⟨exp

−1(x),ξ⟩∇m−k
X T xP (uP)

)∣∣∣
x=0

=

m∑
k=0

(
m

k

)
〈iX, ξ〉k

(
∇m−k
X T xP (uP)

)∣∣∣
x=0

= 〈iX, ξ〉muP.

Since the coefficients of X are constant, we have ∇XT xP (uP) = 0, which implies the last
equality above. Thus we obtain (3.11). As for (3.12), it suffices to show

(θ(ς(∇mX))u)(P) = (Xm uP)(0) = (∇mXu)(P).

First we have

(θ(ς(∇mX))u)(P) =
1

(2π)2n+1

∫
TPM×T ∗

PM∋(x,ξ)
e−i⟨x,ξ⟩ 〈iX, ξ〉m uP(x) dxdξ

=
1

(2π)2n+1

∫
e−i⟨x,ξ⟩ (

∑
icj ξj)

m uP(x) dxdξ

=
1

(2π)2n+1

∫
e−i⟨x,ξ⟩ (

∑
icj i

−1∂xj )
m uP(x) dxdξ

=
1

(2π)2n+1

∫
e−i⟨x,ξ⟩Xm uP(x) dxdξ = (Xm uP)(0).
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The second equality is shown in a way similar to the last equality at (3.14).

By Lemma 3.6, we have

p ◦ q = ς(θ(p) ◦ θ(q)) = ς(θ(g〈iX, ξ〉m) ◦ θ(h〈iY, ξ〉m′
))(3.15)

= ς(g∇mX ◦ h∇m
′

Y ) ≡ gh ς(∇mX∇m
′

Y ),

where the last ≡ means that the top grading parts of both sides coincide.

Proposition 3.7 We have

ς
(
∇mX∇m

′
Y

)
≡
min(m,m′)∑

k=0

k!

(
m,m′

k, k

)
〈iX, ξ〉m−k〈iY, ξ〉m′−k

(1
4
F (♯∇;∧)(X,Y )

)k
︸ ︷︷ ︸

grading = mmX +m′mY

,(3.16)

where we put
(
m,m′

k,k′

)
=

(
m
k

)(
m′

k′

)
.

Proof. It is obvious that

∇mX∇m
′

Y

(
ei⟨exp

−1(x),ξ⟩ uj

)
(0)(3.17)

=
∑

m=j+k, m′=j′+k′

(
m,m′

k, k′

)(
XjY j′ei⟨exp

−1(x),ξ⟩
)
(0)

(
∇kX∇k

′
Y uj

)
(0).

We want to show(
XjY j′ei⟨exp

−1(x),ξ⟩
)
(0) ≡

min(j,j′)∑
a=0

a!

(
j, j′

a, a

)
〈iX, ξ〉j−a〈iY, ξ〉j′−a(ξ0

2i
de0(X,Y ))a︸ ︷︷ ︸

grading = jmX + j′mY

,(3.18)

(
∇kX∇kY uj

)
(0) = k!

(1
2
F (∇)(X,Y )

)k
uj + (terms with grading < 2k)(3.19)

=
k!

4k
F (♯∇;∧)(X,Y )k︸ ︷︷ ︸

degree = 2k

uj + (terms with grading < 2k),

the grading of
(
∇kX∇k

′
Y uj

)
(0) is less than k + k′ (if k 6= k′).(3.20)

As for (3.18): We have

XY Z(e⟨i exp
−1(x),ξ⟩)

