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Abstract

The bifurcation model from the initial nonlinear term of partial differential equa-
tion is introduced. We show how these models work on the domain like rectangle
and square etc. We introduce the non-degeneracy condition which ensures the
(m, k)-bifurcation model describes the bifurcation of partial differential equation.
We observe a perturbation of rectangle to a square creates new bifurcation, which
is not a limit of the bifurcations on rectangles.
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1 Introduction

In this paper, let X, Y be Banach spaces, and let λ ∈ R, we investigate the bifurcation of
the nonlinear partial differential equation

Φ(λ, u) = Lu+ h(λ, u)− λu = 0, u ∈ X, (1.1)

where λ ∈ R, L is a linear self-adjoint operator, and h(λ, u) ∈ C1(R×X,X), h(λ, 0) = 0,
d
du
h(λ, 0) = 0.

We first recall the notation of a bifurcation point [1, §1]. Suppose that Φ : R×X → Y
is a continuous map. Let Sλ = {x ∈ X | Φ(λ, x) = 0} be the solution set of the equation
Φ(λ, x) = 0, where λ is a parameter. Assume that Φ(λ, 0) = 0, we call (λ, 0) a bifurcation
point, if for any neighborhood U of (λ, 0), there exists (λ, x) ∈ U with x ∈ Sλ \ {0}.λ is
a branching point if the solution set Sλ contains a connected set S such that (λ, 0) ∈ S
and S {(λ, 0)} ̸= ∅.

The main purpose of this paper is to establish the (m, k)-bifurcation model with the
initial higher order term (Definition 3.1) for the equation (1.1) at the bifurcation point
(λ∗, 0), where λ∗ is an eigenvalue with multiplicitym of L, ak(λ)u

k is the first nonzero term
of the Taylor expansion of h(λ, u). If the region Ω is k-non-degenerate (Definition 3.2),
we show that the bifurcation equations of Lyapunov-Schmidt reduction are equivalent to
the (m, k)-bifurcation model (Theorem 3.4).

For a simple eigenvalue λ∗, the bifurcation model (Remark 3.3) is described by

(λ∗ − λ)x+ axk = 0, a ̸= 0 (1.2)

and the bifurcation of solutions is decided by k and a. See the following figures.
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A motivation of this paper is to find a generalization of this phenomenon to the mul-
tiple eigenvalues case. The (m, k)-Bifurcation model is a weighted homogeneous system
(Remark 3.3) and it provides a way to investigate the bifurcation of nonlinear partial
differential equations on k-non-degenerate region Ω. As a series of the results of our
methods, for the partial differential equation

−∆u = λu− ak(λ)u
k + o(uk) on Ω

with Dirichlet or Neumann boundary value conditions, the (2, 3) and (2, 5)-bifurcation
models show the type of bifurcations for all the eigenvalues with multiplicity 2 on the
region Ω = [0, π]2 (Dirichlet problem: Theorem 5.13 and 5.15, Neumann problem: Theo-
rem 5.17 and 5.18). The (3, 3)-bifurcation model also shows the type of bifurcation for all
the eigenvalues with multiplicity 3 on the region Ω = [0, π]3 (Dirichlet problem: Theorem
5.20, Neumann problem: Theorem 5.21). We observe that all the bifurcations of these
eigenvalues are plurisupercritical (or plurisubcritical) bifurcation (Remark 3.3).

The methods presented here are mainly based on the nonlinear functional analysis
and singularity theory.

The paper is organized as follows. In section 2, we recall the inverse function the-
orem, implicit function theorem, Lyapunov-Schmidt reduction and Schauder bases. In
section 3, the (m, k)-Bifurcation model from the initial nonlinear term of partial differen-
tial equations is defined. In section 4, the equivalent conditions of k-non-degeneracy and
the main theorem are proved. In section 5, we show how our method works on the domain
like rectangle and square, etc. In section 6, when the rectangle degenerate to square, we
observe that there is a new bifurcation on square, which is not a limit of bifurcations on
rectangles.

2 Preliminary

Let us recall the following theorems first.

Inverse Function Theorem and Implicit Function Theorem. Let X,Y be Banach
spaces, u ∈ X and let F be a map X → Y . In the particular case that Y = R, F is called
a function. We say that F is differentiable at u ∈ X along the direction v ∈ X if there
exists

Lu[v] := lim
t→0

F (u+ tv)− F (u)

t
.
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We say that F is (Fréchet) differentiable at u ∈ X if there exists a linear continuous
map Lu : X → Y such that

F (u+ v)− F (u) = Lu[v] + o(∥v∥), as ∥v∥ → 0.

When F is Fréchet differentiable at u ∈ X, the map Lu is uniquely determined by F and u
and is denoted by dF (u) or F ′(u). It is easy to see that if F is Fréchet differentiable, then
it is also differentiable along any direction. Conversely, if F is differentiable along any
directions, Lu ∈ L(X, Y ) and the map u 7→ Lu is a continuous map from X to L(X, Y ).
then F is Fréchet differentiable. The Fréchet derivative has the same properties as the
usual differential in Euclidean spaces [2, 3].

Lemma 2.1 (Inverse Function Theorem (Theorem 3.1.1 in [3], [5])). Let P : U → V , be
a smooth map between Banach spaces, U , V are open sets of X,Y respectively. Suppose
that for some f0 ∈ U the derivative dP (f0) : X → Y is an invertible linear map. Then
we can find neighborhoods Ũ of f0 and Ṽ of g0 = P (f0) such that the map P gives a
one-to-one map of Ũ onto Ṽ , and the inverse map P−1 : Ṽ ⊆ Y → Ũ ⊆ X is smooth.

Lemma 2.2 (Implicit Function Theorem (Theorem 3.2.1 in [3], [2, 5])). Let X, Y be
Banach spaces and fix (λ0, u0) ∈ R×X. Assume that F is a C1 map from a neighborhood
of (λ0, u0) in R × X into Y such that F (λ0, u0) = 0 and suppose that duF (λ0, u0) is
invertible. Then there exist a neighborhood Λ of λ0 and a neighborhood U of u0 such that
the equation F (λ, u) = 0 has a unique solution u = u(λ) ∈ U for all λ ∈ Λ. The function
u(λ) is of class C1, and the following holds

u′(λ0) = −[duF (λ0, u0)]
−1dλF (λ0, u0).

Lyapunov-Schmidt reduction. Consider the case that

Φ(λ, u) = Lu+ h(u)− λu = 0, λ ∈ R, u ∈ X,

where L is a linear operator, and h ∈ C1(X, Y ), h(λ, 0) = 0, d
du
h(λ, 0) = 0. Thus,

duΦ(λ
∗, 0)[v] = Lv + h′(0)[v]− λ∗v = Lv − λ∗v.

If Lv − λ∗v ̸= 0, by the inverse function theorem, then (λ∗, 0) is the unique solution of
Φ(λ, u) = Lu+ h(u)− λu = 0. That is, (λ∗, 0) cannot be a bifurcation point. If (λ∗, 0) is
a bifurcation point, then λ∗ is an eigenvalue of L.

Let (λ∗, 0) is a bifurcation point of the equation F (λ, u) = 0. Set V := Ker(L−λ∗I),
R := Range(L − λ∗I). Assume that R is closed, V has a topological complement W in
X, R has a topological complement Z in Y , then

X = V ⊕W, Y = Z ⊕R,

where dimZ = n. For every u ∈ X, u can be written in the form

u = v + w, v ∈ V, w ∈ W,
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uniquely. Let P be the projection onto Z, then I − P be the conjugate projection onto
R. The equation F (λ, u) = 0 is equivalent to

PΦ(λ, v + w) = 0, (2.1)

(I − P )Φ(λ, v + w) = 0. (2.2)

The equation (2.1) is called the bifurcation equation and the equation (2.2) the auxiliary
equation. By implicit function theorem, (2.2) can be uniquely solved with respect to w
locally. Denote that w = r(λ, v) be the solution of (2.2), substitute w = r(λ, v) in (2.1),
one gets the bifurcation equation PF (λ, v+ r(λ, v)) = 0 which determines the bifurcation
of solutions to Φ(λ, u) = 0.

Schauder bases. A sequence {xn} of elements of a Banach space X is said to be a
Schauder bases for X if for every x of X there is a unique sequence of numbers {an} such

that x =
∞∑
i=1

aixi in the sense that lim
n→∞

∥x−
n∑

i=1

aixi∥ = 0 (see [7, 9]).

• Every orthonormal bases in a separable Hilbert spaces is a Schauder bases (see [8,
Example on the Page 134], [6, Theorem 1] ).

• Let E, F be two Banach spaces with Schauder bases {xn}, {yn}, respectively. Then
the system of all products xi ⊗ yj is a Schauder bases of E ⊗ F (see [9, Theorem
18.1]).

3 Bifurcation Model from the Initial Nonlinear Term

In this section, we are going to establish a bifurcation model for the equation (1.1).

Assume that (λ∗, 0) is a bifurcation point of Φ(λ, u) = 0, that is, λ∗ is an eigenvalue
with finite multiplicity m of L. Let vi be the bases of V = Ker(L − λ∗I) and wj be the
bases of V = Ker(L− λjI) with eigenvalues λj ̸= λ∗, where 1 ≤ i ≤ m, 1 ≤ j ≤ ∞.

By Taylor expansion,

h(λ, u) = a0(λ) + a1(λ)u+ a2(λ)u
2 + · · ·+ ak(λ)u

k + · · · ,

then a0(λ) = a1(λ) = 0 for h(λ, 0) = 0, d
du
h(λ, 0) = 0. Let m be the multiplicity of λ∗.

Let k be the order of the least number so that ak(λ) ̸= 0.

Assume that there exists ϕ : X → R, such that v∗x = ϕ(vx), v∗ ∈ V ∗, x ∈ X. The

k-form ak(λ
∗)v∗p

m∑
i=1

(xivi)
k is the partial derivative of the following (k + 1)-form H by xp,

where

H =
ak(λ

∗)

k + 1
ϕ(x1v1 + · · ·+ xmvm)

k+1.

