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Abstract
In this paper, we investigate the motivic measure of the arc spaces of real al-

gebraic varieties with respect to a homeomorphism with reasonable properties con-
cerning arc-analycity and jacobian. We show an improvement of the “change of
variables formula” (Theorem 2.2 and its consequences), which is originally sug-
gested by Kontsevich ([9]), a version of inverse mapping theorem (Theorem 2.13)
and Lipschitz version of inverse mapping theorem (Theorem 3.2).

A semi-algebraic homeomorphism f : X → Y between two real algebraic varieties
may not preserve analytic arcs. For example, a homeomorphism h : R → R, x → x3,
sends analytic arcs to analytic arcs. But h−1 is not. So to investigate analytic arcs on real
algebraic varieties, it is natural to impose that f is arc-analytic, that is, f ◦ γ is analytic
for any analytic map γ : (−1, 1) → X. This condition is much weaker than analyticity
when dimX ≥ 2. An arc-analytic semi-algebraic map f : X → Y on a nonsingular
algebraic manifold X is blow-Nash, that is, there is a finite composition h : X → Y of
blow-ups whose centers are nonsingular Nash sets such that f ◦ h is Nash. But when
X is singular, f being blow-Nash is equivalent to that f is generically arc-analytic, that
is, there is an algebraic subset S in X so that f ◦ γ is analytic for any analytic map
γ : (−1, 1) → X which is not entirely in S. Thus we are going to investigate arc spaces
under the homeomorphism with respect to generic arc-analyticity.

We also introduce the notion of jacobian for semi-algebraic map f : X → Y in §1.5
to control the behavior of analytic arcs. We show an improved version of the “change
of variables formula” (Theorem 2.2 and its consequences), which is originally suggested
by Kontsevich ([9]) and compare the motivic measures of arc spaces of M and X via a
generically one-to-one map f : M → X assuming that M is nonsingular. Here we say a
map f :M → X is generically one-to-one, if there is nowhere dense subset S of X so
that f−1(y) is a point for all y ∈ X S. This allows us to show that the arc spaces of
two varieties germs (X, 0) and (Y, 0) have the same motivic measure if there is a semi-
algebraic homeomorphism germ f : (X, 0) → (Y, 0) so that f and f−1 are generically
arc-analytic and the Jacoban Jf is bounded from below and above (Theorem 2.15). This
discussion allows us that a version of inverse mapping theorem (Theorem 2.13). As an
application, we show that a similar inverse mapping theorem (Theorem 3.2) concerning
Lipschitz property.

In last section, we make a short remark on complex case concerning about similar
version on our inverse mapping theorem.
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1 Preliminary

In this section, we recall several definitions and properties.

1.1 AS-sets
A subset of Rn is semialgebraic if it is a finite union of the sets of the form

{x ∈ Rn : P1(x) = · · · = Pk(x) = 0, Q1(x) > 0, . . . , Ql(x) > 0},

where Pi(x), Qj(x) ∈ R[x1, . . . , xn]. A subset of the real projective space P n(R) is semi-
algebraic if so are its intersections with the affine charts.

We say a semialgebraic subset X of P n(R) is an AS-set, if for every analytic arc
γ : (−1, 1)→ P n(R) we have

f(−1, 0) ⊂ X =⇒ ∃ε > 0 such that f(0, ε) ⊂ X.

We say a semi-algebraic subset X ⊂ Rn is an AS-set, if it is so via the natural embedding
X ⊂ Rn ⊂ P n(R).

The notion of AS-sets were introduced in [16] as a version of the arc-symmetric sets
of [10]. The AS-sets are more rigid than arbitrary semialgebraic sets and more flexible
than the algebraic sets. In particular they satisfy the following properties:

• If X and Y are AS-sets in Rn, then X ∪ Y , X ∩ Y and X Y are AS-sets.
• The image of an AS-set by an injective regular map is again an AS-set.
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For more on the properties of the AS-sets, see [11].
An important example of AS-sets are Nash sets. We say a subset X of Rn is Nash,

if X is analytic and semialgebraic. Similarly a map between two real algebraic varieties
is called Nash if it is analytic and semialgebraic.

Let X and Y be C-sets of Rn and Rm with C = semi-algebraic or AS, respectively.
We say a map f : X → Y is a C-map, if the graph of f is a C-set of Rn × Rm.

1.2 Arc-analyticity and arc lifting property

Let X and Y be closed AS-sets. We say that a map f : X → Y is arc-analytic if f ◦ γ
is analytic for every analytic arc γ : (−1, 1)→ X.

We say that a semialgebraic map f : X → Y is generically arc-analytic if there is
an algebraic set S in X with dimS < dimX so that f ◦ γ is analytic for every analytic
map γ : (−1, 1)→ X which is not entirely in S.

Lemma 1.1. If X is nonsingular so that each connected component of X has the same
dimension and f : X → Y is a generically arc-analytic map, then f is arc-analytic and
continuous.

Proof. See [4, Lemma 2.23]. Continuity is a consequence of Lemma 6.8 in [3].

We say that a map f : X → Y is blow-Nash, if there is a map h : M → X, which
is a finite composition of blow-ups whose centers are nonsingular Nash sets, of dimension
smaller than dimX, such that f ◦ h is Nash.

Lemma 1.2 ([4, Lemma 2.27]). Let X be an algebraic set of dimension n and let f : X →
Y be a semi-algebraic map. Then f : X → Y is blow-Nash if and only if f is generically
arc-analytic.

We say that f : X → Y has the arc-lifting property, if for any analytic β :
(−1, 1)→ Y there is analytic α : (−1, 1)→ X so that f ◦ α = β.

We say that f : X → Y has the generic arc-lifting property, if there is an algebraic
subset S of Y , dimS < dimY , such that for for analytic β : (−1, 1) → Y , which is not
entirely in S, there is an analytic α : (−1, 1)→ X such that f ◦ α = β.

1.3 Virtual Poincaré polynomial

To an AS-set X we associate the virtual Poincaré polynomial β(X) ∈ Z[u] defined
in [13, 14], [7]. The virtual Poincaré polynomial β(X) satisfies the following properties:

• β(X) = β(Y ) if there is an AS bijection (not necessarily continuous) between X
and Y .
• β(X) = β(X Y ) + β(Y ) if Y ⊂ X.
• β(X × Y ) = β(X)β(Y ).
• If X is compact and nonsingular algebraic variety then β(X) =

∑
i βi(X)ui, where

βi(X) = dimHi(X;Z2).
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1.4 Piecewise trivialization

We say that an AS map f : X → Y of AS sets is a AS-piecewise trivial fibration
with fiber Z if there are a map g : X → Z and finite partitions X = ⊔iXi, Y = ⊔iYi into
AS-sets such that each (f, g)|Xi

: Xi → Yi × Z is an AS-homeomorphism.
Remark that this implies β(X) = β(Y )β(Z) where β(X) denote the virtual Poincaré

polynomial of X.

