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Abstract- The aim of this paper is to study the germ mappings : (Rn, 0) → (Rp, 0), more precisely, we for-

mulate certain criteria for the v-sufficiency related to the Newton polyhedron. Our result implies in particular

the criteria for v-sufficiency due to Kuo and Paunescu.

Let E[k](n, p) be the set of Ck-function germs : (Rn, 0) → (Rp, 0). Given an element
f of E[k](n, p), it is natural to ask when we can truncate f without effecting the local
topological picture determined by f . This problem concerns the property of sufficiency
of jet. In [8], T.-C. Kuo presented a beautiful criterion for v-sufficiency of jet, where
necessary and sufficient conditions for v-sufficiency are given, a jet is v-sufficient if and
only if some ÃLojasiewicz inequality is satisfied in the horn-neighborhood of the zero set.
For the weighted filtration, L. Paunescu [9], extends the previous result. He obtained a
weighted version of Kuo’s criterion for v-sufficiency.

The purpose of this paper is to give a characterization of Kuo’s v-sufficiency from the
viewpoint of the Newton filtration. First, we define the compensation factors, following
[1, 2], which compensate the effect of differentiation on the polyhedron and then reduce
the problem to the procedure of Kuo-Paunescu. Namely, having defined the compensation
factors, we construct a Riemannian metric associated with the filtration given by the
Newton polyhedron. This allow us to consider the gradient associated with this metric
and to show a Newton polyhedron analog of Kuo-Paunescu Theorems (Theorems 2 and
4 below). Moreover, we shall use Bekka’s (c)-regularity in stratification theory to clarify
the ÃLojasiewcz inequality relative to a Newton filtration (Theorem 6 below). This gives a
generalization of Bekka-Koike’s Theorem [4].

Let us denote by E(n, p) the set of all germs of functions : (Rn, 0) → (Rp, 0) which are
C2 in a punctured neighborhood of the origin. Let f, g ∈ E(n, p). These functions are
said to have the same (local) v-type at 0 (where v stands for variety), if the germs at 0 of
f−1(0) and g−1(0) are homeomorphic.

1. Newton filtration.

Let us recall some basic definitions and properties of the Newton filtration (see [1, 2, 6]
for details).

The Newton polyhedron, Γ+(A), where A ⊂ Qn
+ is the convex hull of {a +Rn

+ | a ∈ A}.
The Newton boundary of A, Γ(A) is the union of the compact faces of Γ+(A). We let
F(A) denote the union of the top dimensional faces of Γ(A). The Newton vertex V er(A)
is defined by {α : α is vertex of Γ(A)}. A is called convenient if the intersection of Γ+(A)
with each coordinate axis is non-empty. Throughout, we suppose that A is convenient.
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From the Newton polyhedron, we construct the Newton filtration. We first observe that
by the convenience assumption on A, any face F ∈ F(A), dim F = n − 1. So let wF be
the unique vector of Qn

+ such that F = { b ∈ Γ+(A) : 〈b , wF 〉 = 1 }. We can suppose
that the vertices of A are sufficiently close to the origin so that all the wF ∈ Zn

+. We will
suppose henceforth that A satisfies this property. Then, we construct the following map
φ : Rn

+ → R+. The restriction of φ to each cone C(F )(where C(F ) denotes the cone of
half-rays emanating from 0 and passing through F ) is defined as follows :

φ|C(F )
(α) = 〈α , wF 〉, for all α ∈ C(F ).

We extend this map to Rn
+ as follows :

(1.1) φ(α) = min
{〈α , wF 〉 : F ∈ F(A)

}
, for all α ∈ Rn

+.

The map φ is linear on each cone C(F ) (where F ∈ F(A)), and the value of φ along
each point over Γ(A) is equal to 1 and φ(Zn

+) ⊂ Z+. This is called the Newton filtration
induced by A.

Now we introduce the control functions associated to A as follows :

(1.2) ρ(x) =
( ∑

α∈V er(A)

x2pα

) 1
2p

where p a positive integer. Moreover if p is big enough (it suffices, for example, that
pα ∈ Zn

+).

