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Abstract

We describe explicitly the second term in the asymptotic expansion of the point-
wise trace of the heat kernel associated with the Kohn-Rossi Laplacian on a contact

Riemannian manifold.

0 Introduction

Let M be a compact manifold of dimension 2n 4+ 1 equipped with a contact Rieman-
nian structure (6,&,g,J) consisting of a contact 1-form 6, the associated Reeb vector
field € (i.e., (&) =1, L¢# = 0), a Riemannian metric g and a (1,1)-tensor field J called
an almost complex structure which satisfy g(¢, X) = 0(X), ¢(X,JY) = —df(X,Y) and
J2X = —X 4 0(X)¢ for any vector fields X, Y. In this paper we adopt such a notation
as d9(X,Y) = X(0(Y)) — Y(0(X)) — 0([X,Y]). To express tensor fields and differ-
ential forms locally, we will use a local unitary frame & = (£0,&1,-.-,&n, &1y -5 &R)
(&0 = &, Jéo = ik, o = &a 9(€a€5) = dap, 1 < @, < n) and its dual frame
6° = (0°,0, .. om0t ,0™) (6° = ). The subbundle spanned by &1, ..., &, will be
denoted by HyoM. On the contact Riemannian manifold M = (M,0,¢,g,J), let us

consider the Kohn-Rossi Laplacian

Oy = 5;15]{ + 5}15;[

acting on (p, q)-forms. The differential forms ¢ which are described locally as > 67 K -l K

(I=(0<ip <iy<-- <ip) etc., OTK ;= gL A ..o A G AGFLA .. A BFa) are called
(p, q)-forms, which gather together into the space QP?M. For a (p,q)-form o, Oy is
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defined to be the (p, g + 1)-component of the exterior derivative dp. The formal adjoint
of Oy is denoted by 51"21.
Let us assume 0 < ¢ < n, under which O is hypoelliptic ([4, Remark 2.2(1)]). Then,

according to [4, Theorem 2.1], the initial value problem

B
(0.1) (m + DH)¢ =0, lmo(t)=¢ (o€ QM)

has a unique fundamental solution or heat kernel e~*=# (P, P’). This is a smooth double

form on M x M parameterized smoothly by ¢ € (0,00), described locally as
(0.2) o t0H (P,P') = ZGIK ) K ef’K’(P/) ) (e—tEIH)(Ik)(I'K') (P, P'),
and the (p, ¢)-form
/ e H (P, P') A xgp(P)
M
=S 0P [ avp) (e Oy o ()

is a solution of (0.1), where we set dV; = 6 A (df)"/n!. Furthermore, [4, Theorem 2.3
and (5.12)] (see also (1.9), (1.10)) says that the pointwise trace tre *7# (P9 P%) :=
DK (e*tDH)(IK)(I,K/) (P°, PY) is asymptotically expanded as

tr —tOy PO PO Zt (n+1)+ )

when t — 0, and, in particular,

)= () G) Lo o om0 = e ()"

Note that ®"~24(s) is rapidly decreasing.

These assertions were first ascertained by Folland-Stein [2], Stanton-Tartakoff [6] in
the case where J is integrable (i.e., [['(H1oM),T'(H10M)] C T'(H10M)), that is, M is a
strictly pseudoconvex CR manifold. In [4], the second author of this paper showed that
their results still hold even if the integrability condition is ignored. In fact, his research
was mainly focused on presenting a new method of describing the coefficients ay(P°)
(and its every differential) explicitly. Indeed, by using only a basic knowledge of calculus
added to the formula [4, Theorem 5.3], the coefficients can be described explicitly up to
an arbitrarily high order. As an example, he offered the concrete description of ai(PV)
in the case J is integrable ([4, Corollary of Theorem 5.3]). The amount of calculation is
rather considerable. With the aid of Mathematica, we wish to present here its concrete

description with no restriction on J.