Considering the PDE:

Lu+ h(x, λ)− λu = 0 in Ω, h(λ, u) = ak(λ)u
k + o(uk), k ≥ 2,

with one of the following boundary condition:
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• Dirichlet boundary condition: u|∂Ω = 0.
• Neumann boundary condition: ∂nu|∂Ω = 0.

where n denotes the (typically exterior) normal to the boundary ∂Ω, ∂n is the partial
differential along the direction n.

Let Ẑ denote the set defined by the bifurcation equation F̂ = 0 in R× Rm.

Definition 3.1 (Bifurcation model). Set Fi = (λ∗ − λ)xi +Hxi
(i = 1, . . . ,m) where

H =
ak(λ

∗)

k + 1
ϕ(x1v1 + · · ·+ xmvm)

k+1.

We say the set Z defined by Fi = 0 (i = 1, . . . ,m) is (m, k)-bifurcation model.

Definition 3.2 (Non-degenerate region). We say that the region Ω is k-non-degenerate
if the restriction of H to S is a Morse function, and 0 is not a critical value of the

restriction of H to S. Here S is the sphere defined by
m∑
i=1

x2
i = k + 1.

Remark 3.3 (Type of bifurcation portrait). When m = 1 and k is finite, the (1, k)-
bifurcation model is defined by (1.2).

The (m, k)-bifurcation model is a weighted homogeneous system with weight (k −
1, 1, . . . , 1; k, . . . , k). There are km complex branches of the (m, k)-Bifurcation model. The
solution curves of (m, k)-bifurcation model (Definition 3.1) are expressed in the following
form:

t 7→ (λ, x1, x2, . . . , xm) = (a0t
k−1, a1t, a2t, . . . , amt).

We call the image of the interval t ≥ 0 (or t ≤ 0) a real semi-branch of the bifurcation
model.

(i) If k is even, then all real branches go through from the region λ < λ∗ to the region
λ > λ∗. Several transcritical bifurcations take place at the bifurcation point (λ∗, 0). We say
such a bifurcation pluritranscritical bifurcation (or multi-transcritical bifurcation).
See the left figure below.

6

λ
-

λ∗

Pluritranscritical
bifurcation
(k is even).

6

λ
-

λ∗

Plurisubcritical
bifurcation
(k is odd).

6

λ
-

λ∗

Plurisupercritical
bifurcation
(k is odd).

6

λ
-

λ∗

Mixedcritical
bifurcation
(k is odd).

(ii) If k is odd, then the real branches of each solution stay in the region λ ≤ λ∗

or λ ≥ λ∗. Then one of the following types is possible as the bifurcation at (λ∗, 0). See
the right three figures above. We call them plurisupercritical bifurcation (or multi-
supercritical bifurcation), plurisubcritical bifurcation (or multi-subcritical bifurcation),
mixed critical bifurcation, respectively.
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Theorem 3.4. If the region Ω is k-non-degenerate, then the bifurcation equations F̂i = 0
(i = 1, . . . ,m) are equivalent to the (m, k)-bifurcation model Fi = 0 (i = 1, . . . ,m), that
is, there is a homeomorphism germ

Ξ : (R× Rm, (λ∗, 0)) → (R× Rm, (λ∗, 0)),

preserving the hyperplane defined by λ = λ∗, with Ξ(Z) = Ẑ.

Remark 3.5. The use of the function H has already appeared in [1, Theorem 1],[3, Page
66]. They showed (λ∗, 0) is a branching point under non-degeneracy conditions. Since
we use singularity theory, we are able to conclude the bifurcation model and the type of
bifurcation portrait, which give more precise information for bifurcation.

4 The Proof of the Main Theorem

Lyapunov-Schmidt Process. Suppose that X = V ⊕W , where V = Ker(L− λ∗I) =
span{v1, v2, . . . , vm}, W is the closure of span{w1, w2, . . . }. We assume that the sequence
{v1, . . . , vm, w1, w2, . . . } is a Schauder bases of X. For any u ∈ X, u can be expressed as
the following

u =
m∑
i=1

xivi +
∞∑
j=1

yjwj,

where (x1, x2, . . . xm) ∈ Rm, (y1, y2, . . . ) ∈ U ⊂ R∞, U is an open neighborhood of 0.
Then the equation (1.1) is written as

Φ(λ, u) = L(
m∑
i=1

xivi +
∞∑
j

yjwj)− λ(
m∑
i=1

xivi +
∞∑
j

yjwj) + h(λ,
m∑
i=1

xivi +
∞∑
j

yjwj)

=
m∑
i=1

(λ∗ − λ)xivi +
∞∑
j

(λj − λ)yjwj + h(λ,
m∑
i=1

xivi +
∞∑
j

yjwj).

We choose v∗i ∈ V ∗ and w∗
j ∈ W ∗ such that v∗i vs = δis, w

∗
jwt = δjt, v

∗
iwj = w∗

jvi = 0 where

δi,j =

{
1 (i = j)
0 (i ̸= j)

, 1 ≤ j, s ≤ m, 1 ≤ j, t ≤ ∞.

Let pX denote the projection

pX : X → Rm × U, u 7→ (v∗i u,w
∗
ju),

and ιX denote the injection

ιX : pX(X) → X, (xi, yj) 7→
m∑
i=1

xivi +
∞∑
j

yjwj,
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where i = 1, 2, . . . ,m, j = 1, 2, . . . . We have pX ◦ ιX and ιX ◦ pX are the identities. Then
we define F by F = pY ◦ Φ ◦ ιX , and have the following commutative diagram

R × X
Φ−−−→ YypX

ypY

R × Rm × U −−−→
F

Rm × R∞ .

The function

F (λ, x1, . . . , xm, y1, . . . ) = (4.1)

((λ∗ − λ)x1 + hp1, . . . , (λ
∗ − λ)xm + hpm, (λ1 − λ)y1 + hq1, (λ2 − λ)y2 + hq2, . . . )

has the same bifurcations at (λ∗, 0) as those of the Φ(λ, u) = Lu+h(λ, u)−λu = 0, where

hpi =v∗i h(λ,
m∑
i=1

xivi +
∞∑
j

yjwj), 1 ≤ i ≤ m,

hqj =w∗
jh(λ,

m∑
i=1

xivi +
∞∑
j

yjwj), j = 1, 2, . . . .

By calculation, one can find the following derivatives directly,

∂F

∂λ
= (xp, yq),

∂F

∂xi

= (δpi(λ
∗ − λ) +

∂hpi

∂xi

,
∂hqj

∂xi

),

∂F

∂yj
= (

∂hpi

∂yj
, δqj(λj − λ) +

∂hqj

∂yj
),

where 1 ≤ p ≤ m, 1 ≤ q. Since that λ∗ is an eigenvalue of L, λj ̸= λ∗, the component
λj − λ of (4.1) is non-zero at (λ∗, 0). By implicit function theorem, and Fyj(λ

∗, 0) is
invertible, there exists a unique map

φj : R× Rm → R∞,

such that yj = φj(λ, x1, x2, . . . , xm), with

F (λ, x1, . . . , xm, φ1(λ, x1, x2, . . . , xm), . . . ) = 0.

Moreover, we have
(φj)λ(λ, 0) = 0, (φj)xi

(λ, 0) = 0.

Hence φj(λ, x) = o(λ− λ∗, x), where x = (x1, x2, . . . , xm).

Let F̂ : R× Rm → Rm be a map defined by

F̂ (λ, x1, . . . , xm) = ((λ∗ − λ)x1 + hp1(λ,
m∑
i=1

xivi +
∞∑
j

φj(λ, x1, x2, . . . , xm)wj), . . . ,
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(λ∗ − λ)xm + hpm(λ,
m∑
i=1

xivi +
∞∑
j

φj(λ, x1, x2, . . . , xm)wj).

By Lyapunov-Schmidt reduction, F̂ (λ, x1, . . . , xm) = 0 is the bifurcation equation of
F (λ, x1, . . . , xm, y1, . . . ) = 0.

4.1 A Characterization of k-non-degeneracy

The definition of k-non-degeneracy can be characterized by the following singularity con-
ditions.

Lemma 4.1. The region Ω is k-non-degenerate if and only if the following conditions (i)
and (ii) hold.

(i) Any irreducible component of Fi = 0 (i = 1, . . . , n) is not in the hyperplane defined
by λ = λ∗, that is, {λ = λ∗, Hx1 = · · · = Hxm = 0} = {0}.

(ii) Fi = 0 (i = 1, . . . , n) defines curves with an isolated singularity at (λ∗, 0), that is,
rank(xi, δij(λ

∗ − λ) +Hxixj
) = m if Fi = 0 (i = 1, . . . , n) except (λ∗, 0).

Proof. First we remark that the conditions Fi = 0 (i = 1, . . .m) is equivalent that k(λ−λ∗)

is an eigenvalue of (Hxixj
)i,j=1,...,m with an eigenvector x, since Hxi

= 1
k

m∑
j=1

xjHxixj
. So,

the condition (i) is equivalent that 0 is not an eigenvalue of (Hxixj
) with eigenvector x.

Next we observe that (ii) is equivalent to the following condition (ii′).

(ii′) k(λ − λ∗) is an eigenvalue of (Hxixj
) with an eigenvector x, and λ − λ∗ is not an

eigenvalue of (Hxixj
).

In fact, if the condition (ii) does not hold and Fi = 0 (i = 1, . . . ,m), then λ − λ∗ is an
eigenvalue of (Hxixj

). Conversely, if λ − λ∗ is a non-zero eigenvalue of (Hxixj
), then the

corresponding eigenvector y = (y1, . . . , ym) is perpendicular to x, and

(y1, . . . , ym)(xi, δij(λ
∗ − λ) +Hxixj

) = 0.

This implies that rank(xi, δij(λ
∗ − λ) +Hxixj

) < m and the condition (i) does not hold.

