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Abstract

The bifurcation model from the initial nonlinear term of partial differential equa-
tion is introduced. We show how these models work on the domain like rectangle
and square etc. We introduce the non-degeneracy condition which ensures the
(m, k)-bifurcation model describes the bifurcation of partial differential equation.
We observe a perturbation of rectangle to a square creates new bifurcation, which
is not a limit of the bifurcations on rectangles.
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1 Introduction

In this paper, let X, Y be Banach spaces, and let A € R, we investigate the bifurcation of
the nonlinear partial differential equation

(N u) =Lu+h(\u)—Iu=0, wueX, (1.1)

where A € R, L is a linear self-adjoint operator, and h(\,u) € C*(R x X, X), h(\,0) = 0,
L (X, 0) = 0.

We first recall the notation of a bifurcation point [1, §1]. Suppose that ® : Rx X — Y
is a continuous map. Let Sy = {z € X | ®(\,z) = 0} be the solution set of the equation
O (A, x) = 0, where A is a parameter. Assume that ®(\,0) = 0, we call (A, 0) a bifurcation
point, if for any neighborhood U of (A, 0), there exists (A, z) € U with z € Sy \ {0}.\ is
a branching point if the solution set S, contains a connected set S such that (A,0) € S

and S {(\,0)} # 0.

The main purpose of this paper is to establish the (m, k)-bifurcation model with the
initial higher order term (Definition 3.1) for the equation (1.1) at the bifurcation point
(A*,0), where \* is an eigenvalue with multiplicity m of L, ax(\)u* is the first nonzero term
of the Taylor expansion of h(A,u). If the region Q is k-non-degenerate (Definition 3.2),
we show that the bifurcation equations of Lyapunov-Schmidt reduction are equivalent to
the (m, k)-bifurcation model (Theorem 3.4).

For a simple eigenvalue A*, the bifurcation model (Remark 3.3) is described by
N =Nz +az" =0, a#0 (1.2)

and the bifurcation of solutions is decided by k£ and a. See the following figures.
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(k is even). (k is odd, a < 0). (k is odd, a > 0).

A motivation of this paper is to find a generalization of this phenomenon to the mul-
tiple eigenvalues case. The (m, k)-Bifurcation model is a weighted homogeneous system
(Remark 3.3) and it provides a way to investigate the bifurcation of nonlinear partial
differential equations on k-non-degenerate region 2. As a series of the results of our
methods, for the partial differential equation

—Au = M — ap(A\)u" + o(u*) on Q

with Dirichlet or Neumann boundary value conditions, the (2,3) and (2, 5)-bifurcation
models show the type of bifurcations for all the eigenvalues with multiplicity 2 on the
region = [0, 7] (Dirichlet problem: Theorem 5.13 and 5.15, Neumann problem: Theo-
rem 5.17 and 5.18). The (3, 3)-bifurcation model also shows the type of bifurcation for all
the eigenvalues with multiplicity 3 on the region 2 = [0, 7]* (Dirichlet problem: Theorem
5.20, Neumann problem: Theorem 5.21). We observe that all the bifurcations of these
eigenvalues are plurisupercritical (or plurisubcritical) bifurcation (Remark 3.3).

The methods presented here are mainly based on the nonlinear functional analysis
and singularity theory.

The paper is organized as follows. In section 2, we recall the inverse function the-
orem, implicit function theorem, Lyapunov-Schmidt reduction and Schauder bases. In
section 3, the (m, k)-Bifurcation model from the initial nonlinear term of partial differen-
tial equations is defined. In section 4, the equivalent conditions of k-non-degeneracy and
the main theorem are proved. In section 5, we show how our method works on the domain
like rectangle and square, etc. In section 6, when the rectangle degenerate to square, we
observe that there is a new bifurcation on square, which is not a limit of bifurcations on
rectangles.

2 Preliminary

Let us recall the following theorems first.

Inverse Function Theorem and Implicit Function Theorem. Let X,Y be Banach
spaces, u € X and let F' be a map X — Y. In the particular case that Y = R, F'is called
a function. We say that F' is differentiable at © € X along the direction v € X if there
exists " . "

L,[v] :=lim (uttv) - (u)

t—0 t




We say that F' is (Fréchet) differentiable at u € X if there exists a linear continuous
map L, : X — Y such that

Flu+v) — F(u) = Lfo] + of|lol),  as [|o] = 0.

When F is Fréchet differentiable at u € X, the map L, is uniquely determined by F' and u
and is denoted by dF'(u) or F'(u). It is easy to see that if F' is Fréchet differentiable, then
it is also differentiable along any direction. Conversely, if F' is differentiable along any
directions, L, € L(X,Y’) and the map u — L, is a continuous map from X to L(X,Y).
then F' is Fréchet differentiable. The Fréchet derivative has the same properties as the
usual differential in Euclidean spaces [2, 3].

Lemma 2.1 (Inverse Function Theorem (Theorem 3.1.1 in [3], [5])). Let P : U — V, be
a smooth map between Banach spaces, U, V are open sets of X, Y respectively. Suppose
that for some fo € U the derivative dP(fy) : X — Y is an invertible linear map. Then
we can find neighborhoods U of fo and V of gy = P(fo) such that the map P gives a
one-to-one map of U onto V, and the inverse map P~*:V CY — U C X is smooth.

Lemma 2.2 (Implicit Function Theorem (Theorem 3.2.1 in [3], [2, 5])). Let X,Y be
Banach spaces and fix (Ao, ug) € Rx X. Assume that F is a C* map from a neighborhood
of (Ao up) in R x X into Y such that F(Aog,uo) = 0 and suppose that d,F(\g,ug) is
invertible. Then there exist a neighborhood A of Ay and a neighborhood U of uy such that
the equation F(A\,u) =0 has a unique solution u = u(\) € U for all X € A. The function
u(N) is of class C*, and the following holds

W) = —[duF (Ao, o)~ drF (Mo, wo).

Lyapunov-Schmidt reduction. Consider the case that
SN\ u)=Lu+h(u)—Au=0, INeR, uelX,
where L is a linear operator, and h € C*(X,Y), h(X,0) = 0, Lh(X,0) = 0. Thus,

d, PN, 0)[v] = Lv 4+ W'(0)[v] — Xv = Lv — X*v.

If Lv — X*v # 0, by the inverse function theorem, then (A\*,0) is the unique solution of
O(\,u) = Lu+ h(u) — Au = 0. That is, (A*,0) cannot be a bifurcation point. If (A*,0) is
a bifurcation point, then A\* is an eigenvalue of L.

Let (A*,0) is a bifurcation point of the equation F'(A\,u) = 0. Set V := Ker( L — A\*I),
R := Range(L — A*I). Assume that R is closed, V has a topological complement W in
X, R has a topological complement Z in Y, then
X=VaeW, Y=7®R,
where dim Z = n. For every u € X, u can be written in the form

u=v+w, veV, wel,
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uniquely. Let P be the projection onto Z, then I — P be the conjugate projection onto
R. The equation F'(A\,u) = 0 is equivalent to

PO\, v+w) =0, (2.1)
(I — P)®(\,v+w)=0. (2.2)

The equation (2.1) is called the bifurcation equation and the equation (2.2) the auziliary
equation. By implicit function theorem, (2.2) can be uniquely solved with respect to w
locally. Denote that w = (A, v) be the solution of (2.2), substitute w = r(\,v) in (2.1),
one gets the bifurcation equation PF(A,v+7(A,v)) = 0 which determines the bifurcation
of solutions to ®(\, u) = 0.

Schauder bases. A sequence {z,} of elements of a Banach space X is said to be a

Schauder bases for X if for every x of X there is a unique sequence of numbers {a,,} such
o0

that = > a;x; in the sense that lim ||z — > a;x;]| = 0 (see [7, 9]).
i=1 n—o0 i=1

e Every orthonormal bases in a separable Hilbert spaces is a Schauder bases (see [8,
Example on the Page 134], [6, Theorem 1] ).

e Let E, F be two Banach spaces with Schauder bases {x,}, {y.}, respectively. Then
the system of all products z; ® y; is a Schauder bases of £ ® F' (see [9, Theorem
18.1)).

3 Bifurcation Model from the Initial Nonlinear Term

In this section, we are going to establish a bifurcation model for the equation (1.1).