1.1. Compensation factor. Let Lj denote the xj-axis. We then put αj = Lj ∩ Γ(A)
for j = 1, . . . , n (the axial vertices of Γ(A)). We define the weight of the variable xi,
A(i) = A(xi) = max{wF

i : F ∈ F(A)}. We may introduce the compensation factors
associated with A as follows :

ρi(x) =
(

x
2p
A(i)

i +
∑

α∈V er(A)\{αi}
x2p α

)A(i)
2p

, i = 1, . . . , n

(for more details about these see [1, 2]).
Now let us introduce a singular Riemannian metric on Rn by the following bilinear form

(1.3) 〈ρi
∂

∂xi
, ρj

∂

∂xj
〉 = δi,j :=

{
1 if i = j

0 if i 6= j
.

We will denote by ∇A, ‖ ‖A, the corresponding gradient and norm associated with this
Riemannian metric.

In order to state the version relative to the Newton filtration of the Kuo and Paunescu
Theorems ([8, 9]) we need to introduce the Newton horn-neighborhood, of degree d and
width c > 0, of a variety f−1(0), f ∈ E(n, p). This is by definition

Hd(f, c) = {x ∈ Rn : | f(x) | ≤ c ρd }.
Definition 1. We say that f, g ∈ E(n, p) are d-equivalent with respect to A or simply
d-equivalent, if there exist a > 0 and a neighborhood U of the origin such that

(i)
∣∣ fj(x)− gj(x)

∣∣ ≤ aρd, 1 ≤ j ≤ p

(ii)
∣∣ ρi(

∂fj

∂xi
(x)− ∂gj

∂xi
(x))

∣∣ ≤ aρd, 1 ≤ j ≤ p, 1 ≤ i ≤ n

(these fj, gj are the components of f and g respectively).
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It is easy to see that this is an equivalence relation.

2. The results.

We call a given germ f ∈ E(n, p) vA-sufficient at degree d (where “v”stands for variety
and A stands for the Newton filtration associated with A), or simply d-sufficient if for
any P ∈ E(n, p) such that f and f + P are d-equivalent then f and f + P have the same
v-type at 0. We first remark that if f is d-sufficient then f is d1-sufficient for any d1 ≥ d.

These are clearly version relative to the Newton filtration of the corresponding weighted
or homogeneous cases (see for instance [8, 9]). For any f ∈ E(n, p), let Vx be the subspace
spanned by the {∇Af1(x), . . . ,∇Afp(x)}. Let us consider now N(fj ,A, x), or simply
N(fj , x), to be the vector ∇Afj(x) − pj(x), 1 ≤ j ≤ p, where pj(x) is the projection
of ∇Afj(x), with respect to our metric, to the subspace Vx,j spanned by the ∇Afk(x),
k 6= j. Hence, ‖N(fj , x)‖A = { distance of ∇Afj(x) to Vx,j }. Finally, we will denote by
dA(∇Af1(x), . . . ,∇Afp(x)) the minimum of ‖N(fj , x)‖A, 1 ≤ j ≤ p.

Now using the above construction, we can announce our results.

Theorem 2. If for any g ∈ E(n, p) d-equivalent to f , there are positive numbers c, ε, δ,
and a neighborhood U of 0, all depending on g, such that the following ÃLojasiewicz in-
equality related to the Newton polyhedron

(2.1) dA(∇Af1(x), . . . ,∇Afp(x)) ≥ ε ρd−δ

holds for x ∈ Hd(f, c) ∩ U , then f is d-sufficient.

Corollary 3. A sufficient condition for f ∈ E(n, p) to be d-sufficient is that there exist
ε > 0, c > 0 and δ > 0 for which

dA(∇Af1(x), . . . ,∇Afp(x)) ≥ ε ρd−δ

is satisfied for all x in Hd−δ(f, c), near 0.

This corollary follows from the observation that for any g ∈ E(n, p) with g d-equivalent
to f , we have Hd(g, c) ⊂ Hd−δ(f, c) in a sufficiently small neighborhood of 0.

In the case when f ∈ E[w](n, p) (i.e., f is analytic) we have the following theorem.

Theorem 4. For a given f ∈ E[w](n, p), and d ≥ 3max{A(1), . . . ,A(n)}, the following
are equivalent :

(i) f is d-sufficient.
(ii) The hypothesis of Theorem 2 hold.
(iii) for any g ∈ E(n, p), g d-equivalent to f , the variety g−1(0) admits 0 as a topologi-

cally isolated singularity (∇gj(x), 1 ≤ j ≤ p, x ∈ g−1(0), are linearly independent
near 0, x 6= 0).

