CHARACTERIZATION OF V-SUFFICIENCY FROM THE NEWTON FILTRATION

OULD M ABDERRAHMANE

Abstract- The aim of this paper is to study the germ mappings : $(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$, more precisely, we formulate certain criteria for the v-sufficiency related to the Newton polyhedron. Our result implies in particular the criteria for v-sufficiency due to Kuo and Paunescu.

Let $\mathcal{E}_{[k]}(n,p)$ be the set of C^k -function germs : $(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$. Given an element f of $\mathcal{E}_{[k]}(n,p)$, it is natural to ask when we can truncate f without effecting the local topological picture determined by f. This problem concerns the property of sufficiency of jet. In [8], T.-C. Kuo presented a beautiful criterion for v-sufficiency of jet, where necessary and sufficient conditions for v-sufficiency are given, a jet is v-sufficient if and only if some Lojasiewicz inequality is satisfied in the horn-neighborhood of the zero set. For the weighted filtration, L. Paunescu [9], extends the previous result. He obtained a weighted version of Kuo's criterion for v-sufficiency.

The purpose of this paper is to give a characterization of Kuo's v-sufficiency from the viewpoint of the Newton filtration. First, we define the compensation factors, following [1, 2], which compensate the effect of differentiation on the polyhedron and then reduce the problem to the procedure of Kuo-Paunescu. Namely, having defined the compensation factors, we construct a Riemannian metric associated with the filtration given by the Newton polyhedron. This allow us to consider the gradient associated with this metric and to show a Newton polyhedron analog of Kuo-Paunescu Theorems (Theorems 2 and 4 below). Moreover, we shall use Bekka's (c)-regularity in stratification theory to clarify the Lojasiewcz inequality relative to a Newton filtration (Theorem 6 below). This gives a generalization of Bekka-Koike's Theorem [4].

Let us denote by E(n, p) the set of all germs of functions : $(\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ which are C^2 in a punctured neighborhood of the origin. Let $f, g \in E(n, p)$. These functions are said to have the same (local) v-type at 0 (where v stands for variety), if the germs at 0 of $f^{-1}(0)$ and $g^{-1}(0)$ are homeomorphic.

1. Newton filtration.

Let us recall some basic definitions and properties of the Newton filtration (see [1, 2, 6] for details).

The Newton polyhedron, $\Gamma_{+}(\mathcal{A})$, where $\mathcal{A} \subset \mathbb{Q}^{n}_{+}$ is the convex hull of $\{a + \mathbb{R}^{n}_{+} | a \in \mathcal{A}\}$. The Newton boundary of \mathcal{A} , $\Gamma(\mathcal{A})$ is the union of the compact faces of $\Gamma_{+}(\mathcal{A})$. We let $\mathcal{F}(\mathcal{A})$ denote the union of the top dimensional faces of $\Gamma(\mathcal{A})$. The Newton vertex $Ver(\mathcal{A})$ is defined by $\{\alpha : \alpha \text{ is vertex of } \Gamma(\mathcal{A})\}$. \mathcal{A} is called convenient if the intersection of $\Gamma_{+}(\mathcal{A})$ with each coordinate axis is non-empty. Throughout, we suppose that \mathcal{A} is convenient.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14B05; Secondary, 58A35.

This research was supported by the Japan Society for the Promotion of Science.

OULD M ABDERRAHMANE

From the Newton polyhedron, we construct the Newton filtration. We first observe that by the convenience assumption on \mathcal{A} , any face $F \in \mathcal{F}(\mathcal{A})$, dim F = n - 1. So let w^F be the unique vector of \mathbb{Q}^n_+ such that $F = \{ b \in \Gamma_+(\mathcal{A}) : \langle b, w^F \rangle = 1 \}$. We can suppose that the vertices of \mathcal{A} are sufficiently close to the origin so that all the $w^F \in \mathbb{Z}^n_+$. We will suppose henceforth that \mathcal{A} satisfies this property. Then, we construct the following map $\phi \colon \mathbb{R}^n_+ \to \mathbb{R}_+$. The restriction of ϕ to each cone C(F) (where C(F) denotes the cone of half-rays emanating from 0 and passing through F) is defined as follows:

$$\phi_{|_{C(F)}}(\alpha) = \langle \alpha, w^F \rangle, \text{ for all } \alpha \in C(F).$$

We extend this map to \mathbb{R}^n_+ as follows:

(1.1)
$$\phi(\alpha) = \min\left\{ \langle \alpha, w^F \rangle : F \in \mathcal{F}(\mathcal{A}) \right\}, \quad \text{for all } \alpha \in \mathbb{R}^n_+.$$

The map ϕ is linear on each cone C(F) (where $F \in \mathcal{F}(\mathcal{A})$), and the value of ϕ along each point over $\Gamma(\mathcal{A})$ is equal to 1 and $\phi(\mathbb{Z}^n_+) \subset \mathbb{Z}_+$. This is called the Newton filtration induced by \mathcal{A} .

