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Abstract
In this paper, we investigate the motivic measure of the arc spaces of real al-
gebraic varieties with respect to a homeomorphism with reasonable properties con-
cerning arc-analycity and jacobian. We show an improvement of the “change of
variables formula” (Theorem EZ2 and its consequences), which is originally sug-
gested by Kontsevich ([9]), a version of inverse mapping theorem (Theorem PZT3)
and Lipschitz version of inverse mapping theorem (Theorem B3).

A semi-algebraic homeomorphism f : X — Y between two real algebraic varieties
may not preserve analytic arcs. For example, a homeomorphism h : R — R, z — 23,
sends analytic arcs to analytic arcs. But A~! is not. So to investigate analytic arcs on real
algebraic varieties, it is natural to impose that f is arc-analytic, that is, f o is analytic
for any analytic map « : (—1,1) — X. This condition is much weaker than analyticity
when dim X > 2. An arc-analytic semi-algebraic map f : X — Y on a nonsingular
algebraic manifold X is blow-Nash, that is, there is a finite composition h : X — Y of
blow-ups whose centers are nonsingular Nash sets such that f o h is Nash. But when
X is singular, f being blow-Nash is equivalent to that f is generically arc-analytic, that
is, there is an algebraic subset S in X so that f o~ is analytic for any analytic map
v :(—=1,1) — X which is not entirely in S. Thus we are going to investigate arc spaces
under the homeomorphism with respect to generic arc-analyticity.

We also introduce the notion of jacobian for semi-algebraic map f : X — Y in §I3
to control the behavior of analytic arcs. We show an improved version of the “change
of variables formula” (Theorem P22 and its consequences), which is originally suggested
by Kontsevich ([9]) and compare the motivic measures of arc spaces of M and X via a
generically one-to-one map f : M — X assuming that M is nonsingular. Here we say a
map f: M — X is generically one-to-one, if there is nowhere dense subset S of X so
that f~'(y) is a point for all y € X \'S. This allows us to show that the arc spaces of
two varieties germs (X,0) and (Y,0) have the same motivic measure if there is a semi-
algebraic homeomorphism germ f : (X,0) — (Y,0) so that f and f~' are generically
arc-analytic and the Jacoban J; is bounded from below and above (Theorem ZTH). This
discussion allows us that a version of inverse mapping theorem (Theorem P7T3). As an
application, we show that a similar inverse mapping theorem (Theorem B2) concerning
Lipschitz property.

In last section, we make a short remark on complex case concerning about similar
version on our inverse mapping theorem.
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1 Preliminary

In this section, we recall several definitions and properties.

1.1 AS-sets

A subset of R™ is semialgebraic if it is a finite union of the sets of the form
{r eR": P(zx)="--=P(z) =0,Q:(z) >0,...,Qi(x) > 0},

where P;(z),Q;(x) € Rlzy,...,z,]. A subset of the real projective space P"(R) is semi-
algebraic if so are its intersections with the affine charts.

We say a semialgebraic subset X of P"(R) is an AS-set, if for every analytic arc
v:(—=1,1) = P*(R) we have

f(=1,0) C X = 3¢ > 0 such that f(0,e) C X.

We say a semi-algebraic subset X C R" is an AS-set, if it is so via the natural embedding
X Cc R” C P*"(R).

The notion of AS-sets were introduced in [I6] as a version of the arc-symmetric sets
of [0]. The AS-sets are more rigid than arbitrary semialgebraic sets and more flexible
than the algebraic sets. In particular they satisfy the following properties:

e If X and Y are AS-sets in R™, then X UY, X NY and X \Y are AS-sets.
e The image of an AS-set by an injective regular map is again an AS-set.



For more on the properties of the AS-sets, see [L1]].

An important example of AS-sets are Nash sets. We say a subset X of R™ is Nash,
if X is analytic and semialgebraic. Similarly a map between two real algebraic varieties
is called Nash if it is analytic and semialgebraic.

Let X and Y be C-sets of R” and R™ with C = semi-algebraic or AS, respectively.
We say a map f: X — Y is a C-map, if the graph of f is a C-set of R" x R™.

1.2 Arc-analyticity and arc lifting property

Let X and Y be closed AS-sets. We say that a map f: X — Y is arc-analytic if f o~y
is analytic for every analytic arc v : (—1,1) — X.

We say that a semialgebraic map f: X — Y is generically arc-analytic if there is
an algebraic set S in X with dim S < dim X so that f o~ is analytic for every analytic
map 7 : (—1,1) — X which is not entirely in S.

Lemma 1.1. If X is nonsingular so that each connected component of X has the same
dimension and f : X — Y s a generically arc-analytic map, then f is arc-analytic and
continuous.

Proof. See [, Lemma 2.23]. Continuity is a consequence of Lemma 6.8 in [3]. O

We say that a map f : X — Y is blow-Nash, if there is a map h : M — X, which
is a finite composition of blow-ups whose centers are nonsingular Nash sets, of dimension
smaller than dim X, such that f o h is Nash.

Lemma 1.2 ([, Lemma 2.27]). Let X be an algebraic set of dimensionn and let f : X —
Y be a semi-algebraic map. Then f: X — Y s blow-Nash if and only if f is generically
arc-analytic.

We say that f : X — Y has the arc-lifting property, if for any analytic 5 :
(—1,1) — Y there is analytic a : (—1,1) — X so that foa = §.

We say that f : X — Y has the generic arc-lifting property, if there is an algebraic
subset S of Y, dim S < dimY’, such that for for analytic 5 : (—1,1) — Y, which is not
entirely in S, there is an analytic o : (—1,1) — X such that foa = g.

