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Abstract

We present a precisation of Golubitsky and Schaefer’s treatment on bifurcation
of Euler buckling problem. We discuss smoothness of the problem and derive the
equations describing bifurcation set B and hysteresis set H up to order 3, which
unable us to draw their figures approximately under suitable set-up.

Bifurcation of solutions of partial differential equations or variational problems are
one attractive field for application of singularity theory. M. Golubitsky and D. Schaefer
(2], [3]) showed how singularity theory works to investigate them.

We consider buckling of rod which is subjected to compressed force A. In 1757, L. Euler
found the critical load of this system, and it is often called Euler buckling problem. This
is actually a famous example of pitchfolk bifurcation.

One mathematical formulation of this problem is the problem minimizing the energy

1 [ u" 2 l
_ _ 2 _ — ()2
E =58+ \T, 5—2/0 {(1—1/2)1/2} ds, T_/O\/l (u')2ds
on U ={ueX:|u|s <1} where X is Sobolev space
X = {u € H?0,1] : u(0) = u(l) = 0}.

Here S is the strain energy given by the integral of the square of curvature (remark that
the curvature of the curve s — (z(s),u(s)) is \/%7), and 7' is the potential energy (the
distance between two ends of the rod). This describes buckling of the rods with pinned
ends. As the knowledge of the authors, this formulation was first appeared in [5, pages 27-
29] without using Sobolev space, and the formulation using Sobolev space was appeared

in [2, page 76].
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Figure 1: Buckling with pinned ends

We are interested in the bifurcation of the zero set of the directional derivatives:
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of directions ¢ € X which may attain extreme of the total energy E. Clearly the function,
which is identically zero, is a solution, and we often refer it as trivial solution, We are
going to discuss the bifurcation from the trivial solution. By differentiating (0.1) by the
direction v and evaluating at u = 0, we obtain

I I I
/ V"¢ ds — )\/ v'd'ds = / (V" + )¢ ds.
0 0 0

The last equality is obtained by integration by parts. So the inverse function theorem
implies there are no other solution near by the trivial solution whenever v” + Av # 0,
that is, A\ # 72n?/1?, n € Z. If A = 72n?/I?, we apply Lyapunov-Schmidt reduction, and
reduce the equation to finite dimensional set up.

M. Golubitsky and D. Schaeffer have also considered a modified version of this problem
in [2, (6.1)], namely, the problem minimizing the modified energy

T e e

on U where the first term is a modified strain energy with minimum when curvature is
constant aq, i.e., the rod is a circular arc, and the third term represents a central load
of size ay. They showed that this modified problem represents a versal unfolding of the
bifurcation equation of the original problem. To apply their criterion of versality (|2,
Lemma 4.3]), we need to ensure the equation describing the problem is smooth (C*).
Since we are in the context of a variational problem, it is not a priori clear, and proof was
not discussed in loc. cite..

We actually consider a bit general problem, the variational problem minimizing the
energy (2.1), obtained by replacing oy by ok in (0.2) where & is defined in (2.2), since we
do not have any reason to assume that a circular arc minimizes the strain energy. This
problem also has a term for modified strain energy, which has minimum at a curve with
given curvature oy k. After stating the first variational formula (Lemma 2.1), the problem
becomes to describe the change of bifurcation of the zero of the function

U xR xR — X, B, X, 00,02) = [6 = (T~ M — 0, K),, - &+ as0(L)].

See Lemma 2.1 for the definitions of ¥, A, K.
We first show that




Theorem 0.1. The function ® is smooth.

This theorem allows us to apply Lyapunov-Schmidt reduction to reduce the bifurcation
problem to that of finite dimensional set-up. This theorem enables us to discuss the values
of higher order differentials of & and we are going to apply the criterion of bifurcation
type. In the paper, we compute Taylor coefficients of F', which is defined in (5.2), and
which describes the bifurcation of ® = 0. This is an unfolding of pitchfolk bifurcation
near (z, A, ) = (0, \*,0), \* = w2n?/I?, and we show

Theorem 0.2. If n is odd, then F is p-K-versal.

Roughly speaking, this implies all nearby bifurcation of a pitchfolk bifurcation can be
realized by ® near (0, A\*,0). See Definition 7.1 for the precise definition on p-XC-versality.
Remark that M. Golubitsky and D. Schaefer showed this theorem when n =1

To describe how the pitchfolk bifurcation changes nearby the origin, we recall the
bifurcation set B and hysteresis set H, which are defined by

B ={a:3(z,\) F(z,\,a) =0, F,(z,\,a) = F\(z, A\, ) = 0}, (0.3)
H={a:3(z,\) F(z,\,a) =0, F,(z,\,a) = Fy.(z,\,a) = 0} (0.4)

in our situation. If n is odd, these sets are zeros of certain functions with the following
1-jet:

o0

4 2 7 n—1 — — . .
( 7;? Z n2n_a4z,2>oz1 + ((—1)T \/g> ay (= Flog + Fyan,  in later notation (§6)).

In Proposition 8.1, we describe their 3-jets as (8.1) and (8.2), respectively, which enables
us to draw B and H approximately near the origin. For example, k = 1/4/7/2, n = 1,
the zeros of these 3-jets look like:

T
Bifurcation

T
Bifurcation

3
Bifurcation

Hysteresis Hysteresis

Hysteresis

SE0)
-1t -1f -1
_2h -2 . -2
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a ay [o4]
(a) Length = 7 (b) Length = 27 (c) Length = 47

Figure 2: Approximations of B and H (ag = 1,a;51 =0, b; = 0)

The paper is organized as follows. In §1, we recall some basics on differentials on
functions on Sobolev space etc. In §2, we derive ® as Lemma 2.1, and show continuity
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of ®. Theorems 0.1 is proved in §3. We compute the differential coefficients of ® up to
order 3 in §4. In §5, we apply Lyapunov-Schmidt reduction in our set-up. Theorem 0.2 is
shown in §7. In §8, we show the 3-jet of certain functions which describe B and H. We
present several numerical results, which are useful to describe the figures of B and H, in
later half of §8. Lastly, we show several figures of zero of 3-jet of the above-mentioned
functions which describe B and H near 0.

The authors thank S. Machihara and Y. Sato for several discussion on estimates in
§3. This work was partly supported by JSPS KAKENHI Grant Number 26287011.

1 Preliminaries

Let X, Y, Z, ... be Banach spaces and let X*, Y*, Z*, ... be the dual spaces of X, Y,
Z, ..., respectively. We denote by X', Y’, ... the topological dual spaces of X, Y, ...,
respectively. A multi-linear map

Y X X x X —Y" (x1,...,25) = (Y= Ylr, .. 2] y)
is continuous and the image is in Y’ if there is a positive constant C' such that
[U[z1, ..z y| S Clleg||x - Nlzellx|lylly  for any 24, ..., 2, € X, and y € Y.

Let L(X x --- x X,Y”) denote the set of such linear maps. A map Z — L(X X --- X
X,Y"), z — 1, is continuous if there is a positive constant C' such that

Wz, -] = Yol ) -yl < Cllzr = 2l zllanlx - - el x[lylly

for any x1,...,2x € X,y €Y, and 21,29 € Z.

