CHARACTERIZATION OF V-SUFFICIENCY FROM THE NEWTON
FILTRATION

OULD M ABDERRAHMANE

Abstract- The aim of this paper is to study the germ mappings : (R™,0) — (RP,0), more precisely, we for-
mulate certain criteria for the v-sufficiency related to the Newton polyhedron. Our result implies in particular
the criteria for v-sufficiency due to Kuo and Paunescu.

Let &y(n,p) be the set of C*-function germs : (R",0) — (R?,0). Given an element
[ of Egy(n,p), it is natural to ask when we can truncate f without effecting the local
topological picture determined by f. This problem concerns the property of sufficiency
of jet. In [8], T.-C. Kuo presented a beautiful criterion for v-sufficiency of jet, where
necessary and sufficient conditions for v-sufficiency are given, a jet is v-sufficient if and
only if some Lojasiewicz inequality is satisfied in the horn-neighborhood of the zero set.
For the weighted filtration, L. Paunescu [9], extends the previous result. He obtained a
weighted version of Kuo’s criterion for v-sufficiency.

The purpose of this paper is to give a characterization of Kuo’s v-sufficiency from the
viewpoint of the Newton filtration. First, we define the compensation factors, following
[1, 2], which compensate the effect of differentiation on the polyhedron and then reduce
the problem to the procedure of Kuo-Paunescu. Namely, having defined the compensation
factors, we construct a Riemannian metric associated with the filtration given by the
Newton polyhedron. This allow us to consider the gradient associated with this metric
and to show a Newton polyhedron analog of Kuo-Paunescu Theorems (Theorems 2 and
4 below). Moreover, we shall use Bekka’s (c)-regularity in stratification theory to clarify
the Lojasiewcz inequality relative to a Newton filtration (Theorem 6 below). This gives a
generalization of Bekka-Koike’s Theorem [4].

Let us denote by E(n,p) the set of all germs of functions : (R",0) — (RP,0) which are
C? in a punctured neighborhood of the origin. Let f, g € E(n,p). These functions are
said to have the same (local) v-type at 0 (where v stands for variety), if the germs at 0 of
f7%(0) and g—*(0) are homeomorphic.

1. Newton filtration.

Let us recall some basic definitions and properties of the Newton filtration (see [1, 2, 6]
for details).

The Newton polyhedron, I'{ (A), where A C Q7 is the convex hull of {a + R |a € A}.
The Newton boundary of A, I'(A) is the union of the compact faces of I'; (A). We let
F(A) denote the union of the top dimensional faces of I'(A). The Newton vertex Ver(A)
is defined by {« : « is vertex of I'(A)}. A is called convenient if the intersection of I'y (\A)
with each coordinate axis is non-empty. Throughout, we suppose that A is convenient.
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From the Newton polyhedron, we construct the Newton filtration. We first observe that
by the convenience assumption on A, any face F' € F(A), dimF = n — 1. So let w!" be
the unique vector of Q" such that F' = {b € I';(A) : (b, w") = 1}. We can suppose
that the vertices of A are sufficiently close to the origin so that all the w € 7. We will
suppose henceforth that A satisfies this property. Then, we construct the following map
¢: R% — Ry. The restriction of ¢ to each cone C'(F)(where C(F') denotes the cone of
half-rays emanating from 0 and passing through F') is defined as follows :

¢|O(F>(oz):<a,wF>, for all « € C(F).
We extend this map to R'} as follows:
(1.1) ¢p(@) =min {(a, w) : FeF(A)}, forallacRL.

The map ¢ is linear on each cone C'(F') (where F' € F(A)), and the value of ¢ along
each point over I'(A) is equal to 1 and ¢(Z) C Z4. This is called the Newton filtration
induced by A.

Now we introduce the control functions associated to A as follows:
1

(1.2 s =( X )"

acVer(A)

where p a positive integer. Moreover if p is big enough (it suffices, for example, that
pa € 7).

1.1. Compensation factor. Let L; denote the zj-axis. We then put o/ = L; NT(A)
for j = 1,...,n (the axial vertices of I'(A)). We define the weight of the variable x;,
A(i) = A(z;) = max{w! : F € F(A)}. We may introduce the compensation factors

associated with A as follows:
A@)

2p_ 2p
pi(z) :<"EiA(2) + Z x2pa> ,ot=1,...,n
aeVer(A)\{at}

(for more details about these see [1, 2]).
Now let us introduce a singular Riemannian metric on R" by the following bilinear form

0 0 1 ifi=j
1.3 v~ T :(51 j = .