∣∣∣
x=0

= XY (Z〈i exp−1(x), ξ〉e⟨i exp−1(x),ξ⟩)
∣∣∣
x=0

= X〈i exp−1(x), ξ〉
{
Y 〈i exp−1(x), ξ〉Z〈i exp−1(x), ξ〉

+ Y Z〈i exp−1(x), ξ〉
}∣∣∣
x=0

+
{
XY 〈i exp−1(x), ξ〉Z〈i exp−1(x), ξ〉

+ Y 〈i exp−1(x), ξ〉XZ〈i exp−1(x), ξ〉+XY Z〈i exp−1(x), ξ〉
}∣∣∣
x=0

≡ 〈iX, ξ〉 · 〈iY, ξ〉 · 〈iZ, ξ〉+ 〈iX, ξ〉 · Y Z〈i exp−1(x), ξ〉
∣∣∣
x=0

+ 〈iY, ξ〉 ·XZ〈i exp−1(x), ξ〉
∣∣∣
x=0

+ 〈iZ, ξ〉 ·XY 〈i exp−1(x), ξ〉
∣∣∣
x=0

= 〈iX, ξ〉 · 〈iY, ξ〉 · 〈iZ, ξ〉

+ 〈iX, ξ〉 · ξ0
2i
de0(Y, Z) + 〈iY, ξ〉 · ξ0

2i
de0(X,Z) + 〈iZ, ξ〉 · ξ0

2i
de0(X,Y )
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and, in general,

XjY j′(e⟨i exp
−1(x),ξ⟩)

∣∣∣
x=0

≡
∑

a≤min(j,j′)

a!

(
j, j′

a, a

)
〈iX, ξ〉j−a〈iY, ξ〉j′−a(XY 〈i exp−1(x), ξ〉)a

=
∑

a≤min(j,j′)

a!

(
j, j′

a, a

)
〈iX, ξ〉j−a〈iY, ξ〉j′−a(ξ0

2i
de0(X,Y ))a.

As for (3.19), (3.20): We show them by induction. First, obviously we have(
∇kXuj

)
(x) =

(
∇kY uj

)
(0) = 0 (k > 0),(

∇X∇Y uj
)
(0) =

1

2
F (∇)(X,Y )uj ≡

1

4
F (♯∇;∧)(X,Y )uj .

Let us set F = F (∇) = F (∇F ). Then, referring to (3.1), we have

∇k+1
X ∇k′+1

Y ui1(x)
∣∣∣
x=0

(3.21)

= ∇k+1
X ∇k′Y

(∑ `

(`+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjℓ
ui2(x)

)∣∣∣
x=0

= ∇X
(∑ `

(`+ 1)!

∑(
k, k′

κ, κ′

)
∇k−κX ∇k′−κ′Y (xj1 · · ·xjℓ)

∂ℓ−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjℓ
∇κX∇κ

′
Y (ui2(x))

)∣∣∣
x=0

=
(∑ `

(`+ 1)!

∑(
k, k′

κ, κ′

)
∇k+1−κ
X ∇k′−κ′Y (xj1 · · ·xjℓ)

∂ℓ−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjℓ
∇κX∇κ

′
Y (ui2(x))

)∣∣∣
x=0

+
(∑ `

(`+ 1)!

∑(
k, k′

κ, κ′

)
∇k−κX ∇k′−κ′Y (xj1 · · ·xjℓ)

∂ℓ−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjℓ
∇κ+1
X ∇κ′Y (ui2(x))

)∣∣∣
x=0

=
∑ k + k′ + 1− κ− κ′

(k + k′ + 2− κ− κ′)!

(
k, k′

κ, κ′

)
∇k+1−κ
X ∇k′−κ′Y (xj1 · · ·xjk+k′+1−κ−κ′ )

∂k+k
′−κ−κ′F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′+1−κ−κ′
∇κX∇κ

′
Y (ui2(x))

∣∣∣
x=0

+
∑ k + k′ − κ− κ′

(k + k′ + 1− κ− κ′)!

(
k, k′

κ, κ′

)
∇k−κX ∇k′−κ′Y (xj1 · · ·xjk+k′−κ−κ′ )

∂k+k
′−κ−κ′−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′−κ−κ′
∇κ+1
X ∇κ′Y (ui2(x))

∣∣∣
x=0

=
∑ k + k′ + 1− κ− κ

(k + k′ + 2− κ− κ)!