Assume that (A*,0) is a bifurcation point of ®(\, u) = 0, that is, \* is an eigenvalue
with finite multiplicity m of L. Let v; be the bases of V' = Ker( L — A\*I) and w; be the
bases of V' = Ker( L — \;I) with eigenvalues A\; # \*, where 1 <i<m,1 < j < oo.

By Taylor expansion,
h(\u) = ag(A) + ar(N)u + as(Nu? + - - 4+ ap(MN)uF + -+,
then ag(A) = ai(A) = 0 for ~(X,0) = 0, LA(X,0) = 0. Let m be the multiplicity of A*.
Let k be the order of the least number so that ax(\) # 0.
Assume that there exists ¢ : X — R, such that v*z = ¢(vz), v* € V* = € X. The
k-form ag(A\*)v; i(mivi)k is the partial derivative of the following (k + 1)-form H by z,,

i=1

where

P(x1v) + - - + v )T
Considering the PDE:
Lu+h(z,\) = u=0 in Q, h(\u) = ax(Nu” 4 o(u”), k> 2,

with one of the following boundary condition:
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e Dirichlet boundary condition: u|sq = 0.
e Neumann boundary condition: 9,u|sq = 0.

where n denotes the (typically exterior) normal to the boundary 9, 9, is the partial
differential along the direction n.

Let Z denote the set defined by the bifurcation equation F=0inRxR™
Definition 3.1 (Bifurcation model). Set F; = (\* — N)x; + H,, (i =1,...,m) where

ar(\*
H= ]::_ )gf)(xlvl 4 T )T

1
We say the set Z defined by F; =0 (i = 1,...,m) is (m, k)-bifurcation model.

Definition 3.2 (Non-degenerate region). We say that the region €2 is k-non-degenerate
if the restriction of H to S is a Morse function, and 0 is not a critical value of the

restriction of H to S. Here S is the sphere defined by > x? =k + 1.
i=1

Remark 3.3 (Type of bifurcation portrait). When m = 1 and k is finite, the (1,k)-
bifurcation model is defined by (1.2).

The (m, k)-bifurcation model is a weighted homogeneous system with weight (k —
L1,...,1;k,..., k). There are k™ complex branches of the (m, k)-Bifurcation model. The
solution curves of (m, k)-bifurcation model (Definition 3.1) are expressed in the following
form:

t (N1, T, ) = (aot™ Y ait, ast, . .., apt).
We call the image of the interval t > 0 (ort < 0) a real semi-branch of the bifurcation

model.

(i) If k is even, then all real branches go through from the region A < \* to the region
A > \*. Several transcritical bifurcations take place at the bifurcation point (\*,0). We say
such a bifurcation pluritranscritical bifurcation (or multi-transcritical bifurcation).

See the left figure below.

e e =t
-

N
/-

* A A W A
Pluritranscritical Plurisubcritical Plurisupercritical Mixedcritical
bifurcation bifurcation bifurcation bifurcation
(k is even). (k is odd). (k is odd). (k is odd).

(ii) If k is odd, then the real branches of each solution stay in the region A < \*
or A > X*. Then one of the following types is possible as the bifurcation at (\*,0). See
the right three figures above. We call them plurisupercritical bifurcation (or multi-
supercritical bifurcation), plurisubcritical bifurcation (or multi-subcritical bifurcation),
mixed critical bifurcation, respectively.



Theorem 3.4. If the region () is k-non-degenerate, then the bifurcation equations E,=0
(1 =1,...,m) are equivalent to the (m,k)-bifurcation model F; =0 (i = 1,...,m), that
18, there is a homeomorphism germ

= (R xR, (3,0)) = (R x R™, (\",0)),
preserving the hyperplane defined by X\ = \*, with =(Z) = Z.

Remark 3.5. The use of the function H has already appeared in [1, Theorem 1],[3, Page
66]. They showed (A\*,0) is a branching point under non-degeneracy conditions. Since
we use singularity theory, we are able to conclude the bifurcation model and the type of
bifurcation portrait, which give more precise information for bifurcation.

4 The Proof of the Main Theorem

Lyapunov-Schmidt Process. Suppose that X =V @ W, where V = Ker(L — \*I) =
span{vy, vg, . .., vy}, W is the closure of span{wy,ws, ... }. We assume that the sequence
{v1, ..., Uy, w1, wa, ...} is a Schauder bases of X. For any u € X, u can be expressed as

the following
u = invi + Zijj’
i=1 j=1

where (x1,22,...2y) € R™ (y1,y2,...) € U C R*®, U is an open neighborhood of 0.
Then the equation (1.1) is written as

(I)(/\, u) = L(Z T;v; + Zijj) — )\(Z T;0; + Z ijJj) + h(/\, Z T;v; + Zijj)
i1 - i—1 - i—1 F
= Z( N)zv; + Z Nyjw; + h(A szvz + Zijj
i=1

We choose v € V* and w; € W* such that vjvs = Ois) wiwy = djt, Viw; = wiv; = 0 where

%:{ VS cjssm 1<it< o

Let px denote the projection
x X = R"xU, uw (viu,wju),

and ¢x denote the injection

tx tpx(X) = X, (x4,y;) — Zxﬂiz‘ + Zij]w



wheret=1,2,...,m, 7 =1,2,.... We have px otx and tx o px are the identities. Then
we define F' by F' = py o ® o 1x, and have the following commutative diagram

(3]

R x X — Y
lpx lpy
R x R*"x U T> R™ x R*®
The function

F\x1, .. Ty Y1y o) = (4.1)
(()\* — )\)ZEl + hph N ()\* — )\)ZL‘m + hpm, ()\1 — )\)3/1 + hql, ()\2 — )\)yg + hqg, .. )
(

has the same bifurcations at (A*,0) as those of the ®(\, u) = Lu+ h(A\, u) — Au = 0, where

hyi =07 h(A, invi + Zijj), 1 <i<m,
i=1 j

hqj :w;h(A,szvl—i—Zijj), j = 1,2,....
i=1 j

By calculation, one can find the following derivatives directly,

oF

B (p: Yq),

OF . . Oh, Ohy
8£Ei N (5pz()\ )\) * 0331 ’ 8:52 )7
OF Ohy: Ohy;
= (=285 (M — )\ 9
ayj (ay] ) (I]( J )+ ay] )7

where 1 < p < m, 1 < ¢. Since that A\* is an eigenvalue of L, \; # \*, the component
Aj — A of (4.1) is non-zero at (A*,0). By implicit function theorem, and F,(\*,0) is
invertible, there exists a unique map
w; : R x R™ = R*,
such that y; = ¢;(\, 21, 29, ..., 2y,), wWith
F(\ x1,...,xm, o1(A\, 21,29, ...,2p),...) =0.

Moreover, we have
((pj))\()‘v O) =0, (‘:Oj)xi()H 0) = 0.
Hence (A, z) = o(A — X", z), where © = (21,22, ...,ZTp).

Let F: R x R™ — R™ be a map defined by

F(}\,.’Bl, e ,.CCm) = (()\* — )\).fEl + hp1()\, Zl'ﬂ)i + Z@j()\,.%l,l’g, e ,xm)wj), ey

=1 J



(A = Nz + hpm (A, Z T0; + Z ©i( A\, 1, T2, ..., Ty W5).

=1 J

By Lyapunov-Schmidt reduction, F (A, x1,...,2,) = 0 is the bifurcation equation of
F\ 2z, .., Tm,y1,...) = 0.

4.1 A Characterization of k-non-degeneracy

The definition of k-non-degeneracy can be characterized by the following singularity con-
ditions.

Lemma 4.1. The region Q is k-non-degenerate if and only if the following conditions (i)
and (ii) hold.

(i) Any irreducible component of F; =0 (i = 1,...,n) is not in the hyperplane defined
by A = \*, that is, {\ =\, H, =---=H, =0} ={0}.

(ii) F; =0 (i = 1,...,n) defines curves with an isolated singularity at (\*,0), that is,
rank(z;, 6;j(A* — A) + Hppoy)) =m if F; =0 (i = 1,...,n) except (\*,0).

Proof. First we remark that the conditions F; = 0 (i = 1,...m) is equivalent that k(A—\*)

.....

the condition (i) is equivalent that 0 is not an eigenvalue of (H,,,,) with eigenvector x.