Now we introduce the control functions associated to \mathcal{A} as follows:

(1.2)
$$\rho(x) = \left(\sum_{\alpha \in Ver(\mathcal{A})} x^{2p\alpha}\right)^{\frac{1}{2p}}$$

where p a positive integer. Moreover if p is big enough (it suffices, for example, that $p\alpha \in \mathbb{Z}_{+}^{n}$).

1.1. Compensation factor. Let L_j denote the x_j -axis. We then put $\alpha^j = L_j \cap \Gamma(\mathcal{A})$ for j = 1, ..., n (the axial vertices of $\Gamma(\mathcal{A})$). We define the weight of the variable x_i , $\mathcal{A}(i) = \mathcal{A}(x_i) = \max\{w_i^F : F \in \mathcal{F}(\mathcal{A})\}$. We may introduce the compensation factors associated with \mathcal{A} as follows:

$$\rho_i(x) = \left(x_i^{\frac{2p}{\mathcal{A}(i)}} + \sum_{\alpha \in Ver(\mathcal{A}) \setminus \{\alpha^i\}} x^{2p\alpha}\right)^{\frac{\mathcal{A}(i)}{2p}}, \quad i = 1, \dots, n$$

....

(for more details about these see [1, 2]).

Now let us introduce a singular Riemannian metric on \mathbb{R}^n by the following bilinear form

(1.3)
$$\langle \rho_i \frac{\partial}{\partial x_i}, \rho_j \frac{\partial}{\partial x_j} \rangle = \delta_{i,j} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

We will denote by $\nabla_{\mathcal{A}}$, $\| \|_{\mathcal{A}}$, the corresponding gradient and norm associated with this Riemannian metric.

In order to state the version relative to the Newton filtration of the Kuo and Paunescu Theorems ([8, 9]) we need to introduce the Newton horn-neighborhood, of degree d and width c > 0, of a variety $f^{-1}(0)$, $f \in E(n, p)$. This is by definition

$$H_d(f,c) = \{ x \in \mathbb{R}^n : |f(x)| \le c \rho^d \}.$$

Definition 1. We say that $f, g \in E(n, p)$ are d-equivalent with respect to \mathcal{A} or simply d-equivalent, if there exist a > 0 and a neighborhood U of the origin such that

- (i) $|f_j(x) g_j(x)| \le a\rho^d, \quad 1 \le j \le p$
- (ii) $\left| \rho_i \left(\frac{\partial f_j}{\partial x_i}(x) \frac{\partial g_j}{\partial x_i}(x) \right) \right| \le a \rho^d, \quad 1 \le j \le p, \ 1 \le i \le n$

(these f_j , g_j are the components of f and g respectively).

It is easy to see that this is an equivalence relation.

2. The results.

We call a given germ $f \in E(n,p)$ $v^{\mathcal{A}}$ -sufficient at degree d (where "v" stands for variety and \mathcal{A} stands for the Newton filtration associated with \mathcal{A}), or simply d-sufficient if for any $P \in E(n,p)$ such that f and f + P are d-equivalent then f and f + P have the same v-type at 0. We first remark that if f is d-sufficient then f is d_1 -sufficient for any $d_1 \geq d$.

These are clearly version relative to the Newton filtration of the corresponding weighted or homogeneous cases (see for instance [8, 9]). For any $f \in E(n, p)$, let V_x be the subspace spanned by the $\{\nabla_{\mathcal{A}} f_1(x), \ldots, \nabla_{\mathcal{A}} f_p(x)\}$. Let us consider now $N(f_j, \mathcal{A}, x)$, or simply $N(f_j, x)$, to be the vector $\nabla_{\mathcal{A}} f_j(x) - p_j(x)$, $1 \leq j \leq p$, where $p_j(x)$ is the projection of $\nabla_{\mathcal{A}} f_j(x)$, with respect to our metric, to the subspace $V_{x,j}$ spanned by the $\nabla_{\mathcal{A}} f_k(x)$, $k \neq j$. Hence, $\|N(f_j, x)\|_{\mathcal{A}} = \{$ distance of $\nabla_{\mathcal{A}} f_j(x)$ to $V_{x,j} \}$. Finally, we will denote by $d_{\mathcal{A}}(\nabla_{\mathcal{A}} f_1(x), \ldots, \nabla_{\mathcal{A}} f_p(x))$ the minimum of $\|N(f_j, x)\|_{\mathcal{A}}$, $1 \leq j \leq p$.