Remark 5. We should note that in the case where #F(A) = 1 i.e., weighted filtration
associated with w = (A(1), . . . ,A(n) ), we find that ρi(x) = ρA(i)(x) for i = 1, . . . , n,
hence our Theorems 2 and 4 reduce to Paunescu’s Theorems (see [9], Theorem A and B).

Another characterization of the v-sufficiency is given by the following theorem.

Theorem 6. Suppose f ∈ E[w](n, p) which satisfy the hypothesis of Theorem 2, then for
any g ∈ E[w](n, p), g is d-equivalent to f , the deformation variety

F (x, t) ≡ f(x) + t[f(x) + g(x)] = 0
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where x ∈ Rn, t ∈ R, is (c)-regular over the t-axis in the sense introduced by Bekka (see
[3]).

Remark 7. We should note that in the usual filtration, i.e., #F(A) = 1 and wF =
(1, . . . , 1), Kuo [8] proves that the ÃLojasiewicz inequality in Theorem 2 implies that the
stratification Σ(VF ) is Whitney (b)-regular. Here, VF denotes the variety of the zero locus
of F , and Σ(VF ) = {F−1(0) − {0} × R, {0} × R }. Furthermore, if we suppose that
f, g ∈ E[d](n, p), Bekka and Koike [4] prove that the stratification Σ(VF ) is (c)-regular.

We can also prove a component-wise variant of our Theorem 2. We will do this consid-
ering instead of the positive number d, a positive p-tuple d

¯
= (d1, . . . , dp). We say that

f, g ∈ E(n, p) are d
¯
-equivalent if there exists a neighborhood U of the origin such that

(i) fj(x)− gj(x) = o(ρdj ),

(ii) ‖∇Afj −∇Agj‖A = o(ρd
j ), 1 ≤ j ≤ p, x ∈ U.

Also we can introduce the corresponding horn-neighborhood Hd
¯
(f, c) = {x ∈ Rn :

| fj(x) | ≤ c ρdj }, and the corresponding notion of d
¯
-sufficiency. Then, we can state the

following theorem.

Theorem 8. Suppose f ∈ E(n, p) such that there exist positive numbers ε, c and

‖N(fj , x)‖A ≥ ε ρdj , j = 1, . . . , p, x ∈ Hd
¯

(f, c).

Then f is d
¯

-sufficient.

The proof is similar to the proof of Theorem 2 and it will be omitted.

Example 9. Consider the map f : (R2, 0) → (R2, 0) defined by

f(x, y) = (xy , x10 − x2y4 − y10).

We set A = { (1, 0) , (1
5 , 2

5) , (0, 1) }, it not hard to see the following inequalities :

‖N(f1, x)‖2
A =

ρ2
1ρ

2
2

∣∣∣ y x
10x9−2xy4 −4x2y3−10y9

∣∣∣
2

‖∇Af2‖2
A

≥ ε ρ10,

‖N(f2, x)‖2
A =

ρ2
1ρ

2
2

∣∣∣ y x
10x9−2xy4 −4x2y3−10y9

∣∣∣
2

‖∇Af1‖2
A

≥ ε ρ20.

Therefore, we may conclude that f is (5, 10)-sufficient with respect to this Newton filtration
induced by A.

Example 10. Let f : (R3, 0) → (R2, 0) be the map defined by

f(x, y, z) = (xy , x6 + xz + y2 + z2).

We let A = { (1, 0, 0) , (1
6 , 0, 1

6) , (0, 1
3 , 0) , (0, 0, 1

3)}. By standard argument, based on the
curve selection lemma, we can see that

dA(∇Af1(x),∇Af2(x)) ≥ ε ρ6, x ∈ H6(f, c),

where ε and c are sufficiently small. Therefore, f is (6, 6)-sufficient with respect to this
Newton filtration induced by A.
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3. Proofs of Theorem 2, 4 and 6.

3.1. Proof of Theorem 2.

In order to show this Theorem 2 we need the following lemma.

Lemma 11. ‖∇Aρ‖A ≤ c ρ(x), c > 0 constant.

Proof. We first recall that :

‖∇Aρ‖2
A =

n∑

i=1

(
ρi

∂ρ

∂xi
(x)

)2

.

Therefore, our lemma is a simple consequence of the construction of the compensation
factors and the control function (see [1, 2] for details). ¤

The proof of Theorem 2 will follow the proof given by Kuo and Paunescu in the quasi-
homogeneous case ([8, 9]). Take any P ∈ E(n, p) with the property that f and f + P are
d-equivalent, and let F (x, t) = f(x) + t P (x), where t ∈ R. By addition to the bilinear
form in (1.3), we define a new metric by

〈 ∂

∂xi
,

∂

∂t
〉 = 0, i = 1, . . . , n, 〈 ∂

∂t
,

∂

∂t
〉 = 1.