Next we observe that (ii) is equivalent to the following condition (ii’).

ii") k(A — \*) is an eigenvalue of (H,,, ) with an eigenvector x, and A — A\* is not an
i
eigenvalue of (H,,.; ).

In fact, if the condition (ii) does not hold and F; =0 (i = 1,...,m), then A — \* is an
eigenvalue of (H,,;). Conversely, if A — A\* is a non-zero eigenvalue of (H,,.,), then the
corresponding eigenvector y = (y1, ..., Ym) is perpendicular to x, and

(yl; RN ,ym)(JIi, 5@]<)\* — )\) + szz]) = 0.

This implies that rank(z;, 6;;(A* — X) + Hy,z;) < m and the condition (i) does not hold.

Suppose that the region (2 is k-non-degenerate. The critical points set of the restric-
m

tion of H to the sphere S defined by > 2? = k+1is ZN S, and A — \* is the value of H

i=1

there, since (k+ 1)H =Y z;H,, = (A — X*) >_ 2? on Z. We have
i=1 i=1

0 X

2, (A*_A)(Sij—i_Hzizj #0on ZNS,

and the conditions (i) and (ii) hold.



Suppose that the conditions (i) and (ii) hold. If the restriction of H to S is not a
Morse function, then rank(x;, (A\* — A)é;; + Hy,;) < m. Thus the following equation

Yo
0 l‘j . —0
Z; ()\* - )\)&j + Hxixj : o
Y

m

has a nonzero solution (yo,...,¥m) and T1y; + -+ + Ty = 0. Let v1 = Y(xq,. .., 2),
Vg, ..., Up are the eigenvectors of (H,,.;), which are perpendicular each other, and set
y="(y1,. ., Ym) = brv1 + - - - + bpvs,. We have by = 0, and

0 = yovr + [(A" = A)dij + Hupo,ly

= YoU1 —+ [()\* — )‘>5l] + szmj] Z ijj

j=1

7=1

Thus yp = 0 and bj(\* —A+X;) =0, j = 2,...,m. Since y is not zero, there exists j such
that \* — A+ \; = 0, then A — A\* is an eigenvalue of (H,,,.), which contradict to (ii'). O

i L

4.2 The Proof of Theorem 3.4

Here we present the proof of Theorem 3.4 by singularity theory.

Replacing A — A\* by A, it is enough to show the theorem assuming A\* = 0. Set
1
p=(N+ xf(k_l) +- 4+ x%k_l))ﬂk—l). Let M denote the minimum of

IO2 det((Fj)wla SRR (F])xm>2 + A2 Z det<<Fj>>\7 (Fj)ﬂhv SRR (FJ)% R (F})Im)Q

on p~!(1). By the conditions (i) and (ii), we have M > 0.

Let us consider a singular metric { , ) defined by
(AOx, ADx) = 1, (AOx, pOs,) = 0, (pOy,, pOy;) = 035, 1,7 =1,...,m. (4.2)

We remark that the gradient of f: R x R™ — R, (A, x) — f(A,x), is given by
Vf = )\2f)\8)\ + p2 Z fmﬁxl
i=1

Then we have det((VE;, VF;)) + |F|*™ > M on p~*(1), since

det(<sz’7 VFJ>) ::02m det(<Fj)117 BRI (Fj)wm)Q
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FX DY et (F)xs (Fars - (Fa - (B, ).
=1

We thus have the following inequality on p~'(1) and therefore on R x R™,
det((VF, VE) + [ > M,

because of weighted homogeneity of both sides.

Define K;(A, x) by F, = F; + K;. There is a positive constant C; and § so that
|K;| < CipF™? near 0. (4.3)

Set Fj(\,xz,t) = A\ + H,, + tK; which are functions on R x R x R". We set VE; =
VE;+ (F})0s, VE; = XN(F})20s + p> Y. (E})s,0n,. There is a positive constant C! so that
i=1

|VE;| < Clp* near 0. (4.4)

Set A\, z,t) = det(VF;, VF}) + |F[>™ and Ag(\,z) = det(VE, VE}) + |F|*™. Then
there is a function Ay (A, z,t) with A\, z,t) = Ag(\, z) + tA (N, z,t). By (4.3) and (4.4),
0 <|Ai(z,t)] < Ap(z)/2 near (A, z) = (0,0).

Ap(z) — tAg(x)/2 < Ag(x) + tA1(z,t) near (A, z) = (0,0) for t > 0,
and thus
TAo(z) < (1= 1) Ap(z) < A(z,t) mnear (A, z) = (0,0) for any ¢ € [0, 1].

Therefore we have . . )
det(VE;, VE}) + |F|*™ > Cop**™ near 0. (4.5)

Set
+ 0.

¢ 1 'Wé,jﬁj) VE
det(VE, VE;) 4 |F|2m | (9, VF;) 0

We show that £F; = 0 if Fj(z) = 0 except (A, ) = (0,0). To see this, we consider the

orthogonal projection to the tangent space of F; = 0, which is defined at its regular point,

with respect to the singular metric induced by (4.2) and the Euclidean metric of t-axis.
This is expressed by

v m(v) =

1
det(VE,V

Then we have

(m(h),0h) =

1
det(@ﬁi, 6 j>



1 . .
0,), 0p,) =————— VA ’
(0, 6z, det(VFZ-,VFJ)‘ (O, V) 0
I ) —— ‘W 5 VE) (VE0)| _ dUVE, VI
U T Aet(VELVE) | (06 VE) (0,00 | det(VE,VE;)
and conclude that £ = % (0,) if F; = 0 (i = 1,...,m). This shows £F; = 0

whenever F, = 0 and ¢ is defined. Now we define € by € = £ if (\,z) # (0,0); € = 9, if
(A, ) = (0,0). Let € = &0\ + . &0y, + 0. By (4.3), (4.4) and (4.5), there is a positive
i=1

constant C so that

1 @E)@f F )2 szkar(s A
‘€0|_ 5 ‘< ~F']> A STH:Cp(S’)\‘,
| det(VE;, VE)) +|F]>m| || (0, VE;) 0 p
P — D R
" T det(VE, VE) 4 |[F|2| || (0, VE;) 0 || 7 p*Hm ’

near (A, z) = (0,0). These inequalities imply the uniqueness of the flow of €. (See [4,
§2.2-4]) Thus the flow of £ yield a desired homeomorphism.

4.3 Examples of H and the Numbers of Real Semi-branches

Let b_ (resp. b,) denote the number of real semi-branches of Z (in Definition 3.1) in
the region A* —e < A < A* (resp.  A* < A < A* 4 ¢) where ¢ is a small positive number.

Example 4.2. When H(z,y) = y((y — ax)?® + bz?), we have (m,k) = (2,2). and the
bifurcation model is defined by

(A* = Nz + y(2bx — 2a(—ax +1y)) =0

(A= Ny + bz + 2y(—azx +y) + (—ax +y)* =0 °
The bifurcation of solutions are decided by a and b. See the left figure below. The boundary
of inner part is defined by f(a,b) = 0, where f(a,b) = 9a® + 26a* + 25a° + 8a® — 27b —
48a%b + 14a*b + 32a8b + 54b* — 47ab* + 48a*H* — 36b° + 32a?b* + 8b*.

(4.6)

b b
(4,4
(4,4)
1
(4,4) (2,2) (4,4)
1 1 1 .
o
(2,2)
1 4,4) -1 2,2
. ) (4,4) (2,2)
» (4,4

Example 4.2, (b_,b,) in (a,b)-plane.  Example 4.3, (b_,b,) in (a, b)-plane.
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Example 4.3. When H(z,y) = a(z + y)® + b(z + y)zy, we have (m, k) = (2,2), and the
number of real semi-branches of bifurcation model is decided by a and b. See the right

figure above. The lines in the figure are b= —4a, and b = —%a.

Example 4.4. When H(z,y) = (az® + y?)(bz* + y*), we have (m,k) = (2,3) and the
number of real semi-branches of bifurcation model is decided by a and b. See the figure

below. The curves in the figure are b=a, b=2—a and b = 2aa_1-

(743)

Example 4.4, (b_,b,) in (a, b)-plane.

b
(5,5) (5,5)
(5,5 (1,9)
(7,3)
TP 0.1 0.2 0.3 a
19 (1,9)
(3,3) (3,3)
(1,5)
<1,531>’5)
(3,7) (3,7)

Example 4.5, (b_,b,) in (a, b)-plane.

