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Abstract

Based on Getzler’s rescaling transformation, we obtain a formula for the heat kernel
coefficients of the Dirac Laplacian on a spin manifold. One can compute them
explicitly up to an arbitrarily high order by using only a basic knowledge of calculus
added to the formula.

1 Introduction

Let (M, g) be an m-dimensional compact oriented Riemannian manifold equipped
with a spin structure ρ : Spin(T ∗M) → SO(T ∗M), where SO(T ∗M) is the princi-
pal SO(m)-bundle consisting of SO(m)-frames of T ∗M and Spin(T ∗M) is a principal
Spin(m)-bundle together with a 2-sheeted covering map ρ (e.g. [5], [2]). Then we have
the fundamental spinor bundle ̸S = Spin(T ∗M) ×Spin(m) Sm (S2n = S2n+1 = C2n) and
the Dirac operator D given by

D =
∑

ej ◦ ∇ ̸S
ej :=

∑
ej ◦ {ej +

1

4

∑
ω(∇g)kℓ (ej) e

ℓ ◦ ek ◦ }

acting on the cross-sections of ̸S, where e• = (e1, . . . , em) is a local SO(m)-frame of
T ∗M (around a point P 0 in the following argument) and ej◦ denotes the Clifford action
on Sm of the element ej of the Clifford bundle (Cl(T ∗M), ◦), and e• = (e1, . . . , em) is
the dual frame of e•. Further, ∇g is the Levi-Civita connection of g and ω(∇g)kℓ denote
the connection forms defined by ∇g

Xeℓ =
∑

ω(∇g)kℓ (X) ek.
It is known that the initial value problem associated with the Dirac Laplacian D2( ∂

∂t
+D2

)
ϕ(t) = 0, lim

t→0
ϕ(t) = ϕ0 (ϕ0 ∈ Γ(̸S))

has a unique fundamental solution or heat kernel e−tD2
(P, P ′) and, when t → 0, there

is an asymptotic expansion

e−tD2
(P 0, P 0) ∼ (4πt)−m/2

∞∑
ℓ=0

tℓKℓ(P
0), Kℓ(P

0) ∈ Cl(T ∗
P 0M).
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Here we regard End( ̸SP 0) (∋ Kℓ(P
0)) as a subalgebra of Cl(T ∗

P 0M) := Cl(T ∗
P 0M) ⊗ C

naturally, and consider the subspaces Cl(p)(T ∗
P 0M) well-defined by

Cl(p)(T ∗
P 0M) ∼= ∧pT ∗

P 0M ⊗ C
ei1(P 0) ◦ · · · ◦ eip(P 0) ↔ ei1(P 0) ∧ · · · ∧ eip(P 0) (i1 < · · · < ip).

Accordingly let us set

Kℓ(P
0) =

∑
α=(α1<···<α|α|)

Kℓ,α(P
0) eα1(P 0) ◦ · · · ◦ eα|α|(P 0)

=
∑

Kℓ,[p](P
0) :=

∑ ∑
|α|=p

Kℓ,α(P
0) eα1(P 0) ◦ · · · ◦ eα|α|(P 0).

Then, employing a purely local rescaling transformation which we call Getzler’s one,
from which the Â-genus form emerges in a natural way, Getzler [4] (cf. Berline-Getzler-
Vergne [2, Theorem 4.1], Getzler [3]) obtained the formulas

Kℓ,[p](P
0) = 0 (ℓ < p/2),(1.1)

Kp/2,[p](P
0) = det1/2

( R(P 0)/2

sinh(R(P 0)/2)

)
[p]
,(1.2)

where R(P 0) is the Riemannian curvature at P 0, that is, the antisymmetric m × m
matrix with (j, i)-entries given by

Rji(P
0) =

1

2

∑
g(F (∇g)(eℓ, ek)ei, ej)(P

0) eℓ(P 0) ∧ ek(P 0)

