課題 (2006年10月3日(火))

A1

- 1. 数列 $\{a_n\}$ が有界であることの定義を論理記号を用いて書け。
- 2. 数列 $\{a_n\}$ が有界であることの定義を英語で書け。
- 3. 1. の否定を作れ。

A2

- 1. 数列 $\{a_n\}$ が α に収束することの定義を論理記号を用いて書け。
- 2. 数列 $\{a_n\}$ が α に収束することの定義を英語で書け。
- 3. 1. の否定を作れ。

 \mid $\mathrm{A}3 \mid$ 収束する数列 $\left\{a_n
ight\}$ は有界であることを示せ。

 $\boxed{\mathbf{A4}}$ $a_n \neq 0$ なる数列 $\{a_n\}$ が 0 でない数に収束するとき、数列 $\left\{\frac{1}{a_n}\right\}$ は有界であることを示せ。

A5 $a_n \leq b_n \leq c_n \ (n=1,2,\dots)$ で $\{a_n\}$, $\{c_n\}$ が同じ値 α に収束するとき、 $\{b_n\}$ も α に収束することを示せ。A6 $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$ のとき、次を示せ。

$$\lim_{n \to \infty} (a_n - b_n) = \alpha - \beta, \qquad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta}$$

ただし、後者の式では $b_n \neq 0$, $\beta \neq 0$ を仮定している。

A7 数列 $\{a_n\}$ が 0 に収束し、数列 $\{b_n\}$ が有界ならば数列 $\{a_nb_n\}$ は 0 に収束することを示せ。

解析概論 A 演習課題 (2006 年 10 月 10 日 (火))

B1

- 有理数の切断 (A|A') の定義を書け。
- 有理数の切断 (A|A') の定義を英語で書け。

 $oxed{B2}$ 実数 $lpha=(A|A'),\,eta=(B|B')$ に対し、 $lpha<eta,\,lpha=eta,\,lpha>eta$ のどれかひと つが成立することを示せ。

国3 実数 $\alpha_1 = (A_1|A_1')$, $\beta_1 = (B_1|B_1')$, $\alpha_2 = (A_2|A_2')$, $\beta_2 = (B_2|B_2')$ に対し、次を示せ。

$$\alpha_1 \leq \beta_1, \quad \alpha_2 \leq \beta_2 \quad \Longrightarrow \quad \alpha_1 + \alpha_2 \leq \beta_1 + \beta_2$$

B4 実数 $\alpha = (A|A'), \beta = (B|B')$ に対し、次を示せ。

- 1. $\alpha \leq \beta$ $\alpha \leq \beta$ $\alpha \leq -\beta$
- $2. \alpha < \beta \text{ α if } -\alpha > -\beta$
- |B5|実数 $\alpha, \beta \geq 0$ に対し、次を示せ。

$$|\alpha| \le \beta \iff -\beta \le \alpha \le \beta$$

- $oxed{B6}$ (3 角不等式) 実数 lpha,eta に対し、次が成り立つことを示せ。
 - (i) $|\alpha| |\beta| \le |\alpha + \beta| \le |\alpha| + |\beta|$
 - (ii) $|\alpha| |\beta| \le |\alpha \beta| \le |\alpha| + |\beta|$

解析概論 A 演習課題 (2006年10月17日(火))

- \mid $\mathrm{C1} \mid$ 実数 $\mathbf R$ の部分集合 E をとる。
 - E の上限 sup E の定義を書け。
 - E の上限 sup E の定義を英語で書け。
 - α が E の集積点であることの定義を書け。
 - α が E の集積点であることの定義を英語で書け。
- C2 次の集合の集積点を求めよ
 - 1. $E = \{ \frac{n}{n+1} \mid n = 1, 2, \dots, \}.$
 - 2. $E = \mathbf{Z}$ (整数全体の集合).
 - 3. $E = \{m + \frac{1}{n} \mid m, n$ は正の整数 $\}$.
- C3 有界な単調減少数列は収束することを示せ。
- C4 (縮小閉区間列の定理) 閉区間の列 $[a_1,b_1]$, $[a_2,b_2]$,..., $[a_n,b_n]$,... が次の 2 つの条件を満たせば、これらの区間に共通な実数が 1 つだけ存在することを示せ。
 - (i) すべての n に対し $[a_n,b_n]\supset [a_{n+1},b_{n+1}]$
 - (ii) $n \to \infty$ のとき $b_n a_n \to 0$.
- 区5 数列 $\{a_n\}$ に対し、集合 $A_n=\{a_k\mid k\geq n\}$ を考え、 $\overline{a}_n=\sup A_n, \underline{a}_n=\inf A_n$ とおく。
 - 1. $\{\overline{a}_n\}$ は単調減少数列であることを示せ。
 - 2. $\{\underline{a}_n\}$ は単調増加数列であることを示せ。