Now using the above construction, we can announce our results.

Theorem 2. If for any $g \in E(n,p)$ d-equivalent to f, there are positive numbers c, ϵ, δ , and a neighborhood U of 0, all depending on g, such that the following Lojasiewicz inequality related to the Newton polyhedron

(2.1)
$$d_{\mathcal{A}}(\nabla_{\mathcal{A}}f_1(x),\dots,\nabla_{\mathcal{A}}f_p(x)) \ge \epsilon \rho^{d-\delta}$$

holds for $x \in H_d(f,c) \cap U$, then f is d-sufficient.

Corollary 3. A sufficient condition for $f \in E(n, p)$ to be d-sufficient is that there exist $\epsilon > 0, c > 0$ and $\delta > 0$ for which

$$d_{\mathcal{A}}(\nabla_{\mathcal{A}}f_1(x),\ldots,\nabla_{\mathcal{A}}f_p(x)) \ge \epsilon \rho^{d-\delta}$$

is satisfied for all x in $H_{d-\delta}(f,c)$, near 0.

This corollary follows from the observation that for any $g \in E(n, p)$ with g d-equivalent to f, we have $H_d(g, c) \subset H_{d-\delta}(f, c)$ in a sufficiently small neighborhood of 0.

In the case when $f \in \mathcal{E}_{[w]}(n,p)$ (i.e., f is analytic) we have the following theorem.

Theorem 4. For a given $f \in \mathcal{E}_{[w]}(n,p)$, and $d \geq 3 \max\{\mathcal{A}(1), \ldots, \mathcal{A}(n)\}$, the following are equivalent:

- (i) f is d-sufficient.
- (ii) The hypothesis of Theorem 2 hold.
- (iii) for any $g \in E(n, p)$, g d-equivalent to f, the variety $g^{-1}(0)$ admits 0 as a topologically isolated singularity ($\nabla g_j(x)$, $1 \le j \le p$, $x \in g^{-1}(0)$, are linearly independent near 0, $x \ne 0$).

Remark 5. We should note that in the case where $\#\mathcal{F}(\mathcal{A}) = 1$ i.e., weighted filtration associated with $w = (\mathcal{A}(1), \ldots, \mathcal{A}(n))$, we find that $\rho_i(x) = \rho^{\mathcal{A}(i)}(x)$ for $i = 1, \ldots, n$, hence our Theorems 2 and 4 reduce to Paunescu's Theorems (see [9], Theorem A and B).

Another characterization of the v-sufficiency is given by the following theorem.

Theorem 6. Suppose $f \in \mathcal{E}_{[w]}(n,p)$ which satisfy the hypothesis of Theorem 2, then for any $g \in \mathcal{E}_{[w]}(n,p)$, g is d-equivalent to f, the deformation variety

$$F(x,t) \equiv f(x) + t[f(x) + g(x)] = 0$$

OULD M ABDERRAHMANE

where $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, is (c)-regular over the t-axis in the sense introduced by Bekka (see [3]).

Remark 7. We should note that in the usual filtration, i.e., $\#\mathcal{F}(\mathcal{A}) = 1$ and $w^F = (1, \ldots, 1)$, Kuo [8] proves that the Lojasiewicz inequality in Theorem 2 implies that the stratification $\Sigma(V_F)$ is Whitney (b)-regular. Here, V_F denotes the variety of the zero locus of F, and $\Sigma(V_F) = \{F^{-1}(0) - \{0\} \times \mathbb{R}, \{0\} \times \mathbb{R}\}$. Furthermore, if we suppose that $f, g \in \mathcal{E}_{\text{[d]}}(n, p)$, Bekka and Koike [4] prove that the stratification $\Sigma(V_F)$ is (c)-regular.

We can also prove a component-wise variant of our Theorem 2. We will do this considering instead of the positive number d, a positive p-tuple $\underline{d} = (d_1, \ldots, d_p)$. We say that $f, g \in E(n, p)$ are \underline{d} -equivalent if there exists a neighborhood U of the origin such that

- (i) $f_j(x) g_j(x) = o(\rho^{d_j}),$
- (ii) $\|\nabla_{\mathcal{A}} f_j \nabla_{\mathcal{A}} g_j\|_{\mathcal{A}} = o(\rho_j^d), \quad 1 \le j \le p, \quad x \in U.$

Also we can introduce the corresponding horn-neighborhood $H_{\underline{d}}(f,c) = \{x \in \mathbb{R}^n : |f_j(x)| \leq c \rho^{d_j}\}$, and the corresponding notion of <u>d</u>-sufficiency. Then, we can state the following theorem.