(F (∇g)(X,Y ) := [∇g
X ,∇g

Y ] − ∇g
[X,Y ]), and the right hand side of (1.2) denotes the

Cl(p)(T ∗
P 0M)-component of the Â-genus form (∈ ∧4•T ∗

P 0M ⊂ Cl(T ∗
P 0M)). Notice that,

though restricted to the case m is even in [4], his argument holds true also for m odd.
Getzler’s purpose in [4] was to present a short proof of the famous local index theorem

for D (e.g. [1]), which is a straightforward consequence of the formulas, so that his study
on the heat kernel coefficients was restricted to the case enough for the purpose. In this
paper we will introduce a formula for the remaining ones Kℓ,[p](P

0) (ℓ > p/2) (Theorem
3.4). We want to emphasize that, together with the formulas for the Taylor expansions of
connection coefficients and transition functions due to Atiyah-Bott-Patodi ([1, Appendix
II]), it induces their explicit expressions. The first author has derived such formulas for
some other Laplacians ([6], [7]) in a similar way, and this paper is part of studying heat
kernel coefficients under such an idea.

In §2 we explain Getzler’s rescaling transformation and review quickly the proofs of
(1.1) and (1.2). By applying his method, which is effective also in investigating the
remaining ones, and by using the formulas given by Atiyah-Bott-Patodi, a formula for
Kℓ,[p](P

0) (ℓ > p/2) will be derived in §3. From the formula, we will induce concrete
expressions of K0(P

0), K1(P
0), K2(P

0) by written calculation in §4. We have a plan to
compute them up to a higher order with the aid of Mathematica.
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2 Getzler’s rescaling transformation and a review of the
proofs of (1.1) and (1.2): cf. [4] and [2, Chap. 4]

First, let us review the transformation. We will work on a neighborhood U around
the point P 0 with normal coordinates x = (x1, . . . , xm) satisfying (∂/∂xi)P 0 = ei(P

0).
The orthonormal frame e• is assumed to be parallel along the geodesics from P 0 and,
hence, so is also e•. Via the trivialization of the spinor bundle by the parallel transport
map, the heat kernel e−tD2

(P, P 0) gives a localized one

K(t, x) ∈ C∞((R+, t)× (U, x),Cl(T ∗
P 0M)),

which has an asymptotic expansion

K(t, x) ∼ qt(x)

∞∑
ℓ=0

tℓKℓ(x), qt(x) :=
1

(4πt)m/2
e−|x|2/4t,

Kℓ(x) =
∑

α=(α1<···<α|α|)

Kℓ,α(x) dxα1 ◦ · · · ◦ dxα|α|

=
∑

Kℓ,[p](x) :=
∑ ∑

|α|=p

Kℓ,α(x) dxα1 ◦ · · · ◦ dxα|α|

(dxαj = (dxαj )P 0 = eαj (P 0)) when t → 0 . We have thus an interest in Kℓ,[p](0) =
Kℓ,[p](P

0).
Now, let us take ε > 0 and, for a form η(t, x) = ηα(t, x) dxα1 ◦ · · · ◦ dxα|α| , set

(Tεη)(t, x) = ε−|α|/2ηα(εt, ε
1/2x) dxα1 ◦ · · · ◦dxα|α| . The rescaling transformation Tε then

induces Getzler’s one, that is, for an operator P acting on C∞(R+×U,Cl(T ∗
P 0M)), we set

Gε(P ) = Tε ·P · T −1
ε : For example, let f× be the multiplication by a function f , and let

dxj◦ be the Clifford action of dxj on Cl(T ∗
P 0M) = ∧∗T ∗

P 0M⊗C, i.e., dxj◦ = dxj∧−dxj ∨ ,
etc. Here dxj ∨ := (∂/∂xj)P 0⌋ is the interior production of (∂/∂xj)P 0 . Then we have

Gε(f×) = f(ε1/2x)×, Gε(dxj◦) = ε−1/2 dxj◦ε := ε−1/2(dxj ∧ −ε2/2dxj ∨ ),

Gε(
∂

∂xj
) = ε−1/2 ∂

∂xj
, Gε(

∂

∂t
) = ε−2/2 ∂

∂t
.