Suppose that the region Ω is k-non-degenerate. The critical points set of the restric-

tion of H to the sphere S defined by
m∑
i=1

x2
i = k+ 1 is Z ∩ S, and λ− λ∗ is the value of H

there, since (k + 1)H =
m∑
i=1

xiHxi
= (λ− λ∗)

m∑
i=1

x2
i on Z. We have

∣∣∣∣ 0 xj

xi (λ∗ − λ)δij +Hxixj

∣∣∣∣ ̸= 0 on Z ∩ S,

and the conditions (i) and (ii) hold.
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Suppose that the conditions (i) and (ii) hold. If the restriction of H to S is not a
Morse function, then rank(xi, (λ

∗ − λ)δij +Hxixj
) < m. Thus the following equation

(
0 xj

xi (λ∗ − λ)δij +Hxixj

)y0
...
ym

 = 0,

has a nonzero solution (y0, . . . , ym) and x1y1 + · · · + xmym = 0. Let v1 = t(x1, . . . , xm),
v2, . . . , vm are the eigenvectors of (Hxixj

), which are perpendicular each other, and set
y = t(y1, . . . , ym) = b1v1 + · · ·+ bmvm. We have b1 = 0, and

0 = y0v1 + [(λ∗ − λ)δij +Hxixj
]y

= y0v1 + [(λ∗ − λ)δij +Hxixj
]

m∑
j=1

bjvj

= y0v1 +
m∑
j=1

bj(λ
∗ − λ+ λj)vj.

Thus y0 = 0 and bj(λ
∗−λ+λj) = 0, j = 2, . . . ,m. Since y is not zero, there exists j such

that λ∗−λ+λj = 0, then λ−λ∗ is an eigenvalue of (Hxixj
), which contradict to (ii′).

4.2 The Proof of Theorem 3.4

Here we present the proof of Theorem 3.4 by singularity theory.

Replacing λ − λ∗ by λ, it is enough to show the theorem assuming λ∗ = 0. Set

ρ = (λ2 + x
2(k−1)
1 + · · ·+ x

2(k−1)
m )

1
2(k−1) . Let M denote the minimum of

ρ2 det((Fj)x1 , . . . , (Fj)xm)
2 + λ2

m∑
i=1

det((Fj)λ, (Fj)x1 , . . . , (̂Fj)xi
. . . , (Fj)xm)

2

on ρ−1(1). By the conditions (i) and (ii), we have M > 0.

Let us consider a singular metric ⟨ , ⟩ defined by

⟨λ∂λ, λ∂λ⟩ = 1, ⟨λ∂λ, ρ∂xi
⟩ = 0, ⟨ρ∂xi

, ρ∂xj
⟩ = δij, i, j = 1, . . . ,m. (4.2)

We remark that the gradient of f : R× Rm → R, (λ, x) 7→ f(λ, x), is given by

∇f = λ2fλ∂λ + ρ2
m∑
i=1

fxi
∂xi

.

Then we have det(⟨∇Fi,∇Fj⟩) + |F |2m ≥ M on ρ−1(1), since

det(⟨∇Fi,∇Fj⟩) =ρ2m det((Fj)x1 , . . . , (Fj)xm)
2
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+λ2ρ2(m−1)

m∑
i=1

det((Fj)λ, (Fj)x1 , . . . , (̂Fj)xi
, . . . , (Fj)xm)

2.

We thus have the following inequality on ρ−1(1) and therefore on R× Rm,

det(⟨∇Fi,∇Fj⟩) + |F |2m ≥ Mρ2mk,

because of weighted homogeneity of both sides.

Define Ki(λ, x) by F̂i = Fi +Ki. There is a positive constant Ci and δ so that

|Ki| ≤ Ciρ
k+δ near 0. (4.3)

Set F̃j(λ, x, t) = λxj + Hxj
+ tKj which are functions on R × R × Rn. We set ∇̃F̃j =

∇F̃j + (Fj)t∂t, ∇F̃j = λ2(F̃j)λ∂λ + ρ2
m∑
i=1

(F̃j)xi
∂xi

. There is a positive constant C ′
i so that

|∇F̃i| ≤ C ′
iρ

k near 0. (4.4)

Set A(λ, x, t) = det⟨∇F̃i,∇F̃j⟩+ |F̃ |2m and A0(λ, x) = det⟨∇Fi,∇Fj⟩+ |F |2m. Then
there is a function A1(λ, x, t) with A(λ, x, t) = A0(λ, x) + tA1(λ, x, t). By (4.3) and (4.4),
0 ≤ |A1(x, t)| ≤ A0(x)/2 near (λ, x) = (0, 0).

A0(x)− tA0(x)/2 ≤ A0(x) + tA1(x, t) near (λ, x) = (0, 0) for t ≥ 0,

and thus

1
2
A0(x) ≤ (1− t

2
)A0(x) ≤ A(x, t) near (λ, x) = (0, 0) for any t ∈ [0, 1].

Therefore we have
det⟨∇F̃i,∇F̃j⟩+ |F̃ |2m ≥ C0ρ

2km near 0. (4.5)

Set

ξ =
1

det⟨∇F̃i,∇F̃j⟩+ |F̃ |2m

∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ ∇F̃i

⟨∂t, ∇̃F̃j⟩ 0

∣∣∣∣+ ∂t.

We show that ξF̃i = 0 if Fi(x) = 0 except (λ, x) = (0, 0). To see this, we consider the
orthogonal projection to the tangent space of F̃j = 0, which is defined at its regular point,
with respect to the singular metric induced by (4.2) and the Euclidean metric of t-axis.
This is expressed by

v 7→ π(v) =
1

det⟨∇̃F̃i, ∇̃F̃j⟩

∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ ∇̃F̃i

⟨v, ∇̃F̃j⟩ v

∣∣∣∣ .
Then we have

⟨π(∂t), ∂λ⟩ =
1

det⟨∇̃F̃i, ∇̃F̃j⟩

∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ ⟨∇̃F̃i, ∂λ⟩
⟨∂t, ∇̃F̃j⟩ 0

∣∣∣∣ ,
11



⟨π(∂t), ∂xi
⟩ = 1

det⟨∇̃F̃i, ∇̃F̃j⟩

∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ ⟨∇̃F̃i, ∂xi
⟩

⟨∂t, ∇̃F̃j⟩ 0

∣∣∣∣ ,
⟨π(∂t), ∂t⟩ =

1

det⟨∇̃F̃i, ∇̃F̃j⟩

∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ ⟨∇̃F̃i, ∂t⟩
⟨∂t, ∇̃F̃j⟩ ⟨∂t, ∂t⟩

∣∣∣∣ = det⟨∇Fi,∇Fj⟩
det⟨∇̃F̃i, ∇̃F̃j⟩

,

and conclude that ξ =
det⟨∇̃F̃i,∇̃F̃j⟩
det⟨∇Fi,∇Fj⟩π(∂t) if F̃i = 0 (i = 1, . . . ,m). This shows ξF̃i = 0

whenever F̃i = 0 and ξ is defined. Now we define ξ̃ by ξ̃ = ξ if (λ, x) ̸= (0, 0); ξ̃ = ∂t if

(λ, x) = (0, 0). Let ξ̃ = ξ0∂λ +
m∑
i=1

ξi∂xi
+ ∂t. By (4.3), (4.4) and (4.5), there is a positive

constant C so that

|ξ0| ≤
1

| det⟨∇F̃i,∇F̃j⟩+ |F̃ |2m|

∣∣∣∣∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ F̃λλ
2

⟨∂t, ∇̃F̃j⟩ 0

∣∣∣∣∣∣∣∣ ≤ Cρ2km+δ|λ|
ρ2km

= Cρδ|λ|,

|ξi| ≤
1

| det⟨∇F̃i,∇F̃j⟩+ |F̃ |2m|

∣∣∣∣∣∣∣∣⟨∇̃F̃i, ∇̃F̃j⟩ F̃xi
ρ2

⟨∂t, ∇̃F̃j⟩ 0

∣∣∣∣∣∣∣∣ ≤ Cρ2km+δρ

ρ2km
= Cρ1+δ,

near (λ, x) = (0, 0). These inequalities imply the uniqueness of the flow of ξ̃. (See [4,
§2.2-4]) Thus the flow of ξ̃ yield a desired homeomorphism.

4.3 Examples of H and the Numbers of Real Semi-branches

Let b− (resp. b+) denote the number of real semi-branches of Z (in Definition 3.1) in
the region λ∗ − ε < λ ≤ λ∗ (resp. λ∗ ≤ λ < λ∗ + ε) where ε is a small positive number.

Example 4.2. When H(x, y) = y((y − ax)2 + bx2), we have (m, k) = (2, 2). and the
bifurcation model is defined by{

(λ∗ − λ)x+ y(2bx− 2a(−ax+ y)) = 0
(λ∗ − λ)y + bx2 + 2y(−ax+ y) + (−ax+ y)2 = 0

. (4.6)

The bifurcation of solutions are decided by a and b. See the left figure below. The boundary
of inner part is defined by f(a, b) = 0, where f(a, b) = 9a2 + 26a4 + 25a6 + 8a8 − 27b −
48a2b+ 14a4b+ 32a6b+ 54b2 − 47a2b2 + 48a4b2 − 36b3 + 32a2b3 + 8b4.

6
b

-
ao

1

1

Example 4.2, (b−, b+) in (a, b)-plane.

(2,2)

(4,4)

6
b

-a

Example 4.3, (b−, b+) in (a, b)-plane.

o
-1 1

-1

1

(2, 2) (4, 4)

(4, 4) (2, 2)

(4, 4)
(4, 4)

(4, 4)
(4, 4)
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Example 4.3. When H(x, y) = a(x+ y)3 + b(x+ y)xy, we have (m, k) = (2, 2), and the
number of real semi-branches of bifurcation model is decided by a and b. See the right
figure above. The lines in the figure are b = −4a, and b = −12

5
a.

Example 4.4. When H(x, y) = (ax2 + y2)(bx2 + y2), we have (m, k) = (2, 3) and the
number of real semi-branches of bifurcation model is decided by a and b. See the figure
below. The curves in the figure are b = a, b = 2− a and b = a

2a−1
.

a

b

(1, 5)

(1, 5)

(1, 5)

(1, 5)

(1, 9)

(3, 7)

(1, 9)

(3, 3)

(3, 7)

(7, 3)

(5, 5)

(5, 5)

(3, 3)

(7, 3)

6

-

Example 4.4, (b−, b+) in (a, b)-plane.

