
WEIGHTED HOMOGENEOUS POLYNOMIALS AND
BLOW-ANALYTIC EQUIVALENCE
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Abstract- Based on the T. Fukui invariant and the recent motivic invariants proposed by S. Koike and A.

Parusiński we give a simple classification of two variable quasihomogeneous polynomials by the blow-analytic

equivalence.

1. INTRODUCTION

Unlike the topological triviality of real algebraic germs, the C1-equisingularity admits
continuous moduli. For instance, the Whitney family Wt(x, y) = xy(x− y)(x− ty), t > 1,
has an infinite number of different C1-types. Nevertheless, as was noticed by Tzee-Char
Kuo, this family is blow-analytically trivial, that is, after composing with the blowing-up
β : M2 → R2, Wt ◦ β becomes analytically trivial. T.-C. Kuo proposed new notions of
blow-analytic equisingularity and the blow-analytic function (see [6, 3] for survey). Let
f : U → R, U open in Rn, be a continuous function. We say that f is blow-analytic,
if there exists a sequence of blowing-up β such that the composition f ◦ β is analytic
(for instance f(x, y) = x2y

x2+y2 is blow-analytic but not C1). A local homeomorphism
h : (Rn, 0) → (Rn, 0) is called blow-analytic if so are all coordinate functions of h and h−1.
Two function germs f1, f2 : (Rn, 0) → (R, 0) are blow-analytically equivalent if there is a
blow-analytic homeomorphism h such that f1 = f2 ◦ h.

Observation. Let f, g : (Cn, 0) → (C, 0) be weighted homogeneous polynomials with
isolated singularities. It is known, for n = 2, 3, that if (Cn, f−1(0)) and (Cn, g−1(0)) are
homeomophic as germs at 0 ∈ Cn, then, their systems of weights coincide.

We will consider real singularities. We can easily see that the notion of topological
equivalence is too weak to consider the same problem for real analytic singularities. For
example, consider f(x, y) = x3+xy6 and g(x, y) = x3+y8, they are topologically equivalent
by Kuiper-Kuo Theorem (see [7, 8]). However, f and g have different weights. We replace
the topological equivalence by the blow-analytic equvalence, and we will consider the
following problem suggested by T. Fukui.

Problem 1 (T. Fukui, [2], Conjecture 9.2 ). Let f, g : (Rn, 0) → (R, 0) be weighted homo-
geneous polynomials with isolated singularities. Suppose that f and g are blow-analytically
equivalent. Then, do their systems of weights coincide?

The purpose of this paper is to establish this conjecture for two variables. Namely, we
will prove the following :

Theorem 1. Let fi : (R2, 0) → (R, 0) (i = 1, 2) be non-degenerate quasihomogeneous poly-
nomials of type (1; ri1, ri2) such that 0 < ri2 ≤ ri1. If f1 and f2 are blow-analytically
equivalent, then either both f1 and f2 are nonsingular, or both are analytically equivalent
to xy, or (r11, r12) = (r21, r22).
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We call a polynomial f(x1, . . . , xn) quasihomogeneous of type (d; w1, . . . , wn) ∈ Qn+1

if i1w1 + · · · + inwn = d for any monomial αxi1
1 . . . xin

n of f . We say that a polynomial
f(x) is non-degenerate if { ∂f

∂x1
(x) = · · · = ∂f

∂xn
(x) = 0} = {0} as germs at the origin of Rn.

We will next recall some important results on blow-analytic equivalence.

Theorem 2 (T. Fukui - L. Paunescu [4]). Given a system of weights w = (w1, . . . , wn),
let ft : (Rn, 0) → (R, 0) be an analytic function for t ∈ I = [0, 1]. Suppose that for each
t ∈ I, the weighted initial form of ft with respect to w is the same weighted degree and has
an isolated singularity at 0 ∈ Rn. Then {ft}t∈I is blow-analytically trivial over I.