Remark 1.3. If a regular map f : X → Y is injective, then f : X → f(X) is a piecewise
AS-trivial fibration, since f(X) is an AS-set (by Theorem 4.4 in [16], see Theorem 3.9 in
[11] also) and this is the case that Z is a point in the context above. We also remark that

β(Y ) = β(f(X)) + β(Y f(X)) = β(X) + β(Y f(X))

and β(Y f(X)) = β(Y )− β(X). If β(X) = β(Y ), then f must be surjective.

Example 1.4. The natural map S1 → P 1 cannot be a piecewise AS-trivial fibration. If
it is so, then we have β(S1) = 2β(P 1), which contradicts with β(S1) = u+ 1 = β(P 1).

1.5 Jacobian Jf
Let X be an affine real n-dimensional algebraic variety in RN defined as the zero locus
of g1(x), . . . , gm(x), gi ∈ R[x1, . . . , xn]. Let Ω1

X denote the sheaf of Kähler differentials of
X. This is generated by dx1, . . . , dxN over A = R[x1, . . . , xN ]/⟨g1, . . . , gm⟩ with relations

dgj = 0, j = 1, . . . ,m, where dgj =
∑N

i=1
∂gj
∂xi
dxi. The exterior product Ωn

X =
∧nΩ1

X is
generated by dxI = dxi1 ∧ · · · ∧ dxin , I = {i1, . . . , in} (1 ≤ i1 < · · · < in ≤ N) with the
relations generated by dgj = 0, j = 1, . . . ,m.

Example 1.5. When X is a complete intersection variety, i.e., IX is generated by a
regular sequence g1, . . . , gk, then

ω = (−1)s(I) dxI′

det(dgI)
, s(I) =

∑
i∈I
i, dgI =

(∂gj
∂xi

)
i∈I, j∈{1,...,k}

, |I| = k,

is independent of the choice of I and defines the canonical form on X. Since dxI′ =
det(dgI)ω, Ω

n
X is generated by the forms det(dgI)ω, |I| = k. Here I ′ denote the comple-

ment of I in {1, . . . , N}.

Example 1.6. Consider the curve X defined by xp = yq in R2, where p and q are
coprime numbers with p < q. Then Ω1

X is generated by dx and dy. By a map h : R→ X,
t 7→ (x, y) = (tq, tp), we have

h∗Ω1
X = h∗⟨dx, dy⟩ = ⟨tp−1dt, tq−1dt⟩ = ⟨tp−1dt⟩ = ⟨t(p−1)qω⟩.

where ω = dx
qyq−1 = dy

pxp−1 = dt
t(p−1)(q−1) .

Let f : M → X be a Nash map of a Nash nonsingular manifold M to X such that
f ∗Ωn

X = JfΩ
n
M for some ideal sheaf Jf . We have f ∗dxI = hIω where ω is a local generator

4



of Ωn
M and hI ∈ OM . Hence ⟨hI⟩ = Jf . Let (z1, . . . , zn) be a local coordinate of M and

ω = dz1 ∧ · · · ∧ dzn. Since

f ∗dxI =
∂(xi1 ◦ f, . . . , xin ◦ f)

∂(z1, . . . , zn)
ω,

we have

Jf =
⟨∂(xi1 ◦ f, . . . , xin ◦ f)

∂(z1, . . . , zn)
: 1 ≤ i1 < · · · < in ≤ N

⟩
.

We may assume that Jf is invertible and normal crossing after composing f with blow-ups
if necessary.

Let f : X → Y be a continuous AS-map of a closed AS-set X ⊂ RN to a closed
AS-set Y ⊂ RN ′

. We associate to such a map a resolution diagram of f

X -f
Y

Γ

	
p

R
q

M

?
σ

,

where Γ is the graph of f and σ : M → Γ is a resolution of Γ. The latter is constructed

as follows. If σ̂ : M̂ → Γ
Z
is the resolution of the Zariski closure of X then σ̂−1(Γ) is the

union of connected components of M̂ . We then set M := σ̂−1(Γ) and σ the restriction of
σ̂ to M . Clearly such a resolution diagram of f is not unique.

Definition 1.7. Let σ :M → Γ, p : Γ→ X, q : Γ→ Y be a resolution diagram of f such
that Jp◦σ and Jq◦σ are invertible (this can be always assumed after a composition with
further blow-ups if necessary). We define the jacobian sheaf Jf of f : X → Y by

Jf = (p ◦ σ)∗(Jq ◦σJ −1
p ◦σ).

Remark 1.8. The definition of Jf does not depend on the choice of M . Indeed, one can
show that (p ◦σ1)∗(Jq◦σ1J −1

p◦σ1
) = (p ◦σ2)∗(Jq◦σ2J −1

p◦σ2
) for two such resolutions σi :Mi → Γ

(i = 1, 2). Let σ : M → Γ be the fiber product of σ1 and σ2. It can be singular so we

consider a resolution τ : M̂ → M , and let τi : M̂i → Mi be the blow-ups of the ideal
sheaves Jσ, Jσi

, respectively.
Then we have

(p ◦ σ)∗(Jq ◦σJ −1
p ◦σ) =(p ◦ σ ◦ τ)∗(τ

∗Jq ◦σJτJ −1
τ J −1

p ◦σ)

=(p ◦ σ ◦ τ)∗(τ
∗Jq ◦σ ◦τJ −1

p ◦σ ◦τ )

=(σi ◦ τi ◦ π̂i)∗(τ
∗Jq ◦σi ◦τi ◦π̂i

J −1
p ◦σi ◦τi ◦π̂i

)

=(p ◦ σi ◦ τi ◦ π̂i)(τ
∗Jq ◦σi

Jτi ◦π̂i
J −1

τi ◦π̂i
J −1

p ◦σi
)

=(p ◦ σi)∗(Jq ◦σi
J −1

p ◦σi
)

where π̂i : M̂ → M̂i are the natural maps.
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Example 1.9. Consider the map f : X → R2, (x, y, z) 7→ (x, y), where X = {(x, y, z) ∈
R3 : x2 + y2 = z2k}, k is odd positive integer. We have

ω =
dy ∧ dz

2x
= −dx ∧ dz

2y
= −dx ∧ dy

2kz2k−1
on X,

and Ω2
X is generated by xω, yω, z2k−1ω. Set M = R× S1 and define a map σ : M → X

by (r, θ) 7→ (rk cos θ, rk sin θ, r). Since σ∗ω = −d(rk cos θ)∧d(rk sin θ)
2kr2k−1 = −1

2
dr ∧ dθ

σ∗Ω2
X = ⟨rk cos θω, rk sin θω, r2k−1ω⟩ = ⟨rkω⟩, (f ◦ σ)∗Ω2

R2 = ⟨r2k−1ω⟩,

and Jf = σ∗⟨rk−1⟩ = ⟨zk−1⟩.

