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Abstract

Based on the idea of adiabatic expansion theory, we will present a new formula

for the asymptotic expansion coefficients of every derivative of the heat kernel on a

compact Riemannian manifold. It will be very useful for having systematic under-

standing of the coefficients, and, furthermore, by using only a basic knowledge of

calculus added to the formula, one can describe them explicitly up to an arbitrarily

high order.
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1 Introduction

Let (M, g) be an n-dimensional compact oriented Riemannian manifold and ∆ =

δd+ dδ be the Laplacian acting on q-forms, where δ is the formal adjoint of the exterior

differentiation d. In terms of the Hodge operator ⋆g it is given by δ = (−1)nq+n+1 ⋆g d ⋆g

on ΩqM := Γ(∧qT ∗M). The initial value problem for the heat equation( ∂

∂t
+∆

)
ϕ = 0, lim

t→0
ϕ(t) = φ (φ ∈ ΩqM)(1.1)

has a unique fundamental solution or heat kernel e−t∆(P, P ′), where the convergence is

in the L2-norm. Near a point P 0 we will take a positively oriented orthonormal frame

e• = (e1, . . . , en) of TM and its dual frame e• = (e1, . . . , en) which are parallel along the
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geodesics from P 0. In addition, let us take normal coordinates x = (x1, . . . , xn) centered

at P 0 with (∂/∂xi)0 = ei(P
0) for any i, i.e., exp∇(e•(P

0) · x(P )) = P , where ∇ is the

Levi-Civita connection, and consider the local expression

e−t∆(x, x′) =
∑

eI(x)⊠ eI
′
(x′) · (e−t∆)II

′
(x, x′),

where we set I = (i1 < i2 < · · · < iq) and eI = ei1 ∧ · · · ∧ eiq . (In this paper we

adopt such a notation as eI(X1, . . . , Xq) = det (eik(Xℓ)).) Then, every differential of

the coefficient at the point (0, 0) = (P 0, P 0) can be asymptotically expanded as

(∂/∂x)A(∂/∂x′)A
′
(e−t∆)II

′
(P 0, P 0) ∼

∑
m≥−(|A|+|A′|)

t−n/2+m/2aII
′

m/2(P
0 : A,A′)(1.2)

when t → 0, where for a multi-index A = (A1, . . . , A|A|) (1 ≤ Aj ≤ n) we set (∂/∂x)A =

∂/∂xA1 · · · ∂/∂xA|A| .

In this paper, we wish to present a new formula (1.24) for the asymptotic expansion

coefficients. It will be very useful for having systematic understanding of them, and,

furthermore, using only a basic knowledge of calculus added to the formula, one can

describe them explicitly up to an arbitrarily high order. Compare our calculation of

a2/2(P
0) :=

∑
aII2/2(P

0 : ∅, ∅) following Theorem 1.1 with those by Gilkey ([4], [5,

Theorem 4.8.18 (b)]) and by Branson-Gilkey ([2], [6, Theorem 4.1.7 (b)]).

Only familiar sources are required for inducing the formula. First, due to Atiyah-

Bott-Patodi [1, Proposition 3.7 and Appendix II], the connection coefficients ωi1
i2
(∂/∂xj)

:= g(∇∂/∂xj
ei2 , ei1) are formally expanded as

ωi1
i2
(∂/∂xj)(x) = −

∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−1F (∇)i1i2(∂/∂xj , ∂/∂xj1)

∂xj2 · · · ∂xjℓ
(0),(1.3)

where we set F (∇)i1i2(∂/∂xj , ∂/∂xj1) = g(F (∇)(∂/∂xj , ∂/∂xj1)ei2 , ei1) (F (∇)(X,Y ) :=

[∇X ,∇Y ] − ∇[X,Y ]). Second, consider the frames (∂/∂x•) = (∂/∂x1, . . .), (dx•) =

(dx1, . . .) and set

e• = (∂/∂x•) · V•(x) (i.e., ei =
∑

Vji(x) ∂/∂xj), e• = (dx•) · V •(x).(1.4)

Then, [1, Proposition 2.11 and Appendix II] says that the transition functions V ji are

formally expanded as

V ji(x) = δji −
∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
xj1 · · ·xjℓ

∂ℓ−2F (∇)ij1(∂/∂xj , ∂/∂xj2)

∂xj3 · · · ∂xjℓ
(0).(1.5)

Hence, the coefficients of the Taylor expansions of ωi1
i2
(∂/∂xj), V

ji, Vji are all expressed

as universal polynomials made of

Rj1j2j3j4j5···jℓ(P
0) =

∂ℓ−4g(F (∇)(∂/∂xj3 , ∂/∂xj4)∂/∂xj2 , ∂/∂xj1)

∂xj5 · · · ∂xjℓ
(P 0),(1.6)
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which can be concretely described easily. For example we have

ωi1
i2
(∂/∂xj)(x) = −xj1

1

2
Ri1i2jj1(P

0) +O(|x|2),

V ji(x) = δji − xj1xj2
1

6
Rij1jj2(P

0) +O(|x|3),

Vji(x) = δji + xj1xj2
1

6
Rij1jj2(P

0) +O(|x|3).

(1.7)

Here the symbol
∑

is omitted and so may be also in the following. What is required

last is the Weitzenböck formula (e.g. Wu [10, Chap. 2])

∆ = −
∑(

∇ei∇ei −∇∇eiei

)
−

∑
F (∇)i1i2(ei, ej) · e

i ∧ ej ∨ ei1∧ ei2 ∨ ,(1.8)

where ei∧, ei ∨ (= ιei = ei⌟) denote the exterior, interior products, respectively. Note

that ∇ei = ei +
∑

ωi1
i2
(ei) · ei1∧ ei2 ∨ .

Our formula is derived from them by applying the adiabatic expansion theory devel-

oped in [8]. In the following we will roughly explain how it is obtained. (Refer to [9], in

which similar sources and idea provide a similar formula for the Kohn-Rossi heat kernel

on contact Riemannian manifolds.)

For the sake of distinction, here we denote the metric, etc., on M by gM , etc. Let us

consider the n-dimensional Euclidean space En = (En, y) with the standard metric gE ,

and identify a small neighborhood U of the origin with a small neighborhood U0 (⊂ M)

of P 0 via the coordinate map U0 ∋ P 7→ y = x(P ) ∈ U . We will take and fix a metric

g on En which coincides with gM near 0 (= P 0) and with gE a little apart from 0. The

space En equipped with the metric g, denoted by En(P 0) and called a Euclidean space

warped near the origin, may be assumed to satisfy (refer to Lemma 2.1): The normal

coordinates centered at the origin are globally defined, i.e.,

x : En(P 0) ∼= (En, x), y 7→ x = x(y), exp∇((∂/∂y)0 · x(y)) = y,(1.9)

where ∇ is the associated Levi-Civita connection, which coincides with ∇M sufficiently

near 0. Thus En(P 0) has two kinds of global coordinates, y and x. The parallel frames

e•, e
• are assumed to be given also globally. The problem (1.1) relative to the Laplacian

∆E(P 0) on En(P 0) with φ ∈ Ωq
0E(P 0) (that is, φ is compactly supported) has a unique

fundamental solution (e.g. Dodziuk [3])

e
−t∆E(P0)(x, x′) =

∑
eI(x)⊠ eI

′
(x′) · (e−t∆E(P0))II

′
(x, x′)(1.10)

and, by Duhamel’s principle, we have the same asymptotic expansion as in (1.2), i.e.,

(∂/∂x)A(∂/∂x′)A
′
(e

−t∆E(P0))II
′
(0, 0) ∼

∑
m≥−(|A|+|A′|)

t−n/2+m/2aII
′

m/2(P
0 : A,A′)
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(refer to Proposition 2.3 and the comment following Proposition 3.1). Thus, it suffices

to investigate the heat kernel on En(P 0).

Now, let us set eε• = ε1/2e•, e
•
ε = ε−1/2e• (0 < ε ≤ ε0) and consider the transformation

ιε : x 7→ ιε(x) := ε1/2x of En(P 0), which induces the global frames e
(ε)
• := ι∗εe

ε
•, e

•
(ε) :=

ι∗εe
•
ε on En(P 0). Obviously (1.4) gives the relation

e
(ε)
• = (∂/∂x•) · V•(ιε(x)), e•(ε) = (dx•) · V •(ιε(x)).(1.11)

To the metric gε :=
∑

eiε ⊗ eiε, the Levi-Civita connection ∇ε := ∇ and the Laplacian

∆ε
E(P 0) := ε∆E(P 0) are attached. Those for the metric g(ε) :=

∑
ei(ε) ⊗ ei(ε) are ∇(ε) :=

ι∗ε∇ε, ∆
(ε)
E(P 0)

:= ι∗ε∆
ε
E(P 0). The coordinates x are then the g(ε)-normal coordinates

centered at the origin with (∂/∂x)0 = e
(ε)
• (0) and e

(ε)
• , e•(ε) are g(ε)-parallel along the

g(ε)-geodesics from the origin. Also there exist unique heat kernels

e
−t∆ε

E(P0)(x, x′) =
∑

eIε(x)⊠ eI
′

ε (x
′) · εn/2

(
e
−tε∆E(P0)

)II′

(x, x′),

e
−t∆

(ε)

E(P0)(x, x′) =
∑

eI(ε)(x)⊠ eI
′

(ε)(x
′) · εn/2

(
e
−tε∆E(P0)

)II′

(ιε(x), ιε(x
′)).(1.12)

Next, we consider the transformation Iε : ΩqEn ∼= Ωq(En(P 0), g(ε)),
∑

(dx)I · φI 7→∑
eI(ε) ·φ

I ((dx)I := dxi1∧· · ·∧dxiq), which provides the Laplacian ∆(ε) := I∗ε∆
(ε)
E(P 0)