1.3 Virtual Poincaré polynomial

To an AS-set X we associate the virtual Poincaré polynomial §(X) € Z[u] defined
in I3, 14], []. The virtual Poincaré polynomial §(X) satisfies the following properties:

e B(X) = B(Y) if there is an AS bijection (not necessarily continuous) between X
and Y.

e S(X)=p0(X\Y)+48(Y)ifY C X.

o (X x V) = BX)BY). |

e If X is compact and nonsingular algebraic variety then 3(X) =Y. 8;(X)u’, where
Bi(X) = dim H;(X; Zs).



1.4 Piecewise trivialization

We say that an AS map f : X — Y of AS sets is a AS-piecewise trivial fibration
with fiber Z if there are a map g : X — Z and finite partitions X = U; X, Y = 1;Y; into
AS-sets such that each (f, g)|x, : Xi = Y; x Z is an AS-homeomorphism.

Remark that this implies 8(X) = B(Y)5(Z) where S(X) denote the virtual Poincaré
polynomial of X.

Remark 1.3. If a regular map f : X — Y is injective, then f : X — f(X) is a piecewise
AS-trivial fibration, since f(X) is an AS-set (by Theorem 4.4 in [I6], see Theorem 3.9 in
(1] also) and this is the case that Z is a point in the context above. We also remark that

BY) =B(f(X)) +BY N f(X)) =B(X)+ BY N\ f(X))
and S(YN f(X)) =6(Y) — 5(X). If B(X) = B(Y), then f must be surjective.

Example 1.4. The natural map S' — P! cannot be a piecewise AS-trivial fibration. If
it is so, then we have 3(S') = 26(P*'), which contradicts with 3(S') = u + 1 = S(P?).

1.5 Jacobian Jy

Let X be an affine real n-dimensional algebraic variety in RY defined as the zero locus
of g1(x), ..., gm(x), gi € Rlxy, ..., x,]. Let QL denote the sheaf of Kéahler differentials of
X. This is generated by dz1,...,dxy over A = R[zy,...,xn]/{(g1,- .., gm) With relations
dg; =0, j=1,...,m, where dg; = Zfil %dmi. The exterior product Q% = A" Q% is
generated by dr; = dx; N--- Ndz;,, I = {z;, conint (1 <4 < --- < iy < N) with the
relations generated by dg; =0, 57 =1,...,m.

Example 1.5. When X is a complete intersection variety, i.e., .#x is generated by a
regular sequence ¢y, ..., g, then

dlL’ / 89
w=(=1) det(dgr)’ s() Lo (axi)iel,je{l 5% 1l ’

ier  ~OTiseeljedd,.,

is independent of the choice of I and defines the canonical form on X. Since dx; =
det(dgr)w, Q% is generated by the forms det(dg;)w, |I| = k. Here I’ denote the comple-
ment of I in {1,..., N}.

Example 1.6. Consider the curve X defined by 27 = y? in R?, where p and ¢ are
coprime numbers with p < ¢. Then QY is generated by dr and dy. By amap h: R — X,
t— (x,y) = (t9,t?), we have

h*Qﬁ( = h*(dm, dy> = <tp_1dt, tq_ldt> — <tp_1dt> — <t(p—1)qw>.

_ dx _ dy dt
where w = @i T pzpT T D@D -

Let f : M — X be a Nash map of a Nash nonsingular manifold M to X such that
Q% = Jr Q% for some ideal sheaf Jy. We have f*dx; = hjw where w is a local generator



of QO and hy € Op. Hence (hy) = Js. Let (21,...,2,) be alocal coordinate of M and
w=dz A+ ANdz,. Since

8($i10f,...,l‘inof)

f de: a('zla"')Zn)

W,

we have o s 5
le ’.”,xino . .
_ 1< < .
I < 0(z1, .-, 2n) tsu< <Zn_N>

We may assume that [J; is invertible and normal crossing after composing f with blow-ups
if necessary.

Let f : X — Y be a continuous AS-map of a closed AS-set X C R to a closed
AS-set Y € RY'. We associate to such a map a resolution diagram of f

M
%
A
X / Y

b

where I' is the graph of f and o : M — I is a resolution of I'. The latter is constructed
as follows. If & : M — T is the resolution of the Zariski closure of X then 67(T) is the

union of connected components of M. We then set M := & ~I(T") and o the restriction of
o to M. Clearly such a resolution diagram of f is not unique.

Definition 1.7. Let 0 : M —T',p: ' = X, ¢ : ' = Y be a resolution diagram of f such
that J,., and Jy., are invertible (this can be always assumed after a composition with
further blow-ups if necessary). We define the jacobian sheaf J; of f: X — Y by

Tp = (P 0)(JgocTpa0)-

Remark 1.8. The definition of Jf does not depend on the choice of M. Indeed, one can
show that (pe01)«(Tgeor Tpea,) = (P°02)4(Tgeos Tpen,) for two such resolutions oy : M; — T
(1t =1,2). Let 0 : M — T be the fiber product of oy and oy. It can be singular so we
consider a resolution 7 : M — M , and let 7; : ]\/4\Z — M; be the blow-ups of the ideal
sheaves J,,, J5,, respectively.

Then we have

(P°0)(TqoocTpes) =000 0 T)u(T" Tyoo T T T o)
pOJOT> (T ‘ZIOUOT‘Tp_oUoT)

(
(
(03075 0 7)o (T* Tgoos oms 071 T oty 071 o)
(
(

p ° O-i © Ti © Wl)(’r jquz‘jTi Oﬁ-ijﬂ'i ofrijpoa)
pe Ji)*(\ZIOUijp_olcri)

where 7; : M — ,7\/4\Z are the natural maps.