6

a

-

b

0.1 0.2 0.3

−1

(1,9) (1,9)

(1,9)

(5,5)(5,5)

(5,5)

(5,5)

(7,3)

(7,3)

(3,3) (3,3)

(3,7) (3,7)

(1,9)
(1,9)

(1,5)

(1,5)
(1,5)

(1,5)

Example 4.5, (b−, b+) in (a, b)-plane.

Example 4.5. When H1(x, y) = a′(x+y)4+b′(x+y)2xy+c′x2y2, we have (m, k) = (2, 3).
If c′ = 0, then the function H is degenerate.
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Assume that c′ ̸= 0, let H(x, y) = a(x + y)4 + b(x + y)2xy + x2y2, where a = a′

c′
,

b = b′

c′
. The number of real semi-branches of bifurcation model is decided by a and b. See

the figure above. The curves in the figure are b2 = 4a, 3b+ 8a+ 1 = 0, b = −4a, b = −1,
and 4b+ 16a+ 1 = 0.

5 The (m, k)-Bifurcation Model on [0, l1π]×· · ·× [0, lnπ]

In this section, we show closed formulas of H in Definition 3.1 for the following differential
equation on Ω = [0, l1π]× · · · × [0, lnπ],

−∆u = λu− ak(λ)u
k + o(uk), (5.1)

with one of the following boundary value condition:

• Dirichlet boundary value condition: u|∂Ω = 0,
• Neumann boundary value condition: ∂nu|∂Ω = 0.

We first present some integral calculus, which we need later. For p = (p1, . . . , pm),
a = (a1, . . . , am), set

I(p;a) =

∫ π

0

sinp1 a1t · · · sinpm amt dt, and

J(p;a) =

∫ π

0

cosp1 a1t · · · cospm amt dt.

Lemma 5.1. Setting |j| = j1 + · · ·+ jm for j = (j1, . . . , jm), we have

I(p;a) =


(−1)

|p|
2 π

2|p|

∑
j∈S(p;a)

(−1)|j|
(
p1
j1

)
· · ·

(
pm
jm

)
(|p| is even),

(−1)
|p|−1

2

2|p|−1

∑
j∈S′(p;a)

(−1)|j|
(
p1
j1

)
· · ·

(
pm
jm

)
1

⟨p− 2j,a⟩
(|p| is odd),

J(p;a) =
π

2|p|

∑
j∈S(p;a)

(
p1
j1

)
· · ·

(
pm
jm

)
,

where

S(p;a) ={j ∈ Zm : 0 ≤ ji ≤ pi, ⟨p− 2j,a⟩ = 0}, and

S ′(p;a) ={j ∈ Zm : 0 ≤ ji ≤ pi, ⟨p− 2j,a⟩ ≠ 0}.

Remark that S(p;a) is in the hyperplane containing p/2 with normal vector a.

Proof. Direct calculation.

I(p;a) =

∫ π

0

(e√−1a1t − e−
√
−1a1t

2
√
−1

)p1
· · ·

(e√−1amt − e−
√
−1amt

2
√
−1

)pm
dt

14



=

p1∑
j1=0

· · ·
pm∑

jm=0

(
p1
j1

)
· · ·

(
pm
jm

)∫ π

0

(−1)|j|e
√
−1⟨p−2j,a⟩t

(2
√
−1)|p|

dt

=

p1∑
j1=0

· · ·
pm∑

jm=0

(
p1
j1

)
· · ·

(
pm
jm

)∫ π

0

(−1)|j|
cos⟨p− 2j,a⟩t+

√
−1 sin⟨p− 2j,a⟩t

(2
√
−1)|p|

dt

When |p| is even, the real part of the integral is determined by the terms with cosine and

I(p;a) =
π

2|p|

∑
j∈S(p;a)

(−1)|j|+
|p|
2

(
p1
j1

)
· · ·

(
pm
jm

)
.

When |p| is odd, the real part of the integral is determined by the terms with sine and

I(p;a) =
∑

j∈S′(p;a)

(−1)|j|+
|p|−1

2

2|p|−1

(
p1
j1

)
· · ·

(
pm
jm

)
1

⟨p− 2j,a⟩
.

We also have

J(p;a) =

∫ π

0

(e√−1a1t + e−
√
−1a1t

2

)p1
· · ·

(e√−1amt + e−
√
−1amt

2

)pm
dt

=

p1∑
j1=0

· · ·
pm∑

jm=0

(
p1
j1

)
· · ·

(
pm
jm

)∫ π

0

e
√
−1⟨p−2j,a⟩t

2|p|
dt

=

p1∑
j1=0

· · ·
pm∑

jm=0

(
p1
j1

)
· · ·

(
pm
jm

)∫ π

0

cos⟨p− 2j,a⟩t+
√
−1 sin⟨p− 2j,a⟩t

2|p|
dt

=
π

2|p|

∑
j∈S(p;a)

(
p1
j1

)
· · ·

(
pm
jm

)
.

The proof is completed.

Lemma 5.2. The followings hold.

• If
∑

ai:even

pi ≡ 1 mod 2, then I(p;a) = 0.

• If
∑

pi ≡ 1 mod 2, then J(p;a) = 0.
• If each aj is even. then I(p;a) = I(p; a

2
), and J(p;a) = J(p; a

2
).

Proof. Since sin a(t+ π
2
) = sin at cos aπ

2
+ cos at sin aπ

2
,

I(p;a) =

∫ π/2

−π/2

sinp1 a1(t+
π

2
) · · · sinpm am(t+

π

2
) dt

=

∫ π/2

−π/2

∏
ai:even

(−1)
aipi
2 sinpi ait

∏
ai:odd

(−1)
ai−1

2 cospi ait dt.
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This is zero when
∑

ai:even

pi is odd. If each ai is even,

I(p;a) = 2

∫ π/2

0

sinp1 a1t · · · sinpm amt dt = I(p;
a

2
).

Since cos a(t+ π
2
) = cos at cos aπ

2
− sin at sin aπ

2

J(p;a) =

∫ π/2

−π/2

cosp1 a1(t+
π

2
) · · · cospm am(t+

π

2
) dt

=

∫ π/2

−π/2

∏
ai:even

(−1)
aipi
2 cospi ait

∏
ai:odd

(−1)
(ai−1)pi

2 sinpi ait dt.

This is zero when
∑

ai:odd

pi is odd. If each ai is even,

J(p;a) = 2

∫ π/2

0

cosp1 a1t · · · cospm amt dt = J(p;
a

2
).

The lemma is proved.

5.1 Closed Formulas for Bifurcation Model

To consider the bifurcation of the equation (5.1) on Ω = [0, l1π]× · · · × [0, lnπ], there are
infinite eigenvalues of the Laplacian on Ω,

λ1 < λ2 < · · · < λ∗ < . . . .

Let λ∗ be an eigenvalue with multiplicity m, that is, there are a
(i)
j ∈ R (i = 1, . . . , n,

j = 1, . . . ,m) with

λ∗ = (a
(1)
j /l1)

2 + · · ·+ (a
(n)
j /ln)

2.

• With Dirichlet boundary value conditions: a
(i)
j are positive integer.

• With Neumann boundary value conditions: a
(i)
j are non-negative integer.

Let v1, v2, . . . , vm denote all the eigenfunctions of λ∗, and w1, w2, . . . be all the eigen-
functions of λj ̸= λ∗, j = 1, 2, . . . . With Dirichlet and Neumann boundary value con-
ditions, {v1, v2, . . . , vm, w1, w2, . . . } can be chosen a trigonometric system. The trigono-
metric system is an orthonormal bases in L2 space. Then {v1, v2, . . . , vm, w1, w2, . . . } is a
Schauder bases of L2(Ω). Setting V = Ker(L − λ∗I) = span{v1, v2, . . . , vm}, and W the
closure of span{w1, w2, . . . }, we have L2(Ω) = V ⊕W .

The following two closed formulas are useful.

Lemma 5.3. We have the following closed formula for H in Definition 3.1, with Dirichlet
boundary condition: u|∂Ω = 0.

H =
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

)
l1 · · · lnI(p;a(1)) · · · I(p;a(n)).
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Proof. With Dirichlet boundary conditions, the eigenfunctions vj =
n∏

i=1

sin
a
(i)
j ti

li
are the

bases of V = Ker(−∆− λ∗I). Setting u =
m∑
j=1

xjvj, we have

H =
1

k + 1

∫ l1π

0

dt1 · · ·
∫ lnπ

0

uk+1dtn

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

) n∏
i=1

∫ liπ

0

sinp1
a
(i)
1 ti
li

· · · sinpm
a
(i)
m ti
li

dti

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

) n∏
i=1

li

∫ liπ

0

sinp1 a
(i)
1 ti · · · sinpm a(i)m ti dti

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

)
l1 · · · lnI(p;a(1)) · · · I(p;a(n)).

The lemma is proved.

Lemma 5.4. We have the following closed formula for H in Definition 3.1 with Neumann
boundary condition: ∂nu|∂Ω = 0.

H =
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

)
l1 · · · lnJ(p;a(1)) · · · J(p;a(n)).

Proof. With Neumann boundary conditions, the eigenfunctions vj =
n∏

i=1

cos
a
(i)
j ti

li
are the

bases of V = Ker(−∆− λ∗I). Setting u =
m∑
j=1

xjvj, we have

H =
1

k + 1

∫ l1π

0

dt1 · · ·
∫ lnπ

0

uk+1dtn

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

) n∏
i=1

∫ liπ

0

cosp1
a
(i)
1 ti
li

· · · cospm a
(i)
m ti
li

dti

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

) n∏
i=1

li

∫ liπ

0

cosp1 a
(i)
1 ti · · · cospm a(i)m ti dti

=
∑

|p|=k+1

xp1
1 · · · xpm

m

k + 1

(
k + 1

p1 . . . pm

)
l1 · · · lnJ(p;a(1)) · · · J(p;a(n)).

The proof is completed.

