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Abstract

We show a formula for curvatures of curves in a semi-Euclidean space (or pseudo-
sphere) with respect to Frenet-Serre type frame in terms of volumes. We also
investigate versality of height unfolding and distance squared unfolding for a curve.
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Introducion

We consider curves in a semi-Euclidean space Ry, i.e., vector spaces with pseudo inner
product with index (n — ¢q,q). We construct Frenet-Serre type frame along the curve
and define their curvatures as an analogy to Euclidean case. We present a formula for
curvatures in terms of volumes ( Theorem 2.2) and discuss limiting behaviour of curvatures
for a 1-parameter family of curves (Remarks 2.5). We also consider a frame with respect
to a pseudo-sphere

M(c) ={x e R} : (x,x) = c},
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and define curvatures using this frame. This notion is useful to investigate a curve in a
pseudo-sphere. We present a formula for curvatures in terms of volumes (Theorem 2.6).

When ¢ # 0, it is possible to define curvatures &; (i = 1,...,n — 1) constructing a frame
with respect to M(c). When ¢ = 0, the analogy is not possible. But we also show that
we can define “higher order curvatures” &; (i = 4,...,n — 1) for a non-degenerate curve

v : (—¢e,e) = M(0), even though Ay and A9 are not defined (Remark 2.9).

In the last section, we investigate versality of height unfolding and distance squared
unfolding for a curve in R} or M(c). We conclude Propositions 3.3, 3.6, 3.8, 3.10, 3.13,
3.14, 3.15, which assert that the height unfoldings, e.g., is versal for a generic curve in
several contexts. They lead to criteria of singularity types of bifurcation and discriminant
sets of these unfoldings.

1 Semi-Euclidean space

Let V denote a real n-dimensional vector space endowed with non-degenerate bilinear
form (, ). That is, there is a basis e, ..., e, of V so that

<XaY> =Tyt + o TpYp — TpiYpt1 — 0 — Tnln

where x = z1€1 + -+ x,€,, Yy = y1€1 + - - - + yn€,. Remark that

1 (i=j<p),
(eiej) = ¢ -1 (i=j>Dp),
0 (i)
We often denote (V,(, )) by R} where ¢ =n — p. We call R} semi-Euclidean space.
Consider the pseudo-sphere defined by

Mp(c) ={x €V :(x—p,x—p)=c}

and we call it by the pseudo-sphere centered at p € V with radius \/H )
We identify the tangent space T,V of the vector space V' at p with the vector space V'
and consider the pseudo-inner product of the tangent space induced by this identification.
space-like if (v, v) > 0,
We say that a non zero vector v € V' is ¢ light-like if (v,v) =0,
time-like if (v, v) < 0.

1.1 Pseudo-volumes

We define k-dimensional pseudo-volume Volg(ay, ..., a;) of the parallelotope generated
by aj,...,a; by
(aj,a;) ... (aj,ag)
Volg(ay, ..., a;)* = : :
(ag,a;) ... (ag,ax)

We assume that



e Voly(ay,...,a;) is a non-negative real number if Voly(ay,. .., a;)* > 0,

e Voly(ay, ..., a;) is a pure imaginary number with positive imaginary part if Volg(ay, . .., a;)* <
0.
Lemma 1.1. Set a; = a;1€1 + -+ Ajn€n, ] = 15 sy Then
2
a1 0 Gk
Voly(ay, -+ ,a;)* = E (—1)F cr =min{i : j; < p}
j1 << L :
) Tk alvjk ak’]k
Proof.
Vol (ay, - - )2
Olglay, ) Ak
a1 aip —G1p+1 —Q1n aii - Qg
=det : :
Q1 Qkp —Okp+l —Qkn Q1pn - Qgn
a1,5, 14,  —0jgr "0 T AL, Arjy 0 Gk
— E det . . . .
- Ik Ak,j1 Ak,jq k,jg1 Ak, jy, a1y, Ak, ji,
2
a1,5 Ak, j1
= E (=D)F | cr =min{i : j; < p}
1< < : _
- Ik at,jy, Ak, jy,
O]
This shows that, if aj, ..., aj are linearly dependent, then the pseudo-volume Vol (ay, ..., ax)
is zero.

1.2