Theorem 8. Suppose $f \in E(n, p)$ such that there exist positive numbers ϵ , c and

 $||N(f_j, x)||_{\mathcal{A}} \ge \epsilon \rho^{d_j}, \quad j = 1, \dots, p, \quad x \in H_d(f, c).$

Then f is \underline{d} -sufficient.

The proof is similar to the proof of Theorem 2 and it will be omitted.

Example 9. Consider the map $f: (\mathbb{R}^2, 0) \to (\mathbb{R}^2, 0)$ defined by

$$f(x,y) = (xy, x^{10} - x^2y^4 - y^{10}).$$

We set $\mathcal{A} = \{ (1,0), (\frac{1}{5}, \frac{2}{5}), (0,1) \}$, it not hard to see the following inequalities :

$$\begin{split} \|N(f_1,x)\|_{\mathcal{A}}^2 &= \frac{\rho_1^2 \rho_2^2 \left| \begin{array}{c} y & y & x \\ 10x^9 - 2xy^4 & -4x^2y^3 - 10y^9 \end{array} \right|^2}{\|\nabla_{\mathcal{A}} f_2\|_{\mathcal{A}}^2} &\geq \epsilon \, \rho^{10}, \\ \|N(f_2,x)\|_{\mathcal{A}}^2 &= \frac{\rho_1^2 \rho_2^2 \left| \begin{array}{c} y & y & x \\ 10x^9 - 2xy^4 & -4x^2y^3 - 10y^9 \end{array} \right|^2}{\|\nabla_{\mathcal{A}} f_1\|_{\mathcal{A}}^2} &\geq \epsilon \, \rho^{20}. \end{split}$$

Therefore, we may conclude that f is (5, 10)-sufficient with respect to this Newton filtration induced by A.

Example 10. Let $f: (\mathbb{R}^3, 0) \to (\mathbb{R}^2, 0)$ be the map defined by

$$f(x, y, z) = (xy, x^{6} + xz + y^{2} + z^{2}).$$

We let $\mathcal{A} = \{ (1,0,0), (\frac{1}{6},0,\frac{1}{6}), (0,\frac{1}{3},0), (0,0,\frac{1}{3}) \}$. By standard argument, based on the curve selection lemma, we can see that

$$d_{\mathcal{A}}(\nabla_{\mathcal{A}}f_1(x), \nabla_{\mathcal{A}}f_2(x)) \ge \epsilon \rho^6, \quad x \in H_6(f, c),$$

where ϵ and c are sufficiently small. Therefore, f is (6,6)-sufficient with respect to this Newton filtration induced by A.

3. Proofs of Theorem 2, 4 and 6.

3.1. Proof of Theorem 2.

In order to show this Theorem 2 we need the following lemma.

Lemma 11. $\|\nabla_{\mathcal{A}}\rho\|_{\mathcal{A}} \leq c \rho(x), \quad c > 0 \text{ constant.}$

Proof. We first recall that :

$$\|\nabla_{\mathcal{A}}\rho\|_{\mathcal{A}}^{2} = \sum_{i=1}^{n} \left(\rho_{i}\frac{\partial\rho}{\partial x_{i}}(x)\right)^{2}$$

Therefore, our lemma is a simple consequence of the construction of the compensation factors and the control function (see [1, 2] for details).

The proof of Theorem 2 will follow the proof given by Kuo and Paunescu in the quasihomogeneous case ([8, 9]). Take any $P \in E(n, p)$ with the property that f and f + P are *d*-equivalent, and let F(x,t) = f(x) + t P(x), where $t \in \mathbb{R}$. By addition to the bilinear form in (1.3), we define a new metric by

$$\langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial t} \rangle = 0, \quad i = 1, \dots, n, \quad \langle \frac{\partial}{\partial t}, \frac{\partial}{\partial t} \rangle = 1.$$

By elementary calculation, we can express the gradient vector field of the function F_j with respect to this metric singular Riemannian metric as follows:

$$\nabla_{\mathcal{A}}F_j(x,t) == \sum_{i=1}^n \rho_i \left(\frac{\partial f_j}{\partial x_i}(x) + t\frac{\partial P_j}{\partial x_i}(x)\right) \rho_i \frac{\partial}{\partial x_i} + P_j(x)\frac{\partial}{\partial t}$$

(here f_j , P_j are the corresponding components of f, P respectively).

We shall show that any $t_0 \in \mathbb{R}$ has a neighborhood T such that for any $t_1, t_2 \in T$, the germs of $F(x, t_1) = 0$ and $F(x, t_2) = 0$ are homeomorphic, and due to the fact that I = [0, 1] is compact it will follow that the germs of F(x, 0) = 0 and F(x, 1) = 0 are homeomorphic. Therefore f is d-sufficient.