We consider the smooth function S(¢,s) = taghts on (0,1) x R (> (¢,s)) and set
q)l(s):/ldt SS(I—t,s)S(tjs) ~ S 8008hs—sinh3’
o S—ts)+S(t,s) sinhs 452

! sS(1—t,5)S(t,s) \2 s 22500sh2s—381nh25—|—45
(I)2(8)_/0 dt(S(l—t,s)—i—S(t,s)) N <sinhs> 6453

Note that the functions ®;(s) (j = 1,2) and s™2®4(s) are smooth and bounded on R,
and the functions ®"~24(s)®;(s), ®"21(s)s 2Py(s) are rapidly decreasing.

Theorem 0.1 We have
(0.3) ai(P°) aﬁzl Riaps(P?) - {(Z:D (n; 1)
(G- (e [
(g
+ ,p; | Napn (P
(0 [Tt 05

where Rapcp denotes the curvature coefficient of the hermitian Tanno connection V

(refer to §.1) and Napc denotes the Nijenhuis coefficient associated with J. Namely, we
set Rapep = 9(F(V)(€c:ép)ép,€a) (F(V)(X,Y) = [Vx,Vy]| = V(xy]) and Napc =
917, T)(€p€0), €4) (11X, Y) 1= [JX, JY] = [X,Y] = JIJX, Y] - J[X, JY]). We put

(;:i) =0 when p = 0.

The almost complex structure J is integrable if and only if NQBW(PO) vanishes for all
o, B,v€{l,...,n} and all P® € M, and the hermitian Tanno connection V coincides
with the Tanaka-Webster connection ([1, §.1.2]) when J is integrable. Hence, the above
result is certainly consistent with [4, Corollary of Theorem 5.3].

In §.1 we recall the method of describing a1(P°) and, in §.2 we will draw the de-
scription (0.3). From now on, to simplify the description, we assume that the Greek
indices «, (3, ... always vary from 1 to n, the block Latin indices A, B, ... vary in

{0,1,...,n,1,...,n} and the symbol Y may be omitted (in an unusual manner).

1 The formula for the asymptotic coefficients

In [4], on the basis of adiabatic expansion theory ([3]) he developed the method of
describing the asymptotic coefficients explicitly, which will be reviewed briefly in this

section.



The connection *V introduced by Tanno ([7]), which is defined by
1
XY = VY — LOX)TY — 0(Y)VEE + (V4O)(Y)E,

will be widely used in studying the contact Riemannian structure. Its hermitian part

Vx(f§) Y =f§,
VxY = 1

5 (*VxY —J*VxJY) Y eT(kerf),
called the hermitian Tanno connection, was adopted in [4], however. (Note that the
two connections and the Tanaka-Webster connection coincide with each other when
J is integrable.) Certainly we have VJ = 0 and the Kohn-Rossi Laplacian has the
Weitzenbock-type formula ([4, Proposition 1.3])

1) == X (T Vo) T
— > F(V)B(Ear8) - 09N 07 VOSAOP v (acting on QPIM),

where we set F(V)(¢5,&5)ép = &0 - F(V)% (&4, €5) and %A, 0%V (= g, = 5) denote
their exterior, interior products, respectively. We may assume that the pair of indices
(C, D) above runs only over the set of pairs (7, 9), (7,6) (1 < 7,6 < n).

We want to introduce another merit of adopting V ([4, Proposition 2.4]). Let z =
(20,215 -+, 2n) OF Ze = (20, 215+ 2ny 27, - - -+ 2a) (2a := Zq) be the V-normal coordinates
centered at P? defined by expV (£ (P) - z¢(P)) = P, which, we assume, are related to
the real V-normal coordinates x = (g, 1, ,T2,) S 20 = T0, 2o = (Ta + iTnia)/ V2.
Further, let the unitary frames &,, 0® be V-parallel along the V-geodesics sz (s > 0)
from PY. Then, as to the connection forms given by Vg = o - wg, we have the formal

series expansion

00 af—lF(V)a(a/azA 8/0z4,)
1.2 3(9/024) p i (0),
(12) (9/924) g £+1 P Dza, - Oz, (0)

where we put 0/9z9 = 0/0z¢ and 0/0zq = (0/0x — i0/0Tp1a) /2. Moreover, let us

set
(1.3) A=) VBa0d/Ozp, 6" =) VPdzp, hence V, ="(V*)!