Example 4.5. When H,(z,y) = d'(z+y)* +V (z+y) vy +2*y?, we have (m, k) = (2,3).
If ¢ =0, then the function H is degenerate.
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Assume that ¢ # 0, let H(z,y) = a(z + y)* + b(x + y)?zy + 2%?, where a = &

b= g—: The number of real semi-branches of bifurcation model is decided by a and b. See
the figure above. The curves in the figure are b* = 4a, 3b +8a +1 =0, b = —4a, b = —1,
and 4b + 16a + 1 = 0.

5 The (m, k)-Bifurcation Model on [0, ly7] X - -+ x [0, [, 7]

In this section, we show closed formulas of H in Definition 3.1 for the following differential
equation on Q = [0, ;7] x --- x [0, 1,,7],

—Au = \u — ap(\)ur + o(u), (5.1)
with one of the following boundary value condition:

e Dirichlet boundary value condition: u|sq = 0,
e Neumann boundary value condition: 0,u|sg = 0.

We first present some integral calculus, which we need later. For p = (p1,...,pm),
a=(ay,...,a,), set

I(p;a) :/ sin”! aqt - - - sin”™ a,,t dt, and
0

J(p;a) :/ cosP ait - - - cosP™ a,,t dt.
0

Lemma 5.1. Setting |j| =71+ + Jm for 3 = (J1,. -, Jm), we have

( Ip|
1) E . m .
( 2|)p|2 & Z (_1)IJI(P1) (p ) (|p| is even),
I(p;a) = | ‘71j65(p;a) It Jm
) (_1) p2 | (p1> (pm> ]. .
DB () ———— (Ip| is odd),
\ 2lpI-1 jes%;a)( ) J1 Jm) (P — 23, a) (1w )
T P Pm
J(p' a) 2lpl Z ( . ) o ( » >
’ Ip| ’
2P Sty M1 Jm
where

S(p;a) ={j € Z™:0 < j; <p;,(p—2j,a) =0}, and
S'(p;a)={j €Z™:0<j; <p,(p—24,a) #0}.

Remark that S(p; a) is in the hyperplane containing p/2 with normal vector a.

Proof. Direct calculation.

™ eﬁalt o e—ﬁmt 1 e\/jlaynt . e—ﬁamt P
f(p;a)=/< ) ( ) dt
0 2v/—1 2v/—1
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S S (B (o) [ e

71=0 Im=0

Sy (P}) - (Pm) /0”(_1)|j| cos(p — 2j, a>7é;\—/\_/_1—_)1p|sin<17 %)t

71=0 Jm=0 ]1 ]m

When |p| is even, the real part of the integral is determined by the terms with cosine and

I(p;a) :% | $ (-1 <Z;i) <j:) _

When |p| is odd, the real part of the integral is determined by the terms with sine and

Ipia)= > %(ﬁi)”@)m'

Jjes (p;a)

We also have

T, _v/—lait —V=lait\ p vV—lamt —V=lamt\ p,,
J(p;a,):/ (e +e )1”.(6 +e ) it
0

2 2

22 () () [ =

B 0) () e,

The proof is completed. [

Lemma 5.2. The followings hold.

o If > p;=1mod 2, then I(p;a) = 0.
° Ifipi = 1 mod 2, then J(p;a) = 0.
o If each a; is even. then I(p;a) = I(p; §), and J(p;a) = J(p; 5).

Proof. Since sina(t + §) = sinat cos %4 + cos at sin %

w/2 T T
I(p;a) :/ sin! ay(t + =) - - - sin™ a,, (t + =) dt
/2 2 2
w/2 ) _
/ 1) sin? a;t H 12 cos? a;t dt.
/2 a;:even a;:odd

15



This is zero when > p; is odd. If each a; is even,

a;:even

w/2
I(p;a) = 2/ sin®t ayt - - sin”" apt dt = 1(p; %)-
0

Since cos a(t + §) = cosat cos % — sin at sin %

w/2 T T
J(p;a) :/ cosPt aq (t + 5)-~cospm am(t+§)dt

—7/2
/2 aipi (a;—=1)p;
= H (—1)72 cosP a;t H (—1) = sinP q;t dt.
—7/2 a;:even a;:odd

This is zero when Y p; is odd. If each a; is even,
a;:odd

w/2
J(p;a) = 2/ cos ayt - - - cos’™ apt dt = J(p; g)
0

The lemma is proved. 0

5.1 Closed Formulas for Bifurcation Model

To consider the bifurcation of the equation (5.1) on Q = [0, 17| x - -+ x [0, [, 7], there are
infinite eigenvalues of the Laplacian on €2,

AM <A <o <N <L

Let A* be an eigenvalue with multiplicity m, that is, there are ag-i) ER @G =1,...,n,
j=1,...,m) with

X= (@l /0?4 (@ )2
(1)

j .
e With Neumann boundary value conditions: aﬁl)

e With Dirichlet boundary value conditions: a;’ are positive integer.

are non-negative integer.

Let vy, v9, ..., v, denote all the eigenfunctions of \*, and wy, ws, ... be all the eigen-
functions of A\; # A*, j = 1,2,.... With Dirichlet and Neumann boundary value con-
ditions, {vy, v, ..., Vm, w1, Wy, ...} can be chosen a trigonometric system. The trigono-
metric system is an orthonormal bases in L? space. Then {vy,vs, ..., U, Wy, Wy, ... } is a
Schauder bases of L?(2). Setting V = Ker(L — A\*I) = span{vy,vs,...,0,}, and W the
closure of span{wy, ws, ...}, we have L?(Q2) =V @& W.

The following two closed formulas are useful.

Lemma 5.3. We have the following closed formula for H in Definition 3.1, with Dirichlet
boundary condition: ulgg = 0.

it eabm k41
H = Z M( )l1'--lnf(p;a(l))~~~](p;a(")).
Dl k+1 P1---Pm
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(l)

Proof. With Dirichlet boundary conditions, the eigenfunctions v, H sin 2" are the
bases of V' = Ker( —A — X\*[). Setting v = ) x;v;, we have
j=1
1 I Ipm k+1
dt dt,,
Tk+1 v /
= ( + ) H/ sinPt LY gippm G Y dt;
0 Li Li
|p | k+1 i=
. m [k - i 0 .
= T ( 1 )Hll/ sin” a )ti~~sin”’” aWt, dt;
b1 -
|p | k+1 =1
- P < E+1 )
- b LI (pra) - I(pral™).
|p| k1 k +1 P1---Pm
The lemma is proved. O

Lemma 5.4. We have the following closed formula for H in Definition 3.1 with Neumann
boundary condition: O,ulgn = 0.

alteeabm k41
H = M( )l...lnjp;a(l) o J(p:a™).
Iplzzkﬂ kit Pr---Pm 1 ( ) | )

( )y

Proof. With Neumann boundary conditions, the eigenfunctions v; =

bases of V' = Ker( —A — X\*I). Setting v = ) z;v;, we have

J=1

k+1 - ; Wt
+ ) H/ cosP! al - cosP™ al_ dt;

)

R A S | i e ; :
- ¥ %( .T VL [ ol cor o

Ipl=k+1 =1
P pPm k41
- Z il "fm + )ll...lnj(p; a®y. .. J(p;a™).
pl=k+1 * Pr---Pm
The proof is completed. O

Lemma 5.5. Assume that a = 24p D e 7™ If. for any p with |p| = k + 1, there
exist i with (p,b") is odd, then H = 0.
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Proof. We conclude H = 0, if, for any p with [p| = k+1, there exists ¢ with S(p;a®) = 0.
If 9 e S(p;a™), i=1,...,n, and then

(p—2§%, 6"y =0
and (p,b") are even. O

We remark that the Neumann problem on the region [0, (I3 /2% )x] x - - - x [0, ({,,/2% ) 7]
has the same eigenvalue \* with multiplicity m, since

()

bt b
(zl/J2q1>2 L <zn/]2qn>2 =N

5.2 Parity test

Assume that [; = --- = [, (i.e., the region is hypercube). Then {a(®} has a natural
S,.-action where &, ;? the symmetric group of order n. That is, for any ¢ € &,, and 7,

there is j' with (ag.g o ,ag-a("))) = (ag»,l), . ,agf)). Without loss of generality, we may

assume that at least one of agl), .. aly is odd. If S(p;a™) (i =1,...,n) are not empty,
then there is j = (jfl), . ,jﬁ?) (0 < j; < p;) with
(= 23")a” + -+ (o — 24))all = 0. (5.2)

From this, we often conclude some restriction on parity of p, which we call the parity
test. Set a; = ag-l) (j =1,...,m) for simplicity.