(:=

I−1
ε ◦∆(ε)

E(P 0)
◦ Iε) on the standard Euclidean space En = (En, x), called the adiabatic

Laplacian at P 0. Obviously, the problem (1.1) relative to ∆(ε) also has a unique

fundamental solution, which is described as

e−t∆(ε)(x, x′) =
∑

(dx)I(x)⊠ (dx)I
′
(x′)(1.13)

· εn/2
(
e
−tε∆E(P0)

)II′

(ιε(x), ιε(x
′)) detV •(ιε(x

′))

because of (1.12) and dVg(ε)(x
′) = dVgE (x

′) · detV •(ιε(x
′)). Here dVg(ε) , etc., denote the

volume elements with respect to g(ε), etc., and gE denotes the standard metric in the

coordinates x (not in y). In addition, by setting ∇(E,ε) = I∗ε∇(ε) and e
(ε)
• = I∗ε e

(ε)
• , the

formula (1.8) provides the adiabatic Weitzenböck formula

∆(ε) = −
∑(

∇(E,ε)

e
(ε)
i

∇(E,ε)

e
(ε)
i

−∇(E,ε)

∇(ε)

e
(ε)
i

e
(ε)
i

)
(1.14)

−
∑

F (∇(ε))i1i2(e
(ε)
i , e

(ε)
j ) · dxi∧ dxj ∨ dxi1∧ dxi2∨ .

Notice that we have

∇(E,ε)

e
(ε)
i

= e
(ε)
i +

∑
ε1/2ωi1

i2
(ei)(ιε(x)) · dxi1∧ dxi2∨ ,

∇(ε)

e
(ε)
i

e
(ε)
i =

∑
ε1/2ωj

i (ei)(ιε(x)) e
(ε)
j ,

F (∇(ε))i1i2(e
(ε)
i , e

(ε)
j ) = ε2/2F (∇)i1i2(ei, ej)(ιε(x)),

(1.15)
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which, together with (1.11), (1.3) and (1.5), imply that the differential operator ∆(ε)

can be extended smoothly up to ε1/2 = 0. As to the formal power series expansion

∆(ε) =

∞∑
m=0

εm/2∆m/2, ∆0/2 = ∆E := −
∑

∂/∂xi ∂/∂xi(1.16)

which we call the adiabatic expansion of ∆ at P 0, the coefficients can be described

explicitly up to an arbitrarily high order. Indeed, for example, by (1.7) we have

∆(ε) = ∆E + ε2/2
{
− xj1xj2

1

3
Rij1jj2(P

0) ∂/∂xi ∂/∂xj(1.17)

+xj1
2

3
Rijij1(P

0) ∂/∂xj + xj1Ri1i2ij1(P
0) ∂/∂xi · dxi1∧ dxi2∨

−Ri1i2i3i4(P
0) · dxi1∧ dxi2∨ dxi3∧ dxi4∨

}
+O(ε3/2).

Suggested by the equality ( ∂
∂t +∆(ε))e

−t∆(ε) = 0, let us construct now a formal power

series

p(ε)(t, x, x
′) =

∞∑
m=0

εm/2 pm/2(t, x, x
′)(1.18)

so as to satisfy ( ∂
∂t +∆(ε))p(ε) = 0. Namely, we define it inductively by

p0/2(t, x, x
′) = rE(t, x, x

′)(1.19)

:=
∑

(dx)I(x)⊠ (dx)I(x′) · rt(x− x′), rt(x) :=
e−|x|2/4t

(4πt)n/2
,

pm/2(t, x, x
′) = −

(
p0/2#

m1>0∑
m1+m2=m

∆m1/2pm2/2

)
(t, x, x′)(1.20)

=

m1,...,mk>0∑
∑

mℓ=m

(−1)k
(
p0/2#∆m1/2p0/2# · · ·#∆mk/2p0/2

)
(t, x, x′) (m > 0),

where, in general, for double forms hi(t, x, x
′) (i = 1, 2) on En, we define the convolution

h1#h2 by (h1#h2)(t, x, x
′) =

∫ t
0 ds

∫
En h1(t−s, x, x′′)∧⋆h2(s, x′′, x′) (⋆ = ⋆gE , # = #gE ).

It follows from Lemmas 3.2 and 3.9 that (1.20) is well-defined. Then it will be natural

to expect (1.18) is the formal power series expansion of the heat kernel (1.13). Thus,

setting

P(ε)(t, x, x
′) := p(ε)(t, x, x

′) detV•(ιε(x
′)) =

∞∑
m=0

εm/2 Pm/2(t, x, x
′)

and Pm/2(t, x, x
′) =

∑
(dx)I(x)⊠ (dx)I

′
(x′) · PII′

m/2(t, x, x
′), we must have

εn/2
(
e
−tε∆E(P0)

)II′

(ιε(x), ιε(x
′)) =

∞∑
m=0

εm/2 PII′

m/2(t, x, x
′).(1.21)
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If this is valid, then we have the asymptotic expansion(
e
−t∆E(P0)

)II′

(0, 0) ∼
∞∑

m=0

t−n/2+m/2 PII′

m/2(1, 0, 0),

that is,

aII
′

m/2(P
0 : ∅, ∅) = PII′

m/2(1, 0, 0) = pII
′

m/2(1, 0, 0).(1.22)

Further, if the differentials of the left hand side of (1.21) can be formally expanded into

the series of termwise differentials of the right hand side, that is, if

εn/2+(|A|+|A′|)/2
(
(∂/∂x)A(∂/∂x′)A

′
(
e
−tε∆E(P0)

)II′)
(ιε(x), ιε(x

′))(1.23)

=

∞∑
m=0

εm/2 (∂/∂x)A(∂/∂x′)A
′PII′

m/2(t, x, x
′),

then, by setting PII′

m/2(t, x, x
′ : A,A′) = (∂/∂x)A(∂/∂x′)A

′PII′

m/2(t, x, x
′), the formula

(1.22) is generalized as follows:

Theorem 1.1 We have

aII
′

m/2(P
0 : A,A′) = PII′

(m+|A|+|A′|)/2(1, 0, 0 : A,A′),(1.24)

which vanishes when m is odd. Moreover, this is expressed as a universal polynomial

made of (1.6), which can be described explicitly by using only a basic knowledge of cal-

culus.

Remark: Assume that M has boundary and a certain boundary condition is as-

signed to the Laplacian. Then we have also an asymptotic expansion at a point of the

boundary and it is easy to induce a similar formula, which will be discussed closely else-

where. Notice that some of the integrals over En having appeared in the convolutions

at (1.20) will be replaced by those over En−1× [0,∞), so that the asymptotic expansion

coefficient may not vanish even if m is odd (refer to §.3.5).

Using (1.24) (or (1.22)), let us try to calculate some of the asymptotic expansion

coefficients of the trace of the heat kernel. Obviously we have

a0(P
0) :=

∑
aII0 (P 0 : ∅, ∅) =

∑
pII0/2(1, 0, 0) =

1

(4π)n/2

(
n

q

)
and the next coefficient a1(P

0) :=
∑

aII1 (P 0 : ∅, ∅) is calculated as follows: (1.17) implies

∆2/2p0/2(s, x, 0)

=
{
− xk1xk2

1

6s
Rj1k1j1k2 −Ri1i2i3i4 · dxi1∧ dxi2∨ dxi3∧ dxi4∨

}
p0/2(s, x, 0)

=
{
− 2s

3
Rj1k1j1k2∂/∂xk1∂/∂xk2 −

1

3
Rj1k1j1k1

−Ri1i2i3i4 · dxi1∧ dxi2∨ dxi3∧ dxi4∨
}
p0/2(s, x, 0)
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and, hence,

p2/2(1, 0, 0) = −
∫ 1

0
ds

∫
p0/2(1− s, 0, x′) ∧ ⋆∆2/2p0/2(s, x

′, 0)

=

∫ 1

0
ds

∫ {2s

3
Rj1k1j1k2∂/∂xk1∂/∂xk2 +

1

3
Rj1k1j1k1

+Ri1i2i3i4 · dxi1∧ dxi2∨ dxi3∧ dxi4∨
}
p0/2(1− s, x, x′) ∧ ⋆p0/2(s, x

′, 0)
∣∣∣
x=0

=
{1

6
Rj1j2j1j2 +Ri1i2i3i4 · dxi1∧ dxi2∨ dxi3∧ dxi4∨

}
p0/2(1, 0, 0),

where we put Rj1k1j1k2 = Rj1k1j1k2(P
0), ⋆ = ⋆gE for short. Thus we obtain

aII1 (P 0 : ∅, ∅) = 1

(4π)n/2

{1

6
Rj1j2j1j2(P

0) +
∑

i1∈I ̸∋i2

Ri1i2i2i1(P
0)
}
,

a1(P
0) =

1

(4π)n/2

{1

6

(
n

q

)
−

(
n− 2

q − 1

)}
Rj1j2j1j2(P

0).

Similarly those of higher orders can be calculated easily (with the aid of Mathematica).

2 The warped Euclidean space En(P 0) and the heat kernel

In this section we will discuss some of the property of the space En(P 0) and present

some estimates on the heat kernel (1.10) to be used in the proof of Theorem 1.1.