(
k, k′

κ, κ

)
∇k+1−κ
X ∇k′−κY (xj1 · · ·xjk+k′+1−κ−κ

)
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∂k+k
′−κ−κF i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′+1−κ−κ

∇κX∇κY (ui2(x))
∣∣∣
x=0︸ ︷︷ ︸

grading=2κ+2

+
∑
κ̸=κ′

k + k′ + 1− κ− κ′

(k + k′ + 2− κ− κ′)!

(
k, k′

κ, κ′

)
∇k+1−κ
X ∇k′−κ′Y (xj1 · · ·xjk+k′+1−κ−κ′ )

∂k+k
′−κ−κ′F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′+1−κ−κ′
∇κX∇κ

′
Y (ui2(x))

∣∣∣
x=0︸ ︷︷ ︸

grading <κ+κ′+2

+
∑ k + k′ − κ− κ− 1

(k+k′+1−κ−κ−1)!

(
k, k′

κ, κ+ 1

)
∇k−κX ∇k′−κ−1

Y (xj1 · · ·xjk+k′−κ−κ−1
)

∂k+k
′−κ−κ−2F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′−κ−κ−1

∇κ+1
X ∇κ+1

Y (ui2(x))
∣∣∣
x=0︸ ︷︷ ︸

grading=2κ+4

+
∑

κ+1̸=κ′

k + k′ − κ− κ′

(k + k′ + 1− κ− κ′)!

(
k, k′

κ, κ′

)
∇k−κX ∇k′−κ′Y (xj1 · · ·xjk+k′−κ−κ′ )

∂k+k
′−κ−κ′−1F i2i1 (∂/∂xj1 , Y )

∂xj2 · · · ∂xjk+k′−κ−κ′
∇κ+1
X ∇κ′Y (ui2(x))

∣∣∣
x=0︸ ︷︷ ︸

grading <κ+κ′+3

.

Hence, we know

∇k+1
X ∇k+1

Y ui1(x)
∣∣∣
x=0

≡ 1

2!

∑
∇X(xj1)F

i2
i1
(∂/∂xj1 , Y )∇kX∇kY (ui2(x))

∣∣∣
x=0

+
1

2!

(
k

k − 1

)∑
∇X(xj1)F

i2
i1
(∂/∂xj1 , Y )∇kX∇kY (ui2(x))

∣∣∣
x=0

= (k + 1)
1

2
F i2i1 (X,Y )∇kX∇kY (ui2(x))

∣∣∣
x=0

,

which inductively implies (3.19). Further, in the case k 6= k′, it is obvious that the
grading of each line on the last side of (3.21) is less than (k+ 1) + (k′ + 1). Notice that
some terms in the third and fourth lines may not seem to be so at a glance but in fact
such ones vanish. Thus we obtain (3.20). Now (3.17)-(3.20) yield

ς
(
∇mX∇m

′
Y

)
≡

m=j+b,m′=j′+b∑
b≤min(m,m′)

∑
a≤min(j,j′)

a!
b!

4b

(
m,m′

b, b

)(
j, j′

a, a

)
〈iX, ξ〉j−a〈iY, ξ〉j′−a(ξ0

2i
de0(X,Y ))a F (♯∇;∧)(X,Y )b

=
∑

b≤min(m,m′)

∑
a≤min(m−b,m′−b)

a!
b!

4b

(
m,m′

b, b

)(
m− b,m′ − b

a, a

)
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〈iX, ξ〉m−a−b〈iY, ξ〉m′−a−b(
ξ0
2i
de0(X,Y ))a F (♯∇;∧)(X,Y )b

=

min(m,m′)∑
k=0

k!

(
m,m′

k, k

)
〈iX, ξ〉m−k〈iY, ξ〉m′−k

(1
4
F (♯∇;∧)(X,Y )

)k
.

Namely, (3.16) was proved.

Last, let us prove Theorem 3.5.