Let F be a subsheaf of the sheaf of rational functions on X generated by g1, . . . , gm as
OX-module. We say F is bounded (from above) if mini{ordγ gi} ≥ 0 for any analytic
arc γ : (R, 0) → X. We say F is bounded from below if maxi{ordγ gi} ≤ 0 for any
analytic arc γ : (R, 0)→ X.

2 Arc spaces

2.1 Arc spaces and “change of variables formula”

Let X be a closed AS set and Y a closed AS subset of X. Set

L(X) ={γ : (R, 0)→ X : analytic}, and L(X,Y ) ={γ ∈ L(X) : γ(0) ∈ Y }.

We denote by πk the projection of L(X) to the k-jet space Jk(R, X). Set Lk(X, 0) denote
the set of k-jets of γ ∈ L(X, 0), that is,

Lk(X, 0) = {[γ(t)] ∈ R{t}/⟨tk+1⟩ : gj(γ(t)) ≡ 0 mod tk+1}

where IX = ⟨gj⟩.

Proposition 2.1 ([4, Proposition 2.33]). Let X ⊂ RN be an algebraic subset of dimension
n. Then

• dimπk(L(X)) = (k + 1)n.
• The fibers of the natural map πm(L(X)) → πk(L(X)), m ≥ k, are of dimension
smaller than or equal to (m− k)n.

Let X be an n-dimensional algebraic subset in RN defined as the zero locus of the
ideal IX = ⟨g1, . . . , gs⟩. Set

L(m)(X) = {α ∈ L(X) : ordα Ic(dg) ≤ m}

where Ic(dg) denote the ideal generated by c× c minors of the jacobi matrix

dg =
(∂gj
∂xi

)
i=1,...,N ;j=1,...s
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and c = N − n. We have L(X) L(Xsing) =
∪

m L(m)(X).
By convention, we set, for J ⊂ {1, . . . , s}, I ⊂ {1, . . . , N}

gJ = (gj)j∈J , dg
J =

(∂gj
∂xi

)
i=1,...,N ;j∈J

and dgJI =
(∂gj
∂xi

)
i∈I;j∈J

.

If ordγ det dg
J
I = ordγ Ic(dg), |I| = |J | = c, then γ is in the zero locus XJ of ⟨gj⟩j∈J , and

γ(t), t ̸= 0, is in the regular locus of XJ .
By Taylor’s theorem, we have

gJ(γ(t) + tk+1v) = gJ(γ(t)) + tk+1dgJ(γ(t))v + t2(k+1)S(γ(t), v)

and therefore, if γ(t) + tk+1v ∈ X then

dgJI (γ(t))vI + dgJI′(γ(t))vI′ + tk+1S(γ(t), v) = 0.

Multiplying by the cofactor matrix (dgJI )
∗ of dgJI , we obtain

det(dgJI (γ(t)))vI + (dgJI (γ(t)))
∗dgJI′(γ(t))vI′ + tk+1(dgJI (γ(t)))

∗S(γ(t), v) = 0.

If ordγ det dg
J
I = ordγ Ic(dg

J) and ordγ det dg
J
I ≤ k then, by implicit function theorem, vI

is a function of t and vI′ and thus vI is determined by t and vI′ uniquely.

Theorem 2.2. Let X be a closed AS set. Let M be a nonsingular AS-set so that each
connected component of X has the same dimension and let h : M → X be a proper C∞-
map with AS graph. We assume that the set of points at which h is a local isomorphism
is dense in M . Set B(m)

e = {γ ∈ L(M) : h ◦ γ ∈ L(m)(X), ordγ Jh = e}, and assume that
k ≥ max{2e,m}.

• Let α ∈ L(X). If there is γ ∈ B(m)
e with jkα(0) = jk(h ◦ γ)(0), then there is

α̃ ∈ L(M) such that α(t) = h ◦ α̃(t). Moreover, if there is β ∈ L(M) with h ◦ β = α
and jk−e+1α̃(0) = jk−e+1β(0), then α̃ = β.
• If h is generically one-to-one, then h−1

∗,k(j
k(h◦γ(t))) is homeomorphic with AS-graph

to Re, where h∗,k : πkL(M) → πkL(X) denotes the induced map. In particular, we

have π−1
k (πkh∗B(m)

e ) = h∗B(m)
e .

Proof. Take a point y of M and a local coordinate system (y1, . . . , yn) at y where n =
dimyM and we consider the arc germs at y. Set ω = dy1 ∧ · · · ∧ dyn. Then h∗dxI′ =

(det dhI′)ω. For J with |J | = c, we set ωJ = (−1)s(I) dxI′
(det dgJI )

.

We have
h∗dxI′ = (−1)s(I)h∗[(det dgJI )ωJ ]

and then

(−1)s(I)h∗(det dgJI )ĥJ = det(dhI′), where ĥJ is a rational function with h∗ωJ = ĥJω.

This shows that for an analytic arc γ

ordh ◦γ det(dg
J
I ) = ordh ◦γ Ic(dg

J) ⇐⇒ ordγ det(dhI′) = ordγ In(dh). (1)
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For such γ, we have

ordγ h
∗ det(dgJI ) + ordγ ĥ

J = ordγ h
∗Ic(dg

J) + ordγ ĥ
J = ordγ(dhI′) = ordγ In(dh).

We show that for any v ∈ R{t}N with h(γ(t)) + tk+1v ∈ L(X) there is a unique
u ∈ R{t}n such that

h(γ(t) + tk+1−eu)− h(γ(t)) = tk+1v.

By Taylor’s theorem, we have

h(γ(t) + tk+1−eu)− h(γ(t)) = tk+1−edh(γ(t))u+ t2(k+1−e)R(γ(t), u).

Assume that k ≥ max{2e,m}. We thus obtain

v = t−edh(γ(t))u+ tk+1−2eR(γ(t), u).

or, equivalently,

vI =t
−edhI(γ(t))u+ tk+1−2eRI(γ(t), u),

vI′ =t
−edhI′(γ(t))u+ tk+1−2eRI′(γ(t), u).

By multiplying the latter equation by the cofactor matrix (dhI′)
∗, we obtain

(dhI′)
∗(γ(t))vI′ = t−e det dhI′(γ(t))u+ tk+1−2e(dhI′)

∗(γ(t))RI′(γ(t), u).