First, let us construct the space En(P 0) carefully. We set U0 = {P ∈ M | |x(P )| <
r′0}, which is identified with U = {y ∈ En | |y| < r′0} via the map P 7→ y = x(P ), and fix

a smooth function ρ(s) on [0,∞) which satisfies ρ(s) = 1 (s ≤ 1/2), ρ(s) = 0 (s ≥ 2/3)

and 0 ≤ ρ(s) ≤ 1. For each r ∈ (0, r′0], setting ρ0(y) = ρ(|y|/r), we consider the metric

g (= gr) := ρ0g
M + (1− ρ0)g

E = {1 +O(r2)}gE(2.1)

on En. Note that (1.7) induces the second description. Here, in general, O(rk) =

O(y; rk) (k ∈ Z) is defined to be a smooth function on En × (0, r′0] (∋ (y, r)) satisfying:

as a function of y, it has support contained in {y ∈ En | |y| ≤ r} for each r and, for every

multi-index A, there exists a constant CA > 0 such that |(∂/∂y)AO(rk)| ≤ CAr
k−|A| on

En × (0, r′0]. Certainly we have ρ0 = O(1) (= O(r0)), ∂O(rk)/∂yA = O(rk−1). The

associated connection ∇ (= ∇r) is thus described as

∇∂/∂yk∂/∂yj = Γi
jk(y; r) · ∂/∂yi, Γi

jk(y; r) = O(r).(2.2)

Hence, Γi
jk(y; r) can be extended continuously up to r = 0 by putting Γi

jk(y; 0) = 0 and

the extended one satisfies the Lipschitz condition, so that, as for the geodesic from the

origin, that is, the curve c(s) = c(s, x; r) satisfying c̈i(s) + Γi
jk(c(s); r) ċj(s)ċk(s) = 0,

c(0) = 0 and ċ(0) = x, both c(s, x; r) and ċ(s, x; r) are continuous on [0,∞)×En×[0, r′0].
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Lemma 2.1 Suppose r0 > 0 is sufficiently small and 0 < r ≤ r0. Then the g-

geodesics from the origin do not intersect with each other (except at the origin), that is,

we have the global normal coordinates (1.9).

Remark: In fact, we may take r0 > 0 so small that, if 0 < r ≤ r0 and |y′| ≤ r0,

then the g-geodesics from y′ do not intersect with each other.

Proof. There exist a small r0 > 0 and a constant C > 0 such that

|c(1, x; r)− x| ≤ Cr|x|2, |(∂/∂xD)(c(1, x; r)− x)| ≤ Cr|x|(2.3)

if 0 ≤ r ≤ r0 and |x| ≤ r0. The proof is similar to [9, Lemma 3.1]. (In [9], ΓA
BC = O(1)

is the counterpart of Γi
jk = O(r) of this paper. The estimates in [9, Lemma 3.1] are,

hence, weaker than (2.3).) For instance, we have

ċ(s)− x =

∫ s

0
ds c̈(s) =

∫ s

0
dsΓ(s, x; r), c(s)− sx =

∫ s

0
ds (ċ(s)− x)

Γ(s, x; r) := −
∑

Γjk(c(s); r) ċj(s)ċk(s)

and, by (2.1) and (2.2), there are a small r0 > 0 and a constant C > 0 such that

C−1|x| ≤ |ċ(s)| ≤ C|x| and, hence, |Γ(s, x; r)| ≤ Cr|x|2 if 0 ≤ r ≤ r0. Thus we

obtain the first estimate at (2.3). Now, let us fix such a number r0 > 0. Then (2.3)

and the inverse function theorem imply that there exist constants δi > 0 (i = 1, 2)

such that the map c(1, · ; r) : {x ∈ En | |x| ≤ δ1} → En is an into diffeomorphism

and satisfies c(1, {x ∈ En | |x| ≤ δ1}; r) ⊃ {y ∈ En | |y| < δ2} for any r ∈ [0, r0].

Hence, if 0 ≤ r ≤ r1 := min(r0, δ2), the gr-geodesic c(s, x; r) = c(1, sx : r) (|x| = δ1,

s ≥ 0) is just a ray when s ≥ 1, at least for a while, from c(1, x : r) in the direction

ċ(1, x; r). Since (c(1, x : r), ċ(1, x : r)) (|x| = δ1) varies continuously with r ∈ [0, r1] and

(c(1, x : 0), ċ(1, x : 0)) = (x, x), the gr-geodesics from 0 do not intersect with each other

if r > 0 is sufficiently small.

Thus we obtain the desired space En(P 0). Apart from the origin (precisely, if |y| ≥
2r/3) the global coordinates y, x are described as

y(x) = y(
x

|x|
) +

∑ ∂y

∂xB
(
x

|x|
)(xB − xb

|x|
),

∣∣∣(∂/∂x)By(x)∣∣∣ ≤ CB |x|1−|B| ,

x(y) = x(
y

|y|
) +

∑ ∂x

∂yA
(
y

|y|
)(yA − yA

|y|
),

∣∣∣(∂/∂y)Ax(y)∣∣∣ ≤ CA |y|1−|A| .

(2.4)

Added to the canonical frames (∂/∂x•), (dx•), we will consider the canonical ones

(∂/∂y•), (dy•) and set

e•(x) = (∂/∂y•)(x) · V•(x), e•(x) = (dy•)(x) · V•(x),
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where (∂/∂y•)(x), etc., denote (∂/∂y•)(y(x)), etc., calculated in the coordinates x, i.e.,

(∂/∂y•)(x) = (∂/∂x•)(x) · ∂x•
∂y•

(y(x)), etc. Hence we have V•(x) =
(

∂y•
∂x•

(x)
)
V•(x).

Lemma 2.2 Apart from the origin, V•(x) is an orthogonal matrix and, for each

multi-index B, there is a constant CB > 0 such that∣∣∣(∂/∂x)BV•(x)
∣∣∣ ≤ CB |x|−|B| ,

∣∣∣(∂/∂x)BV•(x)
∣∣∣ ≤ CB|x|−|B|,∣∣∣(∂/∂x)B detV•(x)

∣∣∣ ≤ CB|x|−|B|,
∣∣∣(∂/∂x)Bωα

β (∂/∂xA)
∣∣∣ ≤ CB|x|−1−|B|.

Also V•(x), V •(x), detV •(x) are estimated similarly.

Proof. V•(x) is orthogonal because, apart from the origin, e•(x) and (∂/∂y•)(x)

are both gE-orthonormal. Since the vector fields (∂/∂y•)(sx) · V•(x/|x|) and e•(sx) =

(∂/∂y•)(sx) · V•(sx) along the geodesic y(sx) (|x|−1 ≤ s ≤ 1) are parallel and coincide

when s = |x|−1, they are the same ones, hence, we have V•(x) = V•(x/|x|), which

provides the estimates on V•, V•, ωi1
i2
(∂/∂xj) =

∑
VCi1 ∂VCi2

∂xj
. By using (2.4), also the

remaining estimates will be shown.

Next, following the argument by McKean-Singer [7], we will actually construct the

heat kernel (1.10) by applying Levi’s iteration method. Let us take a ∇-normal coordi-

nate system EM : W → En, i.e., exp∇(e•(x
′)·EM (x′, x)) = x, whereW is a neighborhood

of the diagonal set in En(P 0)×En(P 0). On (En, y) we consider the ∇E-normal coordi-

nate system ẼE : En(P 0) × En(P 0) → En, ẼE(y′, y) = y − y′, i.e., exp∇
E
((∂/∂y•)(y

′) ·
ẼE(y′, y)) = y, and set EE(x′, x) = ẼE(y(x′), y(x)), i.e., exp∇

E
((∂/∂y•)(x

′) ·EE(x′, x)) =

x. Then we put

rM (t, x, x′) =
∑

eI(x)⊠ eI(x′) · rt(EM (x′, x))

(on En(P 0)× {x′ ∈ U0 | |y(x′)| < r0}),

rE(t, x, x
′) = rE(t, y, y

′)
∣∣∣
(y,y′)=(y(x),y(x′))

=
∑

eI(x)⊠ eI
′
(x′) · detVIJ(x) detVI′J(x

′) rt(EE(x′, x))

(on En(P 0)× En(P 0)).

Here, rM (t, x, x′) is well-defined on the region (that is, W can be assumed to contain

it) because of Remark to Lemma 2.1. Note that rE(t, x, x
′) is rE(t, y, y

′) (on (En, y))

calculated in the coordinates (x, x′), and VIJ is the matrix (Vij)(i,j)∈I×J (refer to Lemma

2.2). In addition, we will take non-negative smooth functions ρ̃M (y), ρ̃E(y) such that

{ρ̃2M (y), ρ̃2E(y)} is a partition of unity subordinated to the cover {{y ∈ En(P 0) | |y| <
2r}, {y ∈ En(P 0) | |y| > r}}, where we assume that r > 0 has been taken so small that
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0 < 2r ≤ r0. We define the first approximation to the heat kernel by

r(t, x, x′) = ρM (x)ρM (x′) rM (t, x, x′) + ρE(x)ρE(x
′) rE(t, x, x

′),

where we set ρM (x) = ρ̃M (y(x)), etc. This is more geometric than that in [7] (given by

freezing the coefficients of the principal part of ∆ at a point) and certainly satisfies: For

any φ ∈ Ωq
0E

n(P 0),

lim
t→0

∫
r(t, x, x′) ∧ ⋆φ(x′) = φ(x), lim

t→0

∫
φ(x) ∧ ⋆r(t, x, x′) = φ(x′)(2.5)

in the | · |g-norm (the pointwise norm with respect to the metric g) and also in the L2
g-

norm, where we put ⋆ = ⋆g. Let us set q(t, x, x′) = ( ∂
∂t +∆E(P 0))r(t, x, x

′) and q1 = q,

q2 = q#q1, q3 = q#q2, . . . (# = #g). Then we define

p =
∞∑
k=0

(−1)kr#qk (r#q0 := r), Rk0(p) =
∑
k≥k0

(−1)kr#qk,

q∞ =

∞∑
k=1

(−1)kqk, Rk0(q∞) =
∑
k≥k0

(−1)kqk.