Proof of Theorem 3.5. We have

e
− 1

4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )g〈iX, ξ〉m ∧ h〈iY, ξ′〉m′

∣∣∣
ξ′=ξ

= g ∧ h
∞∑
k=0

1

k!

(
− 1

4
F (♯∇;∧)(ei, ej)

∂

∂ξi

∂

∂ξ′j

)k
〈iX, ξ〉m〈iY, ξ′〉m′

∣∣∣
ξ′=ξ

= g ∧ h
∞∑
k=0

1

k!

m!

(m− k)!
m′!

(m′ − k)!

(
− 1

4
F (♯∇;∧)(ei1 , ej1)iXi1iYj1

)
· · ·

· · ·
(
− 1

4
F (♯∇;∧)(eik , ejk)iXikiYjk

)
〈iX, ξ〉m−k〈iY, ξ′〉m′−k

∣∣∣
ξ′=ξ

= g ∧ h
min(m,m′)∑

k=0

k!

(
m,m′

k, k

)
〈iX, ξ〉m−k〈iY, ξ〉m′−k

(1
4
F (♯∇;∧)(X,Y )

)k
≡ g ∧ h ς

(
∇mX∇m

′
Y

)
,

which, together with (3.10) and (3.15), implies the formula (3.9). The other parts will
be obvious.

4 Beals-Greiner’s formula and the composition of general
intrinsic symbols ∈ SC∞H

As was mentioned in Introduction, in the spin manifold case (Getzler [7], Block-Fox
[5], Benameur-Heitsch [4]) a composition formula for general symbols was derived almost
automatically from the one for polynomial symbols and Widom’s formula ([14], [15]). It
will be thus natural to expect that, in the contact Riemannian manifold case, so can be a
composition formula for intrinsic symbols ∈ SC∞H from Theorem 3.5 and Beals-Greiner’s
formula ([3]) for symbols ∈ S∞H . But the situation is not so simple. To compute such
a composition, it seems that, added to Beals-Greiner’s one, not Theorem 3.5 but an
extra computation is needed. In this section, referring only to their formula reviewed
below we will give another proof of (3.9), by which we want to show what kind of extra
computation is required.

With reference to [3, §9–§14], let us review Beals-Greiner’s formula. Referring to
(1.2), (1.3) and (2.9), we set

v0•(x) =


1

√
2Re(zβ̄

i
2) =

xn+β

2
(0, β)-th entry

√
2 Im(zβ

−i
2 ) = −xβ

2
(0, n + β)-th entry

0
(α, 0)-th entry

En O

0
(n + α, 0)-th entry

O En

 ,
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σ0(x, ξ) = tv0• · ξ, i.e., σ0j (x, ξ) =


ξ0 (j = 0),

ξβ +
xn+β
2

ξ0 (j = β),

ξn+β −
xβ
2
ξ0 (j = n+ β).

Here σ0j (x, ξ) are the symbols of certain operators written in the 0-coordinates (cf. [3,
(11.28), (11.29)]). Next, referring to (2.1) and (2.5), we put

SHm = {h ∈ SmH | h(P, λT ) = λmh(P, T ) (|T | ≥ 1)}.

Notice that, for f ∈ FHm there exists a symbol h ∈ SHm with h ∼ f (at each P), and,
conversely, for h ∈ SHm there exists such a unique symbol f ∈ FHm . For hj ∈ SHmj

(j = 1, 2), we set

(h1#h2)(P, ξ) =
1

(2π)2n+1

∫
TPM×T ∗

PM∋(x,η)
e−i⟨x,η⟩ h1(P, ξ + η)h2(P, σ0(x, ξ)) dxdη.

In fact this is a kind of oscillatory integral (cf. [3, (12.17)–(12.19)]) as in the case of
classical symbol calculus and we know h1#h2 ∈ SHm1+m2

. Consequently, we obtain the
well-defined bilinear maps

SHm1
× SHm2

→ SHm1+m2
, FHm1

×FHm2
→ FHm1+m2

.