上極限と下極限 数列 $\{a_n\}$ の上極限、下極限をそれぞれ、次で定める。

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \overline{a}_n = \lim_{n \to \infty} \sup A_n \qquad \underline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \underline{a}_n = \lim_{n \to \infty} \inf A_n$$

数列 $\{a_n\}$ が上に有界でない $\iff \sup A_n = +\infty \iff \overline{\lim_{n \to \infty}} \ a_n = +\infty$ 数列 $\{a_n\}$ が下に有界でない $\iff \sup A_n = -\infty \iff \overline{\lim_{n \to \infty}} \ a_n = -\infty$ に注意しておく。便宜上、

- 数列 $\{\overline{a}_n\}$ が下に有界でないときは $\overline{\lim}_{n\to\infty} a_n = -\infty$,
- 数列 $\{\underline{a}_n\}$ が上に有界でないときは $\varliminf_{n \to \infty} a_n = +\infty$

と定める。 $\overline{\lim}_{n\to\infty} a_n$ の代わりに $\limsup_{n\to\infty} a_n$, $\underline{\lim}_{n\to\infty} a_n$ の代わりに $\liminf_{n\to\infty} a_n$ と書くこともある。

| C6 | 次の数列の、上極限、下極限を求めよ。

$$\left\{\frac{1}{n}\right\}, \qquad \left\{(-1)^n\right\}, \qquad \left\{(-1)^n + \frac{1}{n}\right\}, \qquad \left\{(-1)^n n\right\}, \qquad \left\{n + \frac{1}{n}\right\}$$

解析概論 A 演習課題 (2006 年 10 月 24 日 (火))

D1

- 数列 $\{a_n\}$ が Cauchy 列であることの定義を書け。
- 数列 $\{a_n\}$ が Cauchy 列であることの定義を英語で書け。
- 数列 $\{a_n\}$ が Cauchy 列であることの否定を書け。
- |D2|次の条件を満たす数列 $\{a_n\}$ は収束するかどうか判定せよ。

任意の正の数 ε に対し、ある番号 N があって $|a_n - a_N| < \varepsilon \ (\forall n > N)$ となる。

- $ig| \operatorname{D3} ig|$ 数列 $\{a_n\},\,\{b_n\}$ が次を満たすとする。
 - $\{a_n\}$ は α に収束する。
 - 任意の $\varepsilon > 0$ に対し次を満たす N が存在する。

$$n \ge N \Longrightarrow |a_n - b_n| < \varepsilon$$

このとき、数列 $\{b_n\}$ は α に収束する事を示せ。

- $oxed{D4^*}$ 有界な数列 $\{a_n\}$ の集積点全体の集合を S とする。次を示せ。
 - (i) S は最大値, 最小値をもつ.
 - (ii) $\overline{\lim}_{n\to\infty} a_n = \sup S$, $\underline{\lim}_{n\to\infty} a_n = \inf S$.

特に、数列 $\{a_n\}$ が有界なら $\lim_{n\to\infty} a_n \leq \overline{\lim}_{n\to\infty} a_n$.