Proposition 2.3 We have e
−t∆E(P0)(x, x′) = p(t, x, x′). To be precise:

(1) The forms qk, r#qk, Rk0(q∞) and Rk0(p) are all well-defined and smooth on

(0,∞) × En(P 0) × En(P 0) (∋ (t, x, x′)). The last two forms are termwisely differen-

tiable. For every integer m ≥ 0 and multi-indices A, A′, there exist constants Bk (=

B(k,m,A,A′)) > 0, etc., and exponentially decaying functions Kk(E) (= K(k,m,A,A′)(E)) on

En (∋ E), i.e., C1 exp(−C2|E|2) with some Ci > 0 (i = 1, 2), such that, on (0, T0] ×
En(P 0)× En(P 0),∣∣∣(∂/∂t)meA,xeA′,x′qk(t, x, x′)

∣∣∣
g
≤ Bkt

(k−|A|−|A′|)/2−m−(n+2)/2Kk(ι1/t(x− x′)),(2.6) ∣∣∣(∂/∂t)meA,xeA′,x′(r#qk)(t, x, x′)
∣∣∣
g
≤ Ckt

(k−|A|−|A′|)/2−m−n/2Kk(ι1/t(x− x′)),(2.7) ∣∣(∂/∂t)meA,xeA′,x′ Rk0(q∞)(t, x, x′)
∣∣
g

(2.8)

≤ B(k0) t
(k0−|A|−|A′|)/2−m−(n+2)/2Kk0(ι1/t(x− x′)),∣∣(∂/∂t)meA,xeA′,x′ Rk0(p)(t, x, x

′)
∣∣
g

(2.9)

≤ C(k0) t
(k0−|A|−|A′|)/2−m−n/2Kk0(ι1/t(x− x′)),

where we set eA,x = eA1,x · · · eA|A|,x, etc. The last two are the estimates of sums of the

| · |g-norms of their termwise differentials.

(2) The form p(t, x, x′) is smooth on (0,∞)× En(P 0)× En(P 0) and satisfies( ∂

∂t
+∆E(P 0)

)
p(t, x, x′) = 0.(2.10)
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In addition, for every φ ∈ Ωq
0E

n(P 0),

lim
t→0

∫
p(t, x, x′) ∧ ⋆φ(x′) = φ(x), lim

t→0

∫
φ(x) ∧ ⋆p(t, x, x′) = φ(x′)(2.11)

in the | · |g-norm and in the L2
g-norm. Further, ϕ(t, x) :=

∫
p(t, x, x′) ∧ ⋆φ(x′) belongs

to the domain of ∆E(P 0), the integral Φ(t) :=
∫
dVg(x) |ϕ(t, x)|2g is differentiable and the

equality (∂/∂t)Φ(t) =
∫
dVg(x)(∂/∂t) |ϕ(t, x)|2g holds.

This is a generalization of the assertions in [7, §.3] and is shown similarly (see also

[9, §.4]). The proof will follow some preparatory arguments.

In general, a smooth kernel k(t, x, x′) =
∑

eI(x)⊠ eI
′
(x) · kII′(t, x, x′) on En(P 0)×

En(P 0) is said to be of type ℓ if each coefficient kII
′
is a finite sum of such functions as

Kb
M (t, x, x′) = t−(n+2)/2+b/2ρM (x′, x)K(ι1/tEM (x′, x))

Kb
E(t, x, x

′) = t−(n+2)/2+b/2ρE(x
′, x)K(ι1/tEE(x′, x))

(b ≥ ℓ).(2.12)

Here K(E) is an exponentially decreasing function, i.e., K(E) = C1EA exp(−C2|E|2)
(EA := EA1 · · · EA|A|) with some A and Ci > 0 (i = 1, 2), and ρM (x′, x), ρE(x

′, x) are

smooth functions such that supp ρM ⊂ {(x′, x) | |y(x′)| < 2r, |y(x)| < 2r}, supp ρE ⊂
{(x′, x) | |y(x′)| > r, |y(x)| > r} and, for every A and A′,

∣∣eA,xeA′,x′ρE(x
′, x)

∣∣ is bounded.
A kernel whose coefficients consist of the second type of functions is equivalently inter-

preted in the variable y as k̃E(t, y
′, y) =

∑
(dy)I(y)⊠(dy)I

′
(y′) · k̃II′E (t, y, y′) whose coeffi-

cients are finite sums of such functions as t−(n+2)/2+b/2ρ̃E(y
′, y)K(ι1/tẼE(y′, y)) (b ≥ ℓ),

where ρ̃E(y
′, y) is a smooth function with supp ρ̃E ⊂ {(y′, y) | |y′| > r, |y| > r} and, for

every A, A′,
∣∣∣(∂/∂y)A(∂/∂y′)A′

ρ̃E(y
′, y)

∣∣∣ is bounded.
Lemma 2.4

(1) The kernel r(t, x, x′) is of type 2 and q(t, x, x′) is of type 1. The support of the

latter with respect to the variable x is contained in U<2r := {x ∈ En(P 0) | |x| < 2r}.

(2) For a kernel k(t, x, x′) of type ℓ, eA,xeA′,x′k(t, x, x′) is a kernel of type ℓ−|A|−|A′|
and (∂/∂t)k(t, x, x′) is of type ℓ− 2.

(3) For a kernel k(t, x, x′) of type ℓ, there exist a constant C > 0 and an exponentially

decaying function K(E) such that, when 0 < t ≤ T0,∣∣k(t, x, x′)∣∣
g
≤ Ctℓ/2−(n+2)/2K(ι1/t(x− x′)),

∥∥k(t, x, x′)∥∥
L1
g(x)

≤ Ctℓ/2−1,

where ∥·∥L1(x) is the L1
g-norm with respect to the variable x. Also ∥k(t, x, x′)∥L1

g(x
′) is

estimated similarly.

(4) For a kernel k(t, x, x′) of type ℓ, we have eA,xk(t, x, x
′) = −eA,x′k(t, x, x′) +

k∗(t, x, x
′), where k∗(t, x, x

′) is a kernel of type ℓ.
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Proof. In the coordinates EM = EM (x′, x), we have

eA,x =
∂

∂EM
A

+
∑

O(|EM |) ∂

∂EM
B

, eA,x′ = − ∂

∂EM
A

+
∑

O(|EM |) ∂

∂EM
B

,

∆x = −
∑ ∂

∂EM
i

∂

∂EM
i

+
∑

O(|EM |) ∂

∂EM
j1

∂

∂EM
j2

+
∑

O(|EM |0) ∂

∂EM
j

+O(|EM |0).

Hence, (1), (2), (4) are valid for the kernels kM consisting of KM . We know immediately

that these hold for another type of kernels kE by examining them in the coordinates y.

As for (3): It is obvious for kM in turn. We have∣∣kE(t, x, x′)∣∣g ≤ C tℓ/2−(n+2)/2K(ι1/tEE(x′, x)),(2.13)

EE(x′, x) = y(x)− y(x′) =
∑

(xB − x′B)

∫ 1

0
ds

∂y

∂xB
((1− s)x′ + sx).(2.14)

It follows from (2.4) and the argument in the proof of Lemma 2.1 that the matrix

(∂yA/∂xB)(x) (x ∈ En(P 0)) stays sufficiently near the identity matrix. Hence one may

replace EE(x′, x) by x − x′ at (2.13). We obtain thus the first estimate for kE , which

certainly implies the second.

Lemma 2.5 Let ki(t, x, x
′) be kernels of types mi (≥ 1). Then (k1# · · ·#kj)(t, x, x

′)

is well-defined and smooth. In addition, there exist a constant C (= C(m,A,A′)) > 0 and

an exponentially decaying function K(E) (= K(m,A,A′)(E)) such that, when 0 < t ≤ T0,∣∣(∂/∂t)meA,xeA′,x′(k1# · · ·#kj)(t, x, x
′)
∣∣
g

(2.15)

≤ C t(
∑

mi−|A|−|A′|)/2−m−(n+2)/2K(ι1/t(x− x′)).

Proof. Let us prove the lemma by induction. It holds when j = 1 because of Lemma

2.4(2)(3). Assume j > 1 and set k = k2# · · ·#kj . Then, by Lemma 2.4(4), etc.,

(∂/∂t)meA,xeA′,x′(k1# · · ·#kj)(t, x, x
′)(2.16)

=
∑

m′+m′′=m−1

(
m− 1

m′

)∫
((∂/∂t)m

′
eA,xk1)(

t

2
, x, x′′)

∧ ⋆ ((∂/∂t)m
′′
eA′,x′k)(

t

2
, x′′, x′)

+
∑

|B′|≤|A′|

∫ t/2

0
ds

∫
((∂/∂t)meA,xeB′,x′′k1)(t− s, x, x′′) ∧ ⋆k2B′(s, x′′, x′)

+
∑

|B|≤|A|

∫ t

t/2
ds

∫
k1B(t− s, x, x′′) ∧ ⋆ ((∂/∂t)meB,x′′eA′,x′k)(s, x′′, x′),

where k1B is a kernel of type m1 and k2B′ is a finite sum of convolutions of kernels of

types mi (i = 2, · · · , j). We suppose (2.15) holds for k, k2B′ , etc. Then we have∣∣∣∣∫ ((∂/∂t)m
′
eA,xk1)(

t

2
, x, x′′) ∧ ⋆((∂/∂t)m

′′
eA′,x′k)(

t

2
, x′′, x′)

∣∣∣∣
g
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≤
∫

dVg(x)

∣∣∣∣((∂/∂t)m′
eA,xk1)(

t

2
, x, x′′)