Since t−e det dhI′(γ(t)) is a unit, we may use the implicit function theorem to show that
this equation determines u.

Denote A = dhI′(γ(t)). Let λi = σ2
i denote the eigenvalues of tAA and ui the cor-

responding eigenvectors. We can assume that tuiuj = δi,j. Then vi = Aui/σi is the
unit eigenvector of A tA with eigenvalue λi. Since tviAuj = t(Aui/σi)Auj = σiδi,j, we
have tV AU = diag(σ1, . . . , σn), setting U = (ui), V = (vj). Remark that U ∈ SO(n),
V ∈ SO(n). We thus have the singular value decomposition A = V ΣtU where Σ =
diag(σ1(t), . . . , σn(t)), σi(t) = teiσ̄i(t), σ̄i(0) ̸= 0. Therefore

tk+1v̄ = tk+1−eΣū+ t2(k+1−e)R̄, v̄ = tV vI′ , ū = tUu, R̄ = tV RI′ .

In other words,

te−ej v̄j = σ̄j(t)ūj(t) + tk−e−ej+1R̄j, j = 1, . . . , n.

Setting v̄j =
∑∞

i=0 v̄j,it
i, σ̄j =

∑∞
a=0 σ̄j,at

a, ūj =
∑∞

b=0 ūj,bt
b, we have

∑
a+b=s

σ̄j,aūj,b =

{
0, s = 0, 1, 2, . . . , e− ej − 1

v̄j,i, s = e− ej + i (i = 0, 1, . . . , k − 2e)

and thus ūj,0 = · · · = ūj,e−ej−1 = 0. So the image of the map Re → πkL(M) defined by

(ū1,e−e1 , . . . , ū1,e−1, . . . , ūn,e−en , . . . , ūn,e−1) 7→ jk(γ(t) + tk−e+1Uū) (2)
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is in the fiber of jk(h ◦ γ(t)) by h, when we show that vI′ determine vI . By Taylor’s
theorem, we have

gJ(h ◦ γ(t) + tk+1v) = gJ(h ◦ γ(t)) + tk+1dgJ(h ◦ γ(t))v + t2(k+1)SJ(γ(t), v).

Since h ◦ γ(t) ∈ L(X) and h ◦ γ(t) + tk+1v ∈ L(X), we have

0 = dgJ(h ◦ γ(t))v + tk+1SJ(γ(t), v).

Setting v =
(
vI
vI′

)
, we have

dgJI (h ◦ γ(t))vI = −dgJI′(h ◦ γ(t))vI′ − tk+1SJ(h ◦ γ(t), v).

Multiplying by (dgJI )
∗(h ◦ γ(t)) from the left, we obtain

vI +
(dgJI )

∗dgJI′(h ◦ γ(t))vI′ + tk+1(dgJI )
∗(h ◦ γ(t))SJ(h ◦ γ(t), v)

det(dgJI )(h ◦ γ(t))
= 0.

By (1), we have ordh◦γ(det dg
J
I ) ≤ ordh◦γ(dg

J
I )

∗dgJI′ , and the second term of the left-
hand side is analytic if k ≥ m. We thus conclude the assertion by the implicit function
theorem.

Lemma 2.3. We continue the notation above. If there is another analytic (or formal)
solution û = û0 + û1t+ · · · , û0 ̸= 0 of

h(γ(t) + tdû) = h(γ(t)) + tk+1v, d ≤ k − e,

then d ≤ emax where emax = max{e1, . . . , en}.

Proof. Remark that

tk+1v̄ =tV [h(γ(t) + tdû)− h(γ(t))] = tdΣ¯̂u+ t2dR̄(t, û)

=tdΣ(¯̂u0 + ¯̂u1t+ · · · ) + t2dR̄(t, û).

Setting dj = min{i : ¯̂ui,j ̸= 0}, j = 1, . . . , n, we have that

tk+1v̄j =t
d+dj+ej σ̄j(t)(¯̂udj ,j +

¯̂udj+1,jt+ · · · ) + t2dR̄j(t, û), j = 1, . . . , n.

We obtain that

2d ≤ 2d+ ordt R̄j(t, û) = d+ dj + ej whenever d+ dj + ej ≤ k.

Take j0 with dj0 = 0, then we have d+ ej0 ≤ k − e+ ej0 ≤ k and d ≤ ej0 .

Corollary 2.4. Let X be an n-dimensional algebraic set. Let M be an n-dimensional
nonsingular AS-set and let h : M → X be a C∞-map and generically one-to-one with
AS-graph. We assume that there is a normal crossing divisor E = ∪jEj in M so that

(det(dh))0 =
∑
j

νjEj, (h∗Ic(dg
J))0 =

∑
j

λJjEj.
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Then h∗,k(πkB(m)
e ) is an AS-set, and the map h∗,k : πkB(m)

e → h∗,k(πkB(m)
e ) is a piecewise

AS-trivial fibration with fiber Re. So we have a decomposition of the jet space as follows:

πk(L(m)(X) ∩ h∗L(M)) = Z
(m)
k ⊔

∪
j∈A(m)

k

πkh∗Bj ,

where A
(m)
k = {j ∈ A(m) : 2⟨ν, j⟩ ≤ k}, A(m) = {j : ∃J ⊂ {1, . . . , s} ⟨λJ , j⟩ ≤ m},

Bj = {γ ∈ L(M) : ordEi
γ = ji}, Z(m)

k is a semi-algebraic subset with

dimZ
(m)
k < n(k + 1)− k

max{2νmax, λmax}
,
νmax = max{νj},
λmax = max{λJj : J ⊂ {1, . . . , s}},

and dimπkh∗Bj = n(k + 1)− sj − ⟨ν, j⟩, sj =
∑

i ji.

Proof. We have B(m)
e =

⊔
j∈A(m):⟨ν,j⟩=e Bj . Take γ ∈ Bj , j ∈ A(m). Then there are I and

J so that ordh◦γ det dg
J
I = ordh◦γ Ic(dg) ≤ m ≤ k. Since ji ≤ sj ≤ ⟨ν, j⟩ = e < k − e+ 1,

we have γ(t)+ tk−e+1u ∈ Bj ⊂ B(m)
e in the expression (2), and the natural map πkB(m)

e →
πkh∗B(m)

e has the fiber Re.
Since the fiber of the natural map πkB(m)

e → πkh∗B(m)
e has odd Euler characteristic,

h∗,k(πkB(m)
e ) is AS-constructible (see Theorem 3.9 in [11]). By the expression (2), we

conclude that h∗,k : πkB(m)
e → h∗,k(πkB(m)

e ) is an AS-piecewise trivial fibration with fiber
Re.