Then, we have the formal series expansion

aHT(V)A (0/0zB)
BA BA Aq
(14) V =6 +Z e+1 ,Z R SR, S (0)

= 84 2F(V)4 (0/0za,,0/025)

Ay
Z (L+1) 'Z AL 0za, -+ 024, (0),

(=2




where we set T'(V)(éc,0/025) = €4 - T(V)A(0/0z2B).

From now on, the unitary frames &,, 6* are always assumed to be V-parallel and the
coordinates z are V-normal centered at P’. So are the frames in the expression (0.2) of
e (P, P) = 7M1 (2, 2') (2 := 2(P), 2/ := z(P')). Next, let us introduce the notion
of adiabatic expansion of Oy at P ([4, Proposition 5.2]).

We will transform a neighborhood of PY by the diffeomorphism i : z +— 1.(2) =

(e20,6'/221,...,e/%2,) (¢ > 0), which induces a new contact Riemannian structure
(0,685,919, 7)) 1= (1202, 15€5, 1207, 1207 with 024 1= e Mln/20A, g5 = clln/2g

¢ =02 ® 04, Jegs = ice, where we set |Alg = 2if A=0and |[A|g = 1if A # 0.
Obviously (1.3) produces

€9 = (0/024) - VO, VE)(z) = elAln=IBln/2y (1. (2)),

(1.5) ' i
0(6) = (dz.) . ‘/(5)7 ‘/(f)A(Z) — €(|B|H*|A|H)/2VBA(LE(Z)).

To the structure (62,&5, g%, J°) the Kohn-Rossi Laplacian 0% := e0y and the hermitian
Tanno connection V¢ := V are attached. These for the structure (0(‘8), fSE), g(a), J(s)) are
DSS) = 1005, V) := 12V, The coordinates z are the V(*)-normal coordinates centered
at 0 with (0/0ze)0 = fsa) (0) and §£E), 07, are V()-parallel along the V(®)-geodesics from
PO

A neighborhood of P° equipped with these tools is roughly approximated by a neigh-
borhood of the origin in the Heisenberg group H, = (R x C",z) which is a typical
contact Riemannian manifold. We will describe H,, briefly to adjust the notation. This
is a Lie group with the group action zz' = (20 + 2 + Im > 225,21 + 21,...), and
has a contact 1-form 0y = dzg + dzg - 25_71' + dzﬂ- . 25% and the Reeb vector field
¢ = 0/029. We set 5{3{ = 0/0zp + 0/0z - ZB%, which satisfy GH(§£I) = 0 and canon-
ically provide an almost complex structure J. Note that the dual frame of ¢ is
0% = (Ou,dz1,...,dz1,...). These equipments, together with the metric g™ defined by
g (X,Y) = 0g(X)0(Y) + diy (X, JHY), provide a contact Riemannian structure to
H,,, which, compared the results in Lemma 2.2, certainly approximates the structure
of M mnear PY roughly. Note that J is integrable and the Kohn-Rossi Laplacian is

simplified down to
L=— Z&fﬁg —V/=1q&" (acting on QP9H,,).

Further, by [5] (also refer to [4, Lemma 2.6]), if —n < n —2¢ < n, i.e., 0 < g < n, then

the initial value problem (0.1) on H,, (¢ € Qf?H,,) has a unique fundamental solution

r(t,z2) = 0 () RO () - ri 722,



where, putting z = (20, za ), wWe set

ry 2q(z) :/ dse_is'(gzo/t@?_Qq(s,ZA)

1 o) n 92 2
:/ ds(,s ) exp(—zsﬁ— 1zl —(n—2q)s).
2rt)nt+l J_ sinh s t  ttanhs

Note that ®721(s,0) = ®"24(s).
We consider then the transformation from a neighborhood of the origin to a neigh-
borhood of P°