∣∣∣∣
g

∣∣∣∣((∂/∂t)m′′
eA′,x′k)(

t

2
, x′′, x′)

∣∣∣∣
g

≤ K0(ι1/t(x− x′))max
x′′

∣∣∣Ct(m1−|A|)/2−m′−(n+2)/2 K̃1(ι1/t(x− x′′))
∣∣∣

×
∫

dVg(x
′′)

∣∣∣C t(
∑

i>1 mi−|A′|)/2−m′′−(n+2)/2 K̃(ι1/t(x
′′ − x′))

∣∣∣
≤ K0(ι1/t(x− x′))C ′t(

∑
mi−|A|−|A′|)/2−m−(n+2)/2,

where K0, K̃1, K̃ are exponentially decaying. Further we have∣∣∣∣∣
∫ t/2

0
ds

∫
((∂/∂t)meA,xeB′,x′′k1)(t− s, x, x′′) ∧ ⋆k2B′(s, x′′, x′)

∣∣∣∣∣
g

≤
∫ t/2

0
ds

∫
dVg(x

′′)
∣∣((∂/∂t)meA,xeB′,x′′k1)(t− s, x, x′′)

∣∣
g

∣∣k2B′(s, x′′, x′)
∣∣
g

≤ K0(ι1/t(x− x′))

×
∫ t/2

0
dsmax

x′′

∣∣∣C (t− s)(m1−|A|−|B′|)/2−m−(n+2)/2 K̃1(ι1/(t−s)(x− x′′))
∣∣∣

×
∫

dVg(x
′′)

∣∣∣C s
∑

i>1 mi/2−(n+2)/2 K̃2B′(ι1/s(x
′′ − x′))

∣∣∣
≤ K0(ι1/t(x− x′))

∫ t/2

0
dsC ′(t− s)(m1−|A|−|B′|)/2−m−(n+2)/2s

∑
i>1 mi/2−1

≤ K0(ι1/t(x− x′)) t(
∑

mi−|A|−|A′|)/2−m−(n+2)/2

×
∫ 1/2

0
dσ C ′(1− σ)(m1−|A|−|B′|)/2−m−(n+2)/2σ

∑
i>1 mi/2−1

and the third term is estimated similarly.

Proof of Proposition 2.3. Lemma 2.5 implies (2.6) and (2.7). Let us prove (2.9).

Assume that k0 > 0 is sufficiently large. Then there exists an exponentially decaying

function Kk0(E) (= K(k0,m,A,A′)(E)) such that, for any ℓ ≥ 1,∣∣∣(∂/∂t)meA,xeA′,x′qℓk0(t, x, x′)
∣∣∣
g

(2.17)

≤ tℓ(k0−n)/2−(|A|+|A′|)/2−m−1Kk0(ι1/t(x− x′))

× Bℓ
k0vol(U<2r)

ℓ−1Γ((k0 − n− |A|)/2−m)ℓ−1Γ((k0 − n− |A′|)/2)
Γ(ℓ(k0 − n)/2− (|A|+ |A′|)/2−m)

.

Indeed, we have∣∣∣(∂/∂t)meA,xeA′,x′q2k0(t, x, x′)
∣∣∣
g
=

∣∣∣((∂/∂t)meA,xq
k0#eA′,x′qk0

)
(t, x, x′)

∣∣∣
g

=

∣∣∣∣∫ t

0
ds

∫
U<2r

(∂/∂t)meA,xq
k0(t− s, x, x′′) ∧ ⋆eA′,x′qk0(s, x′′, x′)

∣∣∣∣
g

≤ Kk0(ι1/t(x− x′))B2
k0
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×
∫ t

0
ds

∫
U<2r

dVg(x
′′) (t− s)(k0−n−2)/2−|A|/2−ms(k0−n−2)/2−|A′|/2

≤ t(k0−n−2)/2+1−(|A|+|A′|)/2−mKk0(ι1/t(x− x′))B2
k0 vol(U<2r)

×
∫ 1

0
dσ (1− σ)(k0−n−2)/2−|A|/2−mσ(k0−n−2)/2−|A′|/2

= t(k0−n−2)/2+1−(|A|+|A′|)/2−mKk0(ι1/t(x− x′))B2
k0 vol(U<2r)

× Γ((k0 − n− 2)/2 + 1− |A|/2−m)Γ((k0 − n− 2)/2 + 1− |A′|/2)
Γ(2(k0 − n− 2)/2 + 2− (|A|+ |A′|)/2−m)

,∣∣∣(∂/∂t)meA,xeA′,x′q3k0(t, x, x′)
∣∣∣
g
=

∣∣∣((∂/∂t)meA,xq
k0#eA′,x′q2k0

)
(t, x, x′)

∣∣∣
g

≤ Kk0(ι1/t(x− x′))B3
k0 vol(U<2r)

× Γ((k0 − n− 2)/2 + 1− |A|/2−m)Γ((k0 − n− 2)/2 + 1− |A′|/2)
Γ(2(k0 − n− 2)/2 + 2− |A′|/2)

×
∫ t

0
ds

∫
U<2r

dVg(x
′′) (t− s)(k0−n−2)/2−|A|/2−ms2(k0−n−2)/2+1−|A′|/2

≤ t3(k0−n−2)/2+2−(|A|+|A′|)/2−mKk0(ι1/t(x− x′))B3
k0vol(U<2r)

2

× Γ((k0 − n− 2)/2 + 1− |A|/2−m)2Γ((k0 − n− 2)/2 + 1− |A′|/2)
Γ(3(k0 − n− 2)/2 + 3− (|A|+ |A′|)/2−m)

,

etc. Assuming 0 ≤ k < k0, in a way similar to (2.16) we write

(∂/∂t)meA,xeA′,x′(r#qk+ℓk0)(t, x, x′)

=
∑(

m− 1

m′

)∫
((∂/∂t)m

′
eA,x(r#qk))(

t

2
, x, x′′)

∧ ⋆ ((∂/∂t)m
′′
eA′,x′qℓk0)(

t

2
, x′′, x′)

+

∫ t/2

0
ds

∫
((∂/∂t)meA,x(r#qk))(t− s, x, x′′) ∧ ⋆eA′,x′qℓk0)(s, x′′, x′)

+
∑

|B|≤|A|

∫ t

t/2
ds

∫
(r#qk)1B(t− s, x, x′′) ∧ ⋆ ((∂/∂t)meB,x′′eA′,x′qℓk0)(s, x′′, x′)

and, using (2.7), (2.17), etc., we obtain∣∣∣(∂/∂t)meA,xeA′,x′(r#qk+ℓk0)(t, x, x′)
∣∣∣
g

≤ K(k0,k)(ι1/t(x− x′))
t(k0−|A|−|A′|)/2−m−n/2Cℓ

(k0)

Γ(ℓ(k0 − n)/2− (|A|+ |A′|)/2−m)
.

Hence, (∂/∂t)meA,xeA′,x′Rk0(p) =
∑0≤k<k0

ℓ=1,2,...(∂/∂t)
meA,xeA′,x′(r#qk+ℓk0) is estimated as

at (2.9). Similarly (2.8) can be shown. Next, let us show (2). By (1), the convolutions

r#q∞, q#q∞ are well-defined and smooth and( ∂

∂t
+∆E(P 0)

)
(r#q∞) = q∞ + q#q∞, p = r + r#q∞, q#q∞ = −q − q∞.
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Thus (2) certainly holds up to (2.10). As to the first convergence at (2.11): By (2.9),

for any ℓ ≥ 0,∣∣∣∣(1 + |x|ℓ)
∫

Rk0(p)(t, x, x
′) ∧ ⋆φ(x′)

∣∣∣∣
g

(2.18)

≤
∫

dVg(x
′) (1 + |t1/2ι1/t(x− x′) + x′|ℓ)C(k0)t

(k0−n)/2Kk0(ι1/t(x− x′))
∣∣φ(x′)∣∣

g

≤ C̃(k0)t
k0/2

∑
ℓ′≤ℓ

∫
dVg(x

′) t−n/2K̃k0(ι1/t(x− x′))(1 + |x′|ℓ′)
∣∣φ(x′)∣∣

g

≤ tk0/2 sn(φ),

where sn(φ) is a semi-norm of φ ∈ Ωq
0E

n(P 0). (In general, we set sn(φ) = supx∈En,|B|≤k

C
∣∣(1 + |x|)ℓ(∂/∂x)Bφ(x)

∣∣ with some ℓ, k ∈ N and a constant C > 0.) Hence, the

integral
∫
R1(p)(t, x, x

′) ∧ ⋆φ(x′) is bounded in the | · |g-norm and in the L2
g norm, and

limt→0

∫
R1(p)(t, x, x

′) ∧ ⋆φ(x′) = 0 in both norms, which, together with (2.5), implies

the first convergence at (2.11). The remaining assertions will be obvious now.

3 The proof of Theorem 1.1

In the section, we will prove:

Proposition 3.1 The heat kernel p(ε)(t, x, x
′) := e−t∆(ε)(x, x′) can be extended

smoothly up to [0, ε
1/2
0 ]× (0, T0]×En×En (∋ (ε1/2, t, x, x′)). As to the Taylor expansion

p(ε)(t, x, x
′) =

∑
0≤m<m∗

εm/2 pm/2(t, x, x
′) + εm∗/2 pm∗/2(ε

1/2, t, x, x′),

we have

pm/2(t, x, x
′) = pm/2(t, x, x

′) (0 ≤ m < m∗).(3.1)

If this is valid, then we have the formal power series expansion (1.21) and also (1.23).