Lemma 5.5. Assume that a(i) = 2qib(i), b(i) ∈ Zm. If, for any p with |p| = k + 1, there
exist i with ⟨p, b(i)⟩ is odd, then H = 0.
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Proof. We conclude H = 0, if, for any p with |p| = k+1, there exists i with S(p;a(i)) = ∅.
If j(i) ∈ S(p;a(i)), i = 1, . . . , n, and then

⟨p− 2j(i), b(i)⟩ = 0

and ⟨p, b(i)⟩ are even.

We remark that the Neumann problem on the region [0, (l1/2
q1)π]×· · ·× [0, (ln/2

qn)π]
has the same eigenvalue λ∗ with multiplicity m, since

( b
(1)
j

l1/2q1

)2

+ · · ·+
( b

(n)
j

ln/2qn

)2

= λ∗.

5.2 Parity test

Assume that l1 = · · · = ln (i.e., the region is hypercube). Then {a(i)} has a natural
Sn-action where Sn is the symmetric group of order n. That is, for any σ ∈ Sn and j,
there is j′ with (a

(σ(1))
j , . . . , a

(σ(n))
j ) = (a

(1)
j′ , . . . , a

(n)
j′ ). Without loss of generality, we may

assume that at least one of a
(1)
1 , . . . , a

(1)
m is odd. If S(p;a(i)) (i = 1, . . . , n) are not empty,

then there is j(i) = (j
(i)
1 , . . . , j

(i)
m ) (0 ≤ ji ≤ pi) with

(p1 − 2j
(i)
1 )a

(i)
1 + · · ·+ (pm − 2j(i)m )a(i)m = 0. (5.2)

From this, we often conclude some restriction on parity of p, which we call the parity
test. Set aj = a

(1)
j (j = 1, . . . ,m) for simplicity.

Theorem 5.6. If n = 2, and k is even, then H = 0 for Neumann problem.

Let us show this theorem case by case for the multiplicity m. If m = 1, by (5.2), as
we assumed that a = a1 is odd, we have a1p1 ≡ 0 mod 2. that is ||p| = p1 is even, then
H = 0 when k is even.

Lemma 5.7. In the case (n,m) = (2, 2), if k is even, then H = 0 for Neumann problem.

Proof. Let (n,m) = (2, 2), a
(1)
2 = a2, a

(2)
2 = a1. By (5.2), we obtain that(

a1 a2
a2 a1

)(
p1
p2

)
≡ 0 mod 2.

• If (a1, a2) ≡ (1, 1) mod 2, then p1 + p2 ≡ 0 mod 2.
• If (a1, a2) ≡ (1, 0) mod 2, then p1 ≡ p2 ≡ 0 mod 2.

In each case, |p| is even. In particular, H is zero when k is even.

Lemma 5.8. In the case (n,m) = (2, 3), if k is even, then H = 0 for Neumann problem.
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Proof. Let (n,m) = (2, 3), a21 + a22 = 2a23, a1 ̸= a2. By (5.2), we obtain that

(
a1 a2 a3
a2 a1 a3

)p1
p2
p3

 ≡ 0 mod 2.

• If (a1, a2, a3) ≡ (1, 1, 1) mod 2, then p1 + p2 + p3 ≡ 0 mod 2.

In this case, |p| is even. The cases (a1, a2, a3) ≡ (1, 0, 1), (1, 1, 0), and (1, 0, 0) mod 2 are
not possible, because a21 + a22 = 2a23. In particular, H is zero when k is even.

Lemma 5.9. In the case (n,m) = (2, 4), if k is even, then H = 0 for Neumann problem.

Proof. Let (n,m) = (2, 4), a21 + a22 = a23 + a24, a1 ̸= a2, a3 ̸= a4, {a1, a2}∩ {a3, a4} = ∅. By
(5.2), we obtain that (

a1 a2 a3 a4
a2 a1 a4 a3

)p1
...
p4

 ≡ 0 mod 2.

• If (a1, a2, a3, a4) ≡ (1, 1, 1, 1) mod 2, then p1 + p2 + p3 + p4 ≡ 0 mod 2.
• If (a1, a2, a3, a4) ≡ (1, 0, 1, 0) mod 2, then p1 + p3 ≡ p2 + p4 ≡ 0 mod 2.

In each case, |p| is even. The cases (a1, a2, a3, a4) ≡ (1, 1, 1, 0), (1, 1, 0, 0) and (1, 0, 0, 0) mod
2 are not possible, because a21 + a22 = a23 + a24. In particular, H is zero when k is even.

Proof of Theorem 5.6. As the proofs of the previous lemmas, for each m, a similar dis-
cussion shows that H is zero when n = 2 and k is even.

We proceed the case n = 3 (the region is a cube), and show several conclusions of the
parity test.

Case (n,m) = (3, 3), a1 ̸= a2 = a3. By (5.2), we obtain thata1 a2 a2
a2 a1 a2
a2 a2 a1

p1
p2
p3

 ≡ 0 mod 2.

• If (a1, a2) ≡ (1, 1) mod 2, then p1 + p2 + p3 ≡ 0 mod 2.
• If (a1, a2) ≡ (1, 0) mod 2, then p1 ≡ p2 ≡ p3 ≡ 0 mod 2.
◦ If (a1, a2) ≡ (0, 1) mod 2, then p1 + p2 ≡ p2 + p3 ≡ p1 + p3 ≡ 0 mod 2, that is,
p1 ≡ p2 ≡ p3 mod 2.

In cases with •, we have |p| is even. In the case with ◦, |p| may not be even.
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Case (n,m) = (3, 6), a1, a2, a3 are distinct. By (5.2), we obtain thata1 a1 a2 a2 a3 a3
a2 a3 a1 a3 a1 a2
a3 a2 a3 a1 a2 a1


p1

...
p6

 ≡ 0 mod 2.

• If (a1, a2, a3) ≡ (1, 1, 1) mod 2, then p1 + p2 + p3 + p4 + p5 + p6 ≡ 0 mod 2.
◦ If (a1, a2, a3) ≡ (1, 1, 0) mod 2, then p1 + p3 ≡ p2 + p4 ≡ p5 + p6 mod 2.
• If (a1, a2, a3) ≡ (1, 0, 0) mod 2, then p1 + p2 ≡ p3 + p5 ≡ p4 + p6 ≡ 0 mod 2.

Example 5.10. The Neumann problem on the cube [0, π]3 has eigenvalue 2(= 12+12+02)
with multiplicity 3. When k = 2, we obtain

H =
1

3

∫ π

0

dt1

∫ π

0

dt2

∫ π

0

u3dt3 =
π3

4
xyz,

where u = x cos t1 cos t2 + y cos t1 cos t3 + z cos t2 cos t3.

Example 5.11. The Neumann problem on the rectangle with (l1, l2) = (1,
√
3) has eigen-

values 4
3
= 12 + 12

3
= 02 + 22

3
, (resp. 4 = 22 + 02

3
= 12 + 32

3
) of multiplicities 2. When

k = 2, we have

H =
1

3

∫ π

0

dt1

∫ √
3π

0

u3dt2 =

√
3π2

8
x2y

where u = x cos t1 cos
t2√
3
+ y cos 2t2√

3
(resp. x cos 2t1 + y cos t1 cos

3t2√
3
).

5.3 Two dimensional case

The description of our bifurcation model becomes more explicit when we consider rectan-
gles Ω = [0, l1π]× [0, l2π].

Lemma 5.12. With Dirichlet, Neumann boundary value conditions, all the eigenvalue of
L = −∆ on the rectangle domain Ω = [0, l1π]× [0, l2π] is simple eigenvalue, if and only if
l22
l21

is an irrational number.

Proof. Suppose that there exist non-negative integers a ̸= a′, b ̸= b′, such that λ∗ = λa,b =
λa′,b′ . Thus, we have( a

l1

)2

+
( b

l2

)2

=
(a′
l1

)2

+
(b′
l2

)2

, and
l22
l21

=
(b′ − b)2

(a− a′)2
.

This is a contradiction to l22/l
2
1 is an irrational number.

For the simple eigenvalue case, it is easy to analyze the bifurcation model (1.2). In
the rest of this section, we discuss the case that l1 = l2 = 1. In this case, most of the
eigenvalues are multiple eigenvalue. We concentrate on analyzing the bifurcation model
for m ≥ 2.
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5.3.1 Dirichlet boundary value problem

With Dirichlet boundary value conditions, the eigenvalues λa,b can be listed out by their
multiplicity m. See the following table:

Eigenvalues λa,b Eigenfunctions Multiplicity Examples
2 = 12 + 12 sin(x) sin(y) m = 1 The first eigenvalue

5 = 12 + 22
sin(x) sin(2y)
sin(2x) sin(y)

m = 2 The second eigenvalue

λa,b = 2a2 sin(ax) sin(ay) m = 1 2 = 2× 12

λa,b = a2 + b2
sin(ax) sin(by)
sin(bx) sin(ay)

m = 2
5 = 12 + 22

25 = 32 + 42

λa,b = a2 + b2

= 2a21

sin(ax) sin(by)
sin(bx) sin(ay)
sin(a1x) sin(a1y)

m = 3
50 = 12 + 72

= 2 × 52

λa,b = a2 + b2

= a21 + b21

sin(ax) sin(by)
sin(bx) sin(ay)
sin(a1x) sin(b1y)
sin(b1x) sin(a1y)

m = 4
65 = 12 + 82

= 42 + 72

Here a, ai, b, bi are positive integers with a ̸= ai ̸= aj, b ̸= bi ̸= bj (i ̸= j).

Theorem 5.13. For k = 3, and for all the eigenvalues λ∗ with multiplicity m = 2, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate and does not depend on
the choice of λ∗.

Explicitly, for the eigenvalue λ∗ = a2+b2 with multiplicity m = 2, the (2, 3)-bifurcation
models have the uniform H, where

H =
3π2

256
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2).

If a3(λ
∗) > 0 (resp. a3(λ

∗) < 0), then (b−, b+) = (1, 9) (resp. (b−, b+) = (9, 1)). The
bifurcation at the point (λ∗, 0) = (a2 + b2, 0) is plurisupercritical (resp. plurisubcritical)
bifurcation.