Let F|0,!] denote the set of function [0,!] — R modulo the equivalence relation gy .
Here fpy g means f and g coincide except measure zero set for a function f, g : [0,1] — R.
We consider Sobolev space W*?[0,1] = {u € F[0,1] : ||u||r, < oo} equipped with Sobolev
norm

K 1 ! 1/p
AR bis) 7. e
by = (32 (7 )17)” ||u||p={(fo'“' °) p <o

max{|u(s)| : s € [0,{]}, p= oo,

1=0

where D'u denote the ith order distributional derivatives of u. We denote by L?[0, ] for
the set {u : [0,1] = R : |Jul|, < co}. We denote by H*[0,1] for W*2|0, ], which is a Hilbert
space with the inner product

gy = 0T =
v 0, if i 7.

Lemma 1.1. (i) If 1 < p < ¢ < oo, then |[ull, < 174 ||ul|, for u € L[0,1].

(ii) If p > 1, then |Julle < Cpllull1p for w € LP[0,1] with ||u|le < oo where C, =

1

(5) % (o (1 + w2m?/12) 7).
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Proof. (i): Since q/p > 1,1 —p/q = (¢ — p)/q, we obtain that, by Holder’s inequality,

/|up\ds< /|up|Pds /1ds> o

Taking p-th roots of both sides, we obtain the result.
(ii): For u = 3""°_| YmUm, we have

5 ymum‘ <) yml = (1) 77 0 (1 + m2m2/ )5+ 72m? /1) 8 |y
m=1 m=1 m=1
< ()7 (S mimd /)y ?) (S (1w PPlynl) < Cyllully. m

m=1 m=1
Let C*[0,1] be the set of C*-functions defined on [0, {].

Remark 1.2. (i) By Sobolev embedding theorem, we have H*[0,!] C C*71[0,]. In
particular, we can choose C*~!-represetative to express an element of H*[0,].

(ii) We have a natural embedding C**1[0,1] c H*[0,1].

(ili) If w = Y07 Ymtm € C*[0,1] where u,, = —— sin ™ then |y,,| < My/m" where

\/Z/_QSID
My, = sup{[u®(s)| : s € [0,1]}.

(iv) If w is of C?-class, then ||ull = sup{|u(s)|} <>°°_, \'%”7‘2 <3< mQ% < 00.

2 Calculation of variation
We consider the problem minimizing the functional
E:UxRxR*—R, ur Eu\a), a=(a,a)

where U = {u € X : [|u/||c < 1}, defined by

E(u,)\,a):;/l<(1_(w/) 7172 — K ds—i—)\/ V1= (W)ds + au(l/2).  (2.1)

Here x is a function defined by

1 > 7S 2i7s
K=——|ag+ (a,-cos—+bl-sin )} 2.2
l /2[ 0 Z l l (2.2)

with [|k|le < 00. Since u € H?[0,1], we can choose that u is C*, and there is a constant
e1, 0 <& <1, so that |u/(s)| < 1 —e;.
We consider the directional derivatives of E at u defined by

(dE)@wxra) - ¢ = PI% %(E(u +itp, N\, ) — E(u, A\, a)).



Lemma 2.1. We obtain that

(dE)una) - ¢ = (W)u = A(A)u) - ¢ — 1 (K)u - ¢ + 29(

where

! u” ! U, U” 24/
= [ (G * = o)

l 'LL/¢,
(A)u : §Z5 :/0 md&

l i u/u/l /
K)a-0= [ s tapme * o)

Proof. (dE)quxa) -

1
2

- / (MW - ““) <<1 - @/')2)1/2),“ B A/ol (1 —ug)?)

. u// ¢,, u/u//¢/
:/o <W B “1“) (=t * = )
1 u'd l
— )\/0 mds+a2¢(§)
l u” ¢// ( //) gb’ ! Ulgb/
:/0<1—(U')2+(1_( ) A/o =i

l ¢// ulu/l¢/
- 0‘1/0 “((1 — (w)2)12 T (1— (u/)2)3/2)d5 + ag(3)
=((V)u = AMA)u) - & — a1 (K)u - ¢ + a2e(5).
Consider the map ® = dE : X x R x R? — X* defined by

(U, )\, CL/) — [¢ — (dE>(u,>\,a) . ¢]
We first show
Lemma 2.2. The image of ® is in X'.

Proof. Since

Vool < [ (Iesa 41l )as

<l = ool 1+l = <u>2>2|| ICOR T
< a6 ot o 1 e
oo < [ lettilis < e 1/2|| /]
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l
|(K)u ) ¢| S/O <‘ (1,(2?)2)1/2‘ + |(1i1(Lu1/L)2(§>3/2 |>d5
=l + |t ol

< i 6+ (e [ e 25)
16(1/2)] <||9lloe < Call@|l12  (since ¢ can be choosen continuously), (2.6)

there is a positive constant C' (may depend on u) such that

|Pura) - @] < Cl9]l2,2- O

Remark that a function is locally Lipschitz continuous if it is C!. So the result in the
following section implies @ is locally Lipschitz continuous.

3 Smoothness of ¢
In this section, we show the following
Theorem 3.1. ¢ is C*°.

We first discuss several estimate before the proof of this theorem. First set

Az) = (1 - x2)_%i a;x',  where a; € R. (3.1)
i=0

We also set |A|(z) = (1 —22)" 23" |as]a’,
Lemma 3.2. If |[u/|| < e <1, then [|[A(v)] < |A|(e).

Proof. The estimate is obtained by

T-Z_ a; €i
2ol 4o, 0

Ao <
A e o

1
<|i—wr

d o, '

> lail [ull5 <
=1
Lemma 3.3. If |[u}]| < e <1 fori=1,2, then ||A(u]) — A(u))]| < C(A,e)||t) — th|0o

where A
c%@:%{ S ()25 e

(1 - €2> s:2s<max{%,k}

Proof. Since ||A(u}) — A(ub)]| s

= Z sl (1 = (uh)?) % () — (1 — (UQ)Q)%(ué)iHOOH 1— 1-“/1)2 jo 1— :EUIQ)Q jo
< 1l [ () ) () = ()] _ =z




the following estimate gives the result.

HZ £) 100 ()™ = ()™ ()] <Z| ) ()™ = () () |
= 1)) () = (uh)* () Hoo+Z} (2 ) () (us)® — () (uh)[loe
25<i 25>1
= 1) Mt 2012 = ()™ [loo + sl Y (2 )M (wh)* ™ = (w5)* oo
25<1 25>1
=|lui — quoo{Zl (O llZlusliZ > lludlBllubllL
25<14 pt+q=i—2s—1
+ [l llualli Y1 (2)] [ [ [ 1%
S
25>1 p+q=2s5—i—1
—HU1 u2HOO{Z| % i 25— 1+5212‘ g g25—i— 11
25<1 25>1
S||ua—ug||ooe"[2}<§) G =290+ > | (% e ]
25<1 25>1
< — uh|ace? g z—2s g2ty $)|(2s — et 4 (25 —)e25 1
1 U 2 2
25<1 st l<23<d 25>1,25>d
: 2
snu’l—ugumel[ 2. M(§)l12s—ile +ﬁ]
s:2s<max{i,d}
For the last inequality, we use the following inequality:
Ei(1+€2) -, dd 7
Z (25 B i)€2371 _ (12;1222 (Z 10 ) < L” 0
peimend e (i : even) (1—¢2)

We condsider a k-linear form X x ---x X — R, (vq,...,vx) = I(u)[vy, ..., v;], defined
by

l ' '
I(w)[vr, ... v = / A(u') (U”)j?}gu) .. "U,(:k)ds
0

where A(z) is given by (3.1), and iy,...,9 = 1,2.
Lemma 3.4. If j+ 11+ -+ i < k+ 2, then there is a positive constant C' such that