I - QPUH, = QPI(M, 0), 29 : (Z)'—)ZQ(IEI;{(Z)-QOIR(Z),

which induces the differential operator Uy = I; *D( ) (= I71o D( ) o o I.) called the
adiabatic Kohn-Rossi Laplacian at P°. By setting V¢ = I:V( ), §£ &) = Igfss), ete.,
(1.1) provides the formula

D(E):—Z(vgf)vé@) v o) - V-1avid

v<5)>§(5 g(s

ST F(VEGED, ) 05105 VOGN 00 v (acting on QPIH,,),

where

véfif> €9 + 37 MIn 2B (Ea) (1e(2)) - 0F A 6G v

Vel =370 - g Ea)ee(2)),
F(VOGED, 5 (2) = e2F (V)G (€a, 65) (1e(2)).

Recalling (1.2), (1.4) and (1.5), we know that [ can be extended smoothly up to

£1/2 = 0 and has the formal series expansion

=Y e™?0,, Oop =L

m=0
called the adiabatic expansion of O at P?, whose coefficients are described as

|B|=0,1,2

(16) Dm/? - Z Dm/Q(Ba (C) ' Z(C(a/az)]B’

2+|Cla=IB|a+m
where, for C = (C1,...,Cq)), etc., we set |Clg = > |Cj|m, 2L = 20, $201¢ and
(0/02)® = 0/0zp, +++0/0zp, . Each O,,/5(B, C) is a finite sum of operators which are
the composites of such operators as 0% A 9% V, 921 A 9% V multiplied by constants. If

we express its action as

K| sr=|K o )
1.7 O,,/2(B, C) 05K = QUKD . ¢y . gIK |
/ m/2 H
="l
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then the coefficients D([Z)(I K )(IB% C) are all expressed as polynomials made of

a€_4g(F(V)((8/8ZA3, 8/82144)8/82.427 8/82141)
Done - Oza,

agigg(T(v)(a/azz‘b ) 8/82’,43), a/azz‘h)
Oza, -+ 024,

(P°),

RA1A2A3A4A5"'A£ =
(1.8)

TA Ay Az Ay Ay = (P?)

and one can describe the polynomials explicitly up to an arbitrarily high order.

We regard the adiabatic series [y/p, Uyi/p, ... naturally as differential operators
defined on the whole space H,,. (Note that U(e) is well-defined as long as the point te(2)
stays near the origin.) Now, on [0,5(1)/2] x (0,00) x Hy,, x Hy, let us construct a formal

power series

Pe) (t7 2, Z/) = Z Em/Z pm/?(t7 2 Z,)

m=0

so as to satisfy (% + D(E))p(e) = 0. Namely, we define it inductively by

Pos2(t; 2, 2 =ryg(t, z2),
m1>0

pm/Q(ta 2, Z/) = _(pO/Z# Z Dm1/2pm2/2)(ta Z7Z/) (m > O)a

mi+ma=m

where, in general, for double forms h;(t, z,2) (i = 1,2) on H,, x H,,, we define the convo-
lution (hi#he)(t, z,2") by (hi#h2)(t,z,2") = fot ds [i; ha(t —s,2,2") Axgrha(s, 2", 2").
Then, (by [4, Lemma 6.3]) the double forms p,,/s(t,2,2") = 291{{_{(2) X GZK/(Z,) :
pgg)([%,)(t,z,z’) are well-defined and smooth on (0,00) x H, x H,, and [4, (5.10)]

asserts
(IK)(IK
(1.9) Zp%/Q )(1,0,0).

gi)uk)(l, 0,0) is equal to 0 if m is odd. Refer to [4, Theorem 5.3] for the

generalized formula.) In addition, the adiabatic expansion of [y readily implies

(The value p

Proposition 1.1 (cf. [4, (5.12), (5.13)]) Puttingry = ry(t,z,2') = i 29(z'~12),

we have

(1.10) pél/f)(IK)(l,O,O):rH(l,O,O):/ ds "),

(1.11) pg’/?(mu,o 0) = _ng’/;)(m(c B) - r(C; B)
+ > oiy Mm@ e) 0l O FE) (16 - FE),

where we set
r(C:B) = (ra#:°(0/02)"ru ) (1,0,0),

7



r(H;G : F;E) = (rH#zH(a/az>GrH#zF(a/az)ErH) (1,0,0).