By elementary calculation, we can express the gradient vector field of the function Fj with
respect to this metric singular Riemannian metric as follows :

∇AFj(x, t) ==
n∑

i=1

ρi

(
∂fj

∂xi
(x) + t

∂Pj

∂xi
(x)

)
ρi

∂

∂xi
+ Pj(x)

∂

∂t

(here fj , Pj are the corresponding components of f , P respectively).
We shall show that any t0 ∈ R has a neighborhood T such that for any t1, t2 ∈ T ,

the germs of F (x, t1) = 0 and F (x, t2) = 0 are homeomorphic, and due to the fact that
I = [0, 1] is compact it will follow that the germs of F (x, 0) = 0 and F (x, 1) = 0 are
homeomorphic. Therefore f is d-sufficient.

Let (0, t0) be a given point of the t-axis. Consider the map g(x) = f(x) + t0P (x), then
|Fj(x, t)−gj(x)| = |t− t0| |Pj(x)|, j = 1, . . . , p. Since f and f +P are d-equivalent, we can
choose a sufficiently small neighborhood T of t0 and a neighborhood U of 0 ∈ Rn, such
that |F (x, t)− g(x)| ≤ c ρd.

Thus, the variety F (x, t) = 0 for (x, t) ∈ U × T , is contained in the Hd(g, c)× T . This
is one of the reasons for introducing this set. We have the following lemma.

Lemma 12. ‖N(Fj , (x, t))‖A ≥ ε
2 ρd−δ, (x, t) ∈ Hd(g, c)× T, j = 1, . . . , p.

Proof. We note that if #F(A) = 1, one finds Lemma 1 of Paunescu [9]. Moreover, the
proof of this lemma is similar to that of Lemma 1 in [9] (we omit the details). ¤

Corollary 13. For (x, t) as above, x 6= 0, the vectors ∇AFj(x, t), 1 ≤ j ≤ p, are linearly
independent.

Proof. Obvious. Use Lemma 12. ¤

Now we can introduce the Kuo vector field as follows :

K(x, t) =
∂

∂t
−

p∑

j=1

Pj

‖Nj‖A
Nj if x 6= 0 and K(0, t) =

∂

∂t
,
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where Nj = N(Fj , (x, t)), j = 1, . . . , p. We see K is tangent to the level of F = 0,
whenever x 6= 0. Furthermore, from the construction of the Kuo vector field, K is C1

outside x = 0 and continuous everywhere in Hd(g, c)× T .
One can write Nj =

∑n
i=1 ρiCij(x, t)ρi

∂
∂xi

+ Lj(x, t) ∂
∂t , and K can be written as :

K(x, t) =
(

1−
p∑

j=1

LjPj

‖Nj‖2
A

)
∂

∂t
−

n∑

i=1

( p∑

j=1

PjCij

‖Nj‖2
A

)
ρ2

i

∂

∂xi

= X
∂

∂t
−

n∑

i=1

Xi
∂

∂xi
.

Recall that ‖Nj‖2
A =

∑n
i=1(Cijρi)2 + L2

j and |Pj | ≤ aρd. It follows from Lemma 12 that
X tends to 1 as x tends to 0, and Xi tends to 0 when x tends to 0. In other words, we
have the following inequalities

(3.1)
|Pj |
‖Nj‖A ≤ aρd

ε
2 ρd−δ

and |Xi| ≤
p∑

j=1

|Pj |
‖Nj‖A

|Cijρi|
‖Nj‖Aρi ≤ ciρi

in a small Newton horn-neighborhood of 0, ci > 0, 1 ≤ i ≤ n, j = 1, . . . , p.
Now consider two Liapunov functions U(x, t) = e2Ltρ2 and V (x, t) = e−2Ltρ2. In order

to show that the integration of this vector field gives us the homeomorphism, it is enough
to show that ∇U · K > 0 and ∇V · K < 0 for x 6= 0 (see [7, 8]). Indeed, by a simple
computation yields

∇U ·K = 2e2Ltρ

(
LρX +

n∑

i=1

∂ρ

∂xi
Xi

)

≥ e2Ltρ

(
LρX −

n∑

i=1

∣∣∣∣
∂ρ

∂xi

∣∣∣∣|Xi|
)

≥ e2Ltρ

(
LρX −

n∑

i=1

∣∣∣∣
∂ρ

∂xi

∣∣∣∣ciρi

)

(here we have used the second inequality in (3.1)).
According to the lemma 11, we have ρi| ∂ρ

∂xi
| ≤ Mρ, some M > 0. Thus, we can choose

L big enough such that ∇U · K > 0, x 6= 0. In a similar way we can prove the other
inequality. This completes the proof of Theorem 2.