For the Dirac operator D acting on C∞(R+×U,Cl(T ∗
P 0M)), i.e., D =

∑
dxj ◦ ∇ ̸SP0

ej :=∑
dxj◦ {ej+ 1

4ω(∇
g)kℓ (ej) dxℓ◦dxk◦}, we setD(ε) = ε1/2Gε(D), which is hence expressed

as follows:

D(ε) =
∑

ε−1/2dxj ◦ε ∇(ε)

e
(ε)
j

,

e
(ε)
j := ε1/2Gε(ej) =

∑
Vij(ε

1/2x) ∂/∂xi (ej :=
∑

Vij(x) ∂/∂xi),

∇(ε)

e
(ε)
j

:= ε1/2Gε(∇
̸SP0
ej ) = e

(ε)
j +

ε−1/2

4

∑
ω(∇g)kℓ (ej)(ε

1/2x) dxℓ ◦ε dxk ◦ε .

(2.1)

Let us set D(ε) = (D(ε))2 = ε2/2(Gε(D))2. Then the Lichnerowitz formula for D2 yields
the rescaled one

D(ε) = −
∑(

∇(ε)

e
(ε)
j

∇(ε)

e
(ε)
j

− ε1/2
∑

ω(∇g)ji (ei)(ε
1/2x)∇(ε)

e
(ε)
j

)
+

ε2/2

4
s(∇g)(ε1/2x),(2.2)
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where s(∇g) is the scalar curvature, i.e., s(∇g) :=
∑

g(F (∇g)(ej , ei)ei, ej). Obviously
we have D(ε) = D0/2 +O(ε1/2) with

D0/2 = −
∑( ∂

∂xj
+

1

4

∑
xiRji ∧

)2
= −

∑( ∂

∂xj

)2
+

1

16

⟨
x
∣∣∣R2

∣∣∣x⟩,
where we set R = R(P 0), etc., for short (cf. (4.4), [2, Proposition 4.19]).

Proposition 2.1 (cf. [2, Theorem 4.12]) For any a0 ∈ Cl(T ∗
P 0M), there exists a

unique sequence {Φℓ/2(x) ∈ C∞(U,Cl(T ∗
P 0M))}∞ℓ=0 satisfying formally

( ∂

∂t
+ D0/2

)
qt(x)

∞∑
ℓ=0

tℓ/2Φℓ/2(x) = 0, Φ0/2(0) = a0.

Further, it is determined by the formula

qt(x)
∞∑
ℓ=0

tℓ/2Φℓ/2(x)

=
1

(4πt)m/2
det1/2

( tR/2

sinh(tR/2)

)
exp

(
− 1

4t

⟨
x
∣∣∣ tR
2

coth(
tR

2
)
∣∣∣x⟩)a0.

It follows from the argument following [2, (4.4)] that the rescaled kernel

K(ε)(t, x) = εm/2(TεK)(t, x)

satisfies ( ∂

∂t
+ D(ε)

)
K(ε)(t, x) = 0, lim

t→0
K(ε)(t, x) = δ(x)(2.3)

and is asymptotically expanded into

K(ε)(t, x) ∼ qt(x)
∞∑
ℓ=0

∑
p

tℓεℓ−p/2Kℓ,[p](ε
1/2x) (t → 0)

for every ε1/2 > 0. Further, [2, Lemma 4.18] says that there is an asymptotic expansion

K(ε)(t, x) ∼ qt(x)

∞∑
i=−m

εi/2 γi/2(t, x) (ε1/2 → 0)(2.4)

which is uniform for the variables (t, x) ∈ [0, 1] × U in the sense: Each γi/2(t, x) is
smooth on R × U , and, for every large integer N , there exists a constant C > 0 such

that
∣∣∣K(ε)(t, x)− qt(x)

∑N
i=−m εi/2 γi/2(t, x)

∣∣∣ < Cε(N+1)/2 on (0, 1]×U . Every derivative

of K(ε)(t, x) is also asymptotically expanded into the termwise derivative of the left hand

side in the same sense. Indeed, let us denote by K
(k)
ℓ,[p](x) the sum of the terms of order k

of the Taylor expansion of Kℓ,[p](x) (i.e., Kℓ,[p](x) =
∑N

k=0K
(k)
ℓ,[p](x) +O(|x|N+1)). Then

the sequence {γi/2(t, x)}∞i=0 defined by

γi/2,[p](t, x) =
∑

−p≤k≤i

t(p+k)/2K
(i−k)
(p+k)/2,[p](x)(2.5)
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certainly induces the expansion. Further, by definition it will be obvious that