Let $(0, t_0)$ be a given point of the t-axis. Consider the map $g(x) = f(x) + t_0 P(x)$, then $|F_j(x,t) - g_j(x)| = |t - t_0| |P_j(x)|, j = 1, ..., p$. Since f and f + P are d-equivalent, we can choose a sufficiently small neighborhood T of t_0 and a neighborhood U of $0 \in \mathbb{R}^n$, such that $|F(x,t) - g(x)| \leq c \rho^d$.

Thus, the variety F(x,t) = 0 for $(x,t) \in U \times T$, is contained in the $H_d(g,c) \times T$. This is one of the reasons for introducing this set. We have the following lemma.

Lemma 12. $||N(F_j, (x, t))||_{\mathcal{A}} \ge \frac{\epsilon}{2} \rho^{d-\delta}, \quad (x, t) \in H_d(g, c) \times T, \quad j = 1, \dots, p.$

Proof. We note that if $\#\mathcal{F}(\mathcal{A}) = 1$, one finds Lemma 1 of Paunescu [9]. Moreover, the proof of this lemma is similar to that of Lemma 1 in [9] (we omit the details).

Corollary 13. For (x,t) as above, $x \neq 0$, the vectors $\nabla_{\mathcal{A}} F_j(x,t)$, $1 \leq j \leq p$, are linearly independent.

Proof. Obvious. Use Lemma 12.

Now we can introduce the Kuo vector field as follows:

$$K(x,t) = \frac{\partial}{\partial t} - \sum_{j=1}^{p} \frac{P_j}{\|N_j\|_A} N_j \quad \text{if} \quad x \neq 0 \quad \text{and} \quad K(0,t) = \frac{\partial}{\partial t},$$

where $N_j = N(F_j, (x, t))$, j = 1, ..., p. We see K is tangent to the level of F = 0, whenever $x \neq 0$. Furthermore, from the construction of the Kuo vector field, K is C^1 outside x = 0 and continuous everywhere in $H_d(g, c) \times T$.

One can write $N_j = \sum_{i=1}^n \rho_i C_{ij}(x,t) \rho_i \frac{\partial}{\partial x_i} + L_j(x,t) \frac{\partial}{\partial t}$, and K can be written as :

$$K(x,t) = \left(1 - \sum_{j=1}^{p} \frac{L_j P_j}{\|N_j\|_{\mathcal{A}}^2}\right) \frac{\partial}{\partial t} - \sum_{i=1}^{n} \left(\sum_{j=1}^{p} \frac{P_j C_{ij}}{\|N_j\|_{\mathcal{A}}^2}\right) \rho_i^2 \frac{\partial}{\partial x_i}$$
$$= X \frac{\partial}{\partial t} - \sum_{i=1}^{n} X_i \frac{\partial}{\partial x_i}.$$

Recall that $||N_j||_{\mathcal{A}}^2 = \sum_{i=1}^n (C_{ij}\rho_i)^2 + L_j^2$ and $|P_j| \leq a\rho^d$. It follows from Lemma 12 that X tends to 1 as x tends to 0, and X_i tends to 0 when x tends to 0. In other words, we have the following inequalities

(3.1)
$$\frac{|P_j|}{\|N_j\|_{\mathcal{A}}} \le \frac{a\rho^d}{\frac{\epsilon}{2}\rho^{d-\delta}} \quad \text{and} \quad |X_i| \le \sum_{j=1}^p \frac{|P_j|}{\|N_j\|_{\mathcal{A}}} \frac{|C_{ij}\rho_i|}{\|N_j\|_{\mathcal{A}}} \rho_i \le c_i\rho_i$$

in a small Newton horn-neighborhood of 0, $c_i > 0$, $1 \le i \le n$, $j = 1, \ldots, p$.

Now consider two Liapunov functions $U(x,t) = e^{2Lt}\rho^2$ and $V(x,t) = e^{-2Lt}\rho^2$. In order to show that the integration of this vector field gives us the homeomorphism, it is enough to show that $\nabla U \cdot K > 0$ and $\nabla V \cdot K < 0$ for $x \neq 0$ (see [7, 8]). Indeed, by a simple computation yields

$$\nabla U \cdot K = 2e^{2Lt} \rho \left(L\rho X + \sum_{i=1}^{n} \frac{\partial \rho}{\partial x_i} X_i \right)$$
$$\geq e^{2Lt} \rho \left(L\rho X - \sum_{i=1}^{n} \left| \frac{\partial \rho}{\partial x_i} \right| |X_i| \right)$$
$$\geq e^{2Lt} \rho \left(L\rho X - \sum_{i=1}^{n} \left| \frac{\partial \rho}{\partial x_i} \right| c_i \rho_i \right)$$

(here we have used the second inequality in (3.1)).