T. Fukui ([2]) gave some invariants for blow-analytic equivalence. One of them is defined
as follows :

For an analytic function f : (Rn, 0) → (R, 0), set

A(f) = {O(f ◦ λ) | λ : (R, 0) → (Rn, 0) Cwarc}.
Then we have

Theorem 3 (Fukui’s invariant). Suppose that analytic functions f, g : (Rn, 0) → (R, 0)
are blow-analytically equivalent, then A(f) = A(g).

Recently in [5], S. Koike and A. Parusiński have defined motivic zeta functions (inspired
by the work of Denef and Loser [1]) which are invariant for blow-analytic equivalence. We
will briefly recall their definition of the zeta functions.

Denote by L the space of analytic arcs at the origin 0 ∈ Rn :

L = {γ : (R, 0) → (Rn, 0) | γ is analytic }
and by Lk the space of truncated arcs :

Lk = {γ ∈ L | γ(t) = v1t + · · ·+ vkt
k, vi ∈ Rn}.

Given an analytic function f : (Rn, 0) → (R, 0). For k ≥ 1 we denote

Ak(f) = {γ ∈ Lk | f ◦ γ(t) = ctk + · · · , c 6= 0}.
We define the zeta function of f by

Zf (T ) =
∑

k≥1

(−1)−knχc(Ak(f))T k

where χc denotes the Euler characteristic with compact support.
Then we have

Theorem 4 (S. Koike - A. Parusiński [5]). Suppose that analytic functions f, g : (Rn, 0) →
(R, 0) are blow-analytically equivalent, then Zf = Zg.

Before starting the proof of Theorem 1, we will make one more remark, as follows.

Remark 5. Let f : (Rn, 0) → (R, 0) be a non-degenerate quasihomogeneous polynomial
of type (d; w1, . . . , wn). Taking a new representative of the blow-analytic class of f if
necessary we can suppose that, for each α ∈ Nn such that 〈α , w〉 = α1w1+ · · ·+αnwn = d,
the coefficient term xα = xα1

1 · · ·xαn
n is not zero in f(x).

Our remark is a simple consequence of Theorem 2 (we omit the details).
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2. PROOF OF THEOREM 1

Let fi : (R2, 0) → (R, 0) (i = 1, 2) be non-degenerate quasihomogeneous polynomials of
type (1; ri1, ri2). Setting

ai =
1
ri1

and bi =
1
ri2

for i = 1, 2.

Modulo a permutation coordinate of R2, we may assume that ai ≤ bi. Moreover, if ai < 2,
then fi is analytically equivalent to g(x, y) = x or xy by the Implicit Function Theorem.
But 0 ∈ R2 is a regular point of x and the polynomial xy is a weighted homogeneous of
type (1; 1

2 , 1
2). Given this, we can assume that

(2.1) 2 ≤ ai ≤ bi for i = 1, 2.

Since fi are non-degenerate quasihomogeneous polynomials, we have the following cases
for Newton boundary Γ(fi) as in the following figure :

•

•
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N
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bi
A
A
A
A
A
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Γ(fi)

ai, bi ∈ N
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N
bi •
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..
..
∗
ai

↙
Γ(fi)
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I

N
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•
(1, qi)..

.∗bi

↙ Γ(fi)

ai ∈ N , bi /∈ N

I

N

A
A
AA

•
(1, qi)

..
.∗bi

• (pi, 1)...∗
ai

↙ Γ(fi)

ai /∈ N , bi /∈ N

These figures suggest that the proof of Theorem 1 should be divided into several steps,
according to the possible cases for ai and bi :

Case 1. In this case, we suppose ai, bi ∈ N (i.e., fi nearly convenient). Here N denotes
the set of positive integers and let for any a ∈ N, N≥a = {k ∈ N | k ≥ a}. We first remark
that the Fukui invariant of fi can be computed easily as follows :

Assertion 6.