Example 1.9. Consider the map f: X — R? (z,y,2) — (z,y), where X = {(z,9,2) €
R3 : 2% +y? = 2%}, k is odd positive integer. We have
_dyANdz _dx/\dz _drAdy

“ 20 2y 2kz2-1

on X,

and Q% is generated by zw, yw, 22*"!w. Set M = R x S* and define a map o : M — X

by (r,0) — (r¥cos@,r¥sin @, r). Since o*w = —drt Coz,fzé\kdgk b - —2dr N db

o* Q3 = (r* cos Ow, 7% sin Ow, r*w) = (W), (fo o) Qd. = (r**Tlw),
and Jy = o, (rF=1) = (zF71).

Let F be a subsheaf of the sheaf of rational functions on X generated by ¢, ..., gn as
Ox-module. We say F is bounded (from above) if min;{ord, ¢g;} > 0 for any analytic
arc v : (R,0) = X. We say F is bounded from below if max;{ord, ¢g;} < 0 for any
analytic arc v : (R,0) — X.

2 Arc spaces

2.1 Arc spaces and “change of variables formula”
Let X be a closed AS set and Y a closed AS subset of X. Set
L(X)={v:(R,0) — X :analytic}, and LIX)Y)={ye L(X):~7(0)eY}

We denote by 7, the projection of £(X) to the k-jet space J¥(R, X). Set Li(X,0) denote
the set of k-jets of v € L(X,0), that is,

Li(X,0) = {[y(1)] € R{t}/{t**") : g;(7()) =0 mod "1}
where Ix = (g;).

Proposition 2.1 ([3, Proposition 2.33]). Let X C RY be an algebraic subset of dimension
n. Then

o dimm(L(X)) = (k+ 1)n.
e The fibers of the natural map mm(L(X)) — m(L(X)), m > k, are of dimension
smaller than or equal to (m — k)n.

Let X be an n-dimensional algebraic subset in RY defined as the zero locus of the
ideal #x = (g1,...,9s). Set

LM(X) = {a € L(X) :ord, I.(dg) < m}

where I.(dg) denote the ideal generated by ¢ x ¢ minors of the jacobi matrix

Oa.
dg = < 91)
0x;/ i=1,...N;j=1,...s
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and ¢ = N —n. We have L£(X)\ L(Xyng) = U,, LM (X).
By convention, we set, for J C {1,...,s}, I C {1,...,N}

dg;

axi iEI;jGJ.

8xi>i=1 ..... NijedJ

9" = (9))ses, dg” = ( and dg; = (
If ord, det dg] = ord, I.(dg), |I| = |J| = ¢, then v is in the zero locus X of (g;) e, and
v(t), t # 0, is in the regular locus of X ;.

By Taylor’s theorem, we have

g’ (4() + ") = g7 (4(1)) + " dg” (v (1))v + PEVS (y(1), v)
and therefore, if y(t) + t***v € X then

dgy (v(t))vr + dgp (y(t))vr + S (y(t),v) = 0.

Multiplying by the cofactor matrix (dg7)* of dgj, we obtain

det(dgy (v(t)))vr + (dgj (v(t)))"dgi (v(t))vr + t* (dgi (v(1)))"S(4(t), v) = 0.

If ord, det dg{ = ord, I.(dg”) and ord, det dgi < k then, by implicit function theorem, vy
is a function of ¢ and vy and thus v; is determined by ¢ and vy uniquely.

Theorem 2.2. Let X be a closed AS set. Let M be a nonsingular AS-set so that each
connected component of X has the same dimension and let h : M — X be a proper C*°-
map with AS graph. We assume that the set of points at which h is a local isomorphism
is dense in M. Set B™ = {y € LM):hoye LM(X), ord, Ty = e}, and assume that
k > max{2e,m}.

o Let o € L(X). If there is v € BI™ with j*a(0) = j*(h o v)(0), then there is
& € L(M) such that «(t) = hoa(t). Moreover, if there is 3 € L(M) with ho 8 = «
and j5=¢1a(0) = j*=F13(0), then a = 3.

e If his generically one-to-one, then h;,lﬁ(jk(ho'y(t))) is homeomorphic with AS-graph
to R, where h,y : mL(M) — m.L(X) denotes the induced map. In particular, we
have ﬂ,gl(wkh*Bém)) = hB".

Proof. Take a point y of M and a local coordinate system (yi,...,y,) at y where n =
dim, M and we consider the arc germs at y. Set w = dy; A --- A dy,. Then h*dxp =

(det dhy)w. For J with |J| = ¢, we set w’ = (—1)*!) (d::é;{)'
We have

hdzp = (—1)*Dr*[(det dgi w?]
and then

(—=1)*Dh*(det dg} )b’ = det(dhy), where h” is a rational function with h*w’ = h'w.
This shows that for an analytic arc ~
ordy, ., det(dgi) = ordy o I.(dg’) <= ord,det(dhy) = ord, I,(dh). (1)

7



For such ~, we have
ord,, h* det(dgy) + ord, h’ = ord, h*I.(dg”) + ord, h’ = ord, (dhy) = ord, I,(dh).

We show that for any v € R{t}" with h(y(t)) + t*™v € L(X) there is a unique
u € R{t}" such that
R(y(t) + 511 Cu) — h(y(t)) = t*F 1.

By Taylor’s theorem, we have
h(y(8) + 717 u) = h(y(t)) = "7 ¢dh(y())u + EETIR(y (8), w).
Assume that £ > max{2e, m}. We thus obtain
v =t"¢dh(y(t))u + t* T R(y(t), u).
or, equivalently,

vr =t dhy(7(t)u+ T R (v(1), w),
VUt :t_edh[/ ('y(t))u + tk+1_2eRp (’y(t), U)

By multiplying the latter equation by the cofactor matrix (dh)*, we obtain
(dhp ) (y(#))vr =t det dhp (y(8))u + 72 (dhp)* (v(1)) Rer (v(F), w).