According to the lemma 11, we have $\rho_i |\frac{\partial \rho}{\partial x_i}| \leq M\rho$, some M > 0. Thus, we can choose L big enough such that $\nabla U \cdot K > 0$, $x \neq 0$. In a similar way we can prove the other inequality. This completes the proof of Theorem 2.

3.2. **Proof of Theorem 4.** Since (ii) \Rightarrow (i) have already been obtained in Theorem 2, and (ii) \Rightarrow (iii) is proved in exactly the same way as Theorem B in [9], we have only to prove (iii) \Rightarrow (ii) and (i) \Rightarrow (ii).

Suppose now that (ii) is fails. In order to prove that (iii) is fails we will construct a function $\tilde{f} \in E(n, P)$ such that \tilde{f} and f are d-equivalent but $\nabla \tilde{f}_j$, $j = 1, \ldots, p$, are linearly dependent along an analytic arc in $\tilde{f}^{-1}(0)$.

The following proof will be similar to that given in [8, 9], so we will point out only the differences.

Let $g \in \mathcal{E}_{[w]}(n,p)$ d-equivalent with f and such that for any c, ϵ, δ and any neighborhood U of 0, the Lojasiewicz inequality related to the Newton polyhedron (2.1) fails. Let E be the following semi-analytic set

$$E = \{ u \in H_d(g,1) \mid d_{\mathcal{A}}(\nabla_{\mathcal{A}} f_1(u), \dots, \nabla_{\mathcal{A}} f_p(u)) = \min_{\substack{\rho(u) = \rho(x) \\ x \in H_d(g,1)}} d_{\mathcal{A}}(\nabla_{\mathcal{A}} f_1(x), \dots, \nabla_{\mathcal{A}} f_p(x)) \}$$

Because E is a semi-analytic set. Applying the curve selection lemma, one can find an analytic arc β : $[0, \epsilon] \rightarrow E$ such that $\beta(0) = 0$ and $\beta(t) \neq 0$ for t > 0. Modulo a permutation, we can choose this arc such that along β ,

$$d_{\mathcal{A}}(\nabla_{\mathcal{A}}f_{1}(\beta(t)),\ldots,\nabla_{\mathcal{A}}f_{p}(\beta(t))) = \|N(f_{1},\beta(t))\|_{\mathcal{A}}$$
$$= \|(\nabla_{\mathcal{A}}f_{1}(\beta(t)) - \sum_{k=2}^{p}\lambda_{k}(t)\nabla_{\mathcal{A}}f_{k}(\beta(t))\|_{\mathcal{A}},$$

where λ_k are analytic for $k = 2, \ldots, p$.

Let r and μ be the numbers such that $\rho(\beta(t)) \sim t^r$ and $||N(f_1, \beta(t))||_{\mathcal{A}} \sim t^{\mu}$. Here $A(t) \sim B(t)$ means that $\frac{A}{B}$ lies between two positive constants, for t > 0 and t small. Then due to the fact that (ii) fails we have $\frac{\mu}{r} \geq d$. Actually if $\beta_i(t) \sim t^{s_i}$, $\rho_i(\beta(t)) \sim t^{q_i}$ and $|\frac{\partial f_1}{\partial x_i}(\beta(t) - \sum_{k=2}^p \lambda_k(t) \frac{\partial f_k}{\partial x_i}(\beta(t)| \sim t^{\mu_i} \text{ for } i = 1, \dots, n, \text{ then we can see}$ (3.2) $\mu = \min\{\mu_i + q_i\}, \quad r = \min\{<\alpha, s > | \alpha \in Ver(\mathcal{A})\}$ and $q_i = \min\{rA(i), s_i\}.$

Modulo a permutation we may assume $s_1 = \min\{s_i\}$ and $\beta_1(t) = t^{s_1}$.