We will denote by V4, || ||4, the corresponding gradient and norm associated with this
Riemannian metric.

In order to state the version relative to the Newton filtration of the Kuo and Paunescu
Theorems ([8, 9]) we need to introduce the Newton horn-neighborhood, of degree d and
width ¢ > 0, of a variety f~1(0), f € E(n,p). This is by definition

Hy(f.)={z € R : |f(x)| <cp'}.

Definition 1. We say that f, g € E(n,p) are d-equivalent with respect to A or simply
d-equivalent, if there exist a > 0 and a neighborhood U of the origin such that

() | fi(z) —gj(x) [ <ap?, 1<j<p

.. Of; dg, . .
(i) [ pi(5(2) — G2 (2)) | <ap?, 1<j<p1<i<n

(these fj, g; are the components of f and g respectively).
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It is easy to see that this is an equivalence relation.

2. The results.

We call a given germ f € E(n,p) vA-sufficient at degree d (where “v”stands for variety
and A stands for the Newton filtration associated with A), or simply d-sufficient if for
any P € E(n,p) such that f and f + P are d-equivalent then f and f + P have the same
v-type at 0. We first remark that if f is d-sufficient then f is d;-sufficient for any d; > d.

These are clearly version relative to the Newton filtration of the corresponding weighted
or homogeneous cases (see for instance [8, 9]). For any f € E(n,p), let V,, be the subspace
spanned by the {V4fi(x),...,Vafp(z)}. Let us consider now N(fj, A, x), or simply
N(fj,x), to be the vector V 4f;(z) — pj(xz), 1 < j < p, where p;(x) is the projection
of V 4fj(x), with respect to our metric, to the subspace V, ; spanned by the V 4fi(z),
k # j. Hence, |N(fj,x)||a = { distance of V 4f;(x) to V; }. Finally, we will denote by
da(Vafi(z),...,Vafp(x)) the minimum of | N(f;,x)||a, 1 < j < p.

Now using the above construction, we can announce our results.

Theorem 2. If for any g € E(n,p) d-equivalent to f, there are positive numbers ¢, €, 9§,
and a neighborhood U of 0, all depending on g, such that the following Lojasiewicz in-
equality related to the Newton polyhedron

(2.1) da(Vafi(@), ..., Vafp(x)) > ep®?
holds for x € Hy(f,c) N U, then f is d-sufficient.

Corollary 3. A sufficient condition for f € E(n,p) to be d-sufficient is that there exist
€>0,c>0 and d > 0 for which

dA(VAfi(x), ..., Vafp(x)) >ep?™?

is satisfied for all x in Hq_s(f,c), near 0.

This corollary follows from the observation that for any g € E(n,p) with g d-equivalent
to f, we have Hy(g,c) C Hq—s(f,c) in a sufficiently small neighborhood of 0.
In the case when f € &,)(n,p) (i.e., f is analytic) we have the following theorem.

Theorem 4. For a given f € &y (n,p), and d > 3max{A(1),...,A(n)}, the following
are equivalent :
(i) f is d-sufficient.
(ii) The hypothesis of Theorem 2 hold.
(iii) for any g € E(n,p), g d-equivalent to f, the variety g~'(0) admits 0 as a topologi-
cally isolated singularity (Vg;(x), 1 <j <p, z € g~1(0), are linearly independent
near 0, x #0).

Remark 5. We should note that in the case where #F(A) = 1 i.e., weighted filtration
associated with w = (A(1),...,A(n)), we find that p;(x) = pAD(x) fori = 1,...,n,
hence our Theorems 2 and 4 reduce to Paunescu’s Theorems (see [9], Theorem A and B).

Another characterization of the v-sufficiency is given by the following theorem.

Theorem 6. Suppose f € & (n,p) which satisfy the hypothesis of Theorem 2, then for
any g € Epy (n,p), g is d-equivalent to f, the deformation variety

Fx,t) = f(z) +t[f(z) + g(x)] = 0
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where x € R™, t € R, is (c)-regular over the t-axis in the sense introduced by Bekka (see
31)-

Remark 7. We should note that in the usual filtration, i.e., #F(A) = 1 and w! =
(1,...,1), Kuo [8] proves that the Lojasiewicz inequality in Theorem 2 implies that the
stratification X(VE) is Whitney (b)-regular. Here, Vi denotes the variety of the zero locus
of F, and X(Vr) = {F7Y0) — {0} x R, {0} x R}. Furthermore, if we suppose that
f>9 € Eq(n,p), Bekka and Koike [4] prove that the stratification ¥(VF) is (c)-regular.