3.2. Proof of Theorem 4. Since (ii) ⇒ (i) have already been obtained in Theorem 2,
and (ii) ⇒ (iii) is proved in exactly the same way as Theorem B in [9], we have only to
prove (iii) ⇒ (ii) and (i) ⇒ (ii).

Suppose now that (ii) is fails. In order to prove that (iii) is fails we will construct a
function f̃ ∈ E(n, P ) such that f̃ and f are d-equivalent but ∇f̃j , j = 1, . . . , p, are linearly
dependent along an analytic arc in f̃−1(0).

The following proof will be similar to that given in [8, 9], so we will point out only the
differences.

Let g ∈ E[w](n, p) d-equivalent with f and such that for any c, ε, δ and any neighbor-
hood U of 0, the ÃLojasiewicz inequality related to the Newton polyhedron (2.1) fails. Let
E be the following semi-analytic set

E = {u ∈ Hd(g, 1) | dA(∇Af1(u), . . . ,∇Afp(u) ) = min
ρ(u)=ρ(x)
x∈Hd(g,1)

dA(∇Af1(x), . . . ,∇Afp(x) ) }
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Because E is a semi-analytic set. Applying the curve selection lemma, one can find an
analytic arc β : [ 0 , ε ] → E such that β(0) = 0 and β(t) 6= 0 for t > 0. Modulo a
permutation, we can choose this arc such that along β,

dA(∇Af1(β(t)), . . . ,∇Afp(β(t)) ) = ‖N(f1, β(t))‖A

= ‖(∇Af1(β(t))−
p∑

k=2

λk(t)∇Afk(β(t))‖A,

where λk are analytic for k = 2, . . . , p.
Let r and µ be the numbers such that ρ(β(t)) ∼ tr and ‖N(f1, β(t))‖A ∼ tµ. Here

A(t) ∼ B(t) means that A
B lies between two positive constants, for t > 0 and t small.

Then due to the fact that (ii) fails we have µ
r ≥ d. Actually if βi(t) ∼ tsi , ρi(β(t)) ∼ tqi

and |∂f1

∂xi
(β(t)−∑p

k=2 λk(t)
∂fk
∂xi

(β(t)| ∼ tµi for i = 1, . . . , n, then we can see

(3.2) µ = min{µi + qi}, r = min{< α, s > |α ∈ V er(A)} and qi = min{rA(i) , si}.
Modulo a permutation we may assume s1 = min{si} and β1(t) = ts1 .

Let l(A) denote the distance from the origin to the Newton polyhedron Γ+(A) by
defining

l(A) = min

{
n∑

i=1

αi | α ∈ V er(A)

}
.

From the definition of the weight A(i), it is easy to check that

(3.3) l(A)max{A(1), . . . ,A(n)} ≥ 1.

Let us put M(A) = max{A(1), . . . ,A(n)}. Since µ ≥ rd, it follows from (3.2) that for
1 ≤ i ≤ n we have µi + qi ≥ µ ≥ rd and qi ≤ rM(A) so µi ≥ r(d −M(A)). Also from
(3.2) we have that r ≥ s1l(A), hence

(3.4)
µi

s1
≥ l(A)(d−M(A)) for i = 1, . . . , n.

Now let us consider the following functions

Qi(x1) =

(
∂f1

∂xi
(β(|x1|1/s1))−

p∑

k=2

λk(|x1|1/s1)
∂fk

∂xi
(β(|x1|1/s1))

)

for i = 1, . . . , n and

P (x) = f(β(|x1|1/s1)) +
n∑

i=2

Qi(x1)(xi − βi(|x1|1/s1)).

Also we define f̃ : (Rn, 0) → (Rp, 0) by

f̃1(x) = f1(x)− P (x)

f̃k(x) = fk(x)− fk(β(|x1|1/s1), k = 2 . . . , p.

