Dirac operators on the Fefferman spin spaces
in almost CR-~geometry

Masayoshi NAGASE

Abstract

A Spin structure on a contact Riemannian manifold carries a Spin structure on a
circle bundle over the manifold. We have interest in the Dirac operators associated
with those structures. In terms of a modified Tanno connection, relations between
them are studied and some kinds of their explicit expressions are offered.

1 Introduction

Let (M, 0) be a (2n + 1)-dimensional contact manifold with a contact form 6. There
is a unique vector field £ such that £|0 = 1 and £]df = 0. Let us equip M with a Rie-
mannian metric g and a (1, 1)-tensor field J which satisfy ¢g(&, X) = 6(X), g(X,JY) =
—dO(X,Y) = -X(01))+Y(0(X))+0([X,Y]) and J?°X = —X +0(X)¢ for any vector
fields X, Y. If the contact Riemannian manifold (M, 6, g, J) has a Spin structure, then it
carries canonically a Spin structure on a circle bundle over the manifold (cf. §3). The to-
tal space denoted by /F (M) with the Spin structure is called the Fefferman spin space.
We notice Petit’s study ([13]) on Dirac-type operators, Lichnerowicz-type formulas and
vanishing theorems on M, and Baum’s study ([3], [4, §2.7]) on the Dirac operator, the
twistor spinors and the holonomy theorem, etc., on y/F (M) in the case J is integrable,
e, [I'(Hy),T'(Hy)] CT'(Hy), whereweset H =kerf, Hy = {X € HC | JX = +iX}.
The author wishes to contribute to those investigations by applying an idea employed
in a series of our works [9], [6], [10], [11], [12]. In this paper, our study focuses on the
Dirac operators on M and +/F (M) consistently with no assumption that J is integrable.
Relations between them are studied and some kinds of their explicit expressions will be
offered.

Here let us explain the idea. In CR-geometry, in the case J is integrable (as in [3])
the Tanaka-Webster connection will be the main tool, and in the case J may be non-
integrable (as in [13]) so will be a generalized one *V introduced by Tanno ([14]), called
the Tanno connection in this paper, defined by

VY = VLY - %H(X)JY —OY)V%E + (VLO)(Y)E,

where VY is the Levi-Civita connection of g. As stated above the latter case is considered
in this paper, and as the main tool we employ not the Tanno connection but a connection
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modified as follows, however: In general, the action of the Tanno connection does not
commute with that of J. In fact, Tanno indicated

(VxJ)Y = Q(Y, X) := (VL)Y + (V40)(JY) €+ 0(Y) V&

and showed that the tensor Q vanishes if and only if J is integrable. We consider now
the hermitian part #V, called the hermitian Tanno connection, that is, we set

. Vx(f&) Y =f§ (f € C®(M)),
WxY ="VxY - ZJQY,X)=1¢ 1, .
2 5( VY —J VXJY> .Y e I(H),

so that #V.J = 0 obviously. (Note that the connections *V, #V and the Tanaka-Webster
connection coincide if J is integrable.) The commutativity rather simplifies investigation
and computation, and there seem to be many results in the case of integrable J which will
be generalized to the case of general J just by changing the Tanaka-Webster connection
to the hermitian Tanno connection.

In Theorem 2.3 (or (2.16)) we express the Dirac operator on M explicitly in terms
of the hermitian Tanno connection, and accordingly we deduce another type of explicit
expression in Theorem 2.6 (or (2.18)) by utilizing the exterior covariant differentiation
and its dual. The hermitian Tanno connection works effectively also in the study of
the Fefferman spin space. The merit to be mentioned first is that the curvature of an
Ehresmann-type connection of the bundle /F(M) — M, called the Fefferman con-
nection, can be expressed explicitly in terms of the pseudohermitian Ricci and scalar
curvatures Ricuv, sV of v (cf. (3.2)). Consequently we obtain explicit expressions
(Theorems 4.3 and 4.4) of the Dirac operator on /F(M). The author feels it difficult
to reach such results without the concept of hermitian Tanno connection.

2 Dirac operator on the contact Riemannian manifold

In this section, for the sake of later use, we examine mainly the case where M has a
Spin structure. It is easily generalized to the case M has a Spin® structure, which will
be mentioned briefly in §2.1.

First, let us recall quickly basic properties of the connections *V, #V and explain
notational rules. Refer to [14], [9], [12] for more detailed explanation. We have *V6 =
VO =0,"Vg=iVg=0,T*V)(Z,W)=0,T*V)Z,W)=ig(Z W), TEV)(Z, W) =
[(J,J(Z, W) /4 == (=[Z, W] + [JZ,JW]| — J[JZ,W]| — J[Z, JW))/4, T(tV)(Z,W) =
ig(Z,W)¢ (Z,W € T'(Hy)), where T(*V), etc., are the torsion tensors. Obviously we
have T'(*V) (&, X) = T(*V) (€, X), which we denote by 7X. Note that 70.J + J o7 = 0.
Next, a local frame &, = (£1,...,&n, €1, &n, &0 = &) (€a := Eo € H_) of the bundle
TM®C = H;®H-®C¢ is always assumed to be unitary, i.e., 9(§a,&s) = 0, g(&a,§5) =