(2.2) A(fi) =

{
aiN ∪ biN ∪ {∞} if f−1

i (0) = {0},
aiN ∪ biN ∪ N≥[ai,bi] ∪ {∞} otherwise.

Where [ai, bi] = LCM(ai, bi).

Proof. Let λ : (R, 0) → (R2, 0) be an analytic arc. Then λ(t) = (X(t), Y (t)) can be
expressed in the following way :

X(t) = αutu + αu+1t
u+1 + · · · , Y (t) = cvt

v + cv+1t
v+1 + · · · ,

where αu, cv 6= 0 and u, v ≥ 1. By the above Remark 5, we may assume that there exist
the terms Xai and Y bi with non-zero coefficients in fi(X,Y ).

We will first consider the case whereby f−1
i (0) = {0}. If u ai 6= v bi, we have

fi(X(t), Y (t)) = di t
min{u ai , v bi} + · · · , di 6= 0



4 OULD M ABDERRAHMANE

then O(fi ◦ λ) = min{u ai , v bi} ∈ aiN ∪ biN ∪ {∞}. Thus it remains for us to consider
the case u ai = v bi. In this case, we have

fi(X(t), Y (t)) = fi(αu , cv) tu ai + · · · ,

since fi(αu , cv) 6= 0. Therefore A(fi) ⊆ aiN ∪ biN ∪ {∞}. Any integer s ∈ aiN ∪ biN, for
instance s = k ai, is attained by the arc γ(t) = (tk, 0). Hence we have

A(fi) = aiN ∪ biN ∪ {∞}.
We will next consider the case whereby f−1

i (0) 6= {0}. Similarly we have

aiN ∪ biN ∪ {∞} ⊆ A(fi) ⊆ aiN ∪ biN ∪ N≥[ai,bi] ∪ {∞}.
Obviously we only have to prove that N≥[ai,bi] ⊆ A(fi). Suppose that k ∈ N≥[ai,bi]. Then
there exists an arc γ through 0 ∈ R2 such that O(f ◦ γ) = k. Setting [ai, bi] = ni ai =
mi bi, since fi is non-degenerate and f−1

i (0) 6= {0}, there exists a (α, c) ∈ f−1
i (0) such

that ( ∂fi
∂X (α, c), ∂fi

∂Y (α, c)) 6= (0, 0), we may assume that ∂fi
∂X (α, c) 6= 0. Then it is easy

to see that for any positive integers [ai, bi] + s ∈ A(f), s ∈ N, is attained by an arc
γ(t) = (αtni + ts+ni , ctmi).

Evidently, this completes the proof of the Assertion. ¤

From Theorem 3, A(f1) = A(f2). Thus, by the above Assertion, we have the following
result :

a1 = a2 same multiplicity for fi,

b1 = b2 if b1 /∈ a1N or b2 /∈ a2N,

b1 = b2 if f−1
i (0) 6= {0}.

Manifestly, the Fukui invariant determines the weights except in the following case :

b1 = k1a, b2 = k2a and f−1
i (0) = {0},

where a = a1 = a2 is the smallest number in A(fi), and there remains to prove k1 = k2.
In fact, assume that k1 6= k2, for example k2 > k1. We will show that this gives rise to a
contraduction by comparing the coefficients of the zeta functions. If k2 > k1 then we may
write

Ab1(f2) = {γ(t) = (ck1t
k1 + · · ·+ cb1t

b1 , d1t
1 + · · · db1t

b1) | ck1 6= 0}
' R∗ × Rb1−k1 × Rb1 .

That is

(2.3) χc(Ab1(f2)) = (−2)χc(Rb1−k1+b1) = (−2)(−1)2b1−k1 .

Also, since f−1
1 (0) = {0}, we obtain

Ab1(f1) = {γ(t) = (uk1t
k1 + · · ·+ ub1t

b1 , v1t
1 + · · ·+ vb1t

b1) | uk1 or v1 6= 0}
' (R2 − {0})× Rb−k1 × Rb1−1

which means
χc(Ab1(f1)) = χc(R2 − {0}) χc(R2b1−k1−1).