Theorem 5.6. If n =2, and k is even, then H =0 for Neumann problem.

Let us show this theorem case by case for the multiplicity m. If m = 1, by (5.2), as
we assumed that a = a; is odd, we have a;p; = 0 mod 2. that is ||p| = p; is even, then
H = 0 when £k is even.

Lemma 5.7. In the case (n,m) = (2,2), if k is even, then H = 0 for Neumann problem.

Proof. Let (n,m) = (2,2), agl) = ag, ag) = ay. By (5.2), we obtain that

a1 a2 P =0 mod 2
az 1 D2 ‘

e If (a1,a2) = (1,1) mod 2, then p; + po = 0 mod 2.
e If (a1,a2) = (1,0) mod 2, then p; = ps = 0 mod 2.
In each case, |p| is even. In particular, H is zero when k is even. [

Lemma 5.8. In the case (n,m) = (2,3), if k is even, then H = 0 for Neumann problem.
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Proof. Let (n,m) = (2,3), a3 + a3 = 243, a; # ay. By (5.2), we obtain that

P1
(a1 42 a?’) po | =0 mod 2.

o a1 das
D3

e If (ay,a9,a3) = (1,1,1) mod 2, then p; + ps + p3 = 0 mod 2.

In this case, |p| is even. The cases (a1, as,a3) = (1,0,1), (1,1,0), and (1,0,0) mod 2 are
not possible, because a? + a2 = 2a3. In particular, H is zero when k is even. ]

Lemma 5.9. In the case (n,m) = (2,4), if k is even, then H = 0 for Neumann problem.

Proof. Let (n,m) = (2,4), a? + a3 = a% + a3, a1 # as, az # a4, {ai,a2} N{az,as} = 0. By
(5.2), we obtain that

y41
<a1 a2 a3 a4) | =0mod 2

az a; a4 ag
D4

[ ] If (a/la ag, as, a4)

(1,1,1,1) mod 2, then p; + ps + p3s + ps = 0 mod 2.
o If (a1, as,a3,a4) = (1

1
(1,0,1,0) mod 2, then p; + p3 = pa + ps = 0 mod 2.

In each case, |p|is even. The cases (a1, as, az,a4) = (1,1,1,0), (1,1,0,0) and (1,0, 0,0) mod
2 are not possible, because af + a3 = a3 + a3. In particular, H is zero when k is even. [

Proof of Theorem 5.6. As the proofs of the previous lemmas, for each m, a similar dis-
cussion shows that H is zero when n = 2 and k is even. O

We proceed the case n = 3 (the region is a cube), and show several conclusions of the
parity test.

Case (n,m) = (3,3), a1 # az = az. By (5.2), we obtain that

ay Qaz @2 h
as a1 Q9 p2 | =0 mod 2.
az Qaz a p3
o If (ay,a2) = (1,1) mod 2, then p; + py + p3 = 0 mod 2.
e If (a1,a2) = (1,0) mod 2, then p; = ps = p3 = 0 mod 2.
oIf( 15 )E(O 1) mod 2, then p; 4+ pa = p2 + p3 = p1 + p3 = 0 mod 2, that is,
p1 = po = p3 mod 2.

In cases with e, we have |p| is even. In the case with o, |p| may not be even.
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Case (n,m) = (3,6), a1, az, az are distinct. By (5.2), we obtain that

a; ai; Gz Qg ag as h
as asz a; as a; Qs | =0mod 2.
az az az ap az a1 D

o If (a1, as,a3) = (1,1,1) mod 2, then p; + pa + p3 + ps + ps + ps = 0 mod 2.
o If (a1, az,az) = (1,1,0) mod 2, then py + p3 = py + ps = ps + ps mod 2.
o If (a1,a9,a3) = (1,0,0) mod 2, then p; + ps = p3 + p5s = ps + pg = 0 mod 2.

Example 5.10. The Neumann problem on the cube [0, w|* has eigenvalue 2(= 12412 +0?%)
with multiplicity 3. When k = 2, we obtain

1 /7r s ™ 7_‘_3
= = dtl/ dtg/ uddts = —xyz,
3 Jo 0 0 4

where u = x costy costy + Yy costy costs + z costy costs.

Example 5.11. The Neumann problem on the rectangle with (I1,15) = (1,v/3) has eigen-
values 2 = 12 + 12 =02+ 2, (resp. 4=22+% 02 =12+ %) of multiplicities 2. When

3
k = 2, we have
LY 32
H= —/ dtl/ wdty = V3 2y
3 Jo 0 8
2to

where u = x cos ty cos \[ + y cos 7 (resp. x cos2t; + ycosty cos 3t2)

5.3 Two dimensional case

The description of our bifurcation model becomes more explicit when we consider rectan-

gles Q = [0, ;7] x [0, lom].

Lemma 5.12. With Dirichlet, Neumann boundary value conditions, all the eigenvalue of
L = —A on the rectangle domain Q = [0, ly7] X [0, lo7] is simple eigenvalue, if and only if

2. . .
7 s an irrational number.
1

Proof. Suppose that there exist non-negative integers a # a', b # ', such that \* = X\, =
Ao’ - Thus, we have

a\? b\2  ,a/\?2 b2 2 (b —0b)?
—) +(—) =(+—=) +(-—), and 2 - T
<l1> (lg) <l1> (l2> l% (a—a’)2
This is a contradiction to [3/[? is an irrational number. O

For the simple eigenvalue case, it is easy to analyze the bifurcation model (1.2). In
the rest of this section, we discuss the case that [y = [ = 1. In this case, most of the
eigenvalues are multiple eigenvalue. We concentrate on analyzing the bifurcation model
for m > 2.
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5.3.1 Dirichlet boundary value problem

With Dirichlet boundary value conditions, the eigenvalues A\, ; can be listed out by their
multiplicity m. See the following table:

Eigenvalues A\, | Eigenfunctions | Multiplicity Examples
2=1"+1° sin(z) sin(y) m=1 The first eigenvalue
5 =124 22 s?n(x) Sll.l(2y) m=2 The second eigenvalue

sin(2x) sin(y)
Aap = 2a° sin(az) sin(ay) m=1 2=2x1?
IR sin(ax) sin(by) B 5=1%+ 22
Aap = a”+b sin(bx) sin(ay) m=2 25 = 32 4 42
Ny = a2 4 p2 | Snlax)sin(by) 50 = 12 + 72
“_ 92 sin(bx) sin(ay) m =3 _ 9 x 52
! sin(a;z) sin(a,y)
sin(az) sin(by)
Aap = a® + b sin(bz) sin(ay) 4 65 = 1% + 82
=a?+ b} | sin(aix)sin(by) =42+ 77
sin(byz) sin(a1y)

Here a, a;, b, b; are positive integers with a # a; # a;, b # b; # b; (i # j).

Theorem 5.13. For k = 3, and for all the eigenvalues \* with multiplicity m = 2, (A*,0)
1s a bifurcation point. The bifurcation model is non-degenerate and does not depend on

the choice of \*.
Explicitly, for the eigenvalue \* = a®+b? with multiplicity m = 2, the (2, 3)-bifurcation
models have the uniform H, where

. 3_71-2 * 4 2.2 4
H= asz(\*)(3z] + 8xiz; + 3x3).

If az(A*) > 0 (resp. az(\*) < 0), then (b_,b,)
bifurcation at the point (A\*,0)
bifurcation.

(1,9) (resp. (b_,by) = (9,1)). The
(a® + b2,0) is plurisupercritical (resp. plurisubcritical)

Proof. For the eigenvalue \* = a?+ b? with multiplicity m = 2 where a and b are positive
integers with a # b, we see

H :%lag()\*) /07r /Oﬂ[:cl sin(ax) sin(by) + x5 sin(bx) sin(ay)]* dz dy

1 /4
:Za3(A*) Z (7“) x{x%"”

r=0

1 . (4
:Zag()\*) Z (7“) zhxy " Ay, Ay,

™ ™
/ sin” ax sin®™" bx dx / sin” by sin*™" ay dy
0 0

21



T . . — T . . —
where A4, = fo sin” az sin* " br dz, Ay, = fo sin” by sin*™" ay dy.