Sap (1 < a, 8 < n), and its dual frame is denoted by 6°* = (6',.. Lm0l o 00 = 0).
Setting esn_1 = (£u +&a)/V2 and €2y = Jeaa—1 = (€5 — €4)/v/—2, we have a positively
oriented orthonormal frame, or an SO(2n+1)-frame e = (€1, €2, . .., €2p, €9), and denote
its dual frame by e®* = (e!,e?,...,¢e%", ¢e%). As usual the Greek indices a, f3, ... vary

from 1 to n and the block Latin indices A, B, ... vary in {0,1,...,n,1,..., 7}, so that

T=Y L@ Y Gee - (7 =1]),
Q= 0’20703 +> Lo’ 0 (QF, =-QJ, =, — Q).
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If we set *Vép = > &a - w(*V) 3, FVER = 3 €4 - w(*V)4, then

w(*V)§ =w(V)g, w(*V)§=w(V)3, w(*V)%@v):—%Q%w w<*V>%<fﬁ>:§ 5

and the others vanish.
Now, we suppose that M has a Spin structure

(2.1) p:Spin(TM) — SO(TM),

where SO(TM) is the principal SO(2n + 1)-bundle consisting of SO(2n + 1)-frames of
T M and Spin(T'M) is a principal Spin(2n+ 1)-bundle together with a 2-sheeted covering
map p. This naturally reduces to a Spin structure of H = ker 0,

(2.2) pr : Spin(H) — SO(H).

Indeed, we embed SO(H) into SO(T'M) by the map (ey,...,ea,) — (e1,...,€m,6€0 =
¢) and set Spin(H) = p~1SO(H). The almost hermitian vector bundle (H,g|g,J|x)
carries, on the other hand, a canonical Spin® structure (e.g. [7, Example D.6]), which is
related to (2.2) as follows: The canonical line bundle

K =AMy ={we A" T*"MeC| Xjw=0 (X< H.)}
= NP (M) = {we AN"T*M ®C| X]w=0 (X e H_ UCEt)}
has a globally defined square root K'/2 so that the canonical one is expressed as
(2.3) p%r : Spin(H) xz, U(K™Y?) = SO(H) x U(K™).

Here it will be proper to regard K as /\EO(M ), and U(K~1), etc., are the principal
U(1)-bundles associated with K1, etc. Referring to [7, p.395], we have the associated
spinor bundle

(24) 85 =8y @K V2 =A% (M)={weNT*"M®C|X|w=0 (X € H. UCE)}
(B = Spin(H) Xa,, A"C")

with the Clifford action of CI(H) given by

(2.5) €0 = V20%A,  Eg0=—V20%V,

where Ay, is the standard spinor representation and 6%V = £5] is the interior produc-
tion.

The structure (2.3) naturally induces a Spin® structure of TM with the determinant
line bundle K1 = (A"+L0 (A1) ~?

p° : Spin(T M) xz, U(K™'?) = SO(TM) x U(K™).

From now on, let us regard (2.4) as the associated spinor bundle with the Clifford action
of CI(TM) given by (2.5) and

go= ()™ (on AF(M) (C %))
(e.g. [13, Propositions 3.1 and 3.2]). Accordingly, let us regard
(2.6) By =85 @ KY? = ) (M) o KY/?

naturally as the spinor bundle associated with (2.1) as well. Then, obviously we have
the following decompositions.
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Proposition 2.1 (cf. [13, p.234], [3, Proposition 22]) We have

$H—$H®$H—@$" 2,

q=0
Bh = {we By |i€ow=Fw} = AF"VM (M) @ K12,

7;12‘1 —{weﬂH\zdﬁow—(n—Qq)w}—/\ (M) @ KY?,

where the Clifford action of df = i3> 0% A% = > 221 A €2 is defined by df o w =
Yesa—10€0w=—i(n+Y & o0 )w=—i(n—2> 0" NOTV)w

The purpose in the following is to offer two kinds of explicit expressions of the Dirac
operator D?H of (2.1). First, we recall

. 1
w(vSH) :w(v(SH-Vg)) = Zzeloej o- w(v 6. = Z&Bong w(vg)
DSH— ($1:V9) ZekOVSH_ V?H+Z§WOV?$+Z§§OV?;{7

where w(V?##) is the connection 1-form of the spinor connection V## of the bundle
By (= Spin(TM) xa,,,., N*C"), and w(V9;e,), etc., are those of V9. By definition,

VLY =*VxY —g((t + %J)X,Y)ﬁ
+0(Y)(r+ %J)X +0(X)(r+ %J)Y —0(X) 1Y,

which implies the following formulas.

Lemma 2.2 We have

Let us consider the connection V(##:*V) given by

AV)y 1 A
W(V(SH )) =7 E :53 040 -w(ﬁV)B
1 [e% 1 a
= ZE fgoﬁao‘w(ﬂv)ﬁ‘FZE &pobao-w(*V)§.
Then we have the first expression.

