談話会 (2005年度)
埼玉大学理学部数学教室では不定期に談話会を開催しています。
内容に関心のある方は御参加下さい。
場所:埼玉大学
理学部1号館
(3階) 基礎数理演習室
(お茶会の場所は理学部1号館3階のコモンルームです。)
12月9日(金)
16: 00--17: 00 (15:30からお茶)
宮西 正宜氏 (関西学院大学)
Affine pseudo-planes and the Jacobian Conjecture
アブストラクト:
An affine pseudo-plane is one of the satellite surfaces of the affine
plane and is defined to be a complex smooth affine surface $X$ of
Picard number zero and with no non-constant invertible functions such
that there is an ${\mathbf A}^1$-fibration parametrized by the affine
line and equipped with a unique multiple fiber of multiplicity, say
$d$. Then all the fibers of the ${\mathbf A}^1$-fibration are
irreducible, the Picard group of $X$ is isomorphic to ${\mathbf
Z}/d{\mathbf Z}$ and it is equal to the fundamental group
$\pi_1(X)$. An example is a quotient of a Danielewski surface
$xy=z^d-1$ by a ${\mathbf Z}/d{\mathbf Z}$-action given by
$\zeta\cdot(x,y,z)=(\zeta x, \zeta^{-1}y, \zeta^a z)$ with $0 < a < d$
and $\gcd(a,d)=1$, where $\zeta$ is a primitive $d$-th root of
unity. Another example is the complement in ${\mathbf P}^2$ of a
cuspidal rational curve $X_0X_1^{d-1}=X_2^d$. These two examples are
slightly different in properties. In terms of the additive group
actions, the former has two independent actions, though the latter has
only one. An affine pseudo-plane has a good similarity to the affine
plane and hence plays a role of a test surface to various problems
which are expected to be affirmative for the affine plane and are
examplified by the cancellation problem and the Jacobian
conjecture. Tom Dieck, generalizing the original construction by
Danielewski, produced several counterexamples to the cancellation
problem by using the universal coverings of certain affine
pseudo-planes which admit algebraic torus actions. We can produce
counterexamples to the cancellation problem by using affine
pseudo-planes themselves.
We shall discuss the Jacobian conjecture for affine pseudo-planes. We yet have no counterexamples but
do have some counterexamples if we drop the condition that the ${\mathbf A}^1$-fibration has only one multiple fiber.
Furthermore, by widening the class of surfaces, the Jacobian Conjecture will admit more algebro-geometric
approaches. We shall report also this algebro-geometric approach.
過去の記録
10月21日(金)
16: 00--17: 00 (15:30からお茶)
阿部 孝順氏 (信州大学)
可微分軌道体の微分同相群の1次元ホモロジー群とその応用
9月9日(金)
16: 00--17: 00 (15:30からお茶)
林 忠一郎氏 (日本女子大学)
The number of Reidemeister moves for splitting a link
5月27日(金)
16: 00--17: 00 (15:30からお茶)
坂元 国望氏 (広島大学)
Front motion in viscous conservation laws with stiff source terms
2004年度の談話会
2002年度の談話会
2001年度の談話会
2000年度の談話会
Back