We can also prove a component-wise variant of our Theorem 2. We will do this consid-
ering instead of the positive number d, a positive p-tuple d = (d,...,d,). We say that
f, g € E(n,p) are d-equivalent if there exists a neighborhood U of the origin such that

(i) fi(z) = gj(x) = o(ph),

(i) IVafi = Vagila=o(pf), 1<j<p zel.
Also we can introduce the corresponding horn-neighborhood Hy(f,c) = {z € R"

| fj(z)| < cp}, and the corresponding notion of d-sufficiency. Then, we can state the
following theorem.

Theorem 8. Suppose f € E(n,p) such that there exist positive numbers €, ¢ and
IN(fj,2)la=epb, j=1,....p, x€Hyf o).
Then f is d-sufficient.
The proof is similar to the proof of Theorem 2 and it will be omitted.

Example 9. Consider the map f: (R?,0) — (R?,0) defined by

flzy) = (zy, 20 — 2%y* — y'0).

We set A={(1,0), (£,2), (0,1)}, it not hard to see the following inequalities :

P%P%)w*)yQ 4 429; 1092
¥ —2zy* —4zy>—10y 10
IN(fr,z)|% = >€p
’ IV afall% ’
P%P%)1o9y2 4 42:% 1092
¥ —2zy* —dzy>—10y 20
IN(fo, )15 = >ep™.
’ IV afill%

Therefore, we may conclude that f is (5, 10)-sufficient with respect to this Newton filtration
induced by A.

Example 10. Let f: (R3,0) — (R?,0) be the map defined by
flz,y,2) = (zy, 2%+ 22 + % + 22).

We let A ={(1,0,0), (%,0, %), (0, %, ), (0,0, %)} By standard argument, based on the

curve selection lemma, we can see that

da(Vafi(x),Vafe(x)) >ep®, € He(f,c),

where € and ¢ are sufficiently small. Therefore, f is (6,6)-sufficient with respect to this
Newton filtration induced by A.
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3. Proofs of Theorem 2, 4 and 6.
3.1. Proof of Theorem 2.

In order to show this Theorem 2 we need the following lemma.
Lemma 11. [|[Vaplla < cp(x), c¢> 0 constant.

Proof. We first recall that :

n 8/) 2
2 _ )
Vol =3 (i)

i=1
Therefore, our lemma is a simple consequence of the construction of the compensation
factors and the control function (see [1, 2| for details). O

The proof of Theorem 2 will follow the proof given by Kuo and Paunescu in the quasi-
homogeneous case ([8, 9]). Take any P € E(n,p) with the property that f and f + P are
d-equivalent, and let F(z,t) = f(x) 4+t P(x), where t € R. By addition to the bilinear
form in (1.3), we define a new metric by

g 0 , 0 0
<a—xi, a> =0, ¢=1,...,n, <§’ §> =
By elementary calculation, we can express the gradient vector field of the function F; with
respect to this metric singular Riemannian metric as follows :

= 0 0 0
VaFj(x,t) sz( fJ 8x ( )> Pi%—l-Pj(x)a

l

(here f;, P; are the corresponding components of f, P respectively).

We shall show that any tg € R has a neighborhood 7' such that for any 1, t3 € T,
the germs of F(z,t1) = 0 and F(z,t2) = 0 are homeomorphic, and due to the fact that
I = [0,1] is compact it will follow that the germs of F(z,0) = 0 and F(z,1) = 0 are
homeomorphic. Therefore f is d-sufficient.

Let (0,tp) be a given point of the ¢t-axis. Consider the map g(z) = f(z) + toP(x), then
|Fj(x,t) —gj(z)| = [t —to| |Pj(z)], 7 =1,...,p. Since f and f+ P are d-equivalent, we can
choose a sufficiently small neighborhood T of ¢y and a neighborhood U of 0 € R™, such
that |F(z,t) — g(z)| < cp?.

Thus, the variety F(x,t) =0 for (z,t) € U x T, is contained in the Hy(g,c) x T. This
is one of the reasons for introducing this set. We have the following lemma.