Theorem 2.3 We have

S _ ($n#v) _ L
(2.7) DH—chovgéH —4§od¢90.
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Remark. The following proof says that the formula with V(## #V) replaced by
V#rV) given below also holds, which has been shown in [13, Proposition 3.4].

Proof. Let us consider another connection V##:"V) given by

>k 1
FV)\ *v7) A
w(VITV) = 2% epotac - w(*V)g.
Then, Lemma 2.2 implies

w(VELVY _ (v FrTV))

1 1 ; 1 . _
P UANATDWIELR STt EED TR E Ut
Y gc o {w(VET)Ee) —w(TE D) )} = — o dbo.

Further, sinceiw(V(SiH:*v)) = w(V(SH:uV)) + % S égoéyo- Q%ﬁm — é S é50&a0- ngm
and Qg’7 + Qiby)a + 9! 5 = 0, obviously we have

& 0 {w(TEV)) (&) —w(VEHV)) ()} =0
& 0wV &) — w(VERT)(
D& 0 {w(VETY)(6) — w(VERTT)(E)) = 0.

Thus we obtain (2.7). 1

Next, we investigate the Dirac operator on 8%, from which we will deduce another
expression of D#H. To the line bundles K—1, K~1/2 attach the unitary connections
AKT = SwV)e = Sw(*V)e, AK~Y?) = %AKﬁl, and define the connections
VI = vEVEAKTY) and VERFVAETY) of go — g @ K-Y2 by

w(VEVAET)Y (v 1 A(K12),
etc. Then, obviously Theorem 2.3 yields that the Dirac operator
1/2y) e 9 A(K—1/2
DSH — D(Svaq A(K~ Z‘g vé*zH ( )
is described as
(2.8) D% =3 ¢co v FVAK 1/2))_2506500.

Proposition 2.4 The connection VEEFVAET) coincides with the hermitian

Tanno connection ¥V itself, i.e., VEREVAET) 8y op By = A(J)L}*(M)-

Proof. We have
*Zgaofozo Wﬁv Zﬁaofao W(ﬁv)g
D WS (=07 VO N 0T AO™V)

- ~ 1
wV)2 - 0¥ NG — 3 > w(v)g

N

I
(]
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and

1 1 -
12080 wlVIG+ 1D G otao-wliV)]
a#p a#p
1 5. .= 1 = 7 ~ _ =
=5 D wlVF- VO A= D w0 A0TY =) w(V)g 0T A7V
aFp a#fB a#p
1
Let Oy : Q?L}*(M) = F(/\%’,*(M)) — Q%’,*H(M) be the exterior differentiation d :
Q%’,* (M) — T(A*H1T*M ® C) followed by the projection to Q%}*H(M) and 9% be the
formal adjoint with respect to the natural inner product. Then, by Proposition 2.4 and
[9, Proposition 1.3(Weizenbock-type formula for the Kohn-Rossi Laplacian)|, we have

c .4 —1/2 _ _
wa o V;H' VAE?) \/iz 07 A ﬁv& _ \/§8H,

c .4 -1/ _ —
& o VESH. VAK2) _ﬁzmv ﬂvgV =203,

Y

which, together with (2.8), imply the following.

Proposition 2.5 We have
c = = 1
(2.9) DSHZ\/§(3H+(9E)+§OﬁV5—Z§od90.

We have twisted D## with the unitary connection A(K~/2) of K~1/2 to get the
expression of D?#. Hence, if we twist it now with the connection

A= AKY?) = —A(K~Y?) = —% > w(*v)a

of K2, we obtain an expression of D##. That is, we define 5}}‘ : Q%’,*(M; K/?) =
F(A%*(M) ® KY?) Q%}*H (M; K'/2) to be the exterior covariant differentiation d :
Q% (M; KY2) — D(A*HIT*M ® K'/2) followed by the projection to Q%! (M; K1/2),
and define 5ﬁ* to be the formal adjoint. Note that, considering the twisted hermitian
Tanno connection

VA =1V + A,
we have
(2.10) 0= O ANVE, o ==Y 60 VIVE
Theorem 2.6 We have
I 1
(2.11) DSHZ\/Q(aé—I—aH)—l—{onV?—Zfono.

Remark. A similar formula in the case J is integrable has been mentioned in [13,
p.237].

Last, let us offer Lichnerowicz-type formulas.
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Theorem 2.7 On Q% (M; K'/?): We have

(2.12) 0% == 97705 + 0707
_ 1 VA IVA _ivA Un—2q) sou 1 v
—_52( €a WVeen) T g Ve TS
A#£0

1 A AP i o 1 o A & B i 7
+§ZQﬂBQ5)\'9M/\9 \/—gZQﬂ;QﬁV'Q NOPNVOHN OV

where we set s'V = ERicuV(ga,ﬁa) = Zg(F(ﬁV)(ga,ﬁa)gg,ﬁg), called the pseudoher-
mitian scalar curvature. And we have