(For example, the index (C,B) runs over the set of indices (C,B) appearing in (1.6) and
(1.7) with m/2 = 2/2 and (IK) = (I'K").)

2 Proof of Theorem 0.1

The asymptotic coefficient ay(PY) = Y péf/(?) (1K) (1,0,0) has a universal polynomial
expression made of (1.8), or the four types of components, R, 4,4544--4,, LA Ag-a, 1=
7:410A2--~Ag7
193 ([Jv ‘]] (8/8214278/8'2143)7 8/6'2141)

0za, -+ 024,

a£_4g((v8/8zA4 Q)(@/@ZAQ, 8/02,43), 6/82A1) 0
QA 4,454, = e (PY)

NA1A2A3 Ag - 4 (PO)7

i

Ay 074,

where Q is the Tanno tensor field, i.e., Q(X,Y) = (*VyJ)(X) (refer to [7], [4, Lemma
1.2], which say that we could omit one of the last two types from the list). Note that
Nogy = Qa, 4,454, = 0 if J is integrable.

Proposition 2.1 (cf. [4, Proposition 7.1]) We have

(IR)(IK) day
Py (1,0,0) = > Rangs
acK
1
+ {Z%m =Y R} {5+ [ dsem Hi()
acl acK -
d P2 L3
+ Raaps s (s ){ 213 2(s )}
e n— @1(8) — @2(8) 3(1)2(8) 5
+Na,87N5‘B“7/_ ds @ 2(1(5){ 12 + 1652 7@}

If this is valid, then
(IR)(IK) _(n—=1\(n-1 .
)= mp 100 = (q—1)< p >Rwﬁﬂ
+{ e (" Nr }{1+/oods<1>"_2q(s)<1>1(s)}
p—l aafp _1 aaBp 2 _
EANRL n—2q L
" <q) (p)R“aﬁ/B/ ds & 21(5){ 2" 3(1)2( 9}

© P - 3P 5)
Ny Ny [ asan-aag {2200 S0al) By

Thus we obtain (0.3). The purpose in the following is, hence, to prove Proposition 2.1.



Lemma 2.2 (cf. [4, Lemma 7.2]) Computing (1.4), etc., we have

~ Ty + zazyz’l;j +0 (|2 )}

9:(120-{1%—2:(127

—1 T —Tay Ts5 —iT5T
+dzg - { Sy + 202q 6a5 + 25202y 51 74 zazn,zﬁ% + 2225 ;z il
—iRsa 1 ) T;5 )
+ZAZdZ'yl%;Aﬁ + 202A%a 12 + Z0%y a% + Zazy Sl
iNz=53 T N 3T —iN_ Ny
+zoz@z7724’\ by zoz@zkig\f 4+ zaz:,z“—a;;‘ uh
iNgvsA -T T
+2A%Za2y 1gﬁ + 253202y 15 ——oB + zﬂzazﬂ,él—? + 0O (|z|4)}
7 —1T . T —T-~ 1T ;T
+dz5 - {255 + zgz@Taﬁ + zazvzfgﬁ + 252523 2:7 + zngY%
iR~ 3 —1T .5 —iN.- 5T —iN-~2
+zA25%y i‘;ﬁA + zoz@zAligﬁA + zoz@z;\ioé’f o + 2@25760‘75
iNoxnTs3 iN-5x5zT iN525Nava
+ZO%ZVM + Zoziza% + Zﬁza%%

24
—iN——_A —T _) T
+z@z:,zA17;75 + 2oty 2y 18 + zazy28—ot 18 T+0O (|z|4)},

T, ~N,5-T
TMA + zpay— 2

—Tas —TasT
0% =dzp - {z:y 2” + zoz,\%w‘ + 2524

Ra~ a0 4o —NM,\T/\M}
6 R 6

T TssT
+dzﬁ'{5a/3+z;yzﬁfl 6047 +z§ cwﬁ B
Ny Tas NasaTas NasxNaus
% i zozﬁmT i ZWZMMTH}