For more detailed explanations, refer to [3, (12.14), (12.82), (13.7), (13.9)].

Proposition 4.1 (Beals-Greiner [3, Theorems 14.1 and 14.7]) For p ∈ SmH ,
q ∈ Sm′

H with

p ∼
∑
k≤m

pk, q ∼
∑
k≤m′

qk (at each P), pk, qk ∈ FHk ,

we have p ◦ q := ς(θ(p) ◦ θ(q)) ∈ Sm+m′

H and

p ◦ q ∼
∑

r≤m+m′

(p ◦ q)r (at each P), (p ◦ q)r ∈ FHr ,

(p ◦ q)m+m′(P, ξ) = (pm#qm′)(P, ξ),

(p ◦ q)r(P, ξ) =
∑ 1

A!B!G!
(DG

x uBC)(P)
(
∂A+Gσ pk#(DA

x ∂
B
σ qk′)σ

C
)∣∣∣

(x,σ)=(P,ξ)(
(σ(x, ξ)− σ0(x, ξ))B =

∑
|C|=|B|

uBC(x)σ
0(x, ξ)C

)
.

The multi-indices A, B, . . . run only in the region given by r = k + k′ − |A|H − |B|H −
|G|H + |C|H and −|C|H + |G|H + |B|H ≥ |B| = |C|, so that the summation is finite.

Let us derive the formula (3.9) from the proposition.

Proposition 4.2 We have

ς(♯∇∧0,∗
H

X )(x, σ) = 〈tv•(x) iXx, σ〉+
∑

ω(♯∇)αβ(Xx) · eᾱC ∧ e
β̄
C ∨ ,(4.1)

∂xj ς(
♯∇∧0,∗

H
X )(x, σ)

∣∣∣
x=0

= 〈∂xjtv•(x)iXx

∣∣∣
x=0

, σ〉 − 1

4
F (♯∇;∧)(X, ∂/∂xj)(P).(4.2)
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Proof. We have ♯∇∧0,∗
H

X = X +
∑
ω(♯∇)αβ(X) · eᾱC ∧ e

β̄
C ∨ and, referring to (2.8), we

have

ς(X)(P(x), T xP (ξP))(T xP (uP)) = X
(
e
i⟨exp−1

P(x)(x
′),T x

P (ξP)⟩ T x′P(x)(T
x
P (uP))

)∣∣∣
x′=0

= X
(
e
i⟨exp−1

P(x)(x
′),T x

P (ξP)⟩ T yP (uP)
)∣∣∣
x′=0,y=x

(P(y) = P(x)(x′))

=
∑

Xj
∂

∂yj

(
e
i⟨exp−1

P(x)(x
′),T x

P (ξP)⟩
)∣∣∣
x′=0
T xP (uP)

=
∑

Xjv
jk(x)

∂

∂x′k

(
e
i⟨exp−1

P(x)(x
′),T x

P (ξP)⟩
)∣∣∣
x′=0
T xP (uP)

=
∑

X(x)jv
jk(x)i(T xP (ξP))k · T xP (uP)

= 〈tv•(x)iXx, T xP (ξP)〉 · T xP (uP).

Hence, we get (4.1), which, together with (1.1) and (2.11), yields (4.2) certainly.

Another proof of the formula (3.9). Let us check it only in the case of (3.10)
with g = h = 1. Further we assume X = XH , Y = Y H (i.e., mX = mY = 1) to simplify
the argument. We have∑

A

1

A!

(
∂Aσ pm#DA

x qm′

)∣∣∣
(x,σ)=(0,ξ)

=
∑
k

1

k!

(
∂σj1 · · · ∂σjkpm#Dxj1

· · ·Dxjk
qm′

)∣∣∣
(x,σ)=(0,ξ)

=
∑ 1

k!