Let $l(\mathcal{A})$ denote the distance from the origin to the Newton polyhedron $\Gamma_+(\mathcal{A})$ by defining

$$l(\mathcal{A}) = \min\left\{\sum_{i=1}^{n} \alpha_i \mid \alpha \in Ver(\mathcal{A})\right\}.$$

From the definition of the weight $\mathcal{A}(i)$, it is easy to check that

(3.3)
$$l(\mathcal{A})\max\{\mathcal{A}(1),\ldots,\mathcal{A}(n)\}\geq 1.$$

Let us put $M(\mathcal{A}) = \max\{\mathcal{A}(1), \ldots, \mathcal{A}(n)\}$. Since $\mu \geq rd$, it follows from (3.2) that for $1 \leq i \leq n$ we have $\mu_i + q_i \geq \mu \geq rd$ and $q_i \leq rM(\mathcal{A})$ so $\mu_i \geq r(d - M(\mathcal{A}))$. Also from (3.2) we have that $r \geq s_1 l(\mathcal{A})$, hence

(3.4)
$$\frac{\mu_i}{s_1} \ge l(\mathcal{A})(d - M(\mathcal{A})) \quad \text{for } i = 1, \dots, n.$$

Now let us consider the following functions

$$Q_i(x_1) = \left(\frac{\partial f_1}{\partial x_i}(\beta(|x_1|^{1/s_1})) - \sum_{k=2}^p \lambda_k(|x_1|^{1/s_1})\frac{\partial f_k}{\partial x_i}(\beta(|x_1|^{1/s_1}))\right)$$

for $i = 1, \ldots, n$ and

$$P(x) = f(\beta(|x_1|^{1/s_1})) + \sum_{i=2}^n Q_i(x_1)(x_i - \beta_i(|x_1|^{1/s_1}))$$

Also we define $\tilde{f}: (\mathbb{R}^n, 0) \to (\mathbb{R}^p, 0)$ by

$$\tilde{f}_1(x) = f_1(x) - P(x)$$

$$\tilde{f}_k(x) = f_k(x) - f_k(\beta(|x_1|^{1/s_1}), \quad k = 2..., p$$

Using our assumption about $d, d \geq 3M(\mathcal{A})$, it follows from (3.4) and $l(\mathcal{A})M(\mathcal{A}) \geq 1$ that the order of $Q_i(x_1)$ is $\frac{\mu_i}{s_1} \geq l(\mathcal{A})(d - M(\mathcal{A})) \geq 2$ for $i = 1, \ldots, n$, thus our P is a C^2 function, hence $\tilde{f} \in E(n, p)$ and moreover f and \tilde{f} are d-equivalent. This follows from the construction of \tilde{f} and the fact that f is analytic. We can check that our representative of the class of f has the following property :

$$\tilde{f}(\beta(t)) = 0$$
 and $\nabla \tilde{f}_1(\beta(t)) - \sum_{k=2}^p \lambda_k(t) \nabla \tilde{f}_k(\beta(t)) = 0.$

Moreover, using this \tilde{f} one can prove (just as in [8, 9]) that non (ii) \Rightarrow non (i). This completes the proof of Theorem 4.

3.3. Proof of Theorem 6. Let us put $X = F^{-1} - \{0\} \times \mathbb{R}$ and $Y = \{0\} \times \mathbb{R}$. Now from the Theorem 5 in [1], it is enough to show that (X, Y) is $(w^{\mathcal{A}})$ -regular, that is,

(3.5)
$$||d^xF||_{\mathcal{A}} \lesssim ||d_xF||_{\mathcal{A}}$$
 holds on X near Y.

Where

$$\|d_x F\|_{\mathcal{A}}^2 = \sum_{1 \le i_1 < \dots < i_p \le n} \left(\rho_{i_1} \cdots \rho_{i_p} \left| \frac{\partial F}{\partial (x_{i_1}, \dots, x_{i_p})} \right| \right)^2,$$
$$\|d^x F\|_{\mathcal{A}}^2 = \sum_{1 \le i_1 < \dots < i_{p-1} \le n} \left(\rho_{i_1} \cdots \rho_{i_{p-1}} \left| \frac{\partial F}{\partial (x_{i_1}, \dots, x_{i_{p-1}}, t)} \right| \right)^2 \text{ and }$$
$$\|dF\|_{\mathcal{A}}^2 = \|d_x F\|_{\mathcal{A}}^2 + \|d^x F\|_{\mathcal{A}}^2.$$

Here $A \leq B$ means there is some positive constant C with $A \leq CB$.

For j = 1, ..., p, we let $F^{[j]} = (F_1, ..., \widehat{F_j}, ..., F_p)$ and $X^{[j]} \equiv F^{[j]} = 0$. Here, $\widehat{}$ indicates that we omit the letter (or the portion) to which $\widehat{}$ is attached. We note that the normal space of $X^{[j]}$ with respect our metric, denoted by $V_{\mathcal{A},j}$, is the subspace spanned by the $\{\nabla_{\mathcal{A}}F_1, ..., \widehat{\nabla_{\mathcal{A}}F_j}, ..., \nabla_{\mathcal{A}}F_p\}$. From the corollary 13, the vectors $\nabla_{\mathcal{A}}F_k(x,t)$, are linearly independent. Then by lemma 1.4 in [5], we obtain that the projection π_j , with respect to our metric, onto the tangent space $T_{\mathcal{A},x,t}X^{[j]} = V_{\mathcal{A},j}^{\perp}$ is expressed by the following form.