Consequently we obtain the formula (1.24). (Note that thus Proposition 3.1 also implies

that every differential of (1.10) can be asymptotically expanded at (0, 0).) Let us start

our discussion with some preparations needed for the proof. We set # = #gE , dV (x) =

dVgE (x), | · | = | · |gE , ∥ · ∥ = ∥ · ∥L2
gE

(x), etc., for short.

3.1 Standard kernels on En

The argument in §.2 holds good for the standard En = (En, x) because it may be

regarded as a warped one. A kernel on En whose coefficients consist of t−(n+2)/2+b/2
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ρ(x′, x)K(ι1/t(x−x′)) will be called a standard one, where |(∂/∂x)A(∂/∂x′)A′
ρ(x′, x)| is

assumed to be bounded for any (A,A′) (see (2.12) around). Obviously Lemma 2.5 holds

also for the standard kernels on En and we have:

Lemma 3.2 Let ki be standard kernels of types mi (≥ 1). Then the convolution

(xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(t, x, x
′) is well-defined and smooth on (0,∞) ×

En × En, and there exist a constant B′ > 0, an integer N > 0 and an exponentially

decaying function K(E) such that, when 0 < t ≤ T0,∣∣∣(∂/∂t)d(∂/∂x)A(∂/∂x′)A′
(xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(t, x, x

′)
∣∣∣(3.2)

≤ B′t
∑

mi/2−N−d−(n+2)/2K(ι1/t(x− x′))
∑

|x′C′ |.

Here B′ > 0, N > 0 and
∑

|x′C′ |, which is a finite sum, depend only on (Ci,Bi), (A,A′).

In addition, for every φ ∈ Ωq
0E

n, the integral
∫
(xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)

(t, x, x′) ∧ ⋆φ(x′) is well-defined and rapidly decreasing, and there exists a semi-norm

sn(·) such that, when 0 < t ≤ T0, for any φ ∈ Ωq
0E

n,∣∣∣∣∫ (xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(t, x, x
′) ∧ ⋆φ(x′)

∣∣∣∣ ≤ t
∑

mi/2−1sn(φ),∥∥∥∥∫ (xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(t, x, x
′) ∧ ⋆φ(x′)

∥∥∥∥ ≤ t
∑

mi/2−1sn(φ).(3.3)

Proof. By Lemma 2.4(4) for En or by direct calculation,

xC(∂/∂x)Bx′C
′
(∂/∂x′)B

′
t−(n+2)/2+b/2K(ι1/t(x− x′))(3.4)

=
∑

|B̃|≤|B|+|B′|

xC̃(∂/∂x)B̃ t−(n+2)/2+b/2+ℓ/2K(ι1/t(x− x′))

=
∑

|B̃′|≤|B|+|B′|

x′C̃
′
(∂/∂x′)B̃

′
t−(n+2)/2+b/2+ℓ′/2K(ι1/t(x− x′)),

where the exponentially decreasing functions K appearing in the second and third lines,

which differ from that in the first line, depend on the respective indices (B̃, C̃), etc. By
integration by parts, hence we have

(∂/∂t)d(∂/∂x)A(∂/∂x′)A
′
(xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(t, x, x

′)

=
∑

|B|≤|A|+|A′|+
∑

|Bi|

(∂/∂t)dx′C(∂/∂x′)B(k1# · · ·#kj)(t, x, x
′),

where, again, the kernels ki appearing in the second line, which differ from those in the

first line, depend on the respective indices, but are of the same types as those of the

original ki. Hence, Lemma 2.5 for En implies (3.2) and the others can be shown by

integration by parts.
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3.2 Rough estimation of remainder term

Putting r(t, x, x′) =
∑

eI(x) ⊠ eI
′
(x′) · ρ◦(x′, x) rt(E◦(x′, x)) (◦ = M or E), let us

define

r(ε)(t, x, x
′) =

∑
(dx)I(x)⊠ (dx)I

′
(x′)

· ρ◦(ιε(x′), ιε(x)) rt(E◦(ε)(x′, x)) detV •(ιε(x
′))

with E◦(ε)(x′, x) := ι1/εE◦(ιε(x
′), ιε(x)), and q(ε)(t, x, x

′) = ( ∂
∂t +∆(ε))r(ε)(t, x, x

′). Then

we have

p(ε)(t, x, x
′) =

∞∑
k=0

(−1)k(r(ε)#qk(ε))(t, x, x
′) (r(ε)#q0(ε) := r(ε))(3.5)

(cf. (1.13)). The coefficient of the remainder term Rk0(p(ε)) :=
∑

k≥k0
(−1)kr(ε)#qk(ε) is

described as

Rk0(p(ε))
II′(t, x, x′) = εn/2Rk0(p)

II′(tε, ιε(x), ιε(x
′)) detV •(ιε(x

′)).

Lemma 3.3 There exist a constant C ′(k0) > 0 and an exponentially decaying func-

tion K(E) such that, on (0, ε
1/2
0 ]× (0, T0]× En × En,∣∣∣(∂/∂t)d(∂/∂x)A(∂/∂x′)A′

(∂/∂ε1/2)mRk0(p(ε))(t, x, x
′)
∣∣∣

≤ C ′(k0) ε
(k0−m)/2 t(k0−|A|−|A′|)/2−d−m−n/2K(ι1/t(x− x′))

∑
|x′C′ |.

Proof. The differential of ε−n/2Rk0(p(ε))
II′(t, x, x′) by (∂/∂t)d(∂/∂x)A(∂/∂x′)A

′

(∂/∂ε1/2)m
′
is described as∑

d′+(|B|+|B′|)|/2≤d+(|A|+|A′|)|/2+m′

εd
′+(|B|+|B′|)|/2−m′/2h(ε1/2, t, x, x′)B(ιε(x′), ιε(x))

×
(
(∂/∂t)d

′
eB,xeB′,x′Rk0(p)

)II′

(tε, ιε(x), ιε(x
′)),

where h(ε1/2, t, x, x′) is a polynomial and |B(y′, y)| is bounded on En × En (refer to

Lemma 2.2). Hence (2.9) implies the lemma.

3.3 Detailed investigation of the term (−1)k(r(ε)#qk(ε))(t, x, x
′)

We will investigate closely the terms (−1)k(r(ε)#qk(ε))(t, x, x
′) appearing in (3.5).

First, let us consider the coordinate transformation (x′, x− x) ↔ (x′, E◦(ε)).

Lemma 3.4 The coordinate system EM(ε)(x′, x) can be extended smoothly up to the

domain dom EM(•) := {(ε1/2, x′, x) ∈ [0, ε
1/2
0 ] × En × En | (ιε(x′), ιε(x)) ∈ W} and so
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can be the system EE(ε)(x′, x) up to dom EE(•) := [0, ε
1/2
0 ] × En × En. The coordinate

transformation is then extended smoothly up to ε1/2 = 0 and

E◦(ε)
B (x′, x) =

|D|>0∑
|C′|+|D|=1,2

x′C
′
(x− x′)D B◦

(C′,D);B(ε
1/2, ιε(x

′), ιε(x− x′))

= (x− x′)B +

|D|>0∑
|C′|+|D|=2

x′C
′
(x− x′)D B◦

(C′,D);B(ε
1/2, ιε(x

′), ιε(x− x′)),

B◦
(C′,D);B(ε

1/2, ιε(x
′), ιε(x− x′)) = ε(|C

′|+|D|−1)/2B◦
(C′,D);B(ιε(x

′), ιε(x− x′)),

(x− x′)D =

|B|>0∑
|C′|+|B|=1,2

x′C
′
(E◦(ε))B B◦

(C′,B);D(ε
1/2, ιε(x

′), ιεE◦(ε))

= E◦(ε)
D +

|B|>0∑
|C′|+|B|=2

x′C
′
(E◦(ε))B B◦

(C′,B);D(ε
1/2, ιε(x

′), ιεE◦(ε)),

B◦
(C′,D);B(ε

1/2, ιε(x
′), ιεE◦(ε)) = ε(|C

′|+|D|−1)/2B◦
(C′,D);B(ιε(x

′), ιεE◦(ε)).

Here, each coefficient B◦
(C′,D);B(ε

1/2, ιε(x
′), ιε(x−x′)) is smooth on dom E◦(•) and quasi-

bounded in the sense: Every (high order) differential relative to the variables (ε1/2, x′, x−
x′) is described as a finite sum of such functions as x′C

′′
(x − x′)D

′B◦
(C′′,D′)(ε

1/2, ιε(x
′),

ιε(x−x′)), where |B◦
(C′′,D′)(ε

1/2, ιε(x
′), ιε(x−x′))| are bounded on domr EM(•) := {(ε1/2,

x′, x) ∈ dom EM(•) | |y(ιε(x′))| ≤ 2r, |y(ιε(x))| ≤ 2r} if ◦ = M , and on dom EE(•) if

◦ = E. Also each coefficient B◦
(C′,B);D(ε

1/2, ιε(x
′), ιεE◦(ε)) is smooth and quasi-bounded

in a similar sense.

Proof. The convergence limε1/2→0 E
◦(ε)
B (x′, x) = (x − x′)B will be obvious. Quasi-

boundedness in the case ◦ = E will come from (2.4) and such an expansion as at (2.14).

Note that also x − x′ = (EE
x′)−1(y) − (EE

x′)−1(0) = x(x′, EE) − x(x′, 0) (y = EE(x′, x) =

EE
x′(x)) can be expanded similarly.

In general, if we regard a quasi-bounded function B(ε1/2, ιε(x′), ιε(x− x′)) naturally

as a function of (ε1/2, ιε(x
′), ιεE◦(ε)) then it is quasi-bounded, and the converse is also

true. Accordingly one may express a quasi-bounded function simply as B(ε1/2) in the

following.