+ZWZA

+ 2AZy—

+202)

T.-- —iT = T-5 N, —R.-.3
+d25_ . {207065 + 2523 6 =R 2024 OéBA + 202y ———— + 2Any————

_ N =
p + 2524 aypA + Z;Yz,7 + 25

+ny 3

and

—T i Ta5
§=0/0z - {1 + zazy 12017 + z@z@%}

Ba —T55Ta Tz, ./\/";\ T
d/0z25 - { _pa _“Batay . TBa Naxa
+ / Z/B Za 9 +Z(]ny 12 +ZCMZA 3 G
—Rj —N33aT
BaAO B ay
+raza—p zmli;}
T —T5T T N3 T
+0/0z5 - {Za% + ZOZ’y%Ba + 2A%0 fad Z/\Za%
Rapao —N)\ Tg5 .
+25%2A ag +Zﬁzk%}+o(‘zld),
! Tos iTyg iNyxs Ty
§p = 0/07 - {255 + ZOZWT; + 20242 1”2 + ZOZ#ZWT“
—1R3y a8 iNyag iNyasA
"_Zz‘\z?\"f“/1727 2N 172 + 2a2y2) 12
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T3 T\
+Z;‘ZVZ)‘T + 252y 4 A0 (|2] )}

' Ta T.5T5
+8/8za-{55a+25z7112 + 22 16 a7

+ ZAZ 7_7?’&714'8

12 T 6
+ZOZ§W + ZOzAN“f:‘” ZWW +0 (|z|3)}
+a/azd'{ —f 57%+zz A+ZOZ,\_N‘QEB’I‘7X
oz Rvgf“ﬂ b Ry g, TN
+ZWZV_7;T +Zﬂzwlrfgv +0(]2F) }.

In addition, we have

. . —1Q55a
Rapyx = ~1Ta5058 + 1T 53045 + T”YB-

Proposition 2.3 (cf. [4, Corollary 7.3]) We have

(21) Oy = {ZWNW }a/azaa/azﬁ + {ZVN?" }8/8,2@8/0,25

iNg-a iNgya
Jr{,zﬁz7 0810/0200 /00 + + {252, —ohn }0/0200/0z,

(2.2) Oyjp = {ZOT§@ N zvzﬂ;ﬂ- b 21T25 s ngm
+{ZOT2ﬁ + 2727# + 252’7% + szi\%ga)\ﬁ

“‘szvNO;Bb + 252y z"Il‘2 + 252y _Z.lTQCW + zﬁzx%}a/ama/&zﬁ
+{Z&Zv ZIB +2p v% +0ap - 202y Z;IS‘M + 0ap - ZXZ:YHJ

Rz —Ngos N —N53-N. N3N
By BANV Apa A3y Vau BNV adu
—iQy —iQg5-

+zm?;‘”5 + zﬁzk?gm}a/azda/azﬁ

1T —T5a T; —iR~a~
—i—{zozﬁ 3 ap + 252528 ———— 5 + 23253 %a 12 —i—szBzA%
iNg=ap Tsa —Tzs '
B Cal
vab + ZBZ'YZ'Y 48 + ZBZ’YZO‘T ﬁZ T

+zﬂ-z:yzb

+z5z7z,\% + zgzkzﬁi)zaﬁ + zazAzﬁ_%W}ﬁ/az()@/@za

—iT —
Z3 for 23282y

TR = 55
+{Z()ZB ZL,B)\a
—iN; Tsa ~-T iN=s - N
+Zb2527$ + 25282y —— 18 <4 ZQZ'BZA’TSB + szxzﬁg—iw