1
(213)  (DFr)2 = =3 (Vv - Vé%:sg) PR

i(n — 2 —2¢9)% 1
z—Z(ﬁVMv v £A)+MﬁVA+u+,3ﬂv

2 ¢ 16 2
Yo 6% NGV — ZQ 5 QB OTNOPVOIAGTY
Tl e i)
£ (- { ﬁvf‘ﬂﬁv*‘ —zF(“VA 0)(€.6a) }

+529@A9M {30538 =3 (v, Q5070 07V |
—%Zé)@veﬁv {35/ Ve +3 (Ve Q)5,0" N7V |,
where F(*VA,0%)(€4,€R) is the curvature of *VA acting on Q(;}*(M;Klm), i.e.,
F(VA,0°)(6,6) = > F(V)LE &) 0" AN O7V + F(A)(E, &)
=S Ve -t R e by + S {0V - LY es )
F(VA,6%)(¢,60) =ZF V)& Ea) 0F N OV + F(A)(E, Ea)
=3 {eveni+ S 37 Qky}eﬂAeyv—§Z{ﬁv@ ZT %, }-
Proof. We refer to the calculation of the curvature F(*V) in the proof of [12,

Proposition 1.2]. As for (2.12): By (2.10) and in a way similar to the proof of 9, (1.15)],
we know

0 ==Y (ﬁvf‘ A VWE ‘. ) —iq'VE = 0% NPV F(IVA,0%) (Ea, £5)

i(n —2
-3 3 (Vs v, o) - O

- 1ZF V6w £a) 0PN 07V — S F (V) (En €5) 0% A 07V 7N 07

3 ZF )(€ar€a) = > F(A)(Ea,&5) - 05 NOP V.
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In addition, it is easy to show

D F(V)(Ear6s) - 09NV ORNGTY =3 F(V)E(Earba) - 0PN 07V

1 A iA po 1 a_ A an pBy pi A pv
+§Z%Qau-9’%9 \/+§ZQ,@;QBV-9 NN,

S TPV (s Ea) 0PN 07V

o 1 5 3 o

— I vAY T v a OX Al v
= > PV &) - 007V + 7> {05,Q), — 4 Q0P A 07V

Hence, we have

1 i(n —2q)
A b ¢ toA
oA + 2A§#O (v ive, - Vi, )~ =L vy

:_%Zp(ﬁv)g(gmgy).eﬂ/\eﬂv _éz{ ‘x’iny—Qﬁ&Qia}-&ﬂAe”v
—EZQ‘—L—Qéy-Gﬁ/\H”\/—EZQE‘;Q%,,-G&/\HB\/H’?AOE\/
+ = ZF )(€arEa) = > F(A)(Ea, 5) - 05 N OV
= o S FA) € ) — 5 3 {RICV(E,6) + 2P ()6, 6) ) 67A 07
+ §ZQ25Qg>\-0“/\ 6"V — éZQg;\QéV‘Qa/\ AN
= isw%—%ZQQBQZA-Qﬁ/\ 0" v —éz%géy-eﬂ LN,

The last line follows from 2F(A) = 2dA = ~Ric’V. Next let us show (2.13). (2.11)
implies

i(n — 2 —2¢)?
(DSH)Q _ 25«;} _ ﬁvgltivgl _ M IvA 4 u (Q%q N Q%q)

2 ¢ 16
_ _ 2~
COnEI(VAS - o) + (0 ad (o > ol
V2

HCUNEI(VAB - aVE) - (T A @ e
+2005)° (@ > Q)
+2007)7 () — Q).

As for the line (Q%¢ — Q%7): By (2.12), it is equal to

T R S
+ = Z Q5% 07N 07V iz Q203,05 A7V O N7V
As for the line (Q%7 — Q%7™): Since
OAIVA = 307 A IVAIVA =S 07 A -{ﬁvf‘ﬁvf‘_ + F(ﬂvf‘, 0°)(Ea, €) + ﬁv{g&ﬂ}

= IVAO =D 0°N-FOVA0°) (6, &)+ ) 0% NIV,
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it is equal to
(-1)%/2 (1 o — Zea NPtV 4D 0% NI F(VA, 9‘)(5,@))
=30 A { A —itvA +z’F(ﬁvA,9°)(§,§d)}.
As for the line (%7 — Q%971): Since
O iV = = 0%V IvAIvE
= = >0V {EVAIVE + POV 0%) (6a €) + v[gmﬂ}
— ﬂvAaA* Zeav F(VA0%) (¢, ) 29“ Tg ;
it is equal to
(-1)7v2 ( ! ot + 29@ VitV =) 0%V i FEVA,0°)(E, ga))
=S 67y { VA IV, — i FEVA (6 ) |

As for the line (Q%7 — Q%77?): We have calculated (9x)* in [9, Corollary 1.4], which
implies that it is equal to

ZeaAeﬁA T e — D vi” Ve Qn gap gipgin gy
{ZQ‘“ 0% N7 A-EVE Z(ﬁvng)%ﬂ-G@AaﬁAeﬂAeﬁv}.

As for the line (Q%¢ — Q%7?): Similarly it is equal to

(v .
——Zea\/e VIV Neats) — ZZ 5“ VOV Or AV
—5{—Zggveaveﬂv. v&—Z(ﬁvgﬂg)gy-9%9%9%9%}.