解析概論 A 演習課題 (2006年10月24日(火))

E1

- 1. α は 数列 $\{a_n\}$ の集積点であることの否定を書け。
- 2. 集合 X の関係 \sim が同値関係であることの定義を書け。
- 3. $\lim_{x \to a} f(x) = b$ の定義を書け
- 4. 関数 f(x) が x = a で連続である事の定義を書け.
- 5. 関数 f(x) が x = a で連続である事の定義を英語で書け、

 $\fbox{E2}$ $a_1>a_2>a_3>\cdots>a_n>\cdots>0,\ a_n\to 0\ (n\to\infty)$ とするとき、次の無限級数は収束することを示せ。

$$a_1 - a_2 + a_3 - a_4 + \dots$$

 $\left[\mathrm{E3} \right]$ 数列 $\left\{ rac{1}{n} \right\}$ はコーシー列であることを示せ。

E4 次を満たす定数 C, r (C > 0, 0 < r < 1) が存在すれば、 $\{a_n\}$ はコーシー列 であることを示せ。

$$|a_{n+1} - a_n| < Cr^n$$
 $(n = 1, 2, 3, ...)$

 $[E5] [無限小数] \{b_n\}$ を 0 以上 9 以下の自然数からなる数列とする. これから無限小数 $0.b_1b_2b_3\dots$ を次の様にして作る.

$$a_{1} = \frac{b_{1}}{10}$$

$$a_{2} = \frac{b_{1}}{10} + \frac{b_{2}}{10^{2}}$$

$$a_{3} = \frac{b_{1}}{10} + \frac{b_{2}}{10^{2}} + \frac{b_{3}}{10^{3}}$$

$$\cdots$$

$$a_{n} = \frac{b_{1}}{10} + \frac{b_{2}}{10^{2}} + \cdots + \frac{b_{n}}{10^{n}}$$

このとき $\{a_n\}$ は Cauchy 列であることを示せ、(従って $\{a_n\}$ は収束する、 この極限値のことを通常 $0.b_1b_2b_3\dots$ と書いているのである。)

 $oxed{E6}$ 有理数の数列でコーシー列であるようなもの全体を X で表す。X の元 $\{a_n\}$ と $\{b_n\}$ に対し

$$\{a_n\} \sim \{b_n\} \iff \forall \varepsilon > 0 \; \exists N \; \text{s.t.} \; n \geq N \;$$
ならば $|a_n - b_n| < \varepsilon$

と定義するとこれは同値関係になることを示せ。

解析概論 A 演習課題 (2006 年 11 月 7 日 (火))

F1

- 1. 関数 f(x) が x = a で連続である事の定義を英語で書け.
- 2. 「関数 f(x) が x = a で連続である」の否定をつくり、それを英語で書け.

F2 $\lim_{x\to a} f(x) = \alpha$, $\lim_{x\to a} g(x) = \beta$ のとき次が成り立つ事を示せ.

- 1. $\lim(f(x) \pm g(x)) = \alpha \pm \beta$. (複号同順)
- 2. $\lim f(x)q(x) = \alpha\beta$.
- 3. $\lim f(x)/g(x) = \alpha/\beta$. (ただし $\beta \neq 0$ のとき).

F3 定義にしたがって $x^2 \rightarrow 4 (x \rightarrow 2)$ を示せ。

 $\fbox{F4}$ $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ が存在し x = a の近傍で $f(x) \leq g(x)$ ならば $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$ であることを示せ.

F5 (ディリクレ関数) 次の関数はすべての実数で不連続である事を示せ.

$$f(x) = \begin{cases} 1 & x は有理数 \\ 0 & x は無理数 \end{cases}$$

 $\boxed{ \mathbf{F} \mathbf{6}^* }$ 次の関数は、すべての正の有理数で不連続であり、すべての正の無理数で連続である事を示せ、

$$f(x) = \begin{cases} \frac{1}{q} & x \text{ は有理数で } x = \frac{p}{q} \text{ なる既約分数} \\ 0 & x \text{ は無理数} \end{cases}$$

 X^{**} 有理数の数列でコーシー列であるようなものを有理コーシー列という. 有理 コーシー列 $\{a_n\}$ に対して

$$A(\{a_n\}) = \{x \in \mathbf{Q} \mid \exists N \text{ s.t. } x < a_n(\forall n \ge N)\}$$

$$A'(\{a_n\}) = \{x \in \mathbf{Q} \mid \exists N \text{ s.t. } x \ge a_n(\forall n \ge N)\}$$

とおく. 次を示せ.