Now, for a kernel k(t, x, x′) =
∑

eI(x)⊠ eI
′
(x′) ·Kb

◦(t, x, x
′) (of type ℓ) (see (2.12)),

we set k(ε)(t, x, x
′) =

∑
(dx)I(x)⊠ (dx)I

′
(x′) ·Kb

◦(ε)(t, x, x
′) with

Kb
◦(ε)(t, x, x

′) = t−(n+2)/2+b/2ρ◦(ιε(x
′), ιε(x))K(ι1/tE◦(ε)(x′, x)),

which we call an (ε)-kernel (of type ℓ). For example, since the kernel r(t, x, x′) detV •(x′)

is of type 2 (by Lemma 2.2), r(ε)(t, x, x
′) is an (ε)-kernel of type 2.
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Lemma 3.5

(1) The function Kb
◦(ε)(t, x, x

′) can be extended smoothly up to ε1/2 = 0 and has a

Taylor expansion

Kb
◦(ε) =

∑
0≤m<m∗

εm/2Kb
◦,m/2 + εm∗/2Kb

◦,m∗/2
(ε1/2),

Kb
M,0/2 = t−(n+2)/2+b/2ρM (0, 0)K(ι1/t(x− x′)), Kb

E,0/2 = 0.

Further there exist finite sum expressions (ℓ ≥ 0)

Kb
M,m/2 =

∑
xC(∂/∂x)B t−(n+2)/2+b/2+ℓ/2K(ι1/t(x− x′)), Kb

E,m/2 = 0,(3.6)

Kb
◦,m∗/2

(ε1/2) =
∑

xC(∂/∂x)B t−(n+2)/2+b/2+ℓ/2
[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

.(3.7)

Here, in general, we set [f(δ, . . .)]δm =
∫ 1
0 dσ1 · · ·

∫ σm−1

0 dσmf(σmδ, . . .)poly(σm), where

poly(σm) is a polynomial of σm. (At (3.7) we may set poly(σm∗) = 1.) The functions

K(E) are exponentially decreasing and B(ε1/2) are quasi-bounded.

(2)(cf. (3.4)) We have

xC(∂/∂x)Bx′C
′
(∂/∂x′)B

′
(∂/∂ε1/2)mt−(n+2)/2+b/2

[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

(3.8)

=
∑

|B̃|≤|B|+|B′|+m

xC̃(∂/∂x)B̃ t−(n+2)/2+b/2+ℓ/2
[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

=
∑

|B̃′|≤|B|+|B′|+m

x′C̃
′
(∂/∂x′)B̃

′
t−(n+2)/2+b/2+ℓ′/2

[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

,

where B(ε1/2), K(E) appearing in the second and third lines depend on the respective

indices.

Proof. Lemma 3.4 implies that Kb
◦(ε) is extended smoothly and the coefficient

KM,m/2 (m > 0) can be described as a finite sum of such functions as t−(n+2)/2+b/2

x′C1(x− x′)D(∂/∂y)BK(ι1/t(y))
∣∣∣
y=x−x′

. We can alter the function x′C1(x− x′)D(∂/∂y)B

K(ι1/t(y)) successively as follows:

x′C1(x− x′)D(∂/∂y)BK(ι1/t(y)) ⇒ x′C1 · (∂/∂y)B1

(
yD1K1(ι1/t(y))

)
⇒ t|D1|/2x′C1 (∂/∂y)B1K2(ι1/t(y)) ⇒ t|D1|/2x′C1 (∂/∂x)B1K2(ι1/t(x− x′))

⇒ t|D1|/2(∂/∂x)B2

(
xC3(x− x′)D3K3(ι1/t(x− x′))

)
⇒ t(|D1|+|D3|)/2xC4 (∂/∂x)B3K5(ι1/t(x− x′)).

(3.9)

Thus we obtain the first formula at (3.6). Obviously we have KE,m/2 = 0. Taylor’s inte-

gration formula yields that the remainder term K◦,m∗/2(ε
1/2) can be expressed as a finite
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sum of such functions as t−(n+2)/2+b/2
[
x′C1(E◦(ε))AB(ε1/2)(∂/∂E◦(ε))BK(ι1/tE◦(ε))

]ε1/2
m∗

.

In the successive alterations at (3.9), the change of variables (x′, x − x′) ↔ (x′, x) was

used. Here, using the changes of variables (x′, E◦(ε)) ↔ (x′, x−x′) ↔ (x′, x) (see Lemma

3.4), similarly we obtain (3.7). Next, let us show (2). By Lemma 2.4(4) (for e
(ε)
A,x), we

have

xC(∂/∂x)B
(
t−(n+2)/2+b/2B(ε1/2)K(ι1/tE◦(ε))

)
=

∑
x′C

′
1(∂/∂x′)B1

(
t−(n+2)/2+b/2+ℓ/2B1(ε

1/2)K1(ι1/tE◦(ε))
)
.

In addition, obviously we have

(∂/∂ε1/2)
[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

=
[
(∂/∂ε1/2)B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
m∗

.

Recalling the actions of ∂/∂ε1/2 on B(ε1/2) and E◦(ε) (see Lemma 3.4), we obtain (3.8).

Lemma 3.6 Let us set

ki =
∑

(dx)I(x)⊠ (dx)I
′
(x′) · t−(n+2)/2+mi/2K(ι1/t(x− x′)),

ki(ε
1/2) =

∑
(dx)I(x)⊠ (dx)I

′
(x′) · t−(n+2)/2+mi/2

[
B(ε1/2)K(ι1/tE◦(ε))

]ε1/2
ni

,
(3.10)

where mi ≥ 1, ni ≥ 0. Even if we change each standard kernel ki into ki or ki(ε
1/2)

arbitrarily, Lemma 3.2 still holds and (3.2) can be generalized into∣∣∣(∂/∂t)d(∂/∂x)A(∂/∂x′)A′
(∂/∂ε1/2)m

(xC1(∂/∂x)B1k1# · · ·#xCj (∂/∂x)Bjkj)(ε
1/2, t, x, x′)

∣∣∣
≤ B′t

∑
mi/2−N−d−(n+2)/2K(ι1/t(x− x′))

∑
|x′C′ |

on (0, ε
1/2
0 ]× (0, T0]× En × En.

Proof. Added to (3.4), we have (3.8). The lemma will be proved in the same way

as Lemma 3.2.

Lemma 3.7 If ki,(ε) are (ε)-kernels of types bi (≥ 1), then the convolution (k1,(ε)#

· · ·#kj,(ε))(t, x, x
′) can be extended smoothly up to ε1/2 = 0.

Proof. Lemma 3.5 asserts that each ki,(ε) is extended smoothly up to ε1/2 =

0. Let us denote its expansion by ki,(ε) (= ki,0/2(ε
1/2)) =

∑
0≤m<m∗

εm/2 ki,m/2 +
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εm∗/2 ki,m∗/2(ε
1/2), where ki,m/2, ki,m∗/2(ε

1/2) are such forms as at (3.10) with (mi, ni)

replaced by (bi + ℓi,m∗) (ℓi ≥ 0). Then, k#,(ε) := k1,(ε)# · · ·#kj,(ε) is described as

k#,(ε) =
∑

0≤m<m∗

εm/2k#,m/2 + εm∗/2k#,m∗/2(ε
1/2)

=
∑

0≤m<m∗

εm/2

∑
mi=m∑

k1,m1/2# · · ·#kj,mj/2

+εm∗/2

∑
mi=m∗∑

mi>0=mi+1=···=mj

k1,m1/2# · · ·#ki−1,mi−1/2#ki,mi/2(ε
1/2)# · · ·#kj,mj/2(ε

1/2),

where, by Lemma 3.6, k#,m/2(t, x, x
′) and k#,m∗/2(ε

1/2, t, x, x′) are well-defined and

smooth on (0, ε
1/2
0 ] × (0, T0] × En × En. Further, there exist a constant B′ > 0, an

integer N > 0 and an exponentially decaying function K(E) such that∣∣∣(∂/∂t)d(∂/∂x)A(∂/∂x′)A′
(∂/∂ε1/2)mk#,m∗/2(ε

1/2, t, x, x′)
∣∣∣

≤ B′ t
∑

bi/2−N−d−(n+2)/2K(ι1/t(x− x′))
∑

|x′C′ |.

Hence, the term εm∗/2k#,m∗/2(ε
1/2) can be extended up to ε1/2 = 0 so as to be of class

Cm∗−1 by claiming that its differentials up to the order m∗ − 1 relative to the variables

(ε1/2, t, x, x′) are equal to 0 at ε1/2 = 0. Namely, k#,(ε) can be extended up to ε1/2 = 0

so as to be of class Cm∗−1. Since m∗ can be chosen arbitrarily large, certainly it can be

extended smoothly up to ε1/2 = 0.