γ0/2(0, 0) = 1, γi/2(0, 0) = 0 (i ̸= 0),(2.6)

Kℓ,[p](0) = γℓ−p/2,[p](1, 0).(2.7)

Proposition 2.2 (cf. [2, p.163 and Theorem 4.20]) We have

γi/2(t, x) = 0 (i < 0),(2.8)

qt(x)γ0/2(t, x) =
1

(4πt)m/2
det1/2

( tR/2

sinh(tR/2)

)
exp

(
− 1

4t

⟨
x
∣∣∣ tR
2

coth(
tR

2
)
∣∣∣x⟩).(2.9)

Proof. The first term γ−m/2(t, x) in the expansion (2.4) is a polynomial with respect

to t1/2 (cf. (2.5)) and satisfies( ∂

∂t
+ D0/2

)
qt(x)γ−m/2(t, x) = 0, γ−m/2(0, 0) = 0

because of (2.3) and (2.6). Hence the uniqueness assertion in Proposition 2.1 implies
γ−m/2(t, x) = 0. Next, the term γ−m/2+1/2(t, x) is also a polynomial and consequently
satisfies ( ∂

∂t
+ D0/2

)
qt(x)γ−m/2+1/2(t, x) = 0, γ−m/2+1/2(0, 0) = 0.

Hence, similarly we have γ−m/2+1/2(t, x) = 0. Inductively we obtain (2.8). Last, since( ∂

∂t
+ D0/2

)
qt(x)γ0/2(t, x) = 0, γ0/2(0, 0) = 1

we obtain the formula (2.9).

Proposition 2.2 and the identity (2.7) yield certainly the formulas (1.1) and (1.2).

3 On the coefficients Kℓ,[p](P
0) (ℓ > p/2)

Here, our study focuses on the remaining terms γi/2(t, x), i > 0. The operator D(ε)

is expanded formally into

D(ε) =

∞∑
i=0

εi/2Di/2.

It will be obvious that we may develop the proof of Proposition 2.2 to get the following.

Proposition 3.1 There exists a unique sequence of formal sums Ψi/2(t, x) =
∑∞

ℓ=0

tℓ/2Ψi/2,ℓ/2(x) with Ψi/2,ℓ/2 ∈ C∞(U,Cl(T ∗
P 0M)) (i = 0, 1, . . .) satisfying formally( ∂

∂t
+ D(ε)

)
qt

∞∑
i=0

εi/2Ψi/2 = 0, Ψ0/2,0/2(0) = 1, Ψi/2,0/2(0) = 0 (i > 0),

that is, ( ∂

∂t
+ D0/2

)
qtΨ0/2 = 0, Ψ0/2,0/2(0) = 1,( ∂

∂t
+ D0/2

)
qtΨi/2 +

i2<i∑
i1+i2=i

Di1/2(qtΨi2/2) = 0, Ψi/2,0/2(0) = 0 (i > 0).(3.1)

Further, the sequence {γi/2(t, x)}∞i=0 satisfies the conditions.
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Let us review the formulas for the Taylor expansions of connection coefficients and
transition functions due to Atiyah-Bott-Patodi [1, Appendix II] (cf. Nagase [7, (1.3)–
(1.7)]). We will find that the sequence {Di/2}∞i=0 can be computed explicitly by using
only a basic knowledge of calculus added to the formulas.

First, [1, Proposition 3.7 and Appendix II] says that the connection coefficients
ω(∇g)i1i2(∂/∂xj) = g(∇g

∂/∂xj
ei2 , ei1) are formally expanded into

ω(∇g)i1i2(∂/∂xj)(x) = −
∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−1F (∇g)i1i2(∂/∂xj , ∂/∂xj1)

∂xj2 · · · ∂xjℓ
(0),

where we put F (∇g)i1i2(∂/∂xj , ∂/∂xj1) = g(F (∇g)(∂/∂xj , ∂/∂xj1)ei2 , ei1). Second, set

ei =
∑

Vji(x) ∂/∂xj (cf. (2.1)), ei =
∑

V ji(x) dxj .