(L) [or - vl | < CIAW) oo llullallvrlloz - - [For]|22- (3-2)

Proof. 1f i1,i5 = 1,2, then

‘/ BT L fods| IRV AW f - £l



<A A2 A £ Filloe

<IA A2 Nl A ool flloo -+ 1 £l
<CE2| AVl A2 A oo 3llrz - L Fill 2
<C5 AW ol fill2z - - Nl fill22-

If j4+i1 4+ +ix < k+ 2, then the number #{a : i, = 2} is at most 2 — j, and we
complete the proof by the estimate above. O

Remark 3.5. Set B(z) = z/. Since D,(A(v')B(u")) = A,[v'|B(u") + A(«')B.[v"], we
obtain that

L(uw)[ve, ... v, 0] = %%%(I(u + to)[vr, ... vk — T(w)[vg, ..., vg))

is a (k + 1)-linear form, which is a linear combination of integrals of the type

l -/ 7:/ .
/ A(u')(u")jlvgzl) . -U,i Byl gs (' iyt = 1,2)
0

with j' + ) 4+ -+ + 4, + 1}, < k+ 3, whenever j + iy +--- + 14 < k+ 2. We thus obtain
that
[T (u)[vr, - oo, 0] < Cllorllag - - - vk ll2zl[v]l22

where C' is a constant (depending on only u), by Lemma 3.4.
Lemma 3.6. If j+1i1 +---+ix < k+ 2, then

[ (un)[ve, - o] = I(ug)[vr, - o]l < Clluy — uallagllorflze - - [[orl|22
for some constant C' which may depend on uy, uy only.

Proof. 1If j = 2, then we can assume that iy = --- =4, = 1, and we obtain

LHS%A(MWU—Awmw&%hM%m%f—u@ﬂwa~¢¢

[
SA ([A(}) — A + Al (ol — ) (udl + )0, -~ o |ds
<CH(VA@S) — A@))lloolluzlZa + [AG) o llus — wallazllun + sllzo)llon oz - v s,

by Lemma 3.4. So the result follows by Lemmas 3.2 and 3.3.
If j =1, then we can assume that i = --- =i, = 1, and we obtain

l .
LHS =] [ ([A(u) ~ Al + A3 o} — o)+ vy
0

<C3 7 (I A®) — Aup) oo lluallzz + 1A loollur — uzlla2)lvrllaz - vz,

by Lemma 3.4. So the result follows by Lemmas 3.2 and 3.3.
If 5 =0, then we can assume that i3 = --- =4, = 1, and we obtain

l . .
LHS = [ () = A(w)of" - ofVds| < CE2AGE) — Aol el
0
by Lemma 3.4. So the result follows by Lemma 3.3. O
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Proof of Theorem 3.1. As in Remark 3.5, we see that the k-th order differential of ® by
u is of the form

& (U)u[vr, . ] - 6 = / Z Z AV ) e - gl ds

J=0 %1, ig41=1

where AY; . (u) are of the form (3.1) so that j 4 iy 4 - + i + ik < k+3. As

Lemma 3.6, this is continuous.
The continuity of the higher order differentials of ® containing differentiations by one
of A\, a1, ap can be shown similarly and we omit the details. O

Remark 3.7. In Lemma 3.4, it is important to assume that 7+, +--- 4+ < k+2. We
do not know that (3.2) holds true when j 4 i; + -+ - + i, > k + 2, despite of the fact that
the inequality changing || - ||22 by || - ||3.2 holds true.

4 Taylor coefficients of ©

From now on, we denote by (Vy), the k-th order differential coefficient of (V¥), at wu,
and by W, the k-th order differential of ® at u = 0. We denote by (Ly), the k-th order
differential coefficient of (L), at u, and by Ly the k-th order differential of L at u = 0,
and so on.

Lemma 4.1. Set (L), = (V), — AM(A)y. The first derivative of (L), at u =0 is given by

!
v ¢ = /0 (V" + \v)¢"ds.

Proof.

Ly[v] - ¢ =(9q[v] — A [v]) - 9 = /U" "ds — /v¢d$

_ /0 s - [w] /0 v ds = /0 (o ) ds, 0

Set uy, = y/2/lsin(mms/l) and u}, is an element in X* defined by u},(u;) = 6;;. If
N =n?72 /1%, then

Lemma 4.2. When k = [ag + > 52, (a; cos(2ims /1) + b sin(2iws/1))], we have

NUE
[Z Z m azlzg m T Z m bm/2u i| Kl[ua] =0 and

m: odd i= 0 m: even
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KQ[UW Ub] _ alz;.r?) Z(az Z m( Z (51a + €2b + m)24i2>u:1

2 __
0 mZatbh(2) S (61& + Egb + m)

+ b; Z ezi(e1a + €20 + 2€3i>u:1a+€2b+2€3i>'

€1,62,63=%1

Proof. For K, we have

oo

K z:1(/0l ,.w’r’ndg) . Z(/Ol ap+ > ool cos(2i7r;/2l) + b; Sin(2i7rs/l)]u;,nd8>u;
[Z Z s+ > ]

We remark that the second order differential of K at u = 0 is given by Ks[v, vy :
O f(f (vjvhe" + (vivl + v{vh)¢')ds, that is,

l
Kalon, ] =0 ([ slotugad + 0tof + o)) ),
0

m

This 1mphes that, if Kk = \/7 then Kslug, up] = —8“11’—5”3 matb(2) MU

2
if w="_L1L , then
v/ l/

l 2157r

oS
Ko ug, up] = Z( \/_ (ulugull, 4+ (uluy + uluy)u %)ds)u:n

b b
:aQ; ( Z (=1)++m 1), €1a + €20 +m )u:n

c1a-+eabi ZegitmA0 £1a + 62b + 2537: +m
abw g1a+esb+m
Z m( Z 14 + €90 + ! )U:n
et H(®) e 510 + g9b + 2e31 +m
ab7r (e1a+e3b+m 2
> o X ey,
o2 it (10 + e2b + m)? — 4i
and if k = 22 o then
V2
! Sln 21;” ! ! n ! 1 1/} ! *
K ug, up) :Z \ i3 (uguytty, + (uquy + uyw, )iy, )ds Jur,
abrm3
=B Z esm(era + e2b + mu;,
er1a+eob+2e3i+m=0
abm3
=— <5 Z e3(e1a + e2b + 2e37) 200" _ .y oo
e1a+eob+2e3i+m=0
abm?® ) .
== 15 Z 832(51@ + 20 + 2€3Z)u€1a+52b+253i' u

€1,2,63==+1
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Since Ko[up, u,] =), uk, fol K [uhubul, + (upul + wiw )ul, | ds, we have

I I
AN /) A/ n, ! !/ 1N\2, I
Kty uy] - uy, :/ K [ununun + (u,u,, + unun)un] ds = 3/ K(u,,)u, ds
0 0

373 0o 8n(3n2—44?) ] .
_ )T iz rmamy ety %o 1 odd,
- 3ntrt .
—T(bn/g + bgn/g), n . even.

Lemma 4.3. The second derivative of (L), is

" 1, Il

l
(Lo)y[vi,vo]-¢ = / [2u'vhv] ¢ +2u” ¢ vhu] +2u'v vl ¢ + 20" v vh ¢ + 2050 ¢ U + 2u Vv ¢ Nds.
0

So, setting u = 0, we obtain Ls[vy,vs] - ¢ = 0.