Suppose that b # 3a and a # 3b, a direct calculation shows that

3z sin(2az) = sin(4az)]” 3w
A= |22 — -2
H [ 8 da 3 |, 8
A _ 1 [3sinf(a—b)z] sin[(3a —b)x] 3sin[(a +b)z] sin[(3a +b)x]]" 0
PR a—b 3a—b a+b 3a+b |,
1 [4z — (2sin[2azx]) = sin[2(a —b)x] 2sin[2bz] sin[2(a +b)x]]" =
Ap =— + — + = —,
16 a a—>b b a+b o 4
A _ 1] sinf(a — 3b)z] n 3sin((a —b)z]  3sin[(a +b)z]  sin[(a +3b)x]]" 0
1R a—3b a—>b a+b a+ 3b 0
3z sin(2bx) sin(4bx)]" 3w
A = |22 i
10 { s 3w |, 8
and A24 = :%r, A23 = 0, A22 = %, A21 = 0, Ago = 3% Thus
_ 3_7T2 ) (24 2 2 4
H = asz(A*)(3z] + 8xixs + 3x3).
256
If b = 3a, then a similar calculation shows that
3T 7T 7r 3T
A = R Az = 3 A = 1 A =0, Ay = 3
3T 7 T 3T
Ay = 3 Aoz =0, Agpp = R Agy = —3 Ago = R
and we show the result. When a = 3b, we can prove the result similarly. O

Remark 5.14. We may find the number of real semi-branches as consequences of Exam-
ples 4.2—4.5, when m = 2. For example, if k = 3, the H has the uniform form (Theorem
5.13)

2 9
4
H(xy,25) = ?)iag,()\*)(&l:‘l1 + 82252 4 313) = 2%6@3()\*)( +3\/7x% + 23)

4-7
256 (

3 x% —|—x§)

This implies that (a,b) = (4+T\ﬁ, %ﬁ) By Example 4.4, if az(A*) > 0 (resp. az(A\*) < 0),
then (b—,by) = (1,9) (resp. (b—,by) = (9,1)). The bifurcation on the point (A\*,0) is
plurisupercritical (resp. plurisubacritical ) bifurcation.

Theorem 5.15. For k =5 and for all the eigenvalues \* with multiplicity m = 2, (\*,0)
is a bifurcation point. The bifurcation model is non-degenerate. If as(\*) > 0 (resp.
as(\*) < 0), then (b_,by) = (1,9) (resp. (b_,by) = (9,1)). The bifurcation on the point
(A*,0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. The eigenvalue \* with multiplicity m = 2 be A\* = a? + a3, see the table above.
Here aq, ay are positive integers, a; # as.
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If ag = 2a; or a; = 2ay, then the (2, 5)-bifurcation models have the uniform H, where

25
3072

as(A°)m ($1 + 552)(2% + 7951% + 2$2)

If as = 3a; or a; = 3ag, then the (2, 5)-bifurcation models have the uniform H, where

5
1536

as(\*)m? (52§ + 27z a3 + 9aial + 2727a; + 5al).

In the other case, the (2, 5)-bifurcation models have the uniform H, where

I
1536

as(\*)m (xl + m2)(5x1 + 22:v1x2 + 5x2)

The theorem is proved, by solving the bifurcation models in the three cases above. [

By Theorem 5.13 and Theorem 5.15, the second eigenvalue \* = 5 = 12 + 2% is a
bifurcation point when k£ = 3 or k£ = 5 with Dirichlet boundary value conditions.

Theorem 5.16. Suppose that A\, = a® + b* is an eigenvalue with multiplicity m = 2. If
k is even and a - b is even, then H = 0 and the square domain is k-degenerate.

Proof. Let a = a;, b = 2by, k =22z, 2 =1,2,..., then a-b = 0 mod 2. Suppose that
Aap = a® + b? is an eigenvalue with multiplicity m = 2, the corresponding eigenfunctions
are

Vap = sin(ay ) sin(2b1y), vy, = sin(2b,z) sin(ay).

1
2Z+1a2z Na // (21Vap + T20p0) > da dy

a2z a,b QZZH 2z + 1 T.%‘QZ_H_T-
22 +1 1 i

(sm(alx) sin(2b,y))** " (sin(2b,2) sin(ayy))" dz dy

2z+41
_0/22()\(1,1)) 22 + 1 " 22-‘,—1 —r
2241 ; ( po )02 Ay,

where A, = [ (sin(ai2))?* " (sin(2012))" dz, Ay = [ (sin(2b1y))2* " (sin(a1y))" dy.
In fact, if 7 is odd, then A; = 0. If r is even, then Ay = 0.

Let r is odd, set t =z — 7, then 22 +1 —r is even,
A = / (sin(ay2)) 21" (sin(2by2))" dar
0

_ / *(sin(ant + o)) (sin (bt + byr))” de
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VB

= / (sin(ayt) cos %7‘(‘) + cos(ayt) sin %W))QZJFI_T((—l)bl sin(2b,t))" dt

s
2

=(—1)"" /2 (sin(ayt) cos %7?) + cos(a;t) sin %ﬂ))%“”"(sin(%lt))’" dt = 0.

3
Here (sin(ayt) cos % + cos(ait) sin 4m)>*T17" is an even function on [—%, 5], (sin(201t))"
is an odd functlon on [—5, 5]

If r is even, then 2z + 1 — r is odd. A similar discussion shows that A, = 0.

That is A;As = 0. Thus

+
Cl2z ab 2z+1 22+
= Ty T AL Ay = 0.
2O 3 (7

[]

Let us mention the polynomials H explicitly for first several cases which we do not
mention above. We remark the number (b_,b;) of semi-branches for ax(A*) > 0, when
the bifurcation model is non-degenerate. Set m =2 and \* = A\ = a® + b2,

k]

b) | H/ag(Nap) | (b-,by) |
3) 16(x, + 2) (17522 — 4182125 + 17523) /14175
5) 16(21 + 22) (7722 — 1022122 + 7722) /10395
5) 16(x1 + 2)(100122 + 50742125 + 100122) /405405
3)
b)
5)

(4,
(
(
01 t22) 191021 (24 + 24) — 1194362129 (22 + 22) + 467662222] (
(
(

Y

Y

Y

70945875

Taolr1tra) 1964801537 (x4 + o4) — 403484122122 (22 + 22) — 1787453382222]

256 +
TSt Ta) (2654805153 (x4 + i) + 2656214797221 20 (23 + 22) — 43362417220203)]

Y

e N DN N S

4)
)
)
)
)
)

SINENIENENE
I NN N

U

We observe that all the bifurcation above is pluritranscritical bifurcation with (b_,b;) =
(4,4).

The smallest eigenvalue with multiplicity m = 3 is \* = 50 = 12 + 7% = 2 x 52. We
mention the data for the bifurcation models in the following table.

k H/a,(\") (b, b,)
| (B - Bl el SR ey
3 +mx1x2x3) + Troag (71 + xQ)x3 + 53E 3
3 2 [3(x4 + 28 + 23) + 8(a2ad + 2223 + a3ad)) (1,27)
7as (21 + 73) — 22223%2 {25 (71 + T2) + shigae 11 72(2F + 23)
+ e (xl + .TQ).Tg + MZL‘TTQ{E;; + wxliﬂ?.ﬁg(iﬁl + l‘%)
4| " 97806 2175324820 o000 10309352578 4000000000 5 | (8,8)
mﬁfﬁéi )T + ey 0(0961 72) 5 + g T102T3
9132825 (1‘1 + x2)$3 + 549972425 (xl + x2>l‘3 T 519573
5 52 (5(3:1 + 28§ + 28) + 72232303 — 9z woxy () + xg)) (1.27)
1536 \ +27(x{ag + il + afwy + afas + ajaf + wjas) )
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5.3.2 Neumann boundary value problem

With Neumann boundary value conditions, the eigenvalues \,; can be listed out by their
multiplicity m. See the following table:

Eigenvalues A, Eigenfunctions Multiplicity Examples
0=0%+0? 1 m =1 The first eigenvalue
1=0%412 cos(x) m = The second eigenvalue

cos(y)
Aap = 2a° cos(ax) cos(ay) m = 2=2x1?
hap=a? 2 | coslaz)cos(by) m =2 5 =12 4 22
ab cos(bx) cos(ay)
o g | el T e
= 24} ! WY "= =2 x 5°
2 cos(agx) cos(asy)

Here a, a;, b, b; are positive integers, a # a; # aj, b # b; # b; i # j.