Since t~¢det dhp((t)) is a unit, we may use the implicit function theorem to show that
this equation determines u.

Denote A = dhp(y(t)). Let \; = o7 denote the eigenvalues of A A and u; the cor-
responding eigenvectors. We can assume that ‘u;u; = 0;;. Then v; = Au;/o; is the
unit eigenvector of AA with eigenvalue ;. Since 'v;Au; = "(Au;/0;)Au; = 0:0; 4, we
have 'V AU = diag(oy,...,0,), setting U = (u;), V = (v;). Remark that U € SO(n),
V € SO(n). We thus have the singular value decomposition A = VX!'U where ¥ =
diag(o(t),...,0u(t)), 0s(t) = ta;(t), 7;(0) # 0. Therefore

thHly = htl—eng 4 2*HO R 5 =W, w='Uu, R='VRyp.
In other words,
9, = (0 () + YR, =10
Settlng ?7j = 220 Tjj,iti, 5]' = EZO:O 5']‘7@#1, ﬁj = ZZiO ﬂjybtb, we have
o 0, s=0,1,2,...,e—¢; — 1

Z Oj,aUjb =  _ iy

vl Vi, s=e—ej+1(i=0,1,...,k—2e)
and thus @0 = -+ = Uje_c;—1 = 0. So the image of the map R® — m,L(M) defined by

(Ut oeys -y ity s Une—ens s lpet) > JE(y(t) + t*=T1UT) (2)

8



is in the fiber of j*(h o y(t)) by h, when we show that vy determine v;. By Taylor’s
theorem, we have

g’ (hory(t) + ") = g7 (ho (1)) + 1" dg” (h oy (t))v + EVS (4(2), v).
Since ho~y(t) € L(X) and hoy(t) + t* v € L(X), we have
0= dg”(hery(t))v + "1 (y(t),v).

Setting v = (”1,), we have

vr
dgy (hoy(t))vr = —dgii(h o y(t))op — 7157 (hon(t), v).
Multiplying by (dg{)*(h o ~(t)) from the left, we obtain

(dg7)*dgy (h o y(#))vrr + 4 (dgy )* (h o y(£)) S (h o 7(t), v)
det(dgf)(he7(t))
By (W), we have ordp.,(detdg{) < ordp.,(dg{)*dg;,, and the second term of the left-

hand side is analytic if & > m. We thus conclude the assertion by the implicit function
theorem. O

U1+ :0.

Lemma 2.3. We continue the notation above. If there is another analytic (or formal)
solution 4 = Uy + U1t + - -+, Ug # 0 of

h(y(t) + t) = h(y(t)) + t*+ 1o, d<k—e,
then d < emax Where eyay, = max{er, ..., e,}.
Proof. Remark that
"o =tVIh(y(t) + t%a) — h(y(t))] = t750 + t**R(t, @)
=t (g + Uyt + -+ ) + ' R(t, 0).
Setting d; = min{i : @;; # 0}, j = 1,...,n, we have that
0 =t G (4) (g, + Qa1 gt + o) + PR (8 D), j=1,...,n

We obtain that

2d < 2d+ord; R;(t, ) =d +d; + e; whenever d+d;+e; <k.
Take jo with d;, = 0, then we have d +¢j, <k —e+¢;, <k and d < ¢j,. O

Corollary 2.4. Let X be an n-dimensional algebraic set. Let M be an n-dimensional
nonsingular AS-set and let h : M — X be a C*-map and generically one-to-one with
AS-graph. We assume that there is a normal crossing divisor E = U;E; in M so that

(det(dh))o = Z vE;, (W I(dg”))o = Z N E;.

J



Then h*,k(ﬂkB((gm)) is an AS-set, and the map h., : B h*,k(ﬁkBgm)) is a piecewise
AS-trivial fibration with fiber R¢. So we have a decomposition of the jet space as follows:

(LX) N hL(M) =20 0 | mehaB;,

.~ (m)
]€AlC

where A,(Cm) = {j € A 2w j) <k}, AW = {5 3] c {1,...,s} (A, 5) < m},
Bj ={y € L(M):ordg, v =ji}, Z,im) is a semi-algebraic subset with

k Vinax = max{v; },
max{2Vmax; Amax} ~ Amax = max{/\j cJCA{l,...,s}},

dim 2™ < n(k +1) —

and dim mph, By = n(k +1) —s; — (v, 3), 55 = >, Ji-

Proof. We have BI™ = UjeA(m>:<u,j)=e B;. Take v € Bj, j € A™. Then there are I and
J so that ordy., det dg{ = ordpe, I.(dg) < m < k. Since j; < s; < (v,j) =e<k—e+1,
we have 7(t) + t5="u € B; € B™ in the expression (2), and the natural map m,B™ —
mh B has the fiber Re.

Since the fiber of the natural map ﬂkBém) — th*Bém) has odd Euler characteristic,
h*,k(ﬂkb’ém)) is AS-constructible (see Theorem 3.9 in [I1]). By the expression (B), we
conclude that h, B h*ﬁk(wkb’ém)) is an AS-piecewise trivial fibration with fiber
Re.