So the dimension of πk(Bj) = n(k + 1) − sj . When j ∈ A(m)
k , we have ordγ In(dh) =

⟨ν, j⟩ = e, ordγ Ic(dg
J) = ⟨λJ , j⟩ ≤ m ≤ k,

dimh∗,kπk(Bj) = n(k + 1)− sj − ⟨ν, j⟩.

If j ̸∈ A(m)
k , then k ≤ max{2⟨ν, j⟩, ⟨λJ , j⟩} ≤ max{2νmaxsj , λmaxsj}. So

sj ≥
k

max{2νmax, λmax}

and we obtain that

dimh∗,kπkBj ≤ dim πkBj ≤ n(k + 1)− sj ≤ n(k + 1)− k

max{2νmax, λmax}
.

Since Z
(m)
k is the union of h∗,kπkBj , j ̸∈ A(m)

k , we are done.

Remark 2.5. Similar versions of Theorem 2.2 and Corollary 2.4 were proved by J.Denef
and F. Loeser ([5, Lemma 3.4]) using a slightly different L(m)(X, 0) (see (2.6) in [5]). J.-B.
Campesato also gave this theorem ([4, Lemma 4.5]) using another version of L(m)(X, 0)
(see Definition 4.2 in [4]).
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2.2 Motivic measure

Let K0(AS) denote the Grothendieck ring of AS-sets, i.e., the ring generated by the
symbols [X] for AS-sets X, with the relations

• [X] = [X ′] if X and X ′ are AS-isomorphic,
• [X] = [X Y ] + [Y ] if Y is closed in X,
• [X] · [Y ] = [X × Y ].

Taking the virtial Poincaré polynomial, we have a natural map

β : K0(AS)→ Z[u], [X] 7→ β(X).

By Fichou [8, Theorem 1.16], it is an isomorphism.
DenoteM = K0(AS)[L−1], the localization of K0(AS) with respect to the multiplica-

tive set generated by L where L = [R]. The isomorphism β : K0(AS)→ Z[u] extends to
an isomorphismM→ Z[u, u−1], which we also denote by β.

Set M̂ = lim←−q
M/F qM, the completion of M with respect to the filtration F qM

where F qM is the subgroup generated by {[X]L−i : dimX − i ≤ −q}.

Example 2.6. For a positive integer d, lim
i→∞

L−id = 0 in M̂.

Lemma 2.7. M̂ ≃ Z[L][[L−1]] ≃ Z[u][[u−1]].

Proof. We see that the natural map

Z[L][[L−1]]→M/F qM,
p∑

i=−∞
aiLi 7→

p∑
i=−q

aiLi mod F qM

induces an isomorphism ρ : Z[L][[L−1]] ≃ M̂. In fact, for (mq)q∈Z, mq ∈ M/F qM, so
that mq′ mod F qM = mq (q ≤ q′), the map

(mq) 7→
∑
q∈Z

L1−q(lim
L→0

mqLq−1)

is the inverse of ρ. The isomorphism β : M → Z[u, u−1] extend to the isomorphism

M̂ → Z[u][[u−1]], and we are done.

Remark 2.8. Usually these rings have been considered in the context of algebraic vari-
eties, namely the ringsM and M̂ are constructed similarly from the Grothendieck group
K0(VarR) of real algebraic varieties. But these rings are more complicated as shown below:

• K0(VarR) is not a domain ([17]).
• The map K0(VarR)→M = K0(VarR) is not injective ([1]).

• It is not known whetherM→ M̂ = lim←−q
M/F qM is injective or not, where F qM

is the subgroup generated by {[X]L−i : dimX − i ≤ −q}.

In the paper, we prefer to state the results in AS category, even though many results
make sense in real algebraic category.
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A subset A of L(X) is called to be sound1 if, for m ≫ 1, πm(A) is a constructible
subset, A = π−1

m (πm(A)), and

πm+1
m : πm+1(A)→ πm(A)

is a piecewise trivial fibration with fiber Rd where d ≤ n = dimX. For such a set we
define

µX(A) = lim
m→∞

[πm(A)]L−n(m+1).

Let A = π−1
k0
(C) for a constructible subset C of πk0(L(X)). Then dim πk(A) − n(k + 1)

does not depend on k ≥ k0. We call this integer the virtual dimension of A and denote
it by dimA. A subset B of L(X) is said to be measurable if for all q ≥ 1 there are sound
sets Cq and Cq,i (i ∈ N) such that

(B Cq) ∪ (Cq B) ⊂
∪
i∈N
Cq,i

and dim Cq,i ≤ −q for all i. For a measurable subset B, define µX(B) by

µX(B) = lim
q→∞

µX(Cq).

Example 2.9. Let M be nonsingular real algebraic variety of dimension n, and let E =∑
iEi be a simple normal crossing divisor of M . For j = (ji) set

E◦
j =

( ∩
i:ji>0

Ei

) ∪
k:jk=0

Ek, sj =
∑
i

ji, |j| = #{i : jk ̸= 0},

and Bj = {γ ∈ L(M,E) : ordEi
α = ji for i with ji > 0}. If k ≥ sj + 1, then

dimπkBj = dimE◦
j + nk − sj , [πkBj ] = [E◦

j ](L− 1)|j|Lnk−sj ,

and we have

dimBj = −|j| − sj , µM(Bj) = [E◦
j ](L− 1)|j|L−n−sj .

Example 2.10. Let h : M → X be as in the previous subsection. If k ≥ 2⟨ν, j⟩ and
k ≥ ⟨λJ , j⟩, we have

[h∗,kπkBj ] = [πkBj ]L−e = [E◦
j ](L− 1)|j|Lnk−sj−⟨ν,j⟩.

This shows h∗Bj is also measurable, and µX(h∗Bj) = [E◦
j ](L− 1)|j|L−n−sj−e. We set

Be(h) ={α ∈ L(M) : ordα det(dh) = e}, and B(m)
e (h) ={α ∈ Be(h) : h ◦ α ∈ L(m)(X)}.

Then
h∗B(m)

e (h) =
⊔

j∈A(m):⟨ν,j⟩=e

h∗Bj

1I feel stable is a proper word but this is already used for different meaning. Any other idea for
naming? How aboiut pre-stable?
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and h∗B(m)
e (h) is measurable. In fact, we have

µX(h∗B(m)
e (h)) = L−n

∑
j∈A(m):⟨ν,j⟩=e

[E◦
j ](L− 1)|j|L−sj−e.

If h :M → X is a resolution of (X,Y ), we have

µX(L(m)(X,Y )) = L−n
∑

j∈A(m)

[E◦
j ∩ h−1(Y )](L− 1)|j|L−sj−⟨ν,j⟩.