Theorem 5.17. For k = 3 and for all the eigenvalues \* with multiplicity m = 2, (A*,0)
is a bifurcation point. The bifurcation model is non-degenerate. If az(A\*) > 0 (resp.
az(A*) < 0), then (b_,by) = (1,9) (resp. (b_,by) = (9,1)). The bifurcation on the point

(A*,0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. Explicitly, the eigenvalue \* with multiplicity m = 2 be \* = a? + a2, see the table
above. Here a1, as are nonnegative integers, a; # as.

If ay = 0 or a; = 0, then the (2, 3)-bifurcation models have the uniform H, where

3
H = 3—2ag()\*)7rz(951l + 42?22 + 23).

In the other case, the (2, 3)-bifurcation models have the uniform H, where

3
H = %ag(x*)ﬁ(?)x;* + 8x7x3 + 373).
The theorem is proved, by solving the bifurcation models in both cases above. O]

Theorem 5.18. For k =5 and for all the eigenvalues \* with multiplicity m = 2, (A*,0)
is a bifurcation point. The bifurcation model is non-degenerate. If as(\*) > 0 (resp.
as(A*) < 0), then (b_,by) = (1,9) (resp. (b_,by) = (9,1)). The bifurcation on the point
(A*,0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. The eigenvalue \* with multiplicity m = 2 be A\* = a? + a3, see the table above.
Here a1, as are nonnegative integers, a; # as.
If ay = 0 or a; = 0, then the (2, 5)-bifurcation models have the uniform H, where
5

H= %CLE)()\*)’/TZ(.’E% + x%)(aff + 822 + xé)
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If ag = 2a; or a; = 2ay, then the (2, 5)-bifurcation models have the uniform H, where

5
3072

as(A\)m? (2% + 23) (1027 + 53zxT; + 1013).

If as = 3a; or a; = 3ag, then the (2, 5)-bifurcation models have the uniform H, where

5
1536

as(\*)m? (52§ + 27z a3 + 9aial + 2727a; + 5al).

In the other case, the (2, 5)-bifurcation models have the uniform H, where

5

= 536 as( A\ )2 (2% + 23) (5] + 222325 + 5a3).

The theorem is proved, by solving the bifurcation models in the three cases above. [

By Theorem 5.17 and Theorem 5.18, the second eigenvalue \* = 1 = 12 + 0% is a
bifurcation point when k£ = 3 or k = 5 with Neumann boundary value conditions.

Theorem 5.19. When k is even and m = 2, then H = 0 and the square domain is
2n-degenerate for the corresponding eigenvalue.

Proof. 1t is clear from Lemma 5.2. O

We remark the polynomial H to describe the bifurcation model in first several cases
which we do not mention above. We remark the number (b_,b,) of semi-branches for
ap(A*) > 0, when the bifurcation model is non-degenerate.

The first eigenvalue with multiplicity m = 3 is A* = 50 = 12 + 7% = 2 x 52. We show
the polynomial H in the following table.

; HJac ) G50)

2 0

3 2 [3(af + a3 + 23) + 8(aFad + aad + 3ad)] (1,27)

4 0

5 | 5r2 528 + a8 + 28) + T2xTw525 + 9r129 (21 + 29) 23 (1,27)
1536 \ +27(zizd + 2323 + xixd + 23x) + x523 + ¥373) ’

5.4 Three dimensional case

When the region 2 = [0, 7] x [0, 7] x [0, 7] is three dimensional cube, we show the type of
bifurcation for the first few eigenvalues.
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5.4.1 Dirichlet boundary value problem

The eigenvalues A\, . can be listed out when we fix the multiplicity m. Set v,p. =
sin(az) sin(by) sin(cz).

Eigenvalues Agp . Eigenfunctions Multiplicity Example
Aabe = Ba% Vay a1,a1 m=1 3=3x1?
Nape = 203 + a3 Vay.a1.a2> Var.azars Vag.ay.ar m=3 6=2x1%+22
Nape = 203 + a3 Vay,a1,as> Var,az,a1s Vas,ai,ars m— 4 27 =2 x 12 4 52
= 3a3 Vas.as.a3 - =3 x 32
)\a,b,c — a% + CL% + a% Ua17a2,a3v Ua17a3,a2v Ua27a1,a37 m =6 14 = 12 + 22 + 32

Vag,a3,a15 Vas,a1,a2y) Vas,az,a1
Nape = 203 + a3 Vay,ar,a0> Var,az,a1s Vas,ai,z1 _6 51 =2 x 12 4 72
=a? +2a3 Vayas.ass Vas.ar.ass Vas.as.a = =12 4+2x 52
)\a,b,c — CL% + CL% + a% Ua17a2,a37 Ua17a3,a27 'Ua2,a1,a37 B 38 = 22 + 32 + 52
— CL% + 2%21 'Uaz,as,alv Ua:s,al,azv Ua3,a2,a17 m=9 — 62 + % 12
/Ual,a4,a47 /Ua4,a1,a4' /0044,(1470,1

Here a; are positive integers, a; # a;, i # j.

Theorem 5.20. For k = 3 and for all the eigenvalues \* with multiplicity m = 3, (A*,0)
is a bifurcation point. The bifurcation model is non-degenerate. If az(\*) > 0 (resp.
az(A*) < 0), then (b_,by) = (1,27) (resp. (b_,by) = (27,1)). The bifurcation on the
point (N\*,0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. On the three dimensional region, the eigenvalue A\* with multiplicity m = 3 be
\* = 2a? + a3, see the table above. Here ay, ay are positive integers, a; # as.

If ay # 3ay, then the (3, 3)-bifurcation models have the uniform H, where

973
2048

as(\")[3(a] + x5 + 23) + 8(ata3 + xia] + a3a3)].

If ay = 3ay, then the (3, 3)-bifurcation models have the uniform H, where

RV &
2048

az(\)[9(z] + x5 + 73) + 8T17923(T) + 2 + 3) + 24(x T2 + 2] + 2573)).

The theorem is proved, by solving the bifurcation models in both cases. O]

We show the data for our bifurcation model for first few cases with m = 3.
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| k| (a,b,¢) | H/ar(Map,e) | (b_,by) |
2 (1,L2) 0
892
2 (1,2 2) - . %3?%%272.%‘3128 5,5
9 (1 1 3) o E($1 + Ty + $3> — ﬁxlxgxg (8 8)
’ —1—75(x1x% + 21735 + 2379 + 1973 + TIT3 + TIT3) ’
4] (L1,2) 0
111,22 (16777216/10418625) 212974 (22 + 23 + 22) (5,5)
540069265 (I? _128%;%4:_ Ig) - (1720;4561225I1I2$3<I% + J;% + I%)
— T1X9T3(X1X3 + 1T + ToXs
41(1.1.3 1157625 8. 8
(1,1,3) — 8 (o] + o + o + o + o + o) &8)
—S3L00 (x4 atay + wins + xiadt + oak + atas
R7sR7s \L2L3 T T3 2 2 3 T2
4(x8 + 2§ + 28) + 4baririas
125 3 1T Ty T T3 17273
i () M s s O e T I
50(af + 2§ + a8) + 9722723
5 3 11T Ty T T3 17273
5| (1,2,2) 191527 +225(xiad + wiad + 2325 + vivd + vixd + 2ixd) (1,27)
50(2 + 2§ + 28) + 90(xias + xias + z3a3)
2722 3, .3, .3
51 (1,1,3) | 3% M DGR Y W (1,27)
+270(z{x5 + vizs + vis + vyrs + vivs + x50
—Hvi‘x%a:g + xi”mﬂ% + x%x%xg + x%xgxg + xla:%xg + a:lx;’x%)