Lemma 12. ||[N(Fj, (2,t))|la > §p%°, (z,t) € Hy(g,c) xT, j=1,...,p.

Proof. We note that if #F(A) = 1, one finds Lemma 1 of Paunescu [9]. Moreover, the
proof of this lemma is similar to that of Lemma 1 in [9] (we omit the details). O

Corollary 13. For (x,t) as above, x # 0, the vectors V oFj(z,t), 1 < j <p, are linearly
independent.

Proof. Obvious. Use Lemma 12. O

Now we can introduce the Kuo vector field as follows :

p
: 0
Z; ||N HA if z#0 and K(0,t)= Er
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where N; = N(Fj,(x,t)), j =1,...,p. We see K is tangent to the level of F' = 0,
whenever  # 0. Furthermore, from the construction of the Kuo vector field, K is C!
outside x = 0 and continuous everywhere in Hy(g,c) x T.

One can write Nj = Y1 | p;Cyj(x, t)pi% + Lj(z, t)%, and K can be written as :

" (& PiCi; %)
Ko (1‘2\ u)at Z(j;ufv-;)p?axi

— il
- Xﬁ B Z 3332

Recall that [|Nj|[% = Y21, (Cijpi)® + L3 and |Pj| < ap?. Tt follows from Lemma 12 that
X tends to 1 as z tends to 0, and X; tends to 0 when x tends to 0. In other words, we
have the following inequalities

|1Dj| apd ¢ zgpi’
(3.1) < and | X;| < pi < cip;
INjlla — 5 p9° Z:: \N HA INla™ =

in a small Newton horn-neighborhood of 0, ¢; >0, 1 <¢<n, j=1,...,p.

Now consider two Liapunov functions U (z,t) = e**p? and V(z,t) = e 25p?. In order
to show that the integration of this vector field gives us the homeomorphism, it is enough
to show that VU - K > 0 and VV - K < 0 for = # 0 (see [7, 8]). Indeed, by a simple
computation yields

n 6,0
VU - K =225 Lox X,
ot )

o)
P Cim)

Oz;

> €2Ltp<L,0X

i=1
n

> 62Lt,0<LpX—Z

i=1

(here we have used the second inequality in (3.1)).

According to the lemma 11, we have pi\g—fi\ < Mp, some M > 0. Thus, we can choose
L big enough such that VU - K > 0, x # 0. In a similar way we can prove the other
inequality. This completes the proof of Theorem 2.

3.2. Proof of Theorem 4. Since (ii) = (i) have already been obtained in Theorem 2,
and (ii) = (iii) is proved in exactly the same way as Theorem B in [9], we have only to
prove (iii) = (ii) and (i) = (ii).

Suppose now that (ii) is fails. In order to prove that (iii) is fails we will construct a
function f € E(n, P) such that f and f are d-equivalent but V fj, j=1,...,p, are linearly
dependent along an analytic arc in f~1(0).

The following proof will be similar to that given in [8, 9], so we will point out only the
differences.

Let g € &y (n,p) d-equivalent with f and such that for any ¢, €, ¢ and any neighbor-
hood U of 0, the Lojasiewicz inequality related to the Newton polyhedron (2.1) fails. Let
FE be the following semi-analytic set

E={ueHyig,1)|da(Vafi(u),....,.Vafp(u))= min da(Vafi(z),...,Vafp(x))}

p(u)=p(z)
x€Hg(g,1)
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Because FE is a semi-analytic set. Applying the curve selection lemma, one can find an
analytic arc 3: [0, €] — E such that 5(0) = 0 and () # 0 for ¢ > 0. Modulo a
permutation, we can choose this arc such that along 3,

da(Vafi(B(#), .-, Vafp(B()) = [IN(f1, 6())] 4

p

= [(Vaf1(B() = > Ae) Vafr(B(E)] 4,

k=2
where A\ are analytic for k = 2,... p.

Let r and p be the numbers such that p(5(t)) ~ t" and ||N(f1,5(t))||4 ~ t*. Here
A(t) ~ B(t) means that % lies between two positive constants, for ¢t > 0 and ¢ small.
Then due to the fact that (ii) fails we have £ > d. Actually if §;(t) ~ %, pi(8(t)) ~ t%
and [ (B(t) — Y0_, Me(t) 5L (B(t)] ~ t#i for i =1,...,n, then we can see

(3.2) p=min{p; +¢}, r=min{<ao,s> |aecVer(A)} and ¢ = min{rA(i), s;}.