Proof. For the eigenvalue λ∗ = a2+ b2 with multiplicity m = 2 where a and b are positive
integers with a ̸= b, we see

H =
1

4
a3(λ

∗)

∫ π

0

∫ π

0

[x1 sin(ax) sin(by) + x2 sin(bx) sin(ay)]
4 dx dy

=
1

4
a3(λ

∗)
4∑

r=0

(
4

r

)
xr
1x

4−r
2

∫ π

0

sinr ax sin4−r bx dx

∫ π

0

sinr by sin4−r ay dy

=
1

4
a3(λ

∗)
4∑

r=0

(
4

r

)
xr
1x

4−r
2 A1rA2r,
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where A1r =
∫ π

0
sinr ax sin4−r bx dx, A2r =

∫ π

0
sinr by sin4−r ay dy.

Suppose that b ̸= 3a and a ̸= 3b, a direct calculation shows that

A14 =

[
3x

8
− sin(2ax)

4a
+

sin(4ax)

32a

]π
0

=
3π

8
,

A13 =
1

8

[
3 sin[(a− b)x]

a− b
− sin[(3a− b)x]

3a− b
− 3 sin[(a+ b)x]

a+ b
+

sin[(3a+ b)x]

3a+ b

]π
0

= 0,

A12 =
1

16

[
4x− (2 sin[2ax])

a
+

sin[2(a− b)x]

a− b
− 2 sin[2bx]

b
+

sin[2(a+ b)x]

a+ b

]π
0

=
π

4
,

A11 =
1

8

[
−sin[(a− 3b)x]

a− 3b
+

3 sin[(a− b)x]

a− b
− 3 sin[(a+ b)x]

a+ b
+

sin[(a+ 3b)x]

a+ 3b

]π
0

= 0,

A10 =

[
3x

8
− sin(2bx)

4b
+

sin(4bx)

32b

]π
0

=
3π

8
,

and A24 =
3π
8
, A23 = 0, A22 =

π
4
, A21 = 0, A20 =

3π
8
. Thus

H =
3π2

256
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2).

If b = 3a, then a similar calculation shows that

A14 =
3π

8
, A13 = −π

8
, A12 =

π

4
, A11 = 0, A10 =

3π

8

A24 =
3π

8
, A23 = 0, A22 =

π

4
, A21 = −π

8
, A20 =

3π

8
,

and we show the result. When a = 3b, we can prove the result similarly.

Remark 5.14. We may find the number of real semi-branches as consequences of Exam-
ples 4.2—4.5, when m = 2. For example, if k = 3, the H has the uniform form (Theorem
5.13)

H(x1, x2) =
3π2

256
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2) =
9π2

256
a3(λ

∗)(
4 +

√
7

3
x2
1 + x2

2)(
4−

√
7

3
x2
1 + x2

2).

This implies that (a, b) = (4+
√
7

3
, 4−

√
7

3
). By Example 4.4, if a3(λ

∗) > 0 (resp. a3(λ
∗) < 0),

then (b−, b+) = (1, 9) (resp. (b−, b+) = (9, 1)). The bifurcation on the point (λ∗, 0) is
plurisupercritical (resp. plurisubacritical ) bifurcation.

Theorem 5.15. For k = 5 and for all the eigenvalues λ∗ with multiplicity m = 2, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate. If a5(λ

∗) > 0 (resp.
a5(λ

∗) < 0), then (b−, b+) = (1, 9) (resp. (b−, b+) = (9, 1)). The bifurcation on the point
(λ∗, 0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. The eigenvalue λ∗ with multiplicity m = 2 be λ∗ = a21 + a22, see the table above.
Here a1, a2 are positive integers, a1 ̸= a2.
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If a2 = 2a1 or a1 = 2a2, then the (2, 5)-bifurcation models have the uniform H, where

H =
25

3072
a5(λ

∗)π2(x2
1 + x2

2)(2x
4
1 + 7x2

1x
2
2 + 2x4

2).

If a2 = 3a1 or a1 = 3a2, then the (2, 5)-bifurcation models have the uniform H, where

H =
5

1536
a5(λ

∗)π2(5x6
1 + 27x4

1x
2
2 + 9x3

1x
3
2 + 27x2

1x
4
2 + 5x6

2).

In the other case, the (2, 5)-bifurcation models have the uniform H, where

H =
5

1536
a5(λ

∗)π2(x2
1 + x2

2)(5x
4
1 + 22x2

1x
2
2 + 5x4

2).

The theorem is proved, by solving the bifurcation models in the three cases above.

By Theorem 5.13 and Theorem 5.15, the second eigenvalue λ∗ = 5 = 12 + 22 is a
bifurcation point when k = 3 or k = 5 with Dirichlet boundary value conditions.

Theorem 5.16. Suppose that λa,b = a2 + b2 is an eigenvalue with multiplicity m = 2. If
k is even and a · b is even, then H = 0 and the square domain is k-degenerate.

Proof. Let a = a1, b = 2b1, k = 2z, z = 1, 2, . . . , then a · b ≡ 0 mod 2. Suppose that
λa,b = a2 + b2 is an eigenvalue with multiplicity m = 2, the corresponding eigenfunctions
are

va,b = sin(a1x) sin(2b1y), vb,a = sin(2b1x) sin(a1y).

H =
1

2z + 1
a2z(λa,b)

∫ π

0

∫ π

0

(x1va,b + x2vb,a)
2z+1 dx dy

=
a2z(λa,b)

2z + 1

∫ π

0

∫ π

0

2z+1∑
r=0

(
2z + 1

r

)
xr
1x

2z+1−r
2 ·

(sin(a1x) sin(2b1y))
2z+1−r(sin(2b1x) sin(a1y))

r dx dy

=
a2z(λa,b)

2z + 1

2z+1∑
r=0

(
2z + 1

r

)
xr
1x

2z+1−r
2 A1A2,

where A1 =
∫ π

0
(sin(a1x))

2z+1−r(sin(2b1x))
r dx, A2 =

∫ π

0
(sin(2b1y))

2z+1−r(sin(a1y))
r dy.

In fact, if r is odd, then A1 = 0. If r is even, then A2 = 0.

Let r is odd, set t = x− π
2
, then 2z + 1− r is even,

A1 =

∫ π

0

(sin(a1x))
2z+1−r(sin(2b1x))

r dx

=

∫ π
2

−π
2

(sin(a1t+
a1
2
π))2z+1−r(sin(2b1t+ b1π))

r dt
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=

∫ π
2

−π
2

(sin(a1t) cos
a1
2
π) + cos(a1t) sin

a1
2
π))2z+1−r((−1)b1 sin(2b1t))

r dt

=(−1)b1r
∫ π

2

−π
2

(sin(a1t) cos
a1
2
π) + cos(a1t) sin

a1
2
π))2z+1−r(sin(2b1t))

r dt = 0.

Here (sin(a1t) cos
a1
2
π + cos(a1t) sin

a1
2
π)2z+1−r is an even function on [−π

2
, π
2
], (sin(2b1t))

r

is an odd function on [−π
2
, π
2
].

If r is even, then 2z + 1− r is odd. A similar discussion shows that A2 = 0.

That is A1A2 = 0. Thus

H =
a2z(λa,b)

2z + 1

2z+1∑
r=0

(
2z + 1

r

)
xr
1x

2z+1−r
2 A1A2 = 0.

Let us mention the polynomials H explicitly for first several cases which we do not
mention above. We remark the number (b−, b+) of semi-branches for ak(λ

∗) > 0, when
the bifurcation model is non-degenerate. Set m = 2 and λ∗ = λa,b = a2 + b2.

k (a, b) H/ak(λa,b) (b−, b+)

2 (1, 3) 16(x1 + x2)(175x
2
1 − 418x1x2 + 175x2

2)/14175 (4, 4)
2 (1, 5) 16(x1 + x2)(77x

2
1 − 102x1x2 + 77x2

2)/10395 (4, 4)
2 (3, 5) 16(x1 + x2)(1001x

2
1 + 5074x1x2 + 1001x2

2)/405405 (4, 4)

4 (1, 3) 256(x1+x2)
70945875

[21021(x41 + x42)− 119436x1x2(x
2
1 + x22) + 46766x21x

2
2] (4, 4)

4 (1, 5) 256(x1+x2)
1489508645625

[264801537(x4
1 + x4

2)− 40348412x1x2(x2
1 + x2

2)− 178745338x2
1x

2
2] (4, 4)

4 (3, 5) 256(x1+x2)
44799836956875

[2654805153(x4
1 + x4

2) + 26562147972x1x2(x2
1 + x2

2)− 4336241722x2
1x

2
2] (4, 4)

We observe that all the bifurcation above is pluritranscritical bifurcation with (b−, b+) =
(4, 4).

The smallest eigenvalue with multiplicity m = 3 is λ∗ = 50 = 12 + 72 = 2 × 52. We
mention the data for the bifurcation models in the following table.

k H/ak(λ
∗) (b−, b+)

2 1
3

(
16
63
(x3

1 + x3
2)− 112

2925
x1x2(x1 + x2)− 112

4275
(x2

1 + x2
2)x3

+39200
61347

x1x2x3) +
10000
11781

(x1 + x2)x
2
3 +

16
225

x3
3

)
(8, 8)

3 3π2

256
[3(x4

1 + x4
2 + x4

3) + 8(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)] (1, 27)

4

256
7875

(x5
1 + x5

2)− 333312
26558675

x2
1x

2
2(x1 + x2) +

87808
25193025

x1x2(x
3
1 + x3

2)
+ 87808

9734175
(x4

1 + x4
2)x3 +

1036763648
417532482675

x2
1x

2
2x3 +

4128029696
10559352375

x1x2x3(x
2
1 + x2

2)
− 768298496

3585421125
(x1 + x2)x1x2x

2
3 +

8000000
28121247

(x3
1 + x3

2)x
2
3 +

10000000000
42934740849

x1x2x
3
3

− 146944
9132825

(x2
1 + x2

2)x
3
3 +

100000000
549972423

(x1 + x2)x
4
3 +

256
28125

x5
3

(8, 8)

5 5π2

1536

(
5(x6

1 + x6
2 + x6

3) + 72x2
1x

2
2x

2
3 − 9x1x2x

3
3(x1 + x2)

+27(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)
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5.3.2 Neumann boundary value problem

With Neumann boundary value conditions, the eigenvalues λa,b can be listed out by their
multiplicity m. See the following table:

Eigenvalues λa,b Eigenfunctions Multiplicity Examples
0 = 02 + 02 1 m = 1 The first eigenvalue

1 = 02 + 12
cos(x)
cos(y)

m = 2 The second eigenvalue

λa,b = 2a2 cos(ax) cos(ay) m = 1 2 = 2× 12

λa,b = a2 + b2
cos(ax) cos(by)
cos(bx) cos(ay)

m = 2 5 = 12 + 22

λa,b = a21 + b21
= 2a22

cos(a1x) cos(b1y)
cos(b1x) cos(a1y)
cos(a2x) cos(a2y)

m = 3
50 = 12 + 72

= 2 × 52

Here a, ai, b, bi are positive integers, a ̸= ai ̸= aj, b ̸= bi ̸= bj i ̸= j.