Tending m to ∞ in the right hand side, we obtain

L−n
∑
J

[E◦
J ∩ h−1(Y )]

∏
i∈J

(L− 1)
∞∑

ji=1

L−ji(νi+1)

=L−n
∑
J

[E◦
J ∩ h−1(Y )]

∏
i∈J

(L− 1)
L−νi−1

1− L−νi−1

=L−n
∑
J

[E◦
J ∩ h−1(Y )]

∏
i∈J

L− 1

Lνi+1 − 1
.

This computation can be interpreted as a formula in M̂ and we obtain

µX(L(X,Y ) L(X ′, Y ′)) = L−n
∑
J

[E◦
J ∩ h−1(Y )]

∏
i∈J

L− 1

Lνi+1 − 1
.

where X ′ = X X◦ and Y ′ = X ′∩Y . Here we denote by X◦ its regular locus of dimension
n for AS-set X of dimension n.

Remark 2.11. We can show the real version of Proposition 6.3.2 in [5]:

µX(L(X,Y )) = L−n
∑
J

[E◦
J ∩ h−1(Y )]

∏
i∈J

L− 1

Lνi+1 − 1
.

For a closed AS-set X of dimension n, we consider the filtration:

X = X0 ⊃ X1 ⊃ · · · ⊃ Xn−1 ⊃ Xn, with dimXi = n− i and X◦
i = Xi Xi+1.

We apply the previous discussion for a resolution hi :Mi → Xi of (Xi, Xi∩Y ), and obtain
that

[πk(hi)∗B(m)
e (hi)]L−(n−i)(k+1)

do not depend on k for k ≥ max{2e,m}. This implies that L(Xi, Xi∩Y ) L(Xi+1, Xi+1∩
Y ) is measurable and its measure is zero in L(X,Y ) if i > 0, since

[πkh∗B(m)
e (hi)]L−n(k+1) = L−i(k+1)[πk(hi)∗B(m)

e (hi)]L−(n−i)(k+1) → 0 (k →∞) in M̂.

Remark 2.12. For a closed AS-subset S in X such that dimS < dimX, the set L(S)
is measurable of measure zero ([2, Proposition 6.22], [5, Appendix]). This is shown by a
similar discussion to the previous remark.
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2.3 Jacobian and behaviour of arcs

Theorem 2.13. Let f : (X, 0)→ (Y, 0) be a semi-algebraic homeomorphism germ between
algebraic varieties X, Y with dimX = dimY . Assume that µX(L(X, 0)) = µY (L(Y, 0)).
If f is generically arc-analytic and the jacobian Jf is bounded from below, then the invere
map f−1 : Y → X is generically arc-analytic and the jacobian Jf is bounded from above.

Under the assumption in the previous theorem, we have

Corollary 2.14. If f is blow-Nash and the jacobian Jf is bounded from below, then the
inverse f−1 is blow-Nash and the jacobian Jf is bounded from above.

We remark that J.-B.Campesato ([4, Theorem 3.5]) gave this corollary when X = Y .

Proof. A consequence of Lemma 1.2.

Proof of Theorem 2.13. Since f is generically arc-analytic, there exists p : Γ → X a
composition of blow-ups so that the map f ◦ p : (Γ, 0) → (Y, 0) is Nash by Lemma 1.2.
Let q = f ◦ p : Γ→ Y denote the natural map. Let σ : M → Γ be a composition of blow
ups with nonsingular algebraic centers such that

(a) M is nonsingular,
(b) f ◦ p ◦ σ is analytic (thus Nash),
(c) (det d(p ◦ σ))0, and (det d(q ◦ σ))0 are normal crossing, and
(d) (p ◦ σ)∗Ωn

X , (q ◦ σ)∗Ωn
Y are invertible, and Jp ◦σ, Jq ◦σ are generated by monomials in

some coordinates.

We have the following diagram:

X -f
Y

Γ

	
p

R
q

M

?
σ

Let S be an algebraic subset of X with dimS < dimX so that f ◦ γ is analytic for any
analytic map γ : (−1, 1)→ X which is not entirely in S. We may assume that S contains
the singular set of X and the critical point set of f , and f(S) contains the singular set of
Y . Set

L#(X, 0) ={γ ∈ L(X, 0) : γ is not entirely in S},
L#(Y, 0) ={γ ∈ L(Y, 0) : γ is not entirely in f(S)},
L#(M,Z) ={γ ∈ L(M,Z) : p ◦ σ ◦ γ is not entirely in S},

where Z = (p ◦ σ)−1(0). By Remark 2.12, we have

µX(L#(X, 0)) = µX(L(X, 0)), µY (L#(Y, 0)) = µY (L(Y, 0)), µM (L#(M,Z)) = µM (L(M,Z)).

We remark that L#(X, 0) = (p ◦ σ)∗L#(M,Z), since f is generically arc-analytic. More-
over f−1 is generically arc-analytic provided L#(Y, 0) = (q ◦ σ)∗L#(M,Z).
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We set
Be,e′ = Be(p ◦ σ) ∩ Be′(q ◦ σ) ∩ L(M,Z).

The jacobian Jf is bounded from below, if and only if Be,e′ = ∅ (e < e′). We also remark
that the jacobian Jf is bounded from above, if and only if Be,e′ = ∅ (e > e′). It is thus
enough to show the following implication:

µX(L#(X, 0) (p ◦ σ)∗L#(M,Z)) = 0, Be,e′ = ∅ (e < e′)

=⇒ µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) = 0, Be,e′ = ∅ (e > e′). (∗)

Remark that µX(L(X, 0) (p ◦ σ)∗L#(M,Z)) = 0 if f is blow-Nash. We also see
that µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) = 0 only if f−1 is blow-Nash, i.e., has generic
arc-lifting property. To see the “only if” implication, we take a Nash rectilinearization
ψ : Ỹ → Y of the product of all components gi of f−1, by [15, Theorem 2.7]. Then
gi ◦ψ(ε1x

r1
1 , . . . , εnx

rn
n ) are normal crossing in suitable patchs and ri ∈ Q, ri > 0, εi = ±1.

If the rectilinearizations of gi are not analytic, then there is a set of arcs of strictly positive
measure whose image by f−1 is not analytic. Then the image A of this set has a non-zero
measure in L#(Y, 0) and we conclude that there is an arc γ ∈ ((q ◦σ)∗L#(M,Z))∩A. By
the definition of A, γ does not have an analytic lift on X. But γ has an analytic lift on
X, since it is in (q ◦ σ)∗L#(M,Z), and a contradiction.