For the third order differential coefficient L3 of L at u = 0, we have

LS[U17U27U3] = Z

m

l 1,0 1o / ", 1
/ 2(v{vyvs + vivivs + vivhod ul ds |
", 1",/ ", .01 VAN /) !0, / m”*
0 +(2(vivyvs + vivyus + vivgvs) — 3Avivyus)uy,

Lemma 4.4. We have
ben?m® 3
L3[ua; ub7uc] CUp = ﬂ Z |:1 — 771 + abcn€1€2£3 (% + E—b2 + §>:|

7 c
e1a+eabtesc=n

where ¢; = +1,1=1,2,3.

Proof. Computing several integrals, we have

aben?m®
LS[Uaa Ubauc] * Up, :22—17#{(81, 52753) c {_1’ 1}3 eja+ €2b ¥ oege = n}
a’b’*ccnr® c e e
- 22—l7 Z 515253(; + 3 + ?)
(€1,62,63):e1a+e2btezc=n
,abenm®
— 3 e #{(51,82,63) :51a+52b+5302n}
aben?*7®(2 — 3n
- 2l(7 )#{(51,52753) 610+ e3b + e3¢ = n}
2070 c*n’r €1 €2 €3
* T Z 615253(; + D + ?)

e1a+eabtesc=n
aben?m® 3n €1 €9 €3
:l—7 Z |:1 — 7 + (lbcn€1€2€3 (Z + ? + z) . ]

e1a+eab+tezc=n

Lemma 4.5. We have PLs[uy,, u,,v] = ?m;;—;rﬁ(un + Jugy,) - v.

12



Proof. PLs[tp, up,v]
!
_/ [2( / // _|_ 2ul " /)u + (2( " //U + 2ul " //) . SA*u;lu;LU/)u;L]dS
0

1
3 / 2 Pull” + (20, () — X*(ul)*))ds

6nSo 6n57° LONTT
:T(U»ﬂ + 9u3n) - U+ 7(1%1 — 3U3n) -0 — 3\ 2[5

3 6,6
:%(un + ug,) - v. O

(Up + usp) - v

5 Lyapunov-Schmidt reduction

When \* = (n7/1)?, u, = \/2/lsin(nws/l) is a non-zero function which generates the
kernel of L; = Wy — A*A;. Thus the orthogonal projection of X’ to Ker Ly is

P: X —X, u»—><u’—un>2un, and Q: X — X, u~—u— P(u),

<un7 un>2

is the orthogonal projection of X’ to (Ker L;)*, the orthogonal complement to Ker L.
The equation ®(u, A, «) = 0 is equivalent that

Po(u, A\, a) =0, and QP(u, A\, a) = 0.
Observe that the differential map (Ker L;)* — (Ker L;)*, v — D,Q®, at (0,\*,0) is
given by
!
v [gb > / (v + )\*U)qb"ds],
0

which is an isomorphism. By implicit function theorem [1, 2.5.7], the later equation
defines a function

W:RxRxR? = (Ker L)) C X, (x, A\, @) = W(x, A\ )

by
QP(xu, + W(z, A\, a),\,a) =0 near (0,\",0). (5.1)

Lyapunov-Schmidt reduction says that the bifurcation of zero of ®(u, A, ) is described
by the zero of F(x,\, &) where

F(z,\, o) = PO(zu, + W(z, A\, a),\, a). (5.2)

5.1 The first order derivatives of W

Lemma 5.1. The differential coefficients of W at (0, \*,0) are given as follows: W, = 0,
Wy =0,

_ 12 . m/2
Wy =-— 7r2[7r Z mz—nQZmQ 42 Upy, + Z m2—/2n2 m] and

m: odd i=0 m: even

13



T X

m#n

Here we put a bar above a function to indicate evaluation at (0, \*,0). We also have that

- - [? 1 dag =~  ma; 12
Wiar + Waag = — — < Z _>
101 + Wata 2 Zd 2\ ; Y —l— 2

m: o
m#n
2
[ b2
2 2 _ 2 M’
T m:even T n
m#n

Proof. We remark that

QP(u, A\, a) = Q(L)y — a1Q(K)y + 2Qd,  Q(L)y = Q(¥)y — AQ(A)y (5.3)
where u = zu,, + W(x, A\, «). Differentiating (5.1) by z, A, a1, as, we obtain that

Q(L1)u[tn + W] — a1 Q(K1)u [un +W,] = (5.4)
Q(Ll)u[WA] —OélQ(Kl)u[ ] QA(u) = (5.5)
Q(L1)u[W1] — a1 Q(K1)u[Wh] — Q(K)y =0 (5.6)

Q(L1)u[Wa] — anQ(K1)u[Wa] + Q5 =0 (5.7)

where u = zu,, + W(z, A\, ). We denote W; for W,,, for shortness. We evaluate them at
(0, A*,0) and obtain

LWl =0, Li[Wa] =0, Li[W]=QKo, Li[Ws]=—Q0.
Since Lyu, = 0. Thus we obtain that W, = 0, W, = 0, W, = Ll_lQKO, and Wy =
—L;'Q0, which conclude the results. O]

5.2 The second order derivatives of W
By differentiating (5.4) by =, A, a1, as, we obtain

]
—Q(K1)u [sz] =

Q(La)ulun + We, Wil + Q(L1)u[War] — Q(E2)u[tn + Wa, Wi] — Q(K1)u[Wan]
—QM)u[un + W] =

Q(La)ulun + Wa, Wi] + Q(L1)u[War] — Q(K2)u[tn + Wa, Wi] — Q(K1)u[Wan]
—Q(K1)ulun + W] =

]

Q(LQ)u[un + W:m WQ] + Q(Ll)u[Wa:2] - Q(KQ)u[un + WJL‘? WQ] - Q( ) [WIQ

and, by evaluating them at (0, \*,0), we conclude
QLl[Wxaz] = 07 QLl[Wz)\] = QAl [un] = 07 QLl[le] = 07 QLl[V_V:UQ] =0.

14



By differentiating (5.5) by A, a1, e, we obatin

Q(La)u[Wx, W] + Q(L1)u[Wia] — Q(E2)u[Wi, Wi] = Q(EK1)u[Win] = Q(A1)u[Wa],
Q(La)u[Wix, Wi] + Q(L1)u[Wi1] — Q(E1)u[Wr] — Q(K2)u[Wx, Wi

_Q(Kl) [ 1] = Q( )U[Wl]v
Q(La2)u[Wx, Wa] + Q(L1)u[Wha] — Q(K2)u[Wix, Wa] — Q(K1)u[Wie] = Q(A1)u[Wo],

and, by evaluating them at (0, A*,0), we conclude
QLI[Wxn] =0, QLW = QM[W1] = QMW QLi[Wxs| = QA [Wo] = QAL [IWa].
By differentiating (5.6) and (5.7) by a1, ag, we obtain

Q(L2)u[W1, Wi] + Q(L1)u[Wi1] — Q(K2)u[W1, Wi] — Q(K1)u[Wh] — Q(K1)u[Wi]
—Q(K1)u[W1]

Q(La)u[Wr, Wa] + Q(L1)u[Wia] — Q(K2)u[Wi, Wa] — Q(EK1)u[Wi2] — Q(K1)u[We]
Q(La)u[Wa, Wa] + Q(L1)u[Was] — Q(K2)u[Wa, Wa] — Q(K1)u[Wa2]

0
0,
0

and, by evaluating them at (0, A*,0), we conclude

QL (W] — Q(K1)[Wh] — Q(K1)[WA] =0,  QLi[Wi] =0,  QLy[Wa] = 0.