T
<+ Z@ZﬁZV% + 252528

10



_ Q, .5 Qs-5
+25272 ;;\laﬁ + 252y2) ;Zw + 252925 ;fa }8/8,208/(%@
— —T— R’ A\ N)\ Nﬁ
—l—{zozazﬁ 24a + ZOZ&ZBTZ + ZBZ:YZQZA% + zﬁz;\zazﬁ%w
_j _ —iQs-3
+zdz/3z7z,\% + zﬁz,—yz/\za(jgwa}ﬁ/azoﬁ/ﬁzo
i(5-n—60)Tar  —Ravp Naop —iTap  inTas
+{Z” A T e e T e T
1y _NaDBNVuﬂ . iQf/ﬁau
K 4 12
—iTsa iT;5 Riuap —1Qagou\ 5 o
+<Zﬁ72 =+ Gap - 25 5 +25 Vga +2574a y“)@ﬁ/\&% v
1Ty —iT-3 —Riva iQs5m,
—1—( 2“a+6ay 25 2“ﬁ+25 50‘5 23 (f“ )HﬁAHZV}ﬁ/(‘)za
{ -5+ Tn — 6q)T ) _RDQﬁM - _Np/jﬁ-/\[aﬁu - _iQyuaD
12 Y3 K 12 ooy
)T T3 3 —3 N _
L - . T S AL T,
2 2 4
T, LTy R . )
+(sz°‘ + Oau - 28 22 L 25 ”2”56“ + zBZQ‘f”“)ay{ N, }a/az@
(—24+2n—q)Ty, (—2+n+¢T
+{Z”Z“ 12 + e 12
iNvaa Toa nT,
+ap g+ e g + A g
g —iN; BN,BVM Yoas i aﬁuNVuB 4oz -t ﬁdBNqu
T 24 TR 24 T 24
Qo ~Quuer . ~Qua
+z‘uz& 211/#1/ + Zp,za é’ﬂau + Zﬁzd 212104#1/
iRyu5 Q"ﬁ —Qasui\ o i
+<252a ubo ZaZj Bg By zangaW>0¥I Y
_ZR* = _Q*77 Q _
+<zlgza%’8a + z@z5$ + 2a28 QS’BV“)HZI NGV }8/8,20
Rapow = 5 —Riuw
+{ =05 M0G0 N0
—Ropasli AO% 0% NOTL N AR st A0S N 0% A OV }

,A}.

All of the above results are obtained with the help of Mathematica: on an Intel Core

where the small Latin index b varies only in {1,...,n,1,...

i7 3.40GHz processor the computations took about 15 seconds in total. Since the four
types of components bear various intrinsic relations to each other ([4, Lemma 1.2]),
the universal expressions are not uniquely determined. Some difficulty in designing the

program lies in the fact.

Lemma 2.4 (cf. [4, (7.6)]) We have

(IK)( IK
Z D2 /2

(2.3) Qg /o

(C B) - r(C;B)
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r(1111;00)  r(1212;00) r(1;1)  —r(1212;00)
= Raa ‘m{ 2 6 } - Rfmﬁﬁ{ 3 6 }
1;0
{ZRaaﬁﬁ ) Raaﬁﬁ} 2 5 {ZRWBB > Raaﬁﬁ}
ael acK ael acK
BeI

r(11;11) —-r(11;22) —r(12;12)

aeK

r(1111;00) —r(1212;00) }
144 72

r(1;1)  ar(11;0)  r(11;22) r(12;12)  r(121 ;OO)}

F Mo Nogr{ 1+ Ty T g b e b

where, for example, r(1111;00) denotes r(C;B) with C = (1,1,1,1) and B = (0,0).

Proof. We have [0 /9pg /2 (t, 2,0) = 0 because of (2.1) and the formula Nogy +Ngya +
Nyap = 0. Indeed, for example, {ZV%}8/5),2@8/825 ry(t,2,0) is equal to

N, ttanh -
6~/a 8/8,20(8/6263/327/ ds e~ (220/1) ( - ﬂ)@? 2q(S, za) =0.
s
oo
Hence the second term in the right hand side of (1.11) vanishes, so that we obtain the
first equality at (2.3). The second equality can be shown by using (2.2) in the same way

as the proof of [4, (7.6)]. 1

Proof of Proposition 2.1. It suffices to calculate r(1111;00), etc., appearing in
(2.3). Some of them have already been calculated in the proof of [4, Proposition 7.1].

The remaining terms can be calculated similarly. 1
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