So the dimension of m(B;) = n(k + 1) — s;. When j € Algm), we have ord, I,,(dh) =
(v.3) =e, ord, I.(dg”) = <)‘J>j> <m <k,

dimh*ykﬂk(Bj) = n(k + 1) — S5 — <V>j>'

If j & AU then k < max{2(v, ), (A, 5)} < max{2max5;, AmaxS;}- S0

k
S; >
7= max{2Vmax, Amax }

and we obtain that

k

max{2Vmax, Amax |

dim h*7k7TkBj < dim 7TkBj < TL(/{I + 1) —5; < n(k‘ + 1) —

Since Z,gm) is the union of h, ymB;, J & A,(cm), we are done. O

Remark 2.5. Similar versions of Theorem 222 and Corollary 2= were proved by J. Denef
and F. Loeser ([5, Lemma 3.4]) using a slightly different £™) (X, 0) (see (2.6) in [5]). J.-B.
Campesato also gave this theorem ([4, Lemma 4.5]) using another version of £™(X,0)
(see Definition 4.2 in [4]).
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2.2 Motivic measure

Let K¢(AS) denote the Grothendieck ring of AS-sets, i.e., the ring generated by the
symbols [X] for AS-sets X, with the relations

e [X]=[X']if X and X' are AS-isomorphic,

o [X]=[X\Y]+[Y]ifY isclosed in X,
o [X]-[Y]=[XxY].

Taking the virtial Poincaré polynomial, we have a natural map

B Ko(AS) = Zu], [X]— B(X).

By Fichou [8, Theorem 1.16], it is an isomorphism.

Denote M = Ky(AS)[LL7!], the localization of K(.AS) with respect to the multiplica-
tive set generated by L. where L = [R]. The isomorphism 5 : Ky(AS) — Z[u] extends to
an isomorphism M — Z[u,u™!], which we also denote by j3.

Set M = @qM /FIM, the completion of M with respect to the filtration F7M
where F7M is the subgroup generated by {[X]L~": dim X —i < —q}.

Example 2.6. For a positive integer d, lim L™ = 0 in M.

Lemma 2.7. M ~ Z[L][[L™Y]] ~ Z[u][[u"]].

Proof. We see that the natural map

ZILJL Y] — M/FIM, 3 aLliv 3 aLi mod FIM

1=—00 i=—q
induces an isomorphism p : Z[L][[L™]] ~ M. In fact, for (mg)gez, mq € MJFIM, so
that m, mod FIM =m, (¢ < ¢'), the map
(mg) = > L7(lim mgLe™")

L—0
qEL

is the inverse of p. The isomorphism 3 : M — Z[u,u"'] extend to the isomorphism
M — Z[u][[u™"]], and we are done. O

Remark 2.8. Usually these rings have been considered in the context of algebraic vari-
eties, namely the rings M and M are constructed similarly from the Grothendieck group
Ky(Varg) of real algebraic varieties. But these rings are more complicated as shown below:

e Ky(Varg) is not a domain ([I7]).
e The map Ky(Varg) — M = Ky(Varg) is not injective ([I]).
e It is not known whether M — M = @q M/ FiM is injective or not, where FYM
is the subgroup generated by {[X]L™":dim X —i < —q}.
In the paper, we prefer to state the results in AS category, even though many results
make sense in real algebraic category.
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A subset A of £(X) is called to be sound” if, for m > 1, m,,(A) is a constructible
subset, A = 7.} (7, (A)), and

7 1 (A) = T (A)

is a piecewise trivial fibration with fiber R? where d < n = dim X. For such a set we
define
pix (A) = lim [m,,(A)L-m+D,

m—0o0

Let A = 7, '(C) for a constructible subset C' of mg,(£(X)). Then dimm(A) — n(k + 1)
does not depend on k > ky. We call this integer the virtual dimension of 4 and denote
it by dim.A. A subset B of £(X) is said to be measurable if for all ¢ > 1 there are sound
sets C, and Cy; (i € N) such that

(BNC) U (C,\B) C | JCpi

€N

and dimC,; < —¢q for all i. For a measurable subset B, define px(B) by
px(B) = lim px(C,).
q—00

Example 2.9. Let M be nonsingular real algebraic variety of dimension n, and let £ =
>; Ei be a simple normal crossing divisor of M. For j = (j;) set

B = ( N Ei)\ U B 5= b 13l =40 j A0},
;>0 kijk=0 i
and Bj = {y € L(M,E) : ordg, a = j; for i with j; > 0}. If k > s; + 1, then
dim . B; = dim Ej + nk — s, (1] = [E;](]L — 1)|j|L"k_sj,
and we have
dimBy = —lj s ma(By) = [B](L - DL,

Example 2.10. Let h : M — X be as in the previous subsection. If & > 2(v, ) and
k> (A, 3), we have

hoamiB,) = By JL* = [B5)(L — 1L
This shows h,B; is also measurable, and jux (h.B;) = [E5](L — 1)#L="7%~¢ We set
B.(h) ={a € L(M) : ord, det(dh) = e}, and B"™(h) ={a € B.(Rh) : hoa € L™ (X)}.

Then
nBM(h) = || hB;

FEAM) (v, g)=e

T feel stable is a proper word but this is already used for different meaning. Any other idea for
naming? How aboiut pre-stable?
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and h,B"™ (h) is measurable. In fact, we have

(B =L S B - DL

FEAM (v, f)=e

If h: M — X is a resolution of (X,Y), we have

px(L(X,Y) =L S [Ef 0k (Y)](L — 1)L w9,

jeAm)

Tending m to oo in the right hand side, we obtain

LY [Esnp ' (W) -1 i it

ied ji=1

LY s v [ - 1) L

1—Lv!
i€J

—n o — L-1
J

ieJ
This computation can be interpreted as a formula in M and we obtain

L-1

px(LCYINLXL YY) =L [E5nh (V)] T

J ieJ

where X/ = X\ X° and Y/ = X'NY . Here we denote by X° its regular locus of dimension
n for AS-set X of dimension n.