We thus conclude that

WJ:J: - O WCIJ)\ = O Wazl = 0 W$2 = 0 W)\)\ = 07
W)\l L QAI [Wl] W)\Z L QAI [WQ]
W11 =0 (SIHCG K1 = O), W12 = 0 WQQ =0.

Set k,, = 4 ZZ —o =z, moodd; by, 2, if m even. We look W1 and W), closely and obtain

_ B _ B V2 Km 1y s
Wi =L QM [Wh] = LT QA W] = - > gl A [uy,]
m#n
\/2_l km, 1 2 4 \/2_l Em, (1/7)2 2 x
== ;mQ—MLI (mm /1) u,, = - n;mQ—n2n2—m2(m7r/l) U,
_ \/2_l Z mzkm u*
T

Wae =L7 QM [Wo] = LT'QM W] = (I/m)2V/2/1 Y Li'QA[ug,]

m:m#n,m: odd

2
=v/2/l Z LtQmPur, = v/2/1 Z #uﬁn
m:m#n,m: odd m:m#n,m: odd

15



6 Bifurcation equation F' = 0 and its Taylor coeffi-
cients
Now we consider the function
F(z,\, o) =P®(zu, + W(x,\,a),\,a) = P(L), — oy P(K), + aa P (6.1)
where (L), = (¥), — A(A)y, v = zu, + W(x, A\, o). We denote F; for F,,, F,; for Fy,,,

and so on.

6.1 The first order derivatives of F
Differentiating (6.1) by x, A, oy, e, we obtain that

=P(L1)u|un + W, — a1 P(KY)y [t + Wel, (6.2)

F)\ —P(LI)U[W | = a1 P(K1)u[Wh] — P(A)u, (6.3)
=P(L1)u[Wh] = a1 P(K1)u[Wh] = P(K)a, (6.4)
=P(Ly)u[Wa] — a1 P(K1),[Wa] + Po. (6.5)

Evaluating them at (0, \*,0), we have F, = PL;[u,] =0, F\ =0,

_ 2 4 m3a;
F, = —PKy= l—Q[ E - E A uy + E m bm/gu } u, (by Lemma 4.2)
m:odd =0 m: even

(—=1)=2 \/2/l, ifnis odd;

0, if n is even.

Here put a bar above a function to indicate evaluation at (0, \*,0).

6.2 The second order derivatives of F'

Differentiating (6.2) by x, A, a1, e, we obtain that

Fro =P(La)u[tn + W, uy + Wo] + P(L1)u[Way]

— a1 P(Ks)y[un + Wa, up + Wo] — g P(K1)o[Waa), (6.6)
Fyx =P(La)ultn + We, Wil + P(L1)u[War] — P(Ar)u[tn + W]

— a1 P(Ky)y[un + We, Wy] — ay P(K4)u[Waa], (6.7)
Foy =P(La)u[tn + W, Wi] + P(L1)u[Wa]

— P(K4)y[un + W] — aq P(K2)y [ty + W, Wh] — aq P(K7) o [Wai], (6.8)

sz :P(LQ)H[UH + Wx, WQ] =+ P(Ll)u[WacQ} — qu(Kg)u[un + WQM WQ] — Otlp(Kl)u[WxQ]. (69)

Evaluating them at (0, A*,0), we have

_ _ n2m?

F:ca: :07 Fx)\:_PAl[un]:_ 2 Fxl :Ov FSEQ =0.
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Differentiating (6.3) by A, K, a1, as, we obtain that

Fyxx =P(La)u[Wx, Wx] + P(L1)u[Wxr] — a1 P(K1)u[Win] — P(A1)u[Wa], (6.10)
Fyi =P(La)u[Wx, Wa] 4+ P(L1)u[Wan] — P(A1)u[W1]
— P(Kl)u[WA] — Oélp(Kg)u[WA, Wl] — alp(Kl)u[W)\al]a (611)

Fro =P(La)u[Wx, Wa] + P(L1)u[Wa] — 1 P(K2)u[Wa, Wa] — a1 P(K1)u[Waz] — P(A1)a[Wa]. (6.12)
By evaluate them at (0, \*,0), we have
Fy\ =0, Fyxi =— PA W] =0, Fyy =PA\[Ws] = 0.
Differentiating (6.3) and (6.4) by aq, as, we obtain that

Fui =P(La)u[Wi, Wi] + P(L1)a[Wi1] — a1 P(Ks)u[Wr, Wi] — a1 P(KL)u[Wia] — 2P(K1)u[ W3], (6.13)
Fio =P(La)u[W1, Wa] + P(L1)u[Wia] — a1 P(K2)u[W1, Wa] — a1 P(K1)u[Wia] — P(K1)u[Wa], (6.14)
Foy =P(Lo)y[Wa, Wa] + P(L1)y[Waz] — a1 P(K2)y[Wa, Wa] — a1 P(K7)yu[Waz. (6.15)

Evaluating them at (0, \*,0), we have F}; =0, Fy5 = 0, and Fby = 0.

6.3 The third order derivatives of F

_ 3nSxS

Lemma 6.1. F,,, = T

Proof. Differentiating (6.6) by = and evaluating them at (0, \*,0), we obtain that

! !
Frvw =PL3tup, tup, u,| = / 6((ul) 2 ulu! + (ul,(u!)*)ul,)ds — 3)\*/ (ul)u! ds
0 0

nS76 3ntrd 3nS76

! l
2 * 4 _ *
:12/0 (ulu)?ds — 3\ /O(U;L) ds = 12 =3\ = T u

Similarly, we obtain that
Fooxn=0, Fp1 =0, Fong =0, Faiox =0, Fa1 =0, Frg =0, Fyyo =0,

Fon = PA (LT QA [u,]] = 0, Faxi = —PA LT QM [QK]] = 0, Faye = PA[L7'QA[Q4]] = 0.

Wi : o _ 3nSxrd oo 69n2—2042 ) o _ 3n?x% /2

Lemma 6.2. hen n s Odd, szl = a5 i=0 maw and Fxx? e 1
. - _ 3nir? 3nint n —

When n s even, Fx:tl = Tbn/g — ngn/g, and chg = 0.

Proof. Differentiating (6.6) by «; and evaluating them at (0, A*,0), we obtain that
F:m:l - PLg[’LLn, Up, Wl] - PKQ[una un]'
When n is odd,

Fhpr =PLs[tuy, uy, W] — PKs[u,,u,]  (by Lemma 4.5)
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_ 3nS7 3% o= 8n°(3n? — 4i?)a;
= ((un,W1> + 9(us,, W1>) /5 z; (On? — 4i2)(n2 — 422)

27nb70 2 Z km 3% o= 8n°(3n? — 4i%)a;

27 w2 m? — n? i i — (In? — 44%)(n? — 42%)

(o)

27ntrd ksn 3nin? Z 8n(3n? — 4i%)a;
205 8 B L (9n? — 4)(n? — 4?)

o0

3P 9 3a; = (3n? — 44%)a;
= =y —— 438
B { 1 ; on? —ai2 ; (On% —42)(n? — 4@'2)}

3’3 69n2 — 2042
= Z - > A
AP = (9n* — 4*)(n* — 4?)