Thus we get the formula (2.13). 1

2.1 Dirac operator for general Spin¢ structure

In this subsection, we suppose that M has a Spin® structure with a determinant line
bundle L

(2.14) p(Ly : Spin(TM) xz, U(L'?) — SO(TM) x U(L).

We want to show that the associated Dirac operator D?) has similar expressions.
Compare the formulas (2.16), (2.18), (2.19), (2.20) for D?® in the following, with (2.7),
(2.11), (2.12), (2.13) for D?5.

The structure (2.14) reduces to the Spin® structure of H

(2.15) Py + Spin(H) xz, U(L'Y?) — SO(H) x U(L).
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Let us employ the (locally defined) bundle Spin(H) to describe the canonical Spin®
structure of the almost hermitian vector bundle (H, g|g, J|) as

%y 2 Spin(H) xz, U(K~Y?) = SO(H) x U(K™1).

Then, £ := K'/2® LY/? is a globally defined square root of K ® L and the spinor bundle
B(1) associated with (2.15) is expressed as

Bl =Bu@ L' =850 L=N(M)aL
where 85 = Spin(H) xa,, AN*C" may be locally defined. As before, let us regard

it as the one associated with (2.14) naturally, and take a unitary connection A% of
L. We attach the connection A(L/?) = %AL to L'/? and consider the connections

v — V(S(CLVW’A(LW)), ctc., on () defined by

W(V(SE‘M:V!’,A(LUQ))) _ w(v(ﬁ(mivg)) + .A(Ll/?)’
etc. Then, by (2.7), the Dirac operator

c c . PN VA 1/2

¥y = P TALD) g oy VAR
is expressed as
ge ($)FVALY2)) 1

(2.16) D7) _chovgé (Eodio.

Next, let us consider the unitary connection A(L) = A(K'/?) + A(L'/?) of £, which
provides the bundle SEL) = /\%’,*(M ) ® £ with the twisted hermitian Tanno connection

WAL =17+ A(L).
Then, we have

v (5 FVALY2) _ gAL)
Further, if we set
(2.17) o =367 A _ﬁvé(ﬂ)’ AN SV ﬁvg(q
then we have another formula

(2.18) D% = V2 (0 + o) + 0t - % godfo.

Note that, as before, the operator éﬁ(ﬁ) : Q%’,*(M;E) — Q%*+1(M;E) given at (2.17)
can be interpreted also as the exterior covariant differentiation dA(£) : Q(I]{*(M L) —
T(A*HT*M ® L) followed by the projection to Q%’[*H(M; L) and éﬁ(ﬁ)
the formal adjoint.

* . . .
coincides with
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Further, we have also Lichnerowicz-type formulas: On Q%’,q(M ; L), we have

A(L A(L A . A(L
(219)  Op? = =3 (VOO w0 ) gt

=30 N0V { POV, €6) 07 A 67V + FIA(L))(6n,€0) |

1 i(n —2q) 4
_ 1+ ﬁvA(E)ﬂv.A(E) ﬁv A(L) q V.A(E)
- 9 Z ( §a £ ) +

Ve €
AZ0 fana 2
+ Zs -8 § F(AL)(&4,6,) 0PN 07 v

+ < ZQﬁQﬂAHNAGV §ZngQﬁyeaA95v9ﬁ/\0”v
and
(2.20) (D)2
51y 5 5 1 1
= > (Ve Ve Vv%) + 350V + L Y F(AM)(EnEp) €x0Ep 0

; 2
_ N (¢ (0 g0 i(n —2q) y_aw) | (n—2q)
a Z<V V”V5A6A>+ 2 Ve TG
1 1 L vy
Tyt ZF (A5)( @nsuww
1
+fZQ 5Q0 0N 07V — ZQ/\QBVQQ/\W\/H“/\H”
0% A (12 {”V —iVAD i PEVAD, 0%)(¢, ) |

+Zea qf{l VA itV AD i P(VA®, 07) ¢ 6}
+ 5207 n 0T A {05 VA = (Ve Q05,070 07 v |
Sy {308 VA 13 (v, 95, 7 o7 v ),
where F(!VAKL) §%)(£4,€p) is the curvature of #{VAX) acting on Q%’[*(M; L), ie
FEVAL 0°)(€,6a) =Y FEVIEE &) 07 A 07V + F(A(L))(E, &)
_Z{ (Ve,7) _72 e LN
F {0V - L g+ SR (e ),
F(IVAD 0°)(¢,&a) = ZF ("V)L(E, &) 07 A 67V + F(A(L))(§, &a)
:_Z{ vgu 5> Q,\V}H“/\H”
-3 Z (Ve + L o)+ L Pb) (6 &),

3 Spinor bundle on the Fefferman spin space

As in §2, we suppose M has a Spin structure and consider the associated globally de-
fined square root K1/2 = /K (M) of the canonical line bundle K = K (M) = A"tL0(M).
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In a way similar to the construction of the ordinary Fefferman space for K (M) (cf. [5],
[8]), Baum ([3, §5]) constructed the Fefferman (spin) space for \/K (M) in the case J is
integrable. It is easy to generalize it to the case of general J (cf. [11, §2], [1, §6]), just by
changing the Tanaka-Webster connection to the hermitian Tanno connection, as follows:

We set \/K(M)O ={wv € /K(M) | wV # 0} and consider the canonical U(1)-bundle

Vi VEQM) = VK(M) /Ry — M.