Using our assumption about d, d ≥ 3M(A), it follows from (3.4) and l(A)M(A) ≥ 1
that the order of Qi(x1) is µi

s1
≥ l(A)(d−M(A)) ≥ 2 for i = 1, . . . , n, thus our P is a C2

function, hence f̃ ∈ E(n, p) and moreover f and f̃ are d-equivalent. This follows from the
construction of f̃ and the fact that f is analytic. We can check that our representative of
the class of f has the following property :

f̃(β(t)) = 0 and ∇f̃1(β(t))−
p∑

k=2

λk(t)∇f̃k(β(t)) = 0.
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Moreover, using this f̃ one can prove (just as in [8, 9]) that non (ii) ⇒ non (i). This
completes the proof of Theorem 4.

3.3. Proof of Theorem 6. Let us put X = F−1 −{0}×R and Y = {0}×R. Now from
the Theorem 5 in [1], it is enough to show that (X,Y ) is (wA)-regular, that is,

(3.5) ‖dxF‖A . ‖dxF‖A holds on X near Y.

Where

‖dxF‖2
A =

∑

1≤i1<···<ip≤n

(
ρi1 · · · ρip

∣∣∣∣
∂F

∂(xi1 , . . . , xip)

∣∣∣∣
)2

,

‖dxF‖2
A =

∑

1≤i1<···<ip−1≤n

(
ρi1 · · · ρip−1

∣∣∣∣
∂F

∂(xi1 , . . . , xip−1 , t)

∣∣∣∣
)2

and

‖dF‖2
A = ‖dxF‖2

A + ‖dxF‖2
A.

Here A . B means there is some positive constant C with A ≤ CB.
For j = 1, . . . , p, we let F [j] = (F1, . . . , F̂j , . . . , Fp) and X [j] ≡ F [j] = 0. Here, ̂ indicates

that we omit the letter (or the portion) to which ̂ is attached. We note that the normal
space of X [j] with respect our metric, denoted by VA,j , is the subspace spanned by the
{∇AF1, . . . , ∇̂AFj , . . . ,∇AFp}. From the corollary 13, the vectors ∇AFk(x, t), are linearly
independent. Then by lemma 1.4 in [5], we obtain that the projection πj , with respect to
our metric, onto the tangent space TA,x,tX

[j] = V ⊥
A,j is expressed by the following form.

(3.6) πj(v) =
n∑

i=1

〈dF [j] ∧ dxi, dF [j] ∧ v〉
‖dF [j]‖2

A
ρ2

i

∂

∂xi
+
〈dF [j] ∧ dt, dF [j] ∧ v〉

‖dF [j]‖2
A

∂

∂t

Since N(Fj , (x, t)) = πj(∇AFj), we can easily see that

(3.7) ‖N(Fj , (x, t))‖2
A = 〈πj(∇AFj) , ∇AFj〉 =

‖dF‖2
A

‖dF [j]‖2
A

.

By the Cauchy-Schwartz inequality, we have
∣∣∣∣

∂F

∂(xi1 , . . . , xip−1 , t)

∣∣∣∣
2

≤
p∑

j=1

∣∣∣∣∣
∂F [j]

∂(xi1 , . . . , xip−1)

∣∣∣∣∣
2 ∣∣∣∣

∂Fj

∂t

∣∣∣∣
2

,

so that
(

ρi1 · · · ρip−1

∣∣∣∣
∂F

∂(xi1 , . . . , xip−1 , t)

∣∣∣∣
)2

≤
p∑

j=1

(
ρi1 · · · ρip−1

∣∣∣∣∣
∂F [j]

∂(xi1 , . . . , xip−1)

∣∣∣∣∣

)2 ∣∣∣∣
∂Fj

∂t

∣∣∣∣
2

,

then

(3.8) ‖dxF‖2
A ≤

p∑

j=1

‖dF [j]‖2
A

∣∣∣∣
∂Fj

∂t

∣∣∣∣
2

.

Since
∣∣∣∂Fj

∂t

∣∣∣ = |fj − gj | . ρd. This is clear because f and g are d-equivalent. It follows
from Lemma 12 that ∣∣∣∣

∂Fj

∂t

∣∣∣∣ ¿ ρd−δ . ‖N(Fj , (x, t))‖A
and, using (3.8), we obtain

(3.9) ‖dxF‖2
A ¿

p∑

j=1

‖dF [j]‖2
A ‖N(Fj , (x, t))‖2

A.
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It now follows from (3.7) that (3.5) holds. This completes the proof of Theorem 6.
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