L1 PC - Analyse

DEVOIR LIBRE

À rendre le 17/12/12

La note tiendra compte de la rédaction et de la présentation.

IL FAUT TOUT JUSTIFIER.

Il s'agit d'un travail **individuel**.

Suites équivalentes

<u>Définition</u>: on dit que deux suites $(u_n)_n$ et $(v_n)_n$ sont équivalentes s'il existe une suite $(\varepsilon_n)_n$ tendant vers 1 telle que $u_n = \varepsilon_n v_n$. On note $u_n \sim v_n$. Il s'agit d'une relation d'équivalence.

<u>Caractérisation</u>: lorsque $(v_n)_n$ est non nulle à partir d'un certain rang, $u_n \sim v_n \Leftrightarrow \frac{u_n}{v_n} \xrightarrow[n \infty]{} 1$.

Proposition: si $u_n \sim v_n$, alors soit $(u_n)_n$ et $(v_n)_n$ ont toutes les deux une limite, et en l'occurrence la même, soit aucune ne possède de limite.

Proposition : si $u_n \sim v_n$ et si $u'_n \sim v'_n$ alors $u_n u'_n \sim v_n v'_n$.

Problème : intégrales de Wallis

Pour tout $n \in \mathbb{N}$, on considère $I_n = \int_0^{\frac{\pi}{2}} (\sin t)^n dt$.

- 1. Montrer par un changement de variable que $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{\pi}{2}} (\cos t)^n dt$.
- 2. Calculer I_0 et I_1 .
- 3. (a) Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante à termes strictement positifs.
 - (b) En déduire qu'elle converge.
- 4. Montrer que pour tout $n \ge 2$, $n I_n = (n-1)I_{n-2}$ (1)
- 5. (a) Montrer que $I_{n+1} \sim I_n$ (on pourra utiliser la monotonie de (I_n) ainsi que la relation (1) pour conclure avec le théorème des gendarmes).
 - (b) Déduire de la relation (1) que la suite $((n+1)I_nI_{n+1})_{n\in\mathbb{N}}$ est constante.
 - (c) Déduire des questions précédentes que $I_n \sim \sqrt{\frac{\pi}{2n}}$
 - (d) En déduire $\lim_{n \to \infty} I_n$ et $\lim_{n \to \infty} \sqrt{n} \cdot I_n$.
- 6. (a) Déduire de la relation (1) que

$$I_{2p} = \frac{1 \times 3 \times 5 \times \cdots \times (2p-1)}{2 \times 4 \times 6 \times \cdots \times (2p)} \frac{\pi}{2} = \frac{(2p)!}{2^{2p}(p!)^2} \frac{\pi}{2}$$

et que

$$I_{2p+1} = \frac{2 \times 4 \times 6 \times \dots \times (2p)}{1 \times 3 \times 5 \times \dots \times (2p+1)} = \frac{2^{2p}(p!)^2}{(2p+1)!}$$

Attention : il y a, à chaque fois, deux égalités à montrer ! On retrouve que la suite $((n+1)I_nI_{n+1})_{n\in\mathbb{N}}$ est constante.

(b) Montrer que $\lim_{p \to \infty} \frac{2^{4p}(p!)^4}{((2p)!)^2p} = \pi$ (Formule de Wallis).

Exercice 1

- 1. Donner le $DL_3(2)$ de $x \mapsto \sqrt{x}$.
- 2. Déterminer $\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$.

3. Déterminer
$$\lim_{x\to 0} \frac{2x}{\ln\left(\frac{1+x}{1-x}\right)}$$
.

Exercice 2

Prouver que les fonctions suivantes admettent une asymptote en $+\infty$ dont on donnera l'équation. On étudiera la position de la courbe par rapport à son asymptote.

1.
$$f: x \mapsto \frac{x \operatorname{ch} x - \operatorname{sh} x}{\operatorname{ch} x - 1}$$
.

2.
$$f: x \mapsto \frac{x+1}{1+e^{\frac{1}{x}}}$$
.

Exercice 3

Donner une primitive de :

- 1. $x \mapsto \cos(\sqrt{x})$ (on pourra commencer par un changement de variable).
- 2. $x \mapsto \frac{x^3 + 2x}{x^2 + x + 1}$ (on pourra commencer par réaliser une division euclidienne).