- 1. $(A({a_n})|A'({a_n}))$ は有理数の切断である.
- 2. $(A(\{a_n\})|A'(\{a_n\}))$ と $(A(\{b_n\})|A'(\{b_n\}))$ が同じ実数を定めれば E6 の意味で $\{a_n\} \sim \{b_n\}$
- 3. 有理数の切断 (A|A') を任意にとる. (A|A') と同じ実数を定める有理コーシー列から定まる切断 $(A(\{a_n\})|A'(\{a_n\}))$ が存在する.

解析概論 A 演習課題 (2006年11月14日(火))

G1

- 1. f(x) が区間 I で連続であることの定義を英語で書け.
- 2. 1. の否定を英語で書け.
- 3. f(x) が区間 I で一様連続であることの定義を英語で書け.
- 4. 3. の否定を英語で書け.
- G2 次の無限級数の収束発散を判定せよ。

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

| G3 |(Euler の定数) (i) 次の式を示せ。

$$\log(n+1) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < 1 + \log n$$

(ii) 次で決まる数列 $\{e_n\}$ は下に有界な単調減少数列であることを示せ. (従って極限値が存在する. この極限値を **Euler の定数**といい γ で表す.)

$$e_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n$$

|G4||次の無限級数の収束発散を判定せよ。

$$\frac{1}{2(\log 2)^p} + \frac{1}{3(\log 3)^p} + \dots + \frac{1}{n(\log n)^p} + \dots$$

$$\frac{1}{2\log 2(\log \log 2)^p} + \frac{1}{3\log(\log \log 3)^p} + \dots + \frac{1}{n\log(\log \log n)^p} + \dots$$

|G5|次の無限級数の収束発散を判定せよ.

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}, \quad \sum_{n=1}^{\infty} \frac{n}{(2n-1)^2}, \quad \sum_{n=1}^{\infty} \frac{1 \cdot 2 \cdot 3 \cdots n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}, \quad \sum_{n=1}^{\infty} \frac{1}{\log(n+1)}$$

G6 x>0 のとき、次の無限級数の収束発散を判定せよ.

$$\sum_{n=1}^{\infty} \frac{x^n}{n+1}, \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^2}, \qquad \sum_{n=1}^{\infty} n! x^n, \qquad \sum_{n=2}^{\infty} \frac{x^n}{\log n}$$

解析概論 A 演習課題 (2006年12月5日(火))

- |H1| 次の定義を英語で書け.
 - 1. 無限級数 $\sum a_n$ が絶対収束する.

- 2. 無限級数 $\sum a_n$ が条件収束する.
- | H2 | 次の無限級数の収束発散を論ぜよ.

$$\sum_{n=2}^{\infty} \frac{1}{\log n}, \quad \sum_{n=2}^{\infty} \frac{(-1)^n}{\log n}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n}}, \quad \sum_{n=1}^{\infty} \frac{x^n}{n!}, \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \sin nx$$

Н3

- $\sum a_n$ が条件収束する例をあげよ.
- $\sum a_n$ が絶対収束すれば、 $\sum a_n^2$ は収束する事を示せ.
- $\sum a_n$ が条件収束するとき、 $\sum a_n^2$ は収束するとは限らない事を示せ.

[H4]
$$0 < a \le b$$
, $a_0 = a$, $b_0 = b$, $a_{n+1} = \frac{2}{\frac{1}{a_n} + \frac{1}{b_n}}$, $b_{n+1} = \frac{a_n + b_n}{2}$ とする.

- (i) $a_n \le b_n \ (n \ge 0)$ を示せ.
- (ii) $\{a_n\}$ は単調増加数列, $\{b_n\}$ は単調減少数列であることを示せ.
- (iii) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \sqrt{ab}$ を示せ.