Given unitary frames 6°, there are the trivializations

(3.1) VAT U) = U [0,2m), (/040 A A (p) - 5 (p,OVY)

and the bundle has an Ehresmann-type connection i(n + 2)ov € T'(u(1) @ T*/F(M)),
called the Fefferman connection, given by

1 1
V=" v g vy — 2
o n+2{d€) + 2(z§ w(tV)g
whose curvature F(i(n + 2)oV) is described as

F(i(n +2)oV) = d(i(n +2)oV) =i(n + 2) V7 F(aV),
(3.2)

i id(s’V
F(oV) = m(RiCnv + M) = F(oV) € F(/\QT*M),

where Ric'V is the pseudohermitian Ricci curvature (cf. Theorem 2.7). Via the trivial-
ization (3.1), the horizontal lift of X € T'M is written as

i’V O(X)
2(n+1)
and the dual frame of the local frame (/7 0, ... /7 0", /7T 0L, ..., /7 0" J70,0V)

1S

(3:3)  (VIbls - s VIpns VIu&ts - Vg, N 1= V&, 5V = (n+ 2)9/00V).

Note that the horizontal and vertical components of the bracket [\/73,X, /7y Y] are
expressed as

VA X VT Y I = VERIX Y], VX VR v = —F(oV)(X, Y) 5.
Now, let us equip the Fefferman space /F (M) with the Fefferman metric
W = (Va60" @ VT + Va0® @ VT 0Y) +A(VT 0 @ oV + oV @ V'),
i.e., a Lorentzian metric of type (2n + 1,1). This carries canonically a Spin structure
pry/rn * SP(TVF(M)) — SO(T/F(M))

as follows: Here SO(T\/F(M)) (= SOo(T\/F(M))) is the connected component of the
set of SO(2n + 1,1)-frames to which the frame

VALK = X - %{ S wv)a(xX) + Loj00v

N+XV N-%V
2v2 7 2V2

(34) (317 <oy 820415 52n+2> = (\/7?;-[617 ERE} ﬁ;{62n7

)




Dirac operators on the Fefferman spin spaces 13

belongs. We embed /7 SO(H) into SO(T\/F by the map which sends (P, (eq,
-»€2n) /7(py) to (3.4) at P, via which SO(T\/F = /T SO(H) X ine. SOo(2n+1, 1).

We define now Spin(Ty/F(M)) to be /7" Spm( ) Xine. Sping(2n + 1, 1).

For concrete calculation Baum ([3, §2], [2]) introduced a realization of the spinor
representation Ag, 111 of Spiny(2n + 1,1). Here we want to adopt another one, which
will be more suitable to relate the Spin structure of y/F (M) to that of M.

On an irreducible representation of the Clifford algebra CI(2n + 1,1) =
CIUR>™ L (e1,...,eam,e05€) 1 ejoej = —1, eoe =1)®C: We recall the standard
representations (e.g. [7, (5.27) and (4.0)])

n: Cl(2n) = CLUR®™, (e], ..., ¢eb,) e} oe; = —1) — End(A*C"),

r1,1 ¢ Cl(]-v 1) = CZ(RLla (elllaglll) : elll ° 6/1/ = _17 8/1/ ° Elll = 1) = R(z)

6’1/|—>01:<_01 é),g%o—z:@l (1)),8/1/06/1/»%03: 0 ‘01>

to get the irreducible one
ranii1 s Cl(2n +1,1) = Cl(2n) ® CU(1,1) *"S ™! End(A*C" @ C2)
(ej o ej@efoe] (j>1), ep 106, e 2 1®eT).

Let us decompose the representation space Sop41,1 := A*C" ® C? into

(35) S2n+1,1 = S;?”H*l,l ) 52:1+1,1,
Son11 = {¢ € Sont1,1 | T2n41,1(i"€1 0 0€ean 0€90€)p = i¢}
L (1 1 /1 1 /1 1 /1
=55 @ = ST ® —= —03)— S
o 7s() @ ke 5(l) () -2 (d)
= S;,:n @ S;; = SQTL?
Sétn = {¢ c /\*CTZ | TQn(inel 0---0 eQn)’l,ZJ — idj} — /\O,even/odd(cn‘
Then, since ron+1,1(€5), r2n+1,1(€) : Szj;“,l — SQJFnH,l, the spinor representation Agy, 411

= ron41,1|9ping(2n + 1,1) splits into the sum Ag,y11 = A;@HM ® Ay, 1 via the
splitting (3.5).