Then, [1, Proposition 2.11 and Appendix II] says that the transition functions V ji are
formally expanded into

V ji(x) = δji −
∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−2F (∇g)ij1(∂/∂xj , ∂/∂xj2)

∂xj3 · · · ∂xjℓ
(0).

Hence, the coefficients of the Taylor expansions of ω(∇g)i1i2(∂/∂xj), V ji, Vji are all
expressed as universal polynomials made of

Rj1j2j3j4j5···jℓ :=
∂ℓ−4g(F (∇g)(∂/∂xj3 , ∂/∂xj4)∂/∂xj2 , ∂/∂xj1)

∂xj5 · · · ∂xjℓ
(0),

which can be concretely computed easily. For example, we have

V ji(x) = δji +
∑

xj1xj2
−Rij1jj2

6
+

∑
xj1xj2xj3

−Rij1jj2j3

12
+O(|x|4),

Vji(x) = δji +
∑

xj1xj2
Rij1jj2

6
+

∑
xj1xj2xj3

Rij1jj2j3

12
+O(|x|4),(3.2)

ω(∇g)i1i2(∂/∂xj)(x) =
∑

xj1
−Ri1i2jj1

2
+

∑
xj1xj2

−Ri1i2jj1j2

3

+
∑

xj1xj2xj3

(−Ri1i2jj1j2j3

8
+

∑
Rkj2i2j3Rki1jj1

24
+

−
∑

Rkj2i1j3Rki2jj1

24

)
+O(|x|4).

By referring to (2.1) and (2.2), it will be now obvious that {Di/2}∞i=0 can be computed
concretely.

For suitable forms ki(t, x, y) ∈ C∞(R+×Rm×Rm,Cl(T ∗
P 0M)) (i = 1, 2), let us define

the convolution k1# k2 by (k1# k2)(t, x, y) =
∫ t
0 ds

∫
Rm dV (x′) k1(t− s, x, x′) k2(s, x

′, y),
where dV is the standard volume element. (Recall that Cl(T ∗

P 0M) means ∧∗T ∗
P 0M ⊗C

and the product k1(t− s, x, x′) k2(s, x
′, y) is their exterior product.) Then, setting

(q•γ0/2)(t, x, y) = qt(x− y)γ0/2(t, x− y),

we want to show that the sequence {γi/2(t, x)}∞i=0, which is the only one satisfying
the conditions in Proposition 3.1, has the following formula. For the idea, refer to [7,
(1.14)–(1.20)].
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Theorem 3.2 In the case i > 0, there is a well-defined formula

qt(x)γi/2(t, x)(3.3)

=

i1,...,ik>0∑
∑

ij=i

(−1)k(q•γ0/2#Di1/2(q•γ0/2)# · · ·#Dik/2(q•γ0/2))(t, x, 0),

and the sequence {γi/2(t, x)}∞i=0 can be computed explicitly up to an arbitrarily high order
by using only a basic knowledge of calculus.

We will ascertain the theorem after proving a preparatory lemma.

Lemma 3.3 There are finite sum expressions

qt(x)γ0/2(t, x) =
∑
ℓ≥|B|

tℓ(∂/∂x)Bqt(x) · P(ℓ,B)(R),(3.4)

Di/2(qt(x)γ0/2(t, x)) =
∑

ℓ≥max{|B|−1,0}

tℓ(∂/∂x)Bqt(x) · P(ℓ,B)(R) (i > 0),(3.5)

where we put (∂/∂x)B = ∂/∂xB1 · · · ∂/∂xB|B| (B = (B1, . . . , B|B|) and each P(ℓ,B)(R),
which is used in different senses in the two ones (and also in the following), is a poly-
nomial made of Rj1j2j3j4···, Rji, dxk ∧Rji, dxk ∨Rji, etc.