Remark 2.11. We can show the real version of Proposition 6.3.2 in [5]:

L-1

px(LXY) =LY [E5nh ' ()] ] T 1

J icJ
For a closed AS-set X of dimension n, we consider the filtration:
X=Xo20X;D---D2X,_1DX,, with dim X; =n — 7 and XZO:XZ\XH_l

We apply the previous discussion for a resolution h; : M; — X; of (X;, X;NY), and obtain
that A
[’ﬂ'k(hZ)*B(m) <hi)]L_(n_l)(k+1)

e

do not depend on k for k& > max{2e, m}. This implies that £(X;, X;NY )\ L(X;11, Xiz1N
Y') is measurable and its measure is zero in £(X,Y) if i > 0, since

[mhy BU™ (B JL™"0HD = LD [ (B) B (B)L™ =90+ 5 0 (k — 00) in M.

e

Remark 2.12. For a closed AS-subset S in X such that dim S < dim X, the set £(S5)
is measurable of measure zero ([2, Proposition 6.22], [5, Appendix]). This is shown by a
similar discussion to the previous remark.
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2.3 Jacobian and behaviour of arcs

Theorem 2.13. Let f : (X,0) — (Y,0) be a semi-algebraic homeomorphism germ between
algebraic varieties X, Y with dim X = dimY. Assume that ux(L(X,0)) = uy (L(Y,0)).
If f is generically arc-analytic and the jacobian J; is bounded from below, then the invere
map f~1:Y — X is generically arc-analytic and the jacobian Jy is bounded from above.

Under the assumption in the previous theorem, we have

Corollary 2.14. If f is blow-Nash and the jacobian J; is bounded from below, then the
inverse f~1 is blow-Nash and the jacobian Jy is bounded from above.

We remark that J.-B. Campesato ([@, Theorem 3.5]) gave this corollary when X =Y.
Proof. A consequence of Lemma 2. O

Proof of Theorem Z_13. Since f is generically arc-analytic, there exists p : I' — X a
composition of blow-ups so that the map fop: (I',0) — (Y,0) is Nash by Lemma 2.
Let g= fop:I' — Y denote the natural map. Let ¢ : M — I' be a composition of blow
ups with nonsingular algebraic centers such that

a) M is nonsingular,
(b) fepoo is analytic (thus Nash),

¢) (detd(poo))o, and (detd(q e o))g are normal crossing, and

d) (peo)*Q%, (qo0)*Qy are invertible, and J,, .0, Jy00 are generated by monomials in
some coordinates.

We have the following diagram:
M

AN

Let S be an algebraic subset of X with dim .S < dim X so that f o~ is analytic for any
analytic map 7 : (—1,1) — X which is not entirely in S. We may assume that S contains
the singular set of X and the critical point set of f, and f(S) contains the singular set of
Y. Set

'p/F
X / Y

L#(X,0) ={y € L(X,0) : v is not entirely in S},
L#(Y,0) ={y € L(Y,0) : v is not entirely in f(S5)},
L#(M,Z) ={y € L(M,Z) :pooor is not entirely in S},

where Z = (poo)~1(0). By Remark 212, we have
:uX(ﬁ#(Xv 0)) = NX(‘C(X’ 0))7 NY(‘C#(Y’ 0)) = MY(L(K 0))’ :LLM('C#(M’ Z)) = IUM(‘C(Mv Z))

We remark that £#(X,0) = (po0).L# (M, Z), since f is generically arc-analytic. More-
over f~1 is generically arc-analytic provided £#(Y,0) = (g 0).L%* (M, Z).

14



We set
Be,e’ = Be(p00> mBe/(quT) ﬂE(M, Z)

The jacobian J; is bounded from below, if and only if B, = 0 (e < €’). We also remark
that the jacobian J; is bounded from above, if and only if B, = 0 (e > ¢€). It is thus
enough to show the following implication:

px(LH(X,0)N (po o)L (M, 2)) = 0, Beo =0 (e <€)
= uy (LF(Y,0)\ (qo0) L* (M, 2)) =0, Boow =0 (e > €). (%)

Remark that pux(L(X,0)\ (po0).L#(M,Z)) = 0 if f is blow-Nash. We also see
that py (L#(Y,0)N\ (¢ 0 0).L#(M,Z)) = 0 only if f~! is blow-Nash, i.e., has generic
arc-lifting property. To see the “only if” implication, we take a Nash rectilinearization
¥ 1Y — Y of the product of all components g; of f~', by [IH, Theorem 2.7]. Then
gio(e1xtt, ..., e xlr) are normal crossing in suitable patchs and r; € Q, r; > 0, g; = £1.
If the rectilinearizations of g; are not analytic, then there is a set of arcs of strictly positive
measure whose image by f~! is not analytic. Then the image A of this set has a non-zero
measure in £# (Y, 0) and we conclude that there is an arc v € ((qo0).L* (M, Z))NA. By
the definition of A, 7 does not have an analytic lift on X. But « has an analytic lift on
X, since it is in (g 0).L# (M, Z), and a contradiction.

Remark that B = |U; B; : (4,v) = e, (3,v') = €. By Corollary 24 and Example
P10, we have, for & > 2max{e, €'},

/

[ﬂ'RB&e/] = [(p o 0'>*.k7TkBe,6/]]Le, [WkBe,e’] = [(q o U)*,kaBe,e’]Le s

and thus

/

,UM(Be,e’> = ,UX((p ° U)*Be,e/)Lea MM(Be,e’) = ,UY((q ° U)*Be,e’>Le .