Theorem 5.17. For k = 3 and for all the eigenvalues λ∗ with multiplicity m = 2, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate. If a3(λ

∗) > 0 (resp.
a3(λ

∗) < 0), then (b−, b+) = (1, 9) (resp. (b−, b+) = (9, 1)). The bifurcation on the point
(λ∗, 0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. Explicitly, the eigenvalue λ∗ with multiplicity m = 2 be λ∗ = a21+a22, see the table
above. Here a1, a2 are nonnegative integers, a1 ̸= a2.

If a2 = 0 or a1 = 0, then the (2, 3)-bifurcation models have the uniform H, where

H =
3

32
a3(λ

∗)π2(x4
1 + 4x2

1x
2
2 + x4

2).

In the other case, the (2, 3)-bifurcation models have the uniform H, where

H =
3

256
a3(λ

∗)π2(3x4
1 + 8x2

1x
2
2 + 3x4

2).

The theorem is proved, by solving the bifurcation models in both cases above.

Theorem 5.18. For k = 5 and for all the eigenvalues λ∗ with multiplicity m = 2, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate. If a5(λ

∗) > 0 (resp.
a5(λ

∗) < 0), then (b−, b+) = (1, 9) (resp. (b−, b+) = (9, 1)). The bifurcation on the point
(λ∗, 0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. The eigenvalue λ∗ with multiplicity m = 2 be λ∗ = a21 + a22, see the table above.
Here a1, a2 are nonnegative integers, a1 ̸= a2.

If a2 = 0 or a1 = 0, then the (2, 5)-bifurcation models have the uniform H, where

H =
5

96
a5(λ

∗)π2(x2
1 + x2

2)(x
4
1 + 8x2

1x
2
2 + x4

2).
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If a2 = 2a1 or a1 = 2a2, then the (2, 5)-bifurcation models have the uniform H, where

H =
5

3072
a5(λ

∗)π2(x2
1 + x2

2)(10x
4
1 + 53x2

1x
2
2 + 10x4

2).

If a2 = 3a1 or a1 = 3a2, then the (2, 5)-bifurcation models have the uniform H, where

H =
5

1536
a5(λ

∗)π2(5x6
1 + 27x4

1x
2
2 + 9x3

1x
3
2 + 27x2

1x
4
2 + 5x6

2).

In the other case, the (2, 5)-bifurcation models have the uniform H, where

H =
5

1536
a5(λ

∗)π2(x2
1 + x2

2)(5x
4
1 + 22x2

1x
2
2 + 5x4

2).

The theorem is proved, by solving the bifurcation models in the three cases above.

By Theorem 5.17 and Theorem 5.18, the second eigenvalue λ∗ = 1 = 12 + 02 is a
bifurcation point when k = 3 or k = 5 with Neumann boundary value conditions.

Theorem 5.19. When k is even and m = 2, then H = 0 and the square domain is
2n-degenerate for the corresponding eigenvalue.

Proof. It is clear from Lemma 5.2.

We remark the polynomial H to describe the bifurcation model in first several cases
which we do not mention above. We remark the number (b−, b+) of semi-branches for
ak(λ

∗) > 0, when the bifurcation model is non-degenerate.

The first eigenvalue with multiplicity m = 3 is λ∗ = 50 = 12 + 72 = 2× 52. We show
the polynomial H in the following table.

k H/ak(λ
∗) (b−, b+)

2 0

3 3π2

256
[3(x4

1 + x4
2 + x4

3) + 8(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)] (1, 27)

4 0

5 5π2

1536

(
5(x6

1 + x6
2 + x6

3) + 72x2
1x

2
2x

2
3 + 9x1x2(x1 + x2)x

3
3

+27(x4
1x

2
2 + x2

1x
4
2 + x4

1x
2
3 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

5.4 Three dimensional case

When the region Ω = [0, π]× [0, π]× [0, π] is three dimensional cube, we show the type of
bifurcation for the first few eigenvalues.
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5.4.1 Dirichlet boundary value problem

The eigenvalues λa,b,c can be listed out when we fix the multiplicity m. Set va,b,c =
sin(ax) sin(by) sin(cz).

Eigenvalues λa,b,c Eigenfunctions Multiplicity Example
λa,b,c = 3a21 va1,a1,a1 m = 1 3 = 3× 12

λa,b,c = 2a21 + a22 va1,a1,a2 , va1,a2,a1 , va2,a1,a1 m = 3 6 = 2× 12 + 22

λa,b,c = 2a21 + a22
= 3a23

va1,a1,a2 , va1,a2,a1 , va2,a1,a1 ,
va3,a3,a3

m = 4
27 = 2× 12 + 52

= 3× 32

λa,b,c = a21 + a22 + a23
va1,a2,a3 , va1,a3,a2 , va2,a1,a3 ,
va2,a3,a1 , va3,a1,a2 , va3,a2,a1

m = 6 14 = 12 + 22 + 32

λa,b,c = 2a21 + a22
= a21 + 2a23

va1,a1,a2 , va1,a2,a1 , va2,a1,z1,
va1,a3,a3 , va3,a1,a3 , va3,a3,a1

m = 6
51 = 2× 12 + 72

= 12 + 2× 52

λa,b,c = a21 + a22 + a23
= a21 + 2a24

va1,a2,a3 , va1,a3,a2 , va2,a1,a3 ,
va2,a3,a1 , va3,a1,a2 , va3,a2,a1 ,
va1,a4,a4 , va4,a1,a4 . va4,a4,a1

m = 9
38 = 22 + 32 + 52

= 62 + 2× 12

Here ai are positive integers, ai ̸= aj, i ̸= j.

Theorem 5.20. For k = 3 and for all the eigenvalues λ∗ with multiplicity m = 3, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate. If a3(λ

∗) > 0 (resp.
a3(λ

∗) < 0), then (b−, b+) = (1, 27) (resp. (b−, b+) = (27, 1)). The bifurcation on the
point (λ∗, 0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. On the three dimensional region, the eigenvalue λ∗ with multiplicity m = 3 be
λ∗ = 2a21 + a22, see the table above. Here a1, a2 are positive integers, a1 ̸= a2.

If a2 ̸= 3a1, then the (3, 3)-bifurcation models have the uniform H, where

H =
9π3

2048
a3(λ

∗)[3(x4
1 + x4

2 + x4
3) + 8(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)].

If a2 = 3a1, then the (3, 3)-bifurcation models have the uniform H, where

H =
3π3

2048
a3(λ

∗)[9(x4
1 + x4

2 + x4
3) + 8x1x2x3(x1 + x2 + x3) + 24(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)].

The theorem is proved, by solving the bifurcation models in both cases.

We show the data for our bifurcation model for first few cases with m = 3.
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k (a, b, c) H/ak(λa,b,c) (b−, b+)

2 (1, 1, 2) 0
2 (1, 2, 2) 8192

3375
x1x2x3 (5, 5)

2 (1, 1, 3)
64
243

(x3
1 + x3

2 + x3
3)− 128

3375
x1x2x3

− 64
175

(x1x
2
2 + x1x

2
3 + x2

1x2 + x2x
2
3 + x2

1x3 + x2
2x3)

(8, 8)

4 (1, 1, 2) 0
4 (1, 2, 2) (16777216/10418625)x1x2x3(x

2
1 + x2

2 + x2
3) (5, 5)

4 (1, 1, 3)

4096
50625

(x5
1 + x5

2 + x5
3)− 704512

4244625
x1x2x3(x

2
1 + x2

2 + x2
3)

−1384448
1157625

x1x2x3(x1x3 + x1x2 + x2x3)
− 4579328

16372125
(x2

2x
3
3 + x3

1x
2
2 + x3

1x
2
3 + x3

2x
2
3 + x2

1x
3
3 + x2

1x
3
2)

−331776
875875

(x2x
4
3 + x4

1x2 + x4
2x3 + x1x

4
2 + x1x

4
3 + x4

1x3)

(8, 8)

5 (1, 1, 2) 125
98304

π3

(
4(x6

1 + x6
2 + x6

3) + 45x2
1x

2
2x

2
3

+18(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

5 (1, 2, 2) 5
49152

π3

(
50(x6

1 + x6
2 + x6

3) + 972x2
1x

2
2x

2
3

+225(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

5 (1, 1, 3) 5π3

49152


50(x6

1 + x6
2 + x6

3) + 90(x3
1x

3
2 + x3

1x
3
3 + x3

2x
3
3)

+972x2
1x

2
2x

2
3 + 225x1x2x3(x

3
1 + x3

2 + x3
3)

+270(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x4

2x
2
3 + x2

1x
4
3 + x2

2x
4
3

+x3
1x

2
2x3 + x3

1x2x
2
3 + x2

1x
3
2x3 + x2

1x2x
3
3 + x1x

2
2x

3
3 + x1x

3
2x

2
3)

 (1, 27)

The smallest eigenvalue with multiplicity m = 6 is λ∗ = 14 = 12 + 22 + 32, and the
data for the bifurcation model are shown as follows:

k H/ak(λ
∗) (b−, b+)

2 0

3 3π3

2048


9(x41 + x42 + x43 + x44 + x45 + x46) + 16(x1x2x5x6 + x1x3x4x6 + x2x3x4x5)
+24(x21x