Modulo a permutation we may assume s; = min{s;} and (31(¢) = ¢°'.
Let [(A) denote the distance from the origin to the Newton polyhedron I'y(A) by

defining
I(A) = min {Zai | a € Ver(A) } .
i=1
From the definition of the weight A(7), it is easy to check that
(3.3) I(A) max{A(1),..., A(n)} > 1.

Let us put M(A) = max{A(1),..., A(n)}. Since u > rd, it follows from (3.2) that for
1 <i<nwehave y; + ¢ > p > rd and ¢; < rM(A) so p; > r(d — M(A)). Also from
(3.2) we have that r > s11(A), hence
(3.4) Bis 1A)(d— M(A) fori=1,....n.

S1

Now let us consider the following functions

p
Qz(xl) = (g?(ﬁ(‘xl‘l/ﬁ)) _ Z)\k(’xﬂl/&)gik(ﬁ(’xl‘l/ﬁ»)
’ k=2 i

fori=1,...,n and

P(z) = f(B(Jz1]*1) + > Qi(x1) (i — Bi(lz1[V/*1)).
i=2
Also we define f: (R™,0) — (R”,0) by

filz) = fi(x) - P()

fe(@) = fulw) = fBaa]™r), k=2....p.
Using our assumption about d, d > 3M(A), it follows from (3.4) and [(A)M(A) > 1
that the order of Q;(v1) is £ > I(A)(d — M(A)) > 2 fori=1,...,n, thus our P is a C?
function, hence f € E (n,p) and moreover f and f are d-equivalent. This follows from the
construction of f and the fact that f is analytic. We can check that our representative of
the class of f has the following property :

P

F(B() = 0 and VA(B() = Y M)V I(B(1)) = 0.

k=2
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Moreover, using this f one can prove (just as in [8, 9]) that non (ii) = non (i). This
completes the proof of Theorem 4.

3.3. Proof of Theorem 6. Let us put X = F~! — {0} x R and Y = {0} x R. Now from
the Theorem 5 in [1], it is enough to show that (X,Y) is (w*)-regular, that is,

(3.5) |d*F||4 < ||deF|la holds on X near Y.
Where )
oF
RPN SR (A ).
I<is Stig<n P 0($i1,...,$ip)
OF 2
d*F|% = i d
wE= S (e o)

1<i1 < <ip_1<n
|dF (% = [|doF|% + |47 F .

Here A < B means there is some positive constant C' with A < CB.

Forj=1,...,p,welet Fil = (Fy,..., F},..., F,) and XUl = FUil = 0. Here, " indicates
that we omit the letter (or the portion) to which ~ is attached. We note that the normal
space of XUl with respect our metric, denoted by V4, is the subspace spanned by the
{VAF,... ,V/AE, ..., VaFy}. From the corollary 13, the vectors V 4Fj(x,t), are linearly
independent. Then by lemma 1.4 in [5], we obtain that the projection =, with respect to
our metric, onto the tangent space T4 ;X bl = Vi ;18 expressed by the following form.

n

s~ (dFU A day, dFU A w) 5 8 (dFU A dE dFYI A w) &

(3.6)
i=1
Since N (Fj, (z,t)) = mj(V 4F}), we can easily see that

[dF |
(3.7) IN(E;, (2, )% = (75 (VaFy), VaFy) = o ot
[dFVTI%
By the Cauchy-Schwartz inequality, we have
. 2
' oF 2 < i aF[]] ‘8FJ 2
a(ﬂj‘il, .. ,$ip71,t) - = 8(@1, ... 737@',,,1) ot ’
so that
. 2
OF 2 & oFll OF: |2
i D < i D J ,
<P1 Pip—1 8(xi1,...,$ip1,t)‘> _;<pl Pip—1 8(1‘1'1,...,‘%1771) ‘ ot
then
p 2

. OF:
3.8 R4 < FUl2 | =2
(33) @ FIE < Y IartE |5

7=1
Since ’%‘ =|fj —gjl S p®. This is clear because f and ¢ are d-equivalent. It follows
from Lemma 12 that oF
S <0t S INCE (2,0l
and, using (3.8), we obtain
p

(3.9) " F (1% < Y Il dFV 2 N (F, (2, 0))]1%.

J=1
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It now follows from (3.7) that (3.5) holds. This completes the proof of Theorem 6.
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