(3.6)
$$\pi_j(v) = \sum_{i=1}^n \frac{\langle dF^{[j]} \wedge dx_i, dF^{[j]} \wedge v \rangle}{\|dF^{[j]}\|_{\mathcal{A}}^2} \rho_i^2 \frac{\partial}{\partial x_i} + \frac{\langle dF^{[j]} \wedge dt, dF^{[j]} \wedge v \rangle}{\|dF^{[j]}\|_{\mathcal{A}}^2} \frac{\partial}{\partial t}$$

Since $N(F_j, (x, t)) = \pi_j(\nabla_{\mathcal{A}} F_j)$, we can easily see that

(3.7)
$$||N(F_j, (x, t))||_{\mathcal{A}}^2 = \langle \pi_j(\nabla_{\mathcal{A}}F_j), \nabla_A F_j \rangle = \frac{||dF||_{\mathcal{A}}^2}{||dF^{[j]}||_{\mathcal{A}}^2}.$$

By the Cauchy-Schwartz inequality, we have

$$\left|\frac{\partial F}{\partial(x_{i_1},\ldots,x_{i_{p-1}},t)}\right|^2 \leq \sum_{j=1}^p \left|\frac{\partial F^{[j]}}{\partial(x_{i_1},\ldots,x_{i_{p-1}})}\right|^2 \left|\frac{\partial F_j}{\partial t}\right|^2,$$

so that

$$\left(\rho_{i_1}\cdots\rho_{i_{p-1}}\left|\frac{\partial F}{\partial(x_{i_1},\ldots,x_{i_{p-1}},t)}\right|\right)^2 \leq \sum_{j=1}^p \left(\rho_{i_1}\cdots\rho_{i_{p-1}}\left|\frac{\partial F^{[j]}}{\partial(x_{i_1},\ldots,x_{i_{p-1}})}\right|\right)^2 \left|\frac{\partial F_j}{\partial t}\right|^2,$$

then

(3.8)
$$\|d^{x}F\|_{\mathcal{A}}^{2} \leq \sum_{j=1}^{p} \|dF^{[j]}\|_{\mathcal{A}}^{2} \left|\frac{\partial F_{j}}{\partial t}\right|^{2}.$$

Since $\left|\frac{\partial F_j}{\partial t}\right| = |f_j - g_j| \lesssim \rho^d$. This is clear because f and g are d-equivalent. It follows from Lemma 12 that

$$\left|\frac{\partial F_j}{\partial t}\right| \ll \rho^{d-\delta} \lesssim \|N(F_j, (x, t))\|_{\mathcal{A}}$$

and, using (3.8), we obtain

(3.9)
$$\|d^{x}F\|_{\mathcal{A}}^{2} \ll \sum_{j=1}^{p} \|dF^{[j]}\|_{\mathcal{A}}^{2} \|N(F_{j},(x,t))\|_{\mathcal{A}}^{2}$$

It now follows from (3.7) that (3.5) holds. This completes the proof of Theorem 6.

References

- [1] Ould. M. Abderrahmane : Stratification theory from the Newton polyhedron point of view, to appear in Ann. Inst. Fourier, Grenoble.
- [2] Ould. M. Abderrahmane : Polyèdre de Newton et trivialité en famille, J. Math. Soc. Japan. Vol. 54, (2002), 513–550.
- K. Bekka : (c)-régularité et trivialité topologique, Warwick 1989, Part I, D. Mond and J. Montaldi, Eds, SLMN 1462, Springer, (1991), 42–62.
- [4] K. Bekka and S. Koike : The Kuo condition, an inequality Thom's type and (c)-regularity, Topology 37 (1998), 45–62.
- [5] T. Fukui and L. Paunescu : Stratification theory from the weighted point of view, Canad. J. math. 53 (2001), 73–97.
- [6] A.G. Kouchnirenko: Polyèdres de Newton et nombres de Milnor, Invent. math. 32 (1976), 1-31.
- [7] T.-C. Kuo : On C^0 -sufficiency of jets of potential functions, Topology 8 (1969), 167–171.
- [8] T.-C. Kuo: Characterizations of V-sufficiency of jets, Topology 11 (1972), 115–131.
- [9] L. Paunescu: V-sufficiency from the weighted point of view, J. Math. Soc. Japan. 46 (1994), 313–320.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SAITAMA UNIVERSITY, 255 SHIMO-OKUBO, URAWA, 338-8570 JAPAN

E-mail address: vould@rimath.saitama-u.ac.jp