Since χc(R2 − {0}) = 0 we get by (2.3) that χc(Ab1(f1)) 6= χc(Ab1(f2)). Therefore
Zf1 6= Zf2 , which contradicts Theorem 4. This ends the proof of Theorem 1 in the first case.

Case 2. In this case, we suppose ai /∈ N, bi ∈ N for i = 1, 2. Since fi is non-degenerate,
then there exists the term xpiy for some integers pi ≥ 1 with non-zero coefficients in
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fi(x, y). By Theorem 2 and (2.1), it is easy to see that for any integers s ≥ 1, fi(x, y)+xpi+s

is blow-analytically equivalent to fi(x, y). Then the Fukui invariant of fi is determined by

(2.4) A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞}.
Moreover A(f1) = A(f2), and it follows that p1 = p2. Consequently it is sufficient to prove
that b1 = b2. Indeed, suppose that b1 < b2. Then, we let

p = p1 = p2, <n = {(r, s) ∈ (N− {0})2 | rp + s = n}
and

Cn
r,s = {γ(t) = (urt

r + · · ·+ untn , vst
s + · · ·+ vntn) | ur, vs 6= 0}

' (R∗)2 × R2n−r−s.

Let us first compute χc(Ab1(fi)). It is easy to see that for any positive integers n < bi,
we have that An(fi) =

⋃
(r,s)∈<n

Cn
r,s (This is immediate from the definitions of zeta

functions). Thus, by the additivity of χc, we have

(2.5) χc(Ab1(f2)) =
∑

(r,s)∈<b1

(−2)2(−1)2b1−r−s.

Similarly if b1 − 1 /∈ pN, we obtain

(2.6) χc(Ab1(f1)) = (−2)(−1)2b1−d +
∑

(r,s)∈<b1

(−2)2(−1)2b1−r−s

where d is the smallest number in {1, . . . , b1} such that d p + 1 > b1. It follows from (2.5)
and (2.6) that χc(Ab1(f2)) 6= χc(Ab1(f1)). But this implies a contradiction, by comparing
the coefficients of the zeta functions. Hence we have b1−1 ∈ pN. Now assume b1 = k p+1.
Then by elementary computation, we have

Ab1(f1) = Cf1

⋃

(r,s)∈<b1
\{(k,1)}

Cb1
r,s,

where

Cf1 = {γ(t) = (ukt
k + · · ·+ ub1t

b1 , v1t
1 + · · ·+ vb1t

b1) | f1(uk, v1) 6= 0}
' {f1 6= 0} × R2b1−k−1,

Also, by the additivity of the Euler characteristic with compact support, we obtain

χc(Ab1(f1)) = χc({f1 6= 0})(−1)2b1−k−1 +
∑

(r,s)∈<b1
\{(k,1)}

(−2)2(−1)2b1−r−s.

Together with (2.5), it follows that

(2.7) χc({f1 = 0}) = −3.

We will next compute the χc(Ab1+1(fi)). Let m = kp+2 = b1 +1. Then, by the above,
m− 1 /∈ pN and m ≤ b2, we can easily see the following

(2.8) χc(Am(f2)) =

{∑
(r,s)∈<m

(−2)2(−1)2m−r−s if m < b2,

(−2)(−1)2m−k−1 +
∑

(r,s)∈<m
(−2)2(−1)2m−r−s if m = b2

Now we compute χc(Am(f1)). Let λ(t) = (X(t), Y (t)) be an analytic arc defined by

X(t) = ukt
k + · · ·+ umtm,

Y (t) = v1t + · · ·+ vmtm.