When n is even,

F,. =PLsuy,, uy,, V_Vl] — PKs[up,u,]  (by Lemma 4.5)

_ 3nb7° Intmt
- 2[7 ((Un, Wl> + 9<u3n7 Wl>) 2[5 (bn/2 + b3n/2)
3n 9[2 bgn/g 37’1, 7T
T (_F 9n2 — n2) 55 On2 + bany2)
27ntr? Intm Intmd Intmd
= - Wb:mp + T(bn/Q + b3n/2) = 2—15571/2 TG ————Db3y/2.
Since Wy = Zm odd oo \n/;_/_lnz)ufm
_ - 3nbr
Frwo =P L3y, uy,, Wa] = i ———((up, Wa) + 9us,, Wa))  (by Lemma 4.5)
:_3n67r6'ﬁ Z 2/1 _ —3?;’;2 \/g, n :odd; O
200w m=3n, m:odd m?(m? —n?) 0, n : even.

Lemma 6.3. If we set C(a) = %(Fnlal + 3F 120300 + 3F 000102 + Fyppaid), then

Cla) = <éPL3[’LL,U,U] - %alpKQ[u,u])

U=041W1+042W2'
Proof. Differentiating (6.13), (6.14), (6.12) by «; and as and evaluating them at (0, \*,0),
we obtain that
Fiin =PLg[Wy, Wy, Wi] — 3PK[Wh, Wh],  Fiio =PLs[W1, Wi, Ws] — 2P K, [W1, Ws],
Fiog =PL3[W1, Wy, Wy — PEKy[Wo, Wy, Fage =PL3[Wy, Wy, Wo). O
Remark 6.4. As we will see in §8 the differential coefficients F,11, Fyi2, Fyoo are not

important to describe the equation of bifurcation set and hysteresis set up to order 3, and
we will not investigate their exact values.
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7 Versality

As shown in [2, (6.8)] (or lately in [4, 1.5 Theorem]), we have

F=F,=F,=F=0, Fu,.#0, Fon #0,

the bifurcation of f(z,\) =0 at (0, \*), where f(z,\) = F(x, \,0), is a pitchfolk.
Definition 7.1. We say that an unfolding F : (RxRxR¥, (0,A*,0)) — (R,0), (2, \, @)
F(z,\, ), of f: (RxR,0) = (R,0), (x,\) — f(x,)\), is p-K-versal, if

Eon B+ EnFy + ExF\ + (Filaaa)=0p0) 11 = 1,... k)r = &

Here &, ., £\ denote the ring of C*°-function germs on (R?, (0, A*)), (R, \*) with variables
(x, ), and variable A, respectively.

M. Golubitsky and D. Schaefer used the term “a universal unfolding” for this definition.
We prefer to use the word “p-IC-versal”, because it fits recent usage of terminologies in
singularity theory.

Example 7.2. When F(z,\, ay, ) = 23 — Az + a2 + ay, we have B = {ay = 0} and
H = {a? = 27ay}. The bifurcation diagrams of the zeros of f,(z,\) = F(z,\ «) are
shown as follows:

062‘

-

H ‘\

aq

S~

Figure 3: Bifurcation set B and hysteresis set H for Example 7.2

Lemma 7.3. Ifn is odd, F' is p-K-versal.

Proof. Since

By Fon Fox Fo| |0 EFon Fux FBo| 2 w|B Fen
1?1 Exl E’xxl E)\l n 1?1 O Ex:cl 0 (sz\) F2 sz2 # O’
FZ Fx2 ch2 F)\Q 2 O xx2 0
F' is p-K-versal, by [2, Lemma 4.3] (see also (6.9) loc. cite.). O
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8 Bifurcation set and hysteresis set
Now we consider the bifurcation set of the zero of
F =% Fppp + Fp At + Frag + Fas + 20(a) + 2Q(a) + C(a) + O(4),

where {(a) = Fyaq + Frpao, Qo) = %(Fxlla% + 2F, 0100 + Fup002), and C(a) is
defined in Lemma 6.3.

Proposition 8.1. The bifurcation set B ((0.3)) and the hysteresis set H ((0.4)) are zeros
of smooth functions with the following 3-jets

Fioq + Fyay + C(a), and (8.1)
F1CY1 + FQO&Q + C(O&) — %E(O&)a (82)
respectively.

. — 6.6
Proof. Since F,, = ?’T;Tf, we have

Fx :3n67r6$2 _ n27r2)\ + xg(a> + Q(a) + 0(3),

417 12

Fy=—"F0+0(3), Fn=2%5 0+ () +0(3).

F, = F\ =0 defines (z, A) as a function of a and we obtain that

l2

r =0(3), A ===Q(a) +O(3).

Since F'—zF, = —";;;6 234+ Fioq + Fyan — %E(a) + C(a) +O(4), we obtain that the 3-jet

of the equation for bifurcation set is (8.1).
Similarly F, = F,, = 0 defines (z, \) as a function of a and we obtain that

v =—3450a)+0(3), A=0(2),
and thus the 3-jet of the equation for hysteresis points is (8.2). [

o ma;

We present the data for C(a) (see Lemma 6.3) as follows: Set k,, = 2370 —2%- m
odd; by, /2, if m even.

16 kokpke

PL3[W1, Wy, Wl] =- 6 Z (@ —12)(B? — n?) (& — n2>PL3[ua7ub7uc];
a,b,c#£n
L 6 kiaks(12/72) /21
PLy[Wi, Wi, Wol == — = > @ ) ey @y el syl
c:odd,a,b,c#£n
o 16 ko (14 /74)2/1
PLy[Wi, Wo, Wol == — = > 555 @ )= @ ) el sy el
b,c:odd,a,b,c£n
= = 1 19/79)(2/1)3/
PLg[WQ,Wg,WQ] — Z ( / )< / ) PLg[Ua,Ub,UC],

212:2(2 2 2 _ 2 2 _ 2
a,b,c:odd,a,b,c#n a*bic (a n )(b n )(C n )
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- 4 koky
PKQ[Wl, Wl] :F Z (a2 — nQ)(bQ _ n2) PK2[ua7ub];
a,b#n

I ko
PK2 Wl, W2 \/7 Z 2(6L2 — n2)(62 — nQ)PKQ[uayub]a
l8

a,b#n,b:odd

PKy[Wo, Wy =

1
PEs[uy, u).
s a b;ézn:odd a?b?(a? — n?)(b? — n?) 2t o]

Remaining part of this section, we describe numerical result on the data above to
describe C(a) assuming b; = 0 (i > 1) and n = 1. Remark that k,, = 23" a;/(m? —
44%), if m is odd; 0, if m is even, and we have

- 412 m = a; . - 4 2/1 .
Wl:_ﬁ Z m2_n2zm2_4i2“m’ WQ:_F Z mQ(m2_n2)um‘

m:odd,#n =0 m:odd,#n
We have
- - - co /4N\3 ley r4N\2/2\1/2
PLS[Wth?Wl] :_0 <_) ) PLS[Wth?WQ] 31 <_> (_> )
I\ s l
o BBeg 4 2 I5cq 12\3/2
PLS[W17W27W2] :_52__7 PLS[W27W27W2] 73 <_) )
™ ol 7\l

where c¢q, c1, co, c3 are constants. The approximate values of ¢; are given by

co ~20.305307a3 + 1.20457a2a, + 0.556055a5as + 0.449847ajas + - - -
+ 1.5754apa? + 1.60049a¢a,ay + 1.23451apa1a3 + - - -
+0.0536143a9a3 + 0.410507agazas — 0.0983358apa3 +
+ 0.683785a% + 1.15217atay + 0.821541a3as + - - -
— 0.121613a,a3 + 0.763853a; agas — 0.154765a, a3 +
4 0.0918374a3 — 0.322925a2a3 + 0.0171554aza3 + 0.0409826a3 + - - -
¢1 ~(0.0560462a0 + 0.147036a; + 0.078606a + 0.0592183a3 + - - - )ag
+ (0.0965134a; + 0.112754a, + 0.0758876a3 + - - - )a;
+ (0.00853948as + 0.0472655a3 + - - - )ag — 0.00887054a3 +
¢y ~0.0105423a0 + 0.0141242a; + 0.00815088a; + 0.00496213a3 + - - -,
cs ~0.00218564

This numerical result follows computing the summations above with m < 500. We remark
that the convergence of ¢ is very slow, and we are not sure how many digits are correct
for this approximate value.