Proof. As for (3.4): By definition,

qt(x)γ0/2(t, x) =
∑
ℓ≥0

tℓxCqt(x) · P(ℓ,C)(R),

where we put xC = xC1 · · ·xC|C| . Together with xiqt(x) = −2t ∂/∂xi(qt(x)), it yields
(3.4). As for (3.5): By definition, we have

Di/2(qt(x)γ0/2(t, x)) =
∑
|C|≥2

t−1xCqt(x) · P(−1,C)(R) +
∑
ℓ≥0

tℓxCqt(x) · P(ℓ,C)(R).(3.6)

Indeed, we have

−
∑

Vi1j(ε
1/2x)Vi2j(ε

1/2x) ∂/∂xi1∂/∂xi2(qt(x))

=
∑

Vi1j(ε
1/2x)Vi2j(ε

1/2x)
{δi1i2

2t
− xi1

2t

xi2
2t

}
qt(x),

which is formally expanded into
∑

k≥2 ε
k/2

∑
|C|=k t

−1xCqt(x) · c(k,C). Namely, the

coefficient of εk/2 has no terms with t−2 because the function
∑

Vij(ε
1/2x)xi is expanded

into
∑

Vij(ε
1/2x)xi = xj formally (that is, all the coefficients of εk/2 (k ≥ 1) vanish).

Accordingly we obtain (3.6) and, hence, also (3.5).

Proof of Theorem 3.2. First, obviously we have a finite sum expression

Ψ0/2(t, x) := γ0/2(t, x) =
∑
ℓ≥0

tℓxC · P(ℓ,C)(R), Ψ0/2(0, x) = 1.(3.7)

The right hand side of (3.3), denoted by qt(x)Ψi/2(t, x), is expressed as

qt(x)Ψi/2(t, x) =
∑

ℓ≥max{|B|,1}

tℓ(∂/∂x)Bqt(x) · P(ℓ,B)(R)(3.8)
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because of Lemma 3.3 and∫ t

0
ds

∫
dV (x′) (t− s)ℓ(∂/∂x)B(qt−s(x− x′)) sℓ

′
(∂/∂x′)B

′
(qs(x

′))

=

∫ t

0
ds (t− s)ℓsℓ

′
(∂/∂x)B∪B′

∫
dV (x′) qt−s(x− x′)qs(x

′)

= tℓ+ℓ′+1(∂/∂x)B∪B′
(qt(x))

∫ 1

0
dσ (1− σ)ℓσℓ′ .

Thus it is certainly well-defined, and (3.8) yields a finite sum expression

Ψi/2(t, x) =

ℓ+|C|>0∑
ℓ≥0

tℓxC · P(ℓ,C)(R) (i > 0).(3.9)

Further, we have

qt(x)Ψi/2(t, x) = −(q•γ0/2#

i2<i∑
i1+i2=i

Di1/2(q•Ψi2/2))(t, x, 0) (i > 0),

and, in general, for a suitable form k(t, x, y) we have( ∂

∂t
+ D0/2

)
(q•γ0/2# k)(t, x, 0)

= lim
s→t

∫
dV (x′) qt−s(x− x′)γ0/2(t− s, x− x′) k(s, x′, 0)

+

∫ t

0
ds

∫
dV (x′)

( ∂

∂t
+ D0/2,x

)
qt−s(x− x′)γ0/2(t− s, x− x′) k(s, x′, 0)

= lim
s→t

∫
dV (x′) qt−s(x− x′)γ0/2(t− s, x− x′) k(s, x′, 0)

= γ0/2(0, 0) k(t, x, 0) = k(t, x, 0).

Hence the first identity in (3.1) holds true for the sequence {Ψi/2(t, x)}i>0. Together with
(3.7) and (3.9), it implies that the sequence {Ψi/2(t, x)}∞i=0 satisfies all the conditions in
Proposition 3.1. By the uniqueness, thus we obtain the formula (3.3).