6 OULD M ABDERRAHMANE

We can write

f1(X(t), Y (t)) = f1(uk, v1)tm−1 + 〈∇f1(uk, v1) ; (uk+1, v2) 〉 tm + · · · ,

where

〈∇f1(uk, v1) ; (uk+1, v2) 〉 =
∂f1

∂x
(uk, v1) uk+1 +

∂f1

∂y
(uk, v1) v2.

Moreover, if f1(uk, v1) = 0 and 〈∇f1(uk, v1) ; (uk+1, v2) 〉 6= 0, then we have O(f1 ◦ λ) =
m. Let us put

B1 = {(u, v, w, z) ∈ (f−1
1 (0)− {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 6= 0 },

B2 = {(u, v, w, z) ∈ (f−1
1 (0)− {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 = 0 },

C∇f1 = {γ(t) = (ukt
k + · · ·+ umtm, v1t

1 + · · ·+ umtm)| (uk, uk+1, v1, v2) ∈ B1}
' B1 × R2m−k−3,

Then, by the above, the Am(f1) given by Am(f1) = C∇f1

⋃
(r,s)∈<m

Cm
r,s. Thus the Euler

characteristic with support compact of Abm(f1) equals

(2.9) χc(Am(f1)) = χc(B1)(−1)2m−k−3 +
∑

(r,s)∈<m

(−2)2(−1)2m−r−s.

By identification of the m-coefficients of both zeta functions of fi for i = 1, 2, it follows from
(2.8) and (2.9) that χc(B1) = 0 or −2. On the other hand, (f−1

1 (0)−{0})×R2 = B1∪B2.
Therefore

χc(f−1
1 (0)− {0}) = χc(B1) + χc(B2),

but B2 ' (f−1
1 (0)− {0})× R. This is clear because f1 is non-degenerate, then we have

χc(f−1
1 (0)− {0}) = χc(f−1

1 (0)− {0})(−1) + χc(B1).

Since χc(B1) = 0 or − 2, this yields

χc(f−1
1 (0)) = 1 or 0,

which contradicts (2.7). This ends the proof of Theorem 1 in the second case.

Remark 7. If we drop the assumption that b2 is an integer, then the above proof still
holds.

Case 3. In this case, we suppose ai ∈ N, bi /∈ N for i = 1, 2. Since fi is non-degenerate,
then there exists the term xyqi for some integers qi ≥ 1 with non-zero coefficients in
fi(x, y). For any real α we denote by e(α) the minimum positive integer n such that
n ≥ α. By an argument similar to that of Assertion 6 and (2.4), we can compute the
Fukui invariant of fi as follows :

A(fi) = aiN ∪ {e(bi), e(bi) + 1, · · · } ∪ {∞}.
By Theorem 3, A(f1) = A(f2). Then we have the following result :

(2.10) a1 = a2 and e(b1) = e(b2)

Suppose now b1 6= b2. Then q1 6= q2, but | b1 − b2 |≥| q1 − q2 |≥ 1. It follows that
e(b1) 6= e(b2), which contradicts (2.10). This complete the proof of Theorem 1 in the third
case.
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Case 4. In this case, we suppose ai, bi /∈ N for i = 1, 2. Since fi is non-degenerate,
then there exist the terms xpiy and xyqi for some integers pi ≥ 1 and qi ≥ 1 with non-zero
coefficients in fi(x, y). Thus, the Fukui invariant of fi can be written as

A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞},
which implies p1 = p2. Thus we only have to prove that b1 = b2. Indeed, let us assume
that b1 < b2. Then we have q1 < q2 which implies b1 < e(b1) < b2. Let us put

p = p1 = p2, m = e(b1) and <m = {(r, s) ∈ (N− {0})2 | rp + s = m}.
We first observe that m− 1 /∈ pN. Otherwise, if m− 1 = r p, then we have :

(2.11) b1 < q1 + r < r p + 1 < r a1.