Therefore we have

NX((p ° 0)*£#(M’ Z)) = Z ”X((p °© 0)*8676/) = Z MM(Be,e’)L_€7

ee’

py((qo0)L# (M, 2)) =Y py((qe0)uBee) =Y pas(Beer )L

In other words,

px (L#(X,0)) =px (L#(X, 00\ (po 0) L* (M, 2)) + Y puna(Beor) L7, (3)

v (L#(Y,0)) =y (L#(Y,0)N (g0 0) L#(M, 2)) + Y juas (Be,or )L

e,e’

(4)

Therefore, if u(L#(X,0)) = p(L#(Y,0)) and B = 0 (e < ), we have
px (L#(X,0)\ (pe 0).L* (M, 2))
:MY(E#(Y, 0)\(go U)*ﬁ#(M, 7)) + Z ,UM(B&e’)]L_e/(l . ]Le/_e),

e>e!
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Now we replace the isomorphism classes [X] by the virtual Poincaré polynomials §(X)
in the definition of measure u. We remark that the coefficient of the top degree term
of the left hand side is positive whenever ux(L£*(X,0)\ (po 0),.L#(M)) # 0. Similarly
the coefficients of the top degree term of the each term in the right hand side is positive
whenever iy (L#(Y,0)\ (qo0).L#(M,Z)) # 0 or pipr(Bee) # 0 for some e and €’. So we
claim the implication (=). O

We say pux(A) < upx(B) if the top degree term of pux(B) — px(A) has a positive
coefficient.

Theorem 2.15. Let f : (X,0) — (Y,0) be an AS-homeomorphism between AS-closed
sets X and Y with dim X = dimY.

o If f is generically arc-analytic and Jy is bounded from below, then pux(L(X,0)) <
Hy (’C(Y> 0))
o If 1 is generically arc-analytic and Jy is bounded (from above), then ux(L(X,0)) >
Hy (‘C(Y7 0))
Proof. We use the notation of the previous proof. First we assume that f is generically
arc-analytic, and J; is bounded from below. Then £#(X,0) = (po 0).L#(M,Z) and
Bee =0 (e < ¢€). Subtracting (8) from (#), we thus have

py (L£(Y,0)) = px (L(X,0)) = py (L7(Y,0)) = px (L7(X,0))
= iy (L#(Y,0)\ (g0 0).L#(M, Z)) + 3 pas (Be,or) L™ (1 = L)

e>e!

After replacing [—] by S(—), the right-hand side has a positive coefficient in the top degree
term. So we have the first assertion.

Secondly we assume f~! is generically arc-analytic, and J; is bounded from (above).
Then £#(Y,0) = (qo0).L#(M,Z) and B.. = () (e > €'). Subtracting (@) from (8), we
thus have

MX(‘C(X7 0)) - MY('C(Yv 0)) ::U’X(‘C#(Xv O)) - /ly(ﬁ#(Y, 0))
—pux (L#(X, 00N\ (po 0) LH(M, 2)) + 3 par (Bewr)(1 = L),

e<e’

After replacing [—] by 5(—), the right-hand side has a positive coefficient in the top degree
term. So we have the second assertion. Il

Corollary 2.16. Assume that a semi-algebraic homeomorphism f : (X,0) — (Y,0) is
generically arc-analytic and f~' is also generically arc-analytic. If the jacobian J; is
bounded from above and below, then pux(L(X,0)) = uy (L(Y,0)).

3 Lipschitz property

3.1 Lipschitz property and differentials

Let X be a semi-algebraic connected subset of RY. Let dx denote the inner distance of
X. Thus by definition dx(p, q) is the infimum over the length of subanalytic curves of X
joining p and gq.
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Let X and Y be locally closed semi-algebraic subsets of RN and RV, respectively. We
assume that 0 € X and 0 € Y. A semi-algebraic map germ f : (X,0) — (Y,0) is said to
be inner-Lipschitz if there is a neighbourhood U of 0 in X and a positive constant L so
that

dy (f(z), f(z") < Ldx(z,2") Vo, 2 € U.

We simply say that f is Lipschitz, when X = R", Y = R” and dx and dy denote the
Euclidean distance.

We denote by X° the closure of X° with respect to the Euclidean topology of the
ambient Euclidean soace .

Let f:(X,0) — (Y,0) be a semi-algebraic map between real algebraic sets X and Y.
Set

Z=(X\X°)UfHY\NY°)UB(f)UC(f) where
B(f) ={xz € X°: f is not analytic at x}, and
C(f) ={x € X°\B(f) : dfy : T,X — Ty)Y is not an isomorphism}.

For x € X\ Z and a unit vector v € T, X, we can define the directional derivative D, f

by
[%f@>:hmfﬁa®)—foa®)

s—0 S

where a(s) is an arc so that z = «(0) and v = o/(0) .

Lemma 3.1. The map f|xs is inner-Lipschitz if and only if the set
{IDyf(z)|:x€e XNUNZ, veTl,X,|v| =1},

where U is a neighbourhood of 0 in X, is bounded.

Proof. Let a(s) denote a curve so that 2 = «(0) and v = limg_,oo/(s). Let s be the arc
length parameter of a.
If f|x= is inner-Lipschitz and f o «a(s) attains the length between foa(s) and fo«a(0),
then
f e a(s) — f = a(0)] < dy(f=a(s), f ea(0)) < Ldx(0(s), a(0)) < Ls.

Then we have

< L.

D, ()] =lim| L2 08) = [ 2 a(0)

—0 S
Assume that |D, f(z)| < L for z € X\ Z, v € T, X, |v] = 1. For any € > 0 there is

0 > 0 such that
|f e als) = foa(0)]
s
|(foa)'(s)|ds, and limg_g

0<s<d—= < L+e.