Theorem 3.2 and (2.7) imply the main theorem:

Theorem 3.4 In the case ℓ > p/2, there is a well-defined formula

Kℓ,[p](P
0) = (4π)m/2

i1,...,ik>0∑
∑

ij=2ℓ−p

(−1)k(3.10)

× (q•γ0/2#Di1/2(q•γ0/2)# · · ·#Dik/2(q•γ0/2))[p](1, 0, 0),

which can be computed explicitly by using only a basic knowledge of calculus.

4 Some computations

It follows from (1.1), (1.2) and (3.10) that the coefficients Kℓ(P
0) can be computed

explicitly. For example, we have the following computations:
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Corollary 4.1 We have

K0(P
0) = 1,(4.1)

K1(P
0) = −

∑
Rjiji

12
= −s(∇g)(P 0)

12
,(4.2)

K2(P
0) = det1/2

( R/2

sinh(R/2)

)
[4]

−
5
∑

Rjijikk

24
−

∑
Rjijkik

3
(4.3)

+
(
∑

Rjiji)
2

432
+

∑
RjkikRjk′ik′

12
+

2
∑

Rjkik′(Rjkik′ +Rjk′ik)

27
.

Proof. (4.1) is obvious (i,e., K0(P
0) = K0,[0](P

0) = 1). Let us prove (4.2). We have
K1(P

0) = K1,[0](P
0) +K1,[1](P

0), and, by (3.2),

∇(ε)

e
(ε)
j

= ε0/2
{ ∂

∂xj
+

∑
xj1

Rjj1ℓk

8
dxℓ ∧ dxk ∧

}
(4.4)

+ ε1/2
{∑

xj1xj2
Rjj1ℓkj2

12
dxℓ ∧ dxk ∧

}
+ ε2/2

{∑
xj1xj2

Rjj1ij2

6

∂

∂xi

+
∑

xj1
−Rjj1ℓk

4
dxℓ ∧ dxk ∨ +

∑
xj1xj2xj3

(Rjj1ℓkj2j3

32

+
∑ Rjj1ij2Rij3ℓk

48
+

∑ Rjj1ℓiRij2kj3

48

)
dxℓ ∧ dxk ∧

}
+O(ε3/2).

Thus we have

D1/2 = −
∑[∑

xj1xj2
Rjj1ℓkj2

12
dxℓ ∧ dxk∧,

∂

∂xj
+

∑
xj′1

Rjj′1ℓ
′k′

8
dxℓ′ ∧ dxk′∧

]
+
,

D2/2 = −
∑[∑

xj1xj2
Rjj1ℓkj2

12
dxℓ ∧ dxk∧,

∑
xj′1xj′2

Rjj′1ℓ
′k′j′2

12
dxℓ′ ∧ dxk′∧

]
+

−
∑[∑

xj1xj2
Rjj1ij2

6

∂

∂xi
+

∑
xj1

−Rjj1ℓk

4
dxℓ ∧ dxk ∨

+
∑

xj1xj2xj3

(Rjj1ℓkj2j3

32
+

∑ Rjj1ij2Rij3ℓk

48

+
∑ Rjj1ℓiRij2kj3

48

)
dxℓ ∧ dxk∧,

∂

∂xj
+

∑
xj′1

Rjj′1ℓ
′k′

8
dxℓ′ ∧ dxk′∧

]
+

+
∑

xj′1

Rjij′1i

2

( ∂

∂xj
+

∑
xj1

Rjj1ℓk

8
dxℓ ∧ dxk ∧

)
+

∑ Rjiji

4
,

where we set [P,Q]+ = P ·Q+Q · P . Consequently,

K1,[1](P
0) = −(4π)m/2(q•γ0/2#D1/2(q•γ0/2))[1](1, 0, 0) = 0,

K1,[0](P
0) = (4π)m/2(q•γ0/2#D1/2(q•γ0/2)#D1/2(q•γ0/2))[0](1, 0, 0)

− (4π)m/2(q•γ0/2#D2/2(q•γ0/2))[0](1, 0, 0)

= −(4π)m/2(q•γ0/2#D2/2(q•γ0/2))[0](1, 0, 0) = −
∑

Rjiji

12
,

which imply (4.2). Similarly but by a rather lengthy computation, (4.3) is shown as
well.
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