1

(2π)2n+1

∫
e−i⟨x,η⟩ ∂ξj1 · · · ∂ξjk 〈iX, ξ〉

m
∣∣∣
ξ⇒ξ+η

Dxj1
· · ·Dxjk

(
ς(♯∇∧0,∗

H
Y )(x, σ)

)m′∣∣∣
(x,σ)=(0,σ0(x,ξ))

dxdη

and (4.2) implies

Dxj

(
ς(♯∇∧0,∗

H
Y )(x, σ)

)m′∣∣∣
(x,σ)=(0,σ0(x,ξ))

= −im′ 〈iY, σ0(x, ξ)〉m′−1
{
i〈(∂xjtv•(x)Yx)

∣∣∣
x=0

, σ0(x, ξ)〉 − 1

4
F (♯∇;∧)(Y, ∂/∂xj)

}
.

Hence, recalling the definition (3.7), we know that the top grading part of (p ◦ q)(P, ξ)
is equal to∑

k!

(
m,m′

k, k

)
1

(2π)2n+1

∫
e−i⟨x,η⟩ 〈iX, ξ + η〉m−k〈iY, σ0(x, ξ)〉m′−kdxdη

·
(1
4
F (♯∇;∧)(X,Y )

)k
=

∑
k!

(
m,m′

k, k

)
e
− ξ0

2i
de0( ∂

∂ξ
, ∂
∂ξ′ )〈iX, ξ〉m−k〈iY, ξ′〉m′−k

∣∣∣
ξ′=ξ

(1
4
F (♯∇;∧)(X,Y )

)k
= e

− 1
4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )−

ξ0
2i
de0( ∂

∂ξ
, ∂
∂ξ′ )〈iX, ξ〉m〈iY, ξ′〉m′

∣∣∣
ξ′=ξ

= e
− 1

4
F (♯∇;∧)( ∂

∂ξ
, ∂
∂ξ′ )〈iX, ξ〉m〈iY, ξ′〉m′

∣∣∣
ξ′=ξ

.
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The first equality is shown as follows:

1

(2π)2n+1

∫
e−i⟨x,η⟩〈iX, ξ + η〉m〈iY, σ0(x, ξ)〉m′

dxdη

=
∑

a+b=m

m!

a! b!
〈iX, ξ〉a 1

(2π)2n+1

∫
e−i⟨x,η⟩〈iX, η〉b〈iY, σ0(x, ξ)〉m′

dxdη

=
∑

a+b=m

m!

a! b!
〈iX, ξ〉a 1

(2π)2n+1

∫
e−i⟨x,η⟩〈iX,Dx〉b〈iY, σ0(x, ξ)〉m

′
dxdη

=
∑

a+b=m

m!

a! b!
〈iX, ξ〉a

∑
b≤m′

〈iX,Dx〉b〈iY, σ0(x, ξ)〉m
′
∣∣∣
x=0

=
∑

a+b=m

m!

a! b!
〈iX, ξ〉a

∑
b≤m′

b!

(
m′

b

)
〈iY, ξ〉m′−b (〈iX,Dx〉〈iY, σ0(x, ξ)〉)b

∣∣∣
x=0

=

max(m,m′)∑
b=0

b!

(
m,m′

b, b

)
〈iX, ξ〉m−b 〈iY, ξ〉m′−b (

ξ0
2i
de0(X,Y ))b

= e
− ξ0

2i
de0( ∂

∂ξ
, ∂
∂ξ′ )〈iX, ξ〉m〈iY, ξ′〉m′

∣∣∣
ξ′=ξ

.

Hence we get (3.9).

To express the composition of symbols ∈ SC∞H explicitly, added to Proposition 4.1
thus we need to calculate the differentials DA

x ∂
B
σ qk′ . Such a calculation is easy in prin-

ciple and accordingly so is to compute exactly at least the top grading part of the
composition. But, as was stated in Introduction, it will be hard to summarize them in
a clear and concise formula.
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