On the spinor bundle 8 = %(T\/F(M)) with splitting (cf. [3, Proposition
18])0 We have
+ .= Spin(T\/ F(M)) x AL . 2n+1 1= \F SH ¥ \F Bl = \f .y

which, we want to emphasize, are, thus, identified with the pull-backs of the spinor
bundle 8 (cf. (2.6)) of (2.1). Consequently the spinor bundle % is identified with the
sum

(3.6) B=Vr8y®Vr 8y
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and it is obvious that the Clifford action of T\/F (M) on the left hand side can be read
on the right hand side as

Ve o (p,1h) = (=v/Tyej 0 o, \/Tye; 0 1),

v 5
(3.7) N;\/? o (@, 9) = (=1, 9), NQ\/? o (p9) = (=¥, —9),
hence, = o0 (6, 4) = (—,0), =z 0 (9,18) = (0,
) 2\/5 ()O? 9 ) 2\/§ ()Dﬂ 7()0'

From our realization, for example [3, Proposition 22| will be obvious: It says that
B has the decompositions having appeared in Proposition 2.1, and, in particular,
VT8Y = VT KY2 T8 = Vi ( /\%{n (M) ® K'/?) are trivial line bundles with
global cross-sections ¥. given by

FOD) 3wV =0 A 01 A A 07 (p) - 7 (€ KV2),
Pi(wV) = [wV,wV] € VT K2,
G (wV) = [wV, (0N A A0 6720 @uwV] e VAT (AT (M) @ KY/?).

4 Dirac operator on the Fefferman spin space /F (M)

The spinor connection V# for the spinor bundle 8 is defined by

1
(4.1) w(VS) =35 Z €€ h\/(V}Nsé, Sk) 8¢ 0 S) 0
k<t

= > iw(vh‘/)g Vs o Vyéa o

A,B#0
N+3xVv
+ Z Vh\/ v (@] f?—[ﬁA o
4702 NE No2v2
N-%V
- Z w(VA o Vmytao,
2 T Ty
where e = hV(sp,s0) = £1 (cf. (34)), w(V")g = WY(V"VT5€p, VTya) and
W(Vh\/)(ANE\/) = hv(V vh Ni2¢, fﬂﬁA) The Dirac operator is given by
+
D? = Zejsj onj = Z\/?r;_lf,y Oviﬁﬁ& +Z\/7>r;_[§ﬁ OV%;{&Y
N+ 3V N —-%V
N oV
VR Y R

The purpose of the section is to offer their explicit expressions.

First, we will calculate the connection form w(Vh‘/). In [11], the author calculated
that of the Fefferman metric of the Fefferman space for K(M). The idea adopted
there is effective also here. That is, since VY is invariant under U (1)-action, it
descends to a connection /7, V" on M, which is well-defined by (v/7, V") Y =

VT, (V}\%* Xﬁ;}Y). And we have the following.
H
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Lemma 4.1 (cf. [11, Propositions 3.1 and 3.2(1)]) The torsion of ﬁ*vh‘/
vanishes and we have

(42) (VEIM)xY = Vx¥ 4 (X, JY)E+0(V)rX
— 000 (F7Y (V) + F(ov)(Y, ) €) = 6(V) (F7 (X) + F(oV)(X,€)€),
where FoV(Y) is the vector defined by g(Z, F°¥(Y)) = F(oV)(Z,Y) for any vector Z.
Set (vEV")ep =X €a - w(Vm, V)G, Then w(va, V)3 = w(y7, V)4 and
WV V)G = w('V) + F(oV)(€s,a)0,
w(VT V)G = w('V)G + F(oV) (88, €a)0,
(VTN = 3 0%,
wVTI"Y)g = =" FloV)(Ean &)07
=3 (FoV) (G &) = 72)07 = 2F(0V) (€4, )0,
w(v/m, V")) = 0.
Proof. As for (4.2): By definition, we have
g('VxY, Z) = g(V4Y, Z) = g(0(Y)7X, Z) + g(g(7X,Y )¢, Z)
o] - 90X 7Y.2) — g(0V)IX, 2) ~ 9l9(X, TV )6 7) ).
Hence, for a vector Z with Zg := 0(Z)¢ =0,
I(VEV)XY, Z) = W (VL VYV 2)
= AVBER (VTY N Z) + VTR W (VT X T Z)
— VT ZDY (VT X T3 Y ) + WY (V3 X, T Y |V Z)
+ ww;;z VIR VTRY) = WY (VX VY VT 2) |

= 9(V4Y, 2) + 3 { 29(X0,Y0) ~ 9(12. X1, ¥o) — 9(Xo,[2,Y])}

F(oV)(Z,X)0(Y) — F(oV)(Z,Y)0(X)
= g(VY, Z) + { g(0(X)JY, Z) — g(0(Y)IX, Z)}
X)

— 0(X)F(oV)(Z,Y) = 0(Y)F(oV)(Z,
=g("VxY,Z2) +0(Y)g(rX, Z) = 0(X)F(oV)(Z,Y) = 0(Y) F(0V)(Z, X)

and
4g(VA V)XY €) = WY (VI VY, 5Y)

= S VTR (VY 5Y) 4 VY I (VAR X, )
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— SV (VX VY ) + WY (VX VT Y] V)
+ Y (Y, VAR XL VY ) = hY (VX VY V) |
- 2{X9(Y) +YO(X) +0(X, Y])}
=49("VxY,§) —29(J(X — Xp),Y) =49("VxY.,§) — 29(J X, Y).