田5 数列 $\{a_n\}$ が 0 に収束する単調減少数列で,数列 $\{b_n\}$ の部分和 $s_n = \sum_{k=1}^n b_k$ が有界のとき, $\sum a_n b_n$ は収束することを示せ.(ヒント: $T_n = \sum_{k=1}^n a_k b_k$ がコーシー列であることを示せ.) 田6 数列 $\{a_n\}$ が 0 に収束する単調減少数列のとき,次の無限級数の収束発散を論ぜよ.

$$\sum a_n \sin nx$$
, $\sum a_n \cos nx$

解析概論 A 演習課題 (2006年12月12日(火))

- | I1 | 次の定義を書け。英語でも書くこと。
 - 区間 I で定義された関数の列 $\{f_n(x)\}$ が関数 f(x) に収束する。
 - 区間 I で定義された関数の列 $\{f_n(x)\}$ が関数 f(x) に一様収束する。
- | I2 | 次の無限級数は、与えられた区間で、一様収束するか判定せよ。

$$\sum \frac{1}{n!} x^n$$
, $[-1,1]$; $\sum x^n$, $(-1,1)$; $\sum \frac{1}{n^2} \sin nx$, $(-\infty,\infty)$

- | I3 | 次の命題の真偽を判定せよ。理由も述べること。
 - すべての実数 x について f(x) < f(x+1) を満たす連続関数は増加関数である。

• $a_1>a_2>\cdots>a_n>\cdots>0$ で $a_n\to 0$ $(n\to\infty)$ のとき次が成り立つ。 n< m ならば

$$|a_n b_n + a_{n+1} b_{n+1} + \dots + a_m b_m| \le a_n |b_n + \dots + b_m|$$

[I4] 次の級数は左の関数のマクローリン展開である。これらの級数の収束発散を論 ぜよ。

$$\sin x \qquad 1 - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + \frac{1}{(2n+1)!}x^{2n+1} + \dots$$

$$\cos x \qquad 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

$$\frac{1}{1+x} \qquad 1 - x + x^2 - \dots + (-1)^n x^n + \dots$$

$$\log(1+x) \qquad x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

$$(1+x)^{\frac{1}{2}} \qquad 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \dots + \frac{1 \cdot 3 \cdots (2n-3)}{2 \cdot 4 \cdots (2n-2)(2n)}x^n + \dots$$

$$(1+x)^{\alpha} \qquad 1 + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + {\alpha \choose 3}x^3 + \dots + {\alpha \choose n}x^n + \dots$$

$$\sin^{-1}x \qquad x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \dots + \frac{1^23^2 \cdots (2n-3)^2}{(2n-1)!}x^{2n-1} + \dots$$

$$\tan^{-1}x \qquad x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^{n-1}\frac{x^{2n-1}}{2n-1} + \dots$$

[I5]
$$0 < a \le b$$
, $a_0 = a$, $b_0 = b$, $a_{n+1} = \sqrt{a_n b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$, とする.

- (i) $a_n \leq b_n \ (n \geq 0)$ を示せ.
- (ii) $\{a_n\}$ は単調増加数列, $\{b_n\}$ は単調減少数列であることを示せ.
- (iii) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n$ を示せ.

参考: (iii) の極限値はa,b の算術幾何平均とよばれる. その値M は次を満たす。

$$\frac{\pi}{2M} = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{a^2 \cos^2 x + b^2 \sin^2 x}}$$

興味のある諸君はこの事実も調べてみるとよい。

| I6* | 次の極限を考察せよ.

$$\lim_{n \to \infty} \binom{\alpha}{n}$$

解析概論 A 演習課題解答例 (2007年1月9日)

J1 次の定義を書け。

- 冪級数 $\sum a_n x^n$ の収束半径
- $a_n = b_n + O(c_n) \ (n \to \infty)$
- $a_n = b_n + o(c_n) \ (n \to \infty)$
- $f(x) = g(x) + O(h(x)) (x \to 0)$
- $f(x) = g(x) + o(h(x)) (x \to 0)$

J2 次の冪級数の収束半径を求めよ。

$$\sum \frac{1}{n!} x^n \quad \sum x^n \quad \sum \frac{n!}{(2n)!} x^n \quad \sum \frac{x^n}{2^n n} \quad \sum \frac{x^n}{\sqrt{n}} \quad \sum \frac{x^{2n+1}}{2^n (n+1)}$$

J3 次の級数は一様収束するか?

$$\sum \frac{1}{n^2 + x^2} \qquad \sum \frac{\cos nx}{2^n} \qquad \sum \frac{x^{2n}}{n^2(1 + x^{2n})} \qquad \sum_{n=1}^{\infty} x^n \cos n\theta$$