Now we will show:

Lemma 3.8 Each term (−1)k(r(ε)#qk(ε))(t, x, x
′) can be extended smoothly up to

ε1/2 = 0 and has a series expansion

(−1)kr(ε)#qk(ε) =
∑

k≤m<m∗

εm/2pkm/2 + εm∗/2pkm∗/2
(ε1/2), p00/2 = rE .(3.11)

For every φ ∈ Ωq
0E

n, the integrals
∫
pkm/2(t, x, x

′)∧⋆φ(x′),
∫
pkm∗/2

(ε1/2, t, x, x′)∧⋆φ(x′)

are well-defined and smooth on [0, ε
1/2
0 ] × [0, T

1/2
0 ] × En. In addition, there exists a

semi-norm sn(·) such that, on [0, T
1/2
0 ]× En, for any φ ∈ Ωq

0E
n,∥∥∥∥∫ p00/2(t, x, x

′) ∧ ⋆φ(x′)− φ(x)

∥∥∥∥ ≤ t1/2 sn(φ),(3.12) ∥∥∥∥∫ p0m/2(t, x, x
′) ∧ ⋆φ(x′)

∥∥∥∥ ≤ t1/2 sn(φ) (m > 0),(3.13) ∥∥∥∥∫ pkm/2(t, x, x
′) ∧ ⋆φ(x′)

∥∥∥∥ ≤ tk/2 sn(φ) (k > 0).(3.14)
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Proof. Note that r(ε) is an (ε)-kernel of type 2 and q(ε) has a finite sum expression

q(ε) =
∑

εb/2q̃b,(ε), where each q̃b,(ε) is an (ε)-kernel of type b (≥ 1). Thus we have

(−1)k r(ε)#qk(ε) = (−1)k
∑
bi≥1

ε
∑

bi/2 r(ε)#q̃b1,(ε)# · · ·#q̃bk,(ε),

which, together with Lemma 3.7, ascertains the first half of the lemma. Next, considering

(3.11) with k = 0, i.e., r(ε) =
∑

0≤m<m∗
εm/2rm/2 + εm∗/2rm∗/2(ε

1/2), we examine the

integrals
∫
p0m/2(t, x, x

′) ∧ ⋆φ(x′) =
∫
rm/2(t, x, x

′) ∧ ⋆φ(x′). The coefficients of rm/2,

rm∗/2(ε
1/2) consist of such functions as K2

m/2 =
∑

K2
◦,m/2, etc., (see Lemma 3.5(1)).

Hence, with reference to (3.4) and (3.8), using integration by parts and then changing

the variables, we obtain finite sum expressions∫
dV (x′) rII

′

m/2(t, x, x
′)φI′(x′)

=
∑
ℓ≥0

tℓ/2
∫

dV (x′)K(x′) (∂/∂y)B
′
(
yC

′
φI′(y)

)∣∣∣
y=x−t1/2x′

,

∫
dV (x′) rII

′

m∗/2
(ε1/2, t, x, x′)φI′(x′)

=
∑
ℓ≥0

tℓ/2
∫

dV (x′)
[
B(ε1/2)K(x′) (∂/∂y)B

′
(
yC

′
φI′(y)

)∣∣∣
y=E(ε)(·,x)−1(t1/2x′)

]ε1/2
m∗

.

These are smooth on [0, ε
1/2
0 ]× [0, T

1/2
0 ]×En and, setting φm/2(x) = limt1/2→0

∫
rm/2(t,

x, x′) ∧ ⋆φ(x′), we know∥∥∥∥∫ rm/2(t, x, x
′) ∧ ⋆φ(x′)− φm/2(x)

∥∥∥∥ ≤ t1/2 sn(φ)

(refer to the argument at (2.18)). Further we have φ0/2(x) = φ(x) and φm/2(x) =

0 (m > 0). Indeed, since (2.5) implies limt1/2→0

∫
r(ε)(t, x, x

′) ∧ ⋆φ(x′) = φ(x) for

every (ε1/2, x) ∈ [0, ε
1/2
0 ]× En, setting φm∗/2(ε

1/2, x) = limt1/2→0

∫
rm∗/2(ε

1/2, t, x, x′) ∧
⋆φ(x′) as well, we know that the form

∑
0≤m<m∗

εm/2φm/2(x) + εm∗/2φm∗/2(ε
1/2, x) on

[0, ε
1/2
0 ] × En is identically equal to φ(x). The estimates (3.12) and (3.13) are thus

proved. Similarly the form
∫
pkm/2(t, x, x

′) ∧ ⋆φ(x′) (k > 0) is smooth on [0,∞) × En

and (3.3) implies the estimate (3.14).

3.4 The proof of Proposition 3.1

Lemma 3.8 says that
∑

0≤k<k0
(−1)kr(ε)#qk(ε) can be extended smoothly up to the

domain [0, ε
1/2
0 ]× (0,∞)× En × En, and Lemma 3.3 says that, by taking k0 > 0 large,

Rk0(p(ε)) can be extended up to the domain so as to be of class Ck0−1 (by claiming that

its differentials up to the order k0− 1 relative to the variables (ε1/2, t, x, x′) are equal to
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0 at ε1/2 = 0). Since k0 can be chosen arbitrarily large, certainly p(ε)(t, x, x
′) is extended

smoothly up to ε1/2 = 0 and we have

pm/2(t, x, x
′) =

∑
0≤k≤m

pkm/2(t, x, x
′).(3.15)

Let us show (3.1) by induction. When m = 0, it is valid because of (3.11) and (1.19).

We fix m′ > 0 and assume that it is valid for m smaller than m′. Then, certainly we

have ( ∂

∂t
+∆0/2

)
(pm′/2 − pm′/2) = 0.

In addition, since
∥∥∫ pm′/2(t, x, x

′) ∧ ⋆φ(x′)
∥∥ ≤ t1/2sn(φ) (by (3.15), (3.13), (3.14)) and∥∥∫ pm′/2(t, x, x

′) ∧ ⋆φ(x′)
∥∥ ≤ t2/2sn(φ) (by (1.20), (3.3)), we have

lim
t→0

∥∥∥∥∫ (
pm′/2(t, x, x

′)− pm′/2(t, x, x
′)
)
∧ ⋆φ(x′)

∥∥∥∥ = 0.

Hence, by the uniqueness of the solution of the initial value problem relative to ∆0/2 =

∆E , (3.1) with m = m′ is valid.

3.5 (1.24) vanishes if m is odd

Lemma 3.9 The coefficients in the expansion (1.16) are described as

∆m/2 =

|B|=0,1,2∑
2+|C|=|B|+m

∆m/2(B,C) · xC(∂/∂x)B,(3.16)

where each ∆m/2(B,C) is a finite sum of operators which are the composites of such

operators as dxi ∧ dxj ∨ multiplied by constants. Thus, we have ∆m/2(B,C) (dx)I
′
=∑

|I|=|I′|∆
II′

m/2(B,C) · (dx)
I .

Proof. Since (1.14) and (1.15) yield

(
∂

∂ε1/2
)m∆(ε) =

|B|=0,1,2∑
2+|C|≥|B|+m

∆m/2(B,C : ε1/2, ιε(x)) · xC(∂/∂x)B,

∆m/2(B,C : ε1/2, ιε(x)) = ε(2+|C|−|B|−m)/2∆m/2(B,C : ιε(x)),

we obtain the expression (3.16).

Recalling the definition of pm/2(t, x, x
′ : A,A′) (m > 0), we have

pII
′

m/2(t, x, x
′ : A,A′) =

m1,...,mk>0∑
∑k

ℓ=1 mℓ=m

(−1)k
∑ k∏

ℓ=1

∆I(ℓ−1)I(ℓ)

mℓ/2
(B(ℓ),C(ℓ))(3.17)

×
(
(∂/∂x)ArE#xC

(1)
(∂/∂x)B

(1)
rE# · · ·#xC

(k)
(∂/∂x)B

(k)
(∂/∂x′)A

′
rE

)
(t, x, x′),
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where we set rE(t, x, x
′) = rt(x − x′). Here, the second summation

∑
means, for each

(m1, . . . ,mk), to sum up all the terms determined by the indices (B(ℓ),C(ℓ)) and the

sequences of indices I = I(0), I(1), · · ·, I(k) = I ′ appearing in ∆mℓ/2 (1 ≤ ℓ ≤ k).

The term appearing in the second line is the value at (t, x, x′) of the convolution of the

functions (∂/∂x)ArE(t, x, x
′), xC

(1)
(∂/∂x)B

(1)
rE(t, x, x

′), . . ..

To prove that (1.24) vanishes if m is odd, it will suffice to show:

Lemma 3.10 We have

PII′

m/2(t, x, x
′ : A,A′) = (−1)m+|A|+A′| PII′

m/2(t,−x,−x′ : A,A′).(3.18)

Proof. We put x̃ = −x. If we expand detV•(ιε(x
′)) into

∑∞
m=0 ε

m/2detm/2(x
′), then

(∂/∂x′)A
′
detm/2(x

′) = (−1)m+|A′|(∂/∂x̃′)A
′
detm/2(x̃

′). Hence, it suffices to ascertain

(3.18) with P replaced by p. With the use of the notation at (3.17), further it will

suffice to show(
(∂/∂x)ArE#xC

(1)
(∂/∂x)B

(1)
rE# · · ·#xC

(k)
(∂/∂x)B

(k)
(∂/∂x′)A

′
rE

)
(t, x, x′)

= (−1)
∑

mℓ+|A|+|A′|

×
(
(∂/∂x)ArE#xC

(1)
(∂/∂x)B

(1)
rE# · · ·#xC

(k)
(∂/∂x)B

(k)
(∂/∂x′)A

′
rE

)
(t, x̃, x̃′).

Since 2 + |C(ℓ)| = |B(ℓ)|+mℓ (see (3.16)) and rE(t, x, x
′) = rE(t, x̃, x̃

′), we have

(∂/∂x)ArE(t, x, x
′) = (∂/∂x)ArE(t, x̃, x̃

′) = (−1)|A|(∂/∂x̃)ArE(t, x̃, x̃
′),

xC
(ℓ)
(∂/∂x)B

(ℓ)
rE(t, x, x

′) = (−1)|B
(ℓ)|+|C(ℓ)|x̃C

(ℓ)
(∂/∂x̃)B

(ℓ)
rE(t, x̃, x̃

′)

= (−1)mℓ x̃C
(ℓ)
(∂/∂x̃)B

(ℓ)
rE(t, x̃, x̃

′),

etc. In consideration of the change of orientation, we obtain the equality.
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