The smallest eigenvalue with multiplicity m = 6 is \* = 14 = 12 + 22 4+ 32, and the
data for the bifurcation model are shown as follows:

i o) (-b2)
2 0
9(x} + 25 + 73 + xf + 23 + 23) + 16(21797576 + 11737476 + ToT3T4T5)
5| s | F2AE + aiad ot + oBed b ahed + el +agad agag+afeg) || gy
2048 +16(z30? + 2222 + 2302 + 2322 + 23xk + 2ix?) ’
—8(x173x6 + TiTox5 + T1X5Te + ToiTs + X3T4XE + T334TF)

The second eigenvalue with multiplicity m = 6 is A* = 21 = 12 + 22 + 42, and the
data for the bifurcation model are shown as follows:

’f Han(V) )
2 _%(:ﬂwgu + mmﬁﬂgg;g ToX3Ty + XoT5Te + Tolyls + xlgg5x6) (25 25)

_m(ﬂfl%% + xow316) )

O(zt + g + a8 + af + a8 + a)

+16(z 1220315 + T1T0T4Te + T3T4T5T6)
B 2A(r3rs 1t 4 adad + oo (1,249)
+ada? + 2322 + 23a? + 2202 + 2223)
+16(220? + 2222 + 2202 + 2222 + 2222 + 2222)
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5.4.2 Neumann boundary value problem

The eigenvalues A\, . can be listed out when we fix the multiplicity m. Set v,p. =
cos(ax) cos(by) cos(cz).

Eigenvalues Ay p . Eigenfunctions Multiplicity Example
0 1 m=1 0=3x0?
1=124+2x0?
Aape = a; +2 % 07 Va1,0,00 V0,a1,0, V0,0,a1 m =3 4=2%24+2x0?
16 = 42 + 2 x 0?
2=2x1%240?
/\a,b,c - 2 X a% + 02 Ual,a1,07 Ual,O,CL17 UO,al,al m = 3 8 — 2 < 22 + 02
6=2x1%+2?
)‘a,b,c - 20’% + a% Vay,a1,a2) Vai,a2,a1 Vaz,a1,a1 m=3 11 =2x 12+ 32

Theorem 5.21. For k = 3 and for all the eigenvalues \* with multiplicity m = 3, (\*,0)
is a bifurcation point. The bifurcation model is non-degenerate. If az(\*) > 0 (resp.
az(A*) < 0), then (b_,by) = (1,27) (resp. (b_,by) = (27,1)). The bifurcation on the
point (X\*,0) is plurisupercritical (resp. plurisubcritical) bifurcation.

Proof. On the three dimensional region, the eigenvalue A\* with multiplicity m = 3 be
¥ = 2a% + a%, see the table above. Here a1, as are non-negative integers, a; # as.

If a; = 0, then the (3, 3)-bifurcation models have the uniform H, where

3 3
H= 3—7;a3()\*)(a:i‘ + 42223 + doiel + o) + dadad 4 13).

If ay = 0, then the (3, 3)-bifurcation models have the uniform H, where

9 3
H= gﬂﬁag()\*)(:vi‘ + 4aas + 42 xd + x5 + dvied + 13).

If ay # 3a; # 0, then the (3, 3)-bifurcation models have the uniform H, where

973

= S0\ )B(1 + @y + w5) + 8wy + alws + whaf)].

If ay = 3ay # 0, then the (3, 3)-bifurcation models have the uniform H, where

33
H= az(A)[9(x] + x5 + x3) + 8313973 (T1 + T + T3) + 24(2F 75 + 2iT] + T573)].

The theorem is proved, by solving the bifurcation models in the four cases above. [

We show the data for our bifurcation model for first few cases with m = 3.
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’ k ‘ (CL, b7 C) ‘ H/ak()‘%b,(l) ‘ (b—7 b+) ‘
21 (1,0,0) 0
2| (1,1,0) T oy (5,5)
2 (17 17 2) %W3I1I2x3 (57 5)
41(1,0,0 0
42110; 2T 1+ 23 + 13 5,5
1 5 ToT1T973(77 + 75 + 73) (5,5)
4 1(1,1,2) %W%ﬂﬁ;»,(ﬁ + z2 + 23) (5,5)
6. .6, .0 7 2.2
5 3 x] + xy + x5 + 36xTT575
= 1,2
5| (a,0,0) 967 (—1—9(95‘1%% + x‘fo% +6x%x‘216+ rirs —i-zx%?x%—i- r3rd) (1,27)
5(af + a8 + xf) + 243z x50
_5 .3 1 2 3 14243 1.2
) ) PG N o I
100(2 + 28 + x3) + 3087z x5z
119 5 3 1T Ty + 23 17573 1.9
5| (L12) | g™ <+630(x‘1*x§ + xial + 222 + 23xd + vixd + x%m%)) (1,27)

We observe that H/ag(Ayp.) do not depend on a, when (a,b,c) =

(a #0), and k = 5.

(a,0,0) or (a,a,0)

The smallest eigenvalue with multiplicity m = 6 is \* = 5 = 12 + 22 + 0%

i o) )
2 0
, 3(z] + x5 + 23 + 2] + 22 + 28) + 16(z17007375 + 11727476 + T3T4T5T6)
3 % +8(2%23 + 23223 + 232k + 2323 + 232} + 2322 + 2322 + 232k + 2223) (1,297)
+12(aff + wjes + x3w] + 2505 + e + viag)
The second eigenvalue with multiplicity m = 6is \* =9 =124+ 2 x 22 =32+ 2 x 0%
k H/ak’()‘*) (b—7b+)
2 0
(1 + x5 + x3) + 64(x; + o5 + x5) + 24(xa3 + xix] + 2373)
2.3
3 2‘3018 +64(z30] + rix + xiwd + x3x3 + x3wd + wiad + x5k + viad + xixl) (1,53)
+128(x1 29Ty s + T10374T6 + Tow3T5T6) + 256(viwd + xixk + viad)
6 Symmetry creates new bifurcation
Here, we consider the following Dirichlet problem.
—Au = M — az(A\)u® + o(u?), in Q = [0,7] x [0, 7], where t > 1,
(6.1)
u =0, on 0€);.

If t = 1+¢, then the rectangle domain 2. converge to the square domain Q = [0, 7] x [0, 7],

the eigenvalues A\jo = 1% + (

2
1+¢

)2 Agp = 2% 4 (
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A =5o0n ), as € — 0, where € > 0 is small. For the bifurcation portrait, see the left of
figure 6, where v, o = sin(x) sm(Hey) is orthogonal to the vector vy ; = sin(2x) sm(Hsy)

The eigenvalue \* = 5 is a multiple eigenvalue with multiplicity m = 2. By Theorem
5.13, the function H = ag()\*)(?)xl + 82223 + 3x3) decides a (2, 3)-bifurcation model.
Solving this model, the solutlon curves are

— 4 /A5 — A—5 z1 =0
<1>{"”1 Ve <2>{“”1 , <3>{ —

— 4
T2 = 37 az(\*)

w
[
Q
w
By
>
*
X

0
_ _ 4 A—5 _ 4 A=5
Ty =0 T1 = 70/ 3las () 1= 770/ Zas(0)
3 az(A*) T = = 21as(\*) T2 = 21ag(A*)
_ 4 A=5 4 A=5
(7) 1= =7 2laz(A*) (8) =5 21laz(A*) (9) z1 =0
_ _ 4 A=5 ’ 4 A5 @ ’ 29 =0
T2 7\ Zas ) T2 = 77/ 2Tas () O

The bifurcation portrait see the following figure.

Ul2

(#)

V2,1 (Qr)

(a) Bifurcation portrait for rectan- (b) Bifurcation portrait for square
gle domain domain

Comparing the bifurcation portrait for the rectangle domain with that of the square
domain, at A = 5, as ¢ — 0, there are 4 new semi-branches (5), (6), (7), (8) which are not
come from the semi-branches of the rectangle domain.

Remark 6.1. If ¢ is a positive integer, the eigenvalue \* = 5(= 17 + (3)? = 22 4 (£)?) is
the (3t — 1)-th eigenvalue with multiplicity m = 2 of L = —A on €. By Theorem 5.183,
the H of (2,3)-bifurcation model at the bifurcation point (5,0) on each € is

3tm?

H—
256

(A (3] + 8223 + 3x3).

The bifurcation is exactly the same described as above. The details are left to the readers.
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