This is a consequence of b1 < m = r p+1 and also (1 , q1) and (p , 1) are vertices of Γ(f1).
But m = min{n ∈ N | n > b1}, which contradicts (2.11). Hence we have m − 1 /∈ pN.
Using this observation and by elementary computation we obtain the following result :

(2.12)

χc(Am(f2)) =
∑

(r,s)∈<m

(−2)2(−1)2m−r−s,

χc(Am(f1)) = (−2)2(−1)m+q1−1 +
∑

(r,s)∈<m

(−2)2(−1)2m−r−s.

This means that Zf1 6= Zf2 , which contradicts Theorem4. This complete the proof of
Theorem 1 in the fourth case.

In order to finish the proof of Theorem 1, it suffices to show the following lemmas.

Lemma 8. a1 ∈ N if and only if a2 ∈ N.

Proof. Suppose that this is not the case. Namely, a1 ∈ N and a2 /∈ N. Since f2 is
non-degenerate, then there exists the term xp2y for some integers p2 ≥ 1 with non-zero
coefficients in f2(x, y). Again using the same argument in (2.4) one gets

A(f2) = {p2 + 1, p2 + 2, p2 + 3, · · · ,∞},
Since A(f1) = A(f2), then we have a1 = b1 = p2 + 1, set m = p2 + 1. We shall compute
the χc(Am(fi)) for i = 1, 2, that is

Am(f2) = {γ(t) = (u1t + · · ·+ umtm , v1t + · · ·+ vmtm) | u1, v1 6= 0}
' (R∗)2 × R2m−2,

so
Am(f1) = {γ(t) = (u1t + · · ·+ umtm , v1t + · · ·+ vmtm) | f1(u1, v1) 6= 0}

' {f1 6= 0} × R2m−2,

and hence to

(2.13) χc(Am(fi)) =

{
(−2)2(−1)2m−2 if i = 2,

χc({f1 6= 0})(−1)2m−2 if i = 1.

Since χc(Am(f1)) = χc(Am(f2)), then we have

(2.14) χc({f1 = 0}) = −3.
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Using the same argument as Case 2, we can compute the (m + 1)-coefficients of Zfi
for

i = 1, 2 as follows :

χc(Am+1(f1)) = χc(B1) and χc(Am+1(f2)) =

{
−4 if m 6= b2,

−6 if m = b2.

We recall that :

B1 = {(u, v, w, z) ∈ (f−1
1 (0)− {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 6= 0 },

B2 = {(u, v, w, z) ∈ (f−1
1 (0)− {0})× R2 | 〈∇f1(u, v) ; (w, z) 〉 = 0 }.

Finally, by comparing the (m+1)-coefficients of both zeta functions Zfi , it is evident that
χc(B1) = −4 or − 6, but (f−1

1 (0)−{0})×R2 = B1 ∪B2. It follows from the additivity of
the Euler characteristic that χc(f−1

1 (0)− {0}) = χc(B1) + χc(B2). On the other hand, by
B2 ' (f−1

1 (0)− {0})× R (because f1 is non-degenerate), then we have

χc(f−1
1 (0)) = −1 or − 2,

which contradicts (2.14). This proves the lemma. ¤

Lemma 9. b1 ∈ N if and only if b2 ∈ N.

Proof. Suppose now that b1 ∈ N and b2 /∈ N. Since f2 is non-degenerate, then there exists
the term xyq2 for some integers q2 ≥ 1 with non-zero coefficients in f2(x, y).

We first consider ai ∈ N for i = 1, 2. Then, by the same reason as above, we can
compute the Fukui invariant of fi as follows :

A(f1) = a1N ∪ b1N ∪ N≥[a1,b1] ∪ {∞},
A(f2) = a2N ∪ N≥e(b2) ∪ {∞}.

Since A(f1) = A(f2), then we have the following result :

(2.15) a1 = a2, b1 = k a1, and e(b2) = b1 or b1 + 1.