Since

abmr (c1a + 20+ n)?
PKQ[Ua,Ub Zal Z Z gla—l—EQb—i-n) — 442

= a+b#n(2) €1,e2==%1
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4abn7r i2
- ; Z <1+ Z 1(51a—|—52b+n)2—4i2>’

a+b#n(2) €1,62=%

we have, if n is odd,

- /4 (4/7)%ab - a;, a;
PKQ[Wl,Wl] =— - L . PKQ[uavub]u
é a’bzgc;’#n (a®> — n?)(b? — n?) il;g (a2 — 4i2)(b? — 4iy?)
64n a’b? = a; (i, Qg
T2 ) 2 AR
i2
X (1 + . )a
61’22;1 (10 + 2+ n)? — 4i?
PRy [Wy, Wa) = \/7 > (4/m)a i Y PK (g, w)
’ a,b:odd,£n —n2)(0* —n?) im0 ¢ — i ’
16nl a? a0 2
- —n2)(b? — n?) Z a? — 42 (1 + Z (€1a+€2b+n)274i2)’
a,b:odd #n 4,51=0 £1,e0==%1
P, [Wa, Wo) = r2 Z ! PI,| ]
Ug, U
R ] o Td a2b?(a? — n2)(b> —n?) "’ ’

LU S 1+ ¥ i )
~qf ’ ab(a? — n?)(b?> — n?) ~ (e1a +exb+n)? —4i?/)’

=0 a,b#1,0dd

Assume that n = 1. Since

(a®> —1)(a? — 4i?)  4(442 —1)%’ a(a®>—=1) 4 ’
a:odd a:odd, >1
a#1
we obtain
2 -2
PRy, W (12i% +1)(12:2 + 1)
2[ 1, 1 ;A4 Ay 4 2 _ 1)2(42'2 _ 1)2
,21,22=0 1 2
N 2 - a2b2 Z‘Z ]
Z — 449%) (a2 —1)(b2 — 1 Z e1a + eob+1)2 — 4421
abodd 2 )( )( )61752:i1( 16+ &20 + )
a,b#1
4 & { (1262 +1)(12i% + 1)
— E Qi
3 qpUWeq Wag 9 2 ) P
sl 497 — 1)?(4is — 1
iri1.ia=0 (411 — 1)*(4iz — 1)
—0.0098018 —0.0171753 0.00800604 0.00824388 0.00228896 0.00100968 ---
—0.0171753 —0.0306015 0.0169267 0.0144463 0.00298161 0.00129348 --- ao
0.00800617 0.0169269 —0.0241598 —0.00438159 0.00500669 0.00110166 --- ay
0.00824403 0.0144466 —0.00438157 —0.013504 —0.00250348 0.00220992 ---
+a1(a0 ap az ... ) 0.00228912 0.00298184 0.00500672 —0.00250347 —0.00698926 —0.00127408 --- a9

0.00100984 0.00129372 0.00110169 0.00220993 —0.00127408 —0.00433055 -
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0.00248558 ag

0.00882541 0.0107354
0.0166762 0.0177164 0.00217028  ---
—0.000800288 0.010955 al
—0.00120814 ---
a9

—0.00585423 —0.00798357 —0.0107953
—0.0175634
—0.01239 .
—0.011251

—0.00798387 —0.0107902
0.00990841
—0.0123899 —0.00630149 .
. —0.00633698 —0.00721143
—0.00120811 —0.00721141 —0.00368129 ---

—0.0107948 —0.0175626
0.0166771 .
0.0177173 —0.000800176 —0.011251

0.00882601
—|—a2(a0 ay az ) 0.010736 . .
0.00248622 0.00217122  0.0109551
—0.010169 —0.0173908 0.0098944 —0.00878926 0.00988501 0.0125713
—0.0173914 —0.0308041 0.0218814 —0.0139982 0.0187884 0.0208632  --- ao
0.00989557 0.0218833 —0.0334693 0.00254736 —0.0174167 —0.00322272 --- ai
—0.0087879 —0.0139962 0.00254755 0.00573298 —0.00157069 —0.0105505 ---
+a3(a0 ai a2 ) 0.00988643 0.0187905 —0.0174165 —0.00157063 —0.00275234 —0.00445332 as
0.0125728 0.0208654 —0.00322244 —0.0105504 —0.0044533 —0.00391895 ---
_|_ S
- = 16l 122 4+1 /3
2 : 1
PKQ[Wl,WQ] = \/> a;a 11[ ) ( - 10g2>
4(4i —1) 4
4,21=0
+ Z 1 a2 i2 ]
2 2 Z 2 2|0
a® —4i7 b -2 -1 g1a+e9b+1)% — 44
a,b:odd (a® = 1)( )51,52:11( 10+ e2b +1)
ab;él

161 \[ 12341 /3
~ — a;a; - —1 2)
[ 442 — 1)2 (4 ©8
1, 1 =0
0.00319975ag + 0.00572494a; — 0.00326835a2
—0.00273496a3 — 0.000536221a4 — 0.00021051a5 + - - -
0.00145234a¢ + 0.00201291a; + 0.00301828as
—0.00322987a3 — 0.00330068a4 — 0.000328207a5 + - - -
0.00319406aq + 0.00574215a; — 0.00437078az ) b

+0.00241329a3 + 0.00358896a4 — 0.00385563a5 +
’i2
(e1a0 +e2b+1)2 — 4i2]

_a3<

e1,e0==%1

PEKs[Wy, W] = W5 Z;az[ ——1og2) +abZOdd (b2_1)
= a,b#£1

0.00107265a1 + 0.000380642a2 + 0.00107825a3 }

40.00380099a4 + 0.00403667as + - - - )

e {fgai(j_long_ ("

Remark 8.2. If aqp =1, a; =0 (i > 1), then
_ 8(1 L3- 4log2l2\/> >2
I\ 4 2\ 7%

PKQ[OClWl + OZQWQ, qul + OZQWQ] = —— -

We show below the figures of the zeros of (8.1) and (8.2) in several cases
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2f —— Bifurcation ] 2 —— Bifurcation ] 2 —— Bifurcation ]
—— Hysteresis —— Hysteresis —— Hysteresis
1 1k 1
lg o V\A
1 -1F 1
. . . 4 2L . . . a
-1 0 1 2 -2 -1 0 1 2
ay ay [o4]
(a) Length =7 (b) Length = 27 (¢) Length = 47

Figure 4: Approximations of B and H (ag = 0.5,a;>; =0, b; = 0)

2[ ‘ —_— Bi‘furcation ‘ fl 2 J— B\furce;tion ‘ ‘ ‘
—— Hysteresis —— Hysteresis
1 1
4 8‘ or
1 —1F
Bifurcation
Hyst i
il -2t . . . a -2k . . . .
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a ay a
(a) Length = 7 (b) Length = 27 (c) Length = 47

Figure 5: Approximations of B and H (ag = 2,a;51 = 0)