2
2 + x21x

2
3 + x21x

2
6 + x22x

2
4 + x22x

2
5 + x23x

2
4 + x23x

2
5 + x24x

2
6 + x25x

2
6)

+16(x2
1x

2
4 + x2

1x
2
5 + x2

2x
2
3 + x2

2x
2
6 + x2

3x
2
6 + x2

4x
2
5)

−8(x1x
2
2x6 + x2

1x2x5 + x1x
2
4x6 + x2x

2
3x5 + x3x4x

2
5 + x3x4x

2
6)

 (1, 345)

The second eigenvalue with multiplicity m = 6 is λ∗ = 21 = 12 + 22 + 42, and the
data for the bifurcation model are shown as follows:

k H/ak(λ
∗) (b−, b+)

2
−65536

99225
(x1x3x4 + x1x3x6 + x2x3x4 + x2x5x6 + x2x4x5 + x1x5x6)

− 65536
1157265

(x1x4x5 + x2x3x6)
(25, 25)

3 3π3

2048


9(x4

1 + x4
2 + x4

3 + x4
4 + x4

5 + x4
6)

+16(x1x2x3x5 + x1x2x4x6 + x3x4x5x6)
+24(x2

1x
2
2 + x2

1x
2
3 + x2

1x
2
6 + x2

2x
2
4

+x2
2x

2
5 + x2

3x
2
4 + x2

3x
2
5 + x2

4x
2
6 + x2

5x
2
6)

+16(x2
4x

2
5 + x2

1x
2
4 + x2

1x
2
5 + x2

2x
2
3 + x2

2x
2
6 + x2

3x
2
6)

 (1, 249)
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5.4.2 Neumann boundary value problem

The eigenvalues λa,b,c can be listed out when we fix the multiplicity m. Set va,b,c =
cos(ax) cos(by) cos(cz).

Eigenvalues λa,b,c Eigenfunctions Multiplicity Example
0 1 m = 1 0 = 3× 02

λa,b,c = a21 + 2× 02 va1,0,0, v0,a1,0, v0,0,a1 m = 3
1 = 12 + 2× 02

4 = 22 + 2× 02

16 = 42 + 2× 02

λa,b,c = 2× a21 + 02 va1,a1,0, va1,0,a1 , v0,a1,a1 m = 3
2 = 2× 12 + 02

8 = 2× 22 + 02

λa,b,c = 2a21 + a22 va1,a1,a2 , va1,a2,a1 va2,a1,a1 m = 3
6 = 2× 12 + 22

11 = 2× 12 + 32

Theorem 5.21. For k = 3 and for all the eigenvalues λ∗ with multiplicity m = 3, (λ∗, 0)
is a bifurcation point. The bifurcation model is non-degenerate. If a3(λ

∗) > 0 (resp.
a3(λ

∗) < 0), then (b−, b+) = (1, 27) (resp. (b−, b+) = (27, 1)). The bifurcation on the
point (λ∗, 0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. On the three dimensional region, the eigenvalue λ∗ with multiplicity m = 3 be
λ∗ = 2a21 + a22, see the table above. Here a1, a2 are non-negative integers, a1 ̸= a2.

If a1 = 0, then the (3, 3)-bifurcation models have the uniform H, where

H =
3π3

32
a3(λ

∗)(x4
1 + 4x2

1x
2
2 + 4x2

1x
2
3 + x4

2 + 4x2
2x

2
3 + x4

3).

If a2 = 0, then the (3, 3)-bifurcation models have the uniform H, where

H =
9π3

256
a3(λ

∗)(x4
1 + 4x2

1x
2
2 + 4x2

1x
2
3 + x4

2 + 4x2
2x

2
3 + x4

3).

If a2 ̸= 3a1 ̸= 0, then the (3, 3)-bifurcation models have the uniform H, where

H =
9π3

2048
a3(λ

∗)[3(x4
1 + x4

2 + x4
3) + 8(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)].

If a2 = 3a1 ̸= 0, then the (3, 3)-bifurcation models have the uniform H, where

H =
3π3

2048
a3(λ

∗)[9(x4
1 + x4

2 + x4
3) + 8x1x2x3(x1 + x2 + x3) + 24(x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)].

The theorem is proved, by solving the bifurcation models in the four cases above.

We show the data for our bifurcation model for first few cases with m = 3.
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k (a, b, c) H/ak(λa,b,c) (b−, b+)

2 (1, 0, 0) 0
2 (1, 1, 0) 1

4
π3x1x2x3 (5, 5)

2 (1, 1, 2) 1
32
π3x1x2x3 (5, 5)

4 (1, 0, 0) 0
4 (1, 1, 0) 9

32
π3x1x2x3(x

2
1 + x2

2 + x2
3) (5, 5)

4 (1, 1, 2) 3
64
π3x1x2x3(x

2
1 + x2

2 + x2
3) (5, 5)

5 (a, 0, 0) 5
96
π3

(
x6
1 + x6

2 + x6
3 + 36x2

1x
2
2x

2
3

+9(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

5 (a, a, 0) 5
1536

π3

(
5(x6

1 + x6
2 + x6

3) + 243x2
1x

2
2x

2
3

+45(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

5 (1, 1, 2) 5
98304

π3

(
100(x6

1 + x6
2 + x6

3) + 3087x2
1x

2
2x

2
3

+630(x4
1x

2
2 + x4

1x
2
3 + x2

1x
4
2 + x2

1x
4
3 + x4

2x
2
3 + x2

2x
4
3)

)
(1, 27)

We observe that H/ak(λa,b,c) do not depend on a, when (a, b, c) = (a, 0, 0) or (a, a, 0)
(a ̸= 0), and k = 5.

The smallest eigenvalue with multiplicity m = 6 is λ∗ = 5 = 12 + 22 + 02:

k H/ak(λ
∗) (b−, b+)

2 0

3 3π3

256

3(x41 + x42 + x43 + x44 + x45 + x46) + 16(x1x2x3x5 + x1x2x4x6 + x3x4x5x6)
+8(x21x

2
3 + x21x

2
4 + x21x

2
5 + x22x

2
3 + x22x

2
4 + x22x

2
6 + x23x

2
6 + x24x

2
5 + x25x

2
6)

+12(x2
1x

2
2 + x2

2x
2
5 + x2

3x
2
4 + x2

3x
2
5 + x2

1x
2
6 + x2

4x
2
6)

 (1, 297)

The second eigenvalue with multiplicity m = 6 is λ∗ = 9 = 12 + 2× 22 = 32 + 2× 02:

k H/ak(λ
∗) (b−, b+)

2 0

3 3π3

2048

 9(x4
1 + x4

2 + x4
3) + 64(x4

4 + x4
5 + x4

6) + 24(x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3)

+64(x2
1x

2
4 + x2

1x
2
5 + x2

1x
2
6 + x2

2x
2
4 + x2

2x
2
5 + x2

2x
2
6 + x2

3x
2
4 + x2

3x
2
5 + x2

3x
2
6)

+128(x1x2x4x5 + x1x3x4x6 + x2x3x5x6) + 256(x2
4x

2
5 + x2

4x
2
6 + x2

5x
2
6)

 (1, 53)

6 Symmetry creates new bifurcation

Here, we consider the following Dirichlet problem.{
−∆u = λu− a3(λ)u

3 + o(u3), in Ωt = [0, π]× [0, tπ], where t > 1,

u = 0, on ∂Ωt.
(6.1)

If t = 1+ε, then the rectangle domain Ωε converge to the square domain Ω = [0, π]×[0, π],
the eigenvalues λ1,2 = 12 + ( 2

1+ε
)2, λ2,1 = 22 + ( 1

1+ε
)2 on Ωε converge to the eigenvalue
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λ∗ = 5 on Ω, as ε → 0, where ε > 0 is small. For the bifurcation portrait, see the left of
figure 6, where v1,2 = sin(x) sin( 2

1+ε
y) is orthogonal to the vector v2,1 = sin(2x) sin( 1

1+ε
y).

The eigenvalue λ∗ = 5 is a multiple eigenvalue with multiplicity m = 2. By Theorem
5.13, the function H = 3π2

64
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2) decides a (2, 3)-bifurcation model.
Solving this model, the solution curves are

(1)

{
x1 =

4
3π

√
λ−5

a3(λ∗)

x2 = 0
, (2)

{
x1 = − 4

3π

√
λ−5

a3(λ∗)

x2 = 0
, (3)

{
x1 = 0

x2 =
4
3π

√
λ−5

a3(λ∗)

,

(4)

{
x1 = 0

x2 = − 4
3π

√
λ−5

a3(λ∗)

, (5)

 x1 =
4
π

√
λ−5

21a3(λ∗)

x2 =
4
π

√
λ−5

21a3(λ∗)

, (6)

 x1 = − 4
π

√
λ−5

21a3(λ∗)

x2 =
4
π

√
λ−5

21a3(λ∗)

,

(7)

 x1 = − 4
π

√
λ−5

21a3(λ∗)

x2 = − 4
π

√
λ−5

21a3(λ∗)

, (8)

 x1 =
4
π

√
λ−5

21a3(λ∗)

x2 = − 4
π

√
λ−5

21a3(λ∗)
6cm

, (9)

{
x1 = 0
x2 = 0

.

The bifurcation portrait see the following figure.

(a) Bifurcation portrait for rectan-
gle domain

(b) Bifurcation portrait for square
domain

Comparing the bifurcation portrait for the rectangle domain with that of the square
domain, at λ = 5, as ε → 0, there are 4 new semi-branches (5), (6), (7), (8) which are not
come from the semi-branches of the rectangle domain.

Remark 6.1. If t is a positive integer, the eigenvalue λ∗ = 5(= 12 + (2t
t
)2 = 22 + ( t

t
)2) is

the (3t − 1)-th eigenvalue with multiplicity m = 2 of L = −∆ on Ωt. By Theorem 5.13,
the H of (2, 3)-bifurcation model at the bifurcation point (5, 0) on each Ωt is

H =
3tπ2

256
a3(λ

∗)(3x4
1 + 8x2

1x
2
2 + 3x4

2).

The bifurcation is exactly the same described as above. The details are left to the readers.
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