Since b1 = k a1, then there exists the term xyk(a1−1) with non-zero coefficients in f1(x, y).
But |b2 − b1| ≥ |q2 − k(a − 1)| ≥ 1, which implies b2 ≥ b1 + 1 or b1 ≥ b2 + 1. It follows
that e(b2) > b1 + 1 or e(b2) < b1, which contradicts (2.15), and ends the first part of the
lemma.

Now we consider the case where ai /∈ N for i = 1, 2. Since fi is non-degenerate, then
there exists the term xpiy for some integers pi ≥ 1 with non-zero coefficients in fi(x, y).
It easy to see that

A(fi) = {pi + 1, pi + 2, pi + 3, · · · } ∪ {∞},
Moreover A(f1) = A(f2), and we get p1 = p2. Set

p = p1 = p2, m = e(b2) and <m = {(r, s) ∈ (N− {0})2 | rp + s = m}.
As stated in Remark 7, we can exclude the case where b1 < b2 (because this is proved in
exactly the same way as Case 2). Thus it remains to consider the case b2 < b1.

We next compute the m-coefficients of both zeta functions Zfi
for i = 1, 2. For this,

we can assert that m − 1 /∈ pN. Indeed, suppose that m − 1 = α p for some positive
integer α. Since b2 < m = α p + 1 which implies b2 < q2 + α < αp + 1. This is clear
because (1 , q2) ∈ Γ(f2). But m = e(b2) is equal to the smallest integer greater than b2,
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which is a contradiction. Therefore we obtain that m− 1 /∈ pN, and so on by elementary
computation, we have the following result :

(2.16) χc(Am(f2)) = (−2)2(−1)m+q2−1 +
∑

(r,s)∈<m

(−2)2(−1)2m−r−s.

And

(2.17)

χc(Am(f1)) =
∑

(r,s)∈<m

(−2)2(−1)2m−r−s if m < b1,

χc(Am(f1)) = (−2)(−1)m+q2 +
∑

(r,s)∈<m

(−2)2(−1)2m−r−s if m = b1.

Now it suffices to note by the above equalities that Zf1 6= Zf2 , which contradicts Theo-
rem4. This completes the proof. ¤

Theorem 1 is therefore proved.

Example 10. Let k be an arbitrary integer greater than or equal to 4. We consider
quasihomogeneous polynomial functions fk, gk : (R2, 0) → (R, 0) defined by

fk(x, y) = x5 + x y2 k, gk(x, y) = x5 − y2 k +2.

Note that the weights of fk and gk are (1
5 , 2

5 k ) and (1
5 , 1

2 k +2) respectively. Since
fk and gk have different weights for k > 4, they are not blow-analytically equivalent
by Theorem 1. However, fk and gk are topologically equivalent. In fact, the above
fk(x, y) = x5+x y2 k ∈ J2 k+1

R (2, 1) is C0-sufficient by the Kuiper-Kuo Theorem (see [7, 8]).
Therefore, fk is topologically equivalent to fk−y2 k +2. On the other hand, gk and gk+x y2 k

are blow-analytically equivalent by Theorem 2. Besides fk − y2 k +2 = gk + x y2 k, hence
the conclusion holds. Consequently, fk ∈ J2 k+1

R (2, 1) is not blow-analytically sufficient for
k > 4.

In the case k = 4, the weights of f4 and g4 are equal to (1
5 , 1

10). Furthermore, f4 is blow-
analytically equivalent to g4. Indeed, consider the family Ht : (R2, 0) → (R, 0) (t ∈ [0, 1])
defined by Ht(x, y) = (1− t)f4(x, y)+ t g4(x, y). It is easy to see that for each t ∈ [0, 1], Ht

has an isolated singularity at 0 ∈ R2. Therefore, it follows from Theorem 2 that {Ht}0≤t≤1

is blow-analytically trivial over [0, 1]. In particular, H0 = f4 is blow-analytically equivalent
to H1 = g4.
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