 $|\operatorname{J4}| f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ ならば、次を示せ。

$$a_n = \frac{1}{n!} f^{(n)}(0)$$
 $(n = 1, 2, ...)$

 $oxed{J5}$ k,p を定数とし,数列 $\{a_n\}$ は次を満たすとする.

$$a_n = \frac{k}{n^p} + o\left(\frac{1}{n^p}\right) \qquad (n \to \infty)$$

- $p>1,\,k\neq 0$ ならば $\sum a_n$ は収束することを示せ.
- $p \le 1, k > 0$ ならば, $\sum a_n = \infty$ を示せ.
- $p \le 1, k < 0$ ならば, $\sum a_n = -\infty$ を示せ.

 $oxed{J6}$ 次を満たす数列 $\{a_n\}$ がある.

$$\frac{a_{n+1}}{a_n} = \frac{n^k + p_1 n^{k-1} + \dots + p_{k-1} n + p_k}{n^k + q_1 n^{k-1} + \dots + q_{k-1} n + q_k}$$

- $q_1 p_1 > 1$ のとき, $\sum a_n$ は収束する事を示せ.
- $q_1 p_1 \le 1$ のとき, $\sum a_n$ は発散する事を示せ.

f(0) = 0 を考慮すれば、 $f(x) = -\log(1-x)$ を得る.

解析概論 A 演習課題 (2007年1月16日)

教科書 問 6.3 (224 ページ) 問 6.4 (229 ページ) 問 6.5* (232 ページ)

|K1| 次の真偽を判定せよ.

- (i) |a| < |b| のとき $\sum c_n b^n$ が収束すれば $\sum c_n a^n$ も収束する。
- (ii) $p>1,\ a_n>0$ とする. $\frac{a_{n+1}}{a_n}\leq 1-\frac{p}{n+1}\ (n=1,2,3,\dots)$ をみたすとき $\sum a_n$ は収束する.
- (iii) 正項級数 $\sum a_n$ が収束すれば、交項級数 $\sum (-1)^{n-1}a_n$ も収束する.
- (iv) 交項級数 $a_1 a_2 + a_3 a_4 + \cdots$, $a_n > 0$, は $a_n \to 0$ $(n \to \infty)$ が成り立てば、収束する.
- (v) C^1 関数の列 $\{f_n(x)\}$ が f(x) に収束すれば、f(x) は微分可能で $f'(x) = \lim_{n \to \infty} f'_n(x)$.
- $\lceil \mathrm{K2}
 ceil k$ を定数とし,正項級数 $\{a_n\}$ が次を満たすとする.

$$\frac{a_{n+1}}{a_n} = 1 + \frac{k}{n} + o\left(\frac{1}{n}\right) \qquad (n \to \infty)$$

- k > 0 ならば、ある番号から先は $\{a_n\}$ は増加数列である事を示せ.
- k < 0 ならば、ある番号から先は $\{a_n\}$ は減少数列である事を示せ.
- [K3] (i) 部分積分を用いて $\int_0^\infty \frac{\sin x}{x} dx$ は収束する事を示せ。
- (ii) $\int_0^\infty \frac{\sin x}{x} dx$ は絶対収束しない (すなわち $\int_0^\infty \left| \frac{\sin x}{x} \right| dx$ は発散する) 事を示せ。
- [K4] (i) m, n を整数とする. 次を示せ.

$$\int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0 & (m \neq n) \\ \pi & (m = n) \end{cases} \int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0 & (m \neq n) \\ \pi & (m = n) \end{cases}$$

$$\int_{-\pi}^{\pi} \cos mx \sin nx \, dx = 0$$

(ii) 2π を周期とする周期関数 f(x) が

$$f(x) = (a_0 + a_1 \cos x + a_2 \cos 2x + \cdots) + (b_1 \sin x + b_2 \sin 2x + \cdots)$$

と表され、右辺の2つの級数が一様収束するならば、次を示せ。

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad b_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

K5 (i) 次の不等式を示せ.

$$0 < e - \left(1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right) < \frac{1}{n!n}$$

(ii) e は有理数でないことを示せ.