Since |fo@(3)—foa(0)’ < t(S) where t(s) _ fS foa(sz(ig{oa(ﬂ) =1,

0
we can choose § > 0 so that

0<s<o= (1—e)t(s) <|feoals)— feoal(0)] <t(s).
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Set Us = {(z,2") € X° x X° : dx(z,2") < 0}. Assume that (z,2') € Us. If a(s) attains
the length between 2’ = a(s;) € X°, for some s; > 0, and z = «(0) € X°, then

dy(feals), foa(0)) <

°afs) = foa0)|

1 [feals) = foa(0)| Lte

=1 - dx(a(s),a(0)) < - dx(a(s),a(0)).

whenever 0 < s < §. We may assume that (x,2') € U x U where U is a neighbourhood of
0 in X° so that U is compact. Then dy (f(z), f(z'))/dx(x,2’) is bounded on U x U\ Uy,
and we are done. O

3.2 Inner-Lipschitz maps and an arc-analytic inverse mapping
Theorem 3.2. Let X and Y be algebraic sets with ux(L(X,0)) = uy(L(Y,0)). If a

semi-algebraic homeomorphism f : (X,0) — (Y,0) is generically arc-analytic and f~|y=
is inner-Lipschitz, then f|xs is inner-Lipschitz and f~' is generically arc-analytic.

Proof. We use the notation in the proof of Theorem EZ-I3. We assume that
(‘7]30(7>0 - Z ViEi7 (jqoo')o - Z Z/,ZEZ

Since f~!|ys is inner-Lipschitz, we have
{Duf :weY\W, weT)Y, |w =1}

is bounded where W = f(X\ X°)U(YN\Y°)UB(f~HUC(f™!). Let U denote a coordinate
chart in M and z : U — R” denote the coordinate function. Then there exist local
coordinate systems x; = (x;);es for X and y; = (y;);es for Y so that

<( )detaa—z> :ZWE@', (( )det—) ZVE on U.

Since the Jacobi matrix % is bounded, we have v] < v;. By Corollary ET4, we have

v; = v, and det % is a unit. Thus the Jacobi matrix

9y 1 Oz
= 5 cofactor matrix of —
Ory  det(g;L) Ay

is bounded and all directional derivative
{|IDyf| iz € X\NZ, veT,X, |v|=1}
is bounded. Here Z is the set where f is not directional derivative. [

Corollary 3.3. Let f: (R",0) — (R",0) be a semi-algebraic homeomorphism. Then the
following conditions are equivalent.
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o f is arc-analytic and f~' is Lipschitz.
o f1is arc-analytic and f is Lipschitz.

Remark 3.4. M. Kobayashi and T.-C. Kuo ([IZ]) constructed a map h : R* — R? with
the following properties:

e 1 sends a cusp {z? = y*} to a line {z = 0}.
e h and h~! are blow-analytic, and thus arc-analytic.

As pointed out in [6, Example 8.2], h and h™! are not Lipschitz.

4 Complex case

There are natural complex analogues for the notion of Jacobian [J; and we have complex
versions of Theorem 272 and Corollary 224 and thus Theorem Z7T3 as consequences. We
state them here, since we do not think they are trivial facts.

4.1 Hodge-Deligne polynomial

For a complex algebraic variety X, we consider the Hodge-Deligne polynomial

2dim X , .
EX;u,v) =% S (=1)'API(H(X,C))ulvi.

p,qg =0

where H'(X,C) is the ith cohomology with compact support with coefficient C. We may
use the Hodge-Deligne polynomial instead of the virtial Poincaré polynomial it satisfies
the following properties:

e When X is nonsingular and projective, we have

E(Xiwo) =3 55 (=1)hPa(X )ubot,

p,q =0

o If X =1J;X; is a disjoint union of Zariski locally closed strata, then

E(X;u,v) = ZE(XZ';U,U)

e The Hodge-Deligne polynomial is multiplicative, i.e., E(X xY) = E(X)E(Y).
o If f:Y — X is a Zariski locally trivial fibration and F' is the fibre over a closed
point, then E(Y) = E(X)E(F).

4.2 Weakly holomorphic map and arc lifting property

A map f: X — Y is said to be weakly holomorphic if it is bounded and holomorphic
on the regular locus of X. If h : X — X is a desingularization of X, then foh is a
bounded holomorphic map except the exceptional locus which is of codimension at least
1 for any weakly holomorphic map f. So f oh has a holomorphic extension by Riemann’s
extension theorem. If X is normal, then a weakly holomorphic map is holomorphic.
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Theorem 4.1. Let X and Y be complex algebraic varieties with pux(L£(X)) = py (L(Y)).
Let f : X =Y be a continuous map, which is weakly holomorphic. If the jacobian Jy is
bounded from below, then Jr is bounded and f has generically arc lifting property.

Theorem 4.2. Let (X, z) and (Y,y) be germs of complez algebraic varieties with
ux(L(X,x)) = puy (L(Y,y)). Let f: (X, z) — (Y,y) be a continuous map, which is weakly
holomorphic. If the jacobian J; is bounded from below at x, then Jy is bounded and f
has generically arc lifting property.

It would be worth to add a complex version of Theorem B2 also.

Theorem 4.3. Let X and Y be complex algebraic sets with pux(L(X,0)) = puy (L(Y,0)).
If a semi-algebraic homeomorphism f : (X,0) — (Y,0) is weakly holomorphic and f=' is
inner-Lipschitz, then f is inner-Lipschitz and f=' is weakly holomorphic.
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