Remark that Be,e′ =
∪

j Bj : ⟨j,ν⟩ = e, ⟨j,ν ′⟩ = e′. By Corollary 2.4 and Example
2.10, we have, for k ≥ 2max{e, e′},

[πkBe,e′ ] = [(p ◦ σ)∗.kπkBe,e′ ]Le, [πkBe,e′ ] = [(q ◦ σ)∗,kπkBe,e′ ]Le′ ,

and thus

µM(Be,e′) = µX((p ◦ σ)∗Be,e′)Le, µM(Be,e′) = µY ((q ◦ σ)∗Be,e′)Le′ .

Therefore we have

µX((p ◦ σ)∗L#(M,Z)) =
∑
e,e′

µX((p ◦ σ)∗Be,e′) =
∑
e,e′

µM(Be,e′)L−e,

µY ((q ◦ σ)∗L#(M,Z)) =
∑
e,e′

µY ((q ◦ σ)∗Be,e′) =
∑
e,e′

µM(Be,e′)L−e′ .

In other words,

µX(L#(X, 0)) =µX(L#(X, 0) (p ◦ σ)∗L#(M,Z)) +
∑
e,e′

µM(Be,e′)L−e, (3)

µY (L#(Y, 0)) =µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) +
∑
e,e′

µM(Be,e′)L−e′ . (4)

Therefore, if µ(L#(X, 0)) = µ(L#(Y, 0)) and Be,e′ = ∅ (e < e′), we have

µX(L#(X, 0) (p ◦ σ)∗L#(M,Z))

=µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) +
∑
e>e′

µM(Be,e′)L−e′(1− Le′−e).
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Now we replace the isomorphism classes [X] by the virtual Poincaré polynomials β(X)
in the definition of measure µ. We remark that the coefficient of the top degree term
of the left hand side is positive whenever µX(L∗(X, 0) (p ◦ σ)∗L#(M)) ̸= 0. Similarly
the coefficients of the top degree term of the each term in the right hand side is positive
whenever µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) ̸= 0 or µM(Be,e′) ̸= 0 for some e and e′. So we
claim the implication (∗).

We say µX(A) ≤ µX(B) if the top degree term of µX(B) − µX(A) has a positive
coefficient.

Theorem 2.15. Let f : (X, 0) → (Y, 0) be an AS-homeomorphism between AS-closed
sets X and Y with dimX = dimY .

• If f is generically arc-analytic and Jf is bounded from below, then µX(L(X, 0)) ≤
µY (L(Y, 0)).
• If f−1 is generically arc-analytic and Jf is bounded (from above), then µX(L(X, 0)) ≥
µY (L(Y, 0)).

Proof. We use the notation of the previous proof. First we assume that f is generically
arc-analytic, and Jf is bounded from below. Then L#(X, 0) = (p ◦ σ)∗L#(M,Z) and
Be,e′ = ∅ (e < e′). Subtracting (3) from (4), we thus have

µY (L(Y, 0))− µX(L(X, 0)) = µY (L#(Y, 0))− µX(L#(X, 0))

= µY (L#(Y, 0) (q ◦ σ)∗L#(M,Z)) +
∑
e>e′

µM(Be,e′)L−e′(1− Le′−e)

After replacing [−] by β(−), the right-hand side has a positive coefficient in the top degree
term. So we have the first assertion.

Secondly we assume f−1 is generically arc-analytic, and Jf is bounded from (above).
Then L#(Y, 0) = (q ◦ σ)∗L#(M,Z) and Be,e′ = ∅ (e > e′). Subtracting (4) from (3), we
thus have

µX(L(X, 0))− µY (L(Y, 0)) =µX(L#(X, 0))− µY (L#(Y, 0))

=µX(L#(X, 0) (p ◦ σ)∗L#(M,Z)) +
∑
e<e′

µM(Be,e′)(1− Le−e′).

After replacing [−] by β(−), the right-hand side has a positive coefficient in the top degree
term. So we have the second assertion.

Corollary 2.16. Assume that a semi-algebraic homeomorphism f : (X, 0) → (Y, 0) is
generically arc-analytic and f−1 is also generically arc-analytic. If the jacobian Jf is
bounded from above and below, then µX(L(X, 0)) = µY (L(Y, 0)).

3 Lipschitz property

3.1 Lipschitz property and differentials

Let X be a semi-algebraic connected subset of RN . Let dX denote the inner distance of
X. Thus by definition dX(p, q) is the infimum over the length of subanalytic curves of X
joining p and q.
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Let X and Y be locally closed semi-algebraic subsets of RN and RN ′
, respectively. We

assume that 0 ∈ X and 0 ∈ Y . A semi-algebraic map germ f : (X, 0)→ (Y, 0) is said to
be inner-Lipschitz if there is a neighbourhood U of 0 in X and a positive constant L so
that

dY (f(x), f(x
′)) ≤ LdX(x, x

′) ∀x, x′ ∈ U.

We simply say that f is Lipschitz, when X = Rn, Y = Rn and dX and dY denote the
Euclidean distance.

We denote by X◦ the closure of X◦ with respect to the Euclidean topology of the
ambient Euclidean soace .

Let f : (X, 0)→ (Y, 0) be a semi-algebraic map between real algebraic sets X and Y .
Set

Z =(X X◦) ∪ f−1(Y Y ◦) ∪B(f) ∪ C(f) where
B(f) ={x ∈ X◦ : f is not analytic at x}, and
C(f) ={x ∈ X◦ B(f) : dfx : TxX → Tf(x)Y is not an isomorphism}.

For x ∈ X Z and a unit vector v ∈ TxX, we can define the directional derivative Dvf
by

Dvf(x) = lim
s→0

f ◦ α(s)− f ◦ α(0)

s

where α(s) is an arc so that x = α(0) and v = α′(0) .

Lemma 3.1. The map f |X◦ is inner-Lipschitz if and only if the set

{|Dvf(x)| : x ∈ X ∩ U Z, v ∈ TxX, |v| = 1},

where U is a neighbourhood of 0 in X, is bounded.

Proof. Let α(s) denote a curve so that x = α(0) and v = lims→0 α
′(s). Let s be the arc

length parameter of α.
If f |X◦ is inner-Lipschitz and f ◦α(s) attains the length between f ◦α(s) and f ◦α(0),

then
|f ◦ α(s)− f ◦ α(0))| ≤ dY (f ◦ α(s), f ◦ α(0)) ≤ LdX(α(s), α(0)) ≤ Ls.

Then we have

|Dvf(x)| = lim
s→0

∣∣∣f ◦ α(s)− f ◦ α(0)

s

∣∣∣ ≤ L.