2 J— Bifurca‘tion [ / 1 2"— Bifurca‘tio [ ' 1
—— Hysteresis —— Hysteresis
1 1 1t 1
§ 0 18 of 1
-1 4 -1+ 4
-2L | . . 4 -2 / . . a
-2 -1 0 1 2 -2 -1 0 1 2
a ay [o4]
(a) Length =7 (b) Length = 27 (c) Length = 4w

Figure 6: Approximations of B and H (ag = 4, a;>1 = 0)
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2 J— Bifurca‘lion [ [ 1 2"— Bifurca‘tion [ [ 1 2"— Bifurca‘tion [ [ ]
—— Hysteresis —— Hysteresis —— Hysteresis
1F 1 1F 1 1F 1
g 0 18 of 18 of 1
-1t 1 -1t 1 -1t 1
-2hL . . . 4 -2 . . . 4 2L . . . 1
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay ay [o4]
(a) Length =7 (b) Length = 27 (¢) Length = 47
Figure 7: Approximations of B and H (ag = 10,a;51 = 0)
2f ‘ ‘ —' Bifurcationh 2y ‘ ‘ —‘ Bifurcationh 2"— B\furce;tion ‘ ‘ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1 1t 1
8 or g 8 of i
1t 4 1t J
-2k . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2
a ay a
(a) Length = 7 (b) Length = 27 (c) Length = 47
Figure 8: Approximations of B and H (ag = 1,a; = 1,a;52 = 0)
2f ' [ —' Bifurcationu 2f [ [ —' Bifurcationh 2"— Bifurca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1 1t 1
§ o 1 8 of 1
-1} q -1+ 4
-2L . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2

(e}

(a) Length =7

(o3}

(b) Length = 27

(c) Length = 4w

Figure 9: Approximations of B and H (ag = 1,a; = —1,a;52 = 0)
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i [ [ —' Bifurcationu 2f [ [ —' Bifurcationh 2"— B\furca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
L 1 1+ 1 1+ 1
» {8 of { & of |
L 1 —1F } —1t 1
ke . . . a -2L . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay [od] [of]
(a) Length = 7 (b) Length = 27 (¢) Length = 47
Figure 10: Approximations of B and H (ag = 1,a; = 0.5,a;52 = 0)
i ‘ —' Bifurcationh 2[ ‘ ‘ —‘ Bifurcation‘ 2[ ‘ ‘ —' Bifurcationh
—— Hysteresis —— Hysteresis —— Hysteresis
L 1 1+ 1 1+
: {8 of {8 of
L 1 -1t 1 —1t
ke . . a -2L . . . a -2k
-2 -1 0 1 2 -2 -1 0 1 2 -2
a ay a

(a) Length = 7

(b) Length = 27

(c) Length = 47

Figure 11: Approximations of B and H (ag = 1,a1 = 2, a;>3 = 0)

T T T T T

—— Bifurcatio

oF

T T T T

T T T T T

—— Bifurcation

—— Bifurcation
—— Hysteresis —— Hysteresis —— Hysteresis
L 1 1+ 1
. 4 8‘ of 4
L 1 —1t 1
ke . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2
a a a

(a) Length =7

Figure 12: Approximations of B and H (ag

(b) Length = 27
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(c) Length = 4w

= 1,@1 = —2, Ai>o = 0)



2"— Bifurca‘tion [ [ 1 2"— Bifurca‘(ion [ [ 1 2"— B\furca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1F 1 1+ 1 1r 1
8 0'\/\‘ § of ] g o»\_f_\A
-1t 1 -1t 1 -1t 1
-2k . . . a -2L . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay [od] [of]
(a) Length = 7 (b) Length = 27 (¢) Length = 47
Figure 13: Approximations of B and H (ag = 0,a; = 1,a2 = 1,a;53 = 0)
2f ‘ ‘ —' Bifurcationh 2[ ‘ ‘ —‘ Bifurcationh 2[ ‘ ‘ —' Bifurcationh
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1 1t 1t 1
8 or 1 8 of 8 or 1
-1t 1 -1t -1t 1
-2k . . . a -2L . . . . -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
a a ay
(a) Length = 7 (b) Length = 27 (c) Length = 47
Figure 14: Approximations of B and H (ag = 1,a; = 1,a2 = 1,a;53 = 0)
2f [ [ —' Bifurcationu 2"— Bifurca‘tion [ [ 2"— Bifurca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1t 1t 1
s of 8 or 53 0\‘
-1t -1t -1t 1
-2k . . . a -2L . . . -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay ay a

(a) Length =7

(b) Length = 27

(c) Length = 4w

Figure 15: Approximations of B and H (ag = 0.5,a; = 0.5,a3 = 0.5, 4,53 = 0)
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2F [ [ —' Bifurcationu 2"— Bifurca‘tion [ [ 1 2"— B\furca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1F 1r 1
8 or 8 or 1
—1t 1t ]
-2k -2L . . . a -2k . . . a
-2 -2 -1 0 1 2 -2 -1 0 1 2
ay [od] [of]
(a) Length = 7 (b) Length = 27 (¢) Length = 47
Figure 16: Approximations of B and H (ag = 1,a; = 1,as = —1,a;53 = 0)
2f ‘ ‘ —' Bifurcationh 2[ ‘ ‘ —‘ Bifurcationh 2[y ‘ ‘ —' Bifurcationh
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1 1t 1
§ of {8 of ]
—1F q -1t 4
-2k . . A a -2L . . . a
-2 -1 0 1 2 -2 -1 0 1 2
a ay a
(a) Length = 7 (b) Length = 27 (c) Length = 47
Figure 17: Approximations of B and H (ag = 1,a1 = 1,a2 = 2,a;53 = 0)
2"— Bifurca‘tion [ [ 1 2"— Bifurca‘tion [ [ 1 2"— Bifurca‘tion [ [ 1
—— Hysteresis —— Hysteresis —— Hysteresis
1t 1 1t 1 1t 1
8 of {8 of {8 of |
-1t 1 -1t 1 -1t 1
-2k . . . a -2L . . . a -2k . . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ay ay a

(a) Length =7

(b) Length = 27

(c) Length = 4w

Figure 18: Approximations of B and H (ag = 1,a; = 1,a3 = —2,a;53 = 0)
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T
Bifurcation

—— Hysteresis

T
Bifurcation

—— Hysteresis

T
Bifurcation

—— Hysteresis

8 0 g 0 g 0
-1t -1f -1t
-2k . . . a -2L -2k . a
-2 -1 0 1 2 -2 -2 -1 0 2
ay [od] [of]
(a) Length = 7 (b) Length = 27 (¢) Length = 47
Figure 19: Approximations of B and H (ag = 1,a; = 1,a2 = 0.5, a;>3 = 0)
2F Bifurca‘tion 2f BifurcationL 2F BifurcaliunL
Hysteresis Hysteresis Hysteresis
1t 1t 1t
8 0 § 0 SE]
-1t -1f -1t
-2k . . . a -2L . . . a -2k . . a
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 2

[e]]

(a) Length = 7

(o]

(b) Length = 27

i

(c) Length = 47

Figure 20: Approximations of B and H (ag = 2,a; = 2,a2 = 2,a;>3 = 0)

We observe from the figures above that bifurcation and hysteresis sets change as we
change k. When a; = 0 for ¢ > 1, the aspect of bifurcation sets is changing slightly, and
the aspect of hysteresis sets is changing considerably according to the change of ay. We
often observe that the bifurcation set and the hysteresis set are close near the origin when

the coefficients ag, a; and ay are big.
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