Thus we get the formula. It is easy to check T(ﬁ*vh‘/) = 0. The formulas for
w(y/7, V") are easily deduced from (4.2). 1

Proposition 4.2 (cf. [11, Proposition 3.2(2)]) Denote the frame (3.3) by (Wi,
Wi, W, Wapt1) and set V}NWB = > Wy - w(Vh\/)g. Then, w(Vh\/)

(vh“) (0:=0,2n+1:=2n+1) and
w(VM)G = Va'w(VE VY )E +i 200V, w(VM)G = VA w(Va V)5,
WV = VEW(VE M) WV = V()
(TN = - VEWET, wl(V Yy = 4V VT,

S

hV\(N) _ WY\ (2Y) hV\(N) h\(EY)
w(V )(N) =w(V )( ) =w(V )(2\/) =w(V )(E” =0,
where we put w(Vh\/)%N) = w(Vh‘/) (V}N)(Z\/) (V}N)QB”Jrl etc.

Proof. We have
(V)G (VAge) = V(Y0 o VTngs, VTnéa)
= VT g (VT e s, ;s@) = VT w(Va. V)5 (Ec),
W(VM)G(SV) = WY (VB VT3s Vita) = WY (V. o SV, V/mha)
= — WY (VI VTias BY) = 29(J6s. &) = 2i0ag,
which yield the formula for w(V")3. The other ones are shown similarly. .

Now, by (4.1) and Proposition 4.2, the connection form w(V?) is described as follows.
Theorem 4.3 We have

w(VHWVmE) = Y 5 LN e YA(E4) VT3l 0 VTya ©

AB;AO
iv2 N V2
Ty s 0 VG © §4ﬁ (Fov)ea &) - )2 50 Ve
w i N+3v = L T dl o
(V7)( o )—i2\[fd9
+ 3 gV (o V>%<f)+f(0\/)(€g7ﬁg>> VT 0 VEa o
AB;éO

—Z*\/?*f V)(€a, )

o \/Tyéa0
o \[ H
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and w(V?)(V713,&) = w(VP)(\/75,&,), where we set /T dfo = —i(n + Y /Tpa ©
VTy€a o) (cf. Proposition 2.1).

Proof. We have

w(VP) (Vs = Z ﬁw )3(&) Vytn o Vaya o

AB;&O
—iv2 . \N+3%V
I B NG %
v
S LE L (vt - A,)N;ﬁ 0 V/Théa

- Z Y \/7?*{ - i}—(d\/)(f@, 57) + Z2\[ 6a’y} N2\/§: \/>H£a

-5V - \f( F(oV) (€ &) = )}Nw?“ofﬂga .

We sort it out to get the formula for w(V#)(y/77,&,). The others are shown similarly. g

Theorem 4.4 The action of the Dirac operator D? on (p,1)) € T'(V7 8y) &
L(v7"8y) (cf (3.6)) is read as follows: The left element of D¥(p,1)) is

VRO + B — %(ZV—ﬁ*deo)w

and the right one is

VAV (O + 0 Yo+ =V (V=1 3D Flov)En &) notac )
A,B#£0
In addition, we have
(4.3) > F(oV)(Ep.€a)époéac
A,B#0 -
S
n+2 { A%;ORH; (€5:64) € 0 €0 =g df o }

Proof. Y ¢;s;0 w(V#)(s;) is equal to

S VECVIAER) VaEe o VNS o VTNéa o fz f N L

A,B,C#0

Y VR VRO — R 0} s o VTR o VTHEA

A,B£0

= 3" Vango o (VA w(VET ) (g0) & VWV V) (&) )
C#0
v ( 1

=L L (v )
to5° (7 VAWV 6))

(VY
VT w(V )(5)@\@
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N PNV
- — N _ 0’\/ (0] (¢]
2v/2 f\f NN \f\r AZB#O}- )(€p:€a) € o €A

= > Vate o (VAT E0) @ VAWV (o))

&0
2\/§°(12 VTV @ %ﬁ*w(ﬁw‘)@)
2]\2 jﬁf f\/g \ff;mfw (6p.€a) € 0 €ac.
Hence,
= T Rier (V7T 8 T ¢ N e
+2E\;o-(\1[ﬁ*ﬂv?@\lfﬁ*ﬁvg‘)
M \FZ Flov)(p:€a)épotao.

A,B#0

This and (3.7) together induce the formulas for the elements. (4.3) will be obvious from
the definition of F(oV). 1

Last, we wish to record a formula for the ordinary scalar curvature of V" which
appears in the Lichnerowicz formula

1
32__2 ) VSVS—V”Q vw
(D) 6]( S5 v 8j V?;/Sj> 48( )

Theorem 4.5 We have

dn+1

S(Vh\/) = Nt 1) N

This is confirmed by a lengthy calculation following Proposition 4.2, roughly the same
as that of the Fefferman metric for K (M) (cf. [11, Theorem 1.1]).
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