Assume that |Dvf(x)| ≤ L for x ∈ X Z, v ∈ TxX, |v| = 1. For any ε > 0 there is
δ > 0 such that

0 < s < δ =⇒ |f
◦ α(s)− f ◦ α(0)|

s
≤ L+ ε.

Since |f ◦α(s)−f ◦α(0)| ≤ t(s) where t(s) =
∫ s

0
|(f ◦α)′(s)|ds, and lims→0

∣∣f◦α(s)−f◦α(0)
t(s)

∣∣ = 1,
we can choose δ > 0 so that

0 < s < δ =⇒ (1− ε)t(s) < |f ◦ α(s)− f ◦ α(0)| ≤ t(s).
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Set Uδ = {(x, x′) ∈ X◦ ×X◦ : dX(x, x
′) ≤ δ}. Assume that (x, x′) ∈ Uδ. If α(s) attains

the length between x′ = α(s1) ∈ X◦, for some s1 > 0, and x = α(0) ∈ X◦, then

dY (f ◦ α(s), f ◦ α(0)) ≤ 1

1− ε
|f ◦ α(s)− f ◦ α(0)|

=
1

1− ε
|f ◦ α(s)− f ◦ α(0)|

s
dX(α(s), α(0)) ≤

L+ ε

1− ε
dX(α(s), α(0)).

whenever 0 < s < δ. We may assume that (x, x′) ∈ U ×U where U is a neighbourhood of
0 in X◦ so that U is compact. Then dY (f(x), f(x

′))/dX(x, x
′) is bounded on U ×U Uδ,

and we are done.

3.2 Inner-Lipschitz maps and an arc-analytic inverse mapping

Theorem 3.2. Let X and Y be algebraic sets with µX(L(X, 0)) = µY (L(Y, 0)). If a
semi-algebraic homeomorphism f : (X, 0)→ (Y, 0) is generically arc-analytic and f−1|Y ◦

is inner-Lipschitz, then f |X◦ is inner-Lipschitz and f−1 is generically arc-analytic.

Proof. We use the notation in the proof of Theorem 2.13. We assume that

(Jp◦σ)0 =
∑
i

νiEi, (Jq◦σ)0 =
∑
i

ν ′iEi.

Since f−1|Y ◦ is inner-Lipschitz, we have

{|Dwf
−1| : w ∈ Y W, w ∈ TyY, |w| = 1}

is bounded whereW = f(X X◦)∪(Y Y ◦)∪B(f−1)∪C(f−1). Let U denote a coordinate
chart in M and z : U → Rn denote the coordinate function. Then there exist local
coordinate systems xI = (xi)i∈I for X and yJ = (yj)j∈J for Y so that(

(p ◦ σ)∗ det
∂xI
∂z

)
0
=

∑
i

νiEi,
(
(q ◦ σ)∗ det

∂yJ
∂z

)
0
=

∑
i

ν ′iEi on U.

Since the Jacobi matrix ∂xI

∂yJ
is bounded, we have ν ′i ≤ νi. By Corollary 2.14, we have

νi = ν ′i and det ∂xI

∂yJ
is a unit. Thus the Jacobi matrix

∂yJ
∂xI

=
1

det( ∂xI

∂yJ
)
cofactor matrix of

∂xI
∂yJ

is bounded and all directional derivative

{|Dvf | : x ∈ X Z, v ∈ TxX, |v| = 1}

is bounded. Here Z is the set where f is not directional derivative.

Corollary 3.3. Let f : (Rn, 0)→ (Rn, 0) be a semi-algebraic homeomorphism. Then the
following conditions are equivalent.
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• f is arc-analytic and f−1 is Lipschitz.
• f−1 is arc-analytic and f is Lipschitz.

Remark 3.4. M.Kobayashi and T.-C.Kuo ([12]) constructed a map h : R2 → R2 with
the following properties:

• h sends a cusp {x2 = y3} to a line {x = 0}.
• h and h−1 are blow-analytic, and thus arc-analytic.

As pointed out in [6, Example 8.2], h and h−1 are not Lipschitz.

4 Complex case

There are natural complex analogues for the notion of Jacobian Jf and we have complex
versions of Theorem 2.2 and Corollary 2.4 and thus Theorem 2.13 as consequences. We
state them here, since we do not think they are trivial facts.

4.1 Hodge-Deligne polynomial

For a complex algebraic variety X, we consider the Hodge-Deligne polynomial

E(X;u, v) =
∑
p, q

2 dimX∑
i=0

(−1)ihp,q(H i
c(X,C))upvq.

where H i
c(X,C) is the ith cohomology with compact support with coefficient C. We may

use the Hodge-Deligne polynomial instead of the virtial Poincaré polynomial it satisfies
the following properties:

• When X is nonsingular and projective, we have

E(X;u, v) =
∑
p, q

2 dimX∑
i=0

(−1)ihp,q(X)upvq.

• If X = ⊔iXi is a disjoint union of Zariski locally closed strata, then

E(X;u, v) =
∑
i

E(Xi;u, v)

• The Hodge-Deligne polynomial is multiplicative, i.e., E(X × Y ) = E(X)E(Y ).
• If f : Y → X is a Zariski locally trivial fibration and F is the fibre over a closed
point, then E(Y ) = E(X)E(F ).

4.2 Weakly holomorphic map and arc lifting property

A map f : X → Y is said to be weakly holomorphic if it is bounded and holomorphic
on the regular locus of X. If h : X̃ → X is a desingularization of X, then f ◦ h is a
bounded holomorphic map except the exceptional locus which is of codimension at least
1 for any weakly holomorphic map f . So f ◦h has a holomorphic extension by Riemann’s
extension theorem. If X is normal, then a weakly holomorphic map is holomorphic.
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Theorem 4.1. Let X and Y be complex algebraic varieties with µX(L(X)) = µY (L(Y )).
Let f : X → Y be a continuous map, which is weakly holomorphic. If the jacobian Jf is
bounded from below, then Jf is bounded and f has generically arc lifting property.

Theorem 4.2. Let (X, x) and (Y, y) be germs of complex algebraic varieties with
µX(L(X, x)) = µY (L(Y, y)). Let f : (X, x)→ (Y, y) be a continuous map, which is weakly
holomorphic. If the jacobian Jf is bounded from below at x, then Jf is bounded and f
has generically arc lifting property.

It would be worth to add a complex version of Theorem 3.2 also.

Theorem 4.3. Let X and Y be complex algebraic sets with µX(L(X, 0)) = µY (L(Y, 0)).
If a semi-algebraic homeomorphism f : (X, 0)→ (Y, 0) is weakly holomorphic and f−1 is
inner-Lipschitz, then f is inner-Lipschitz and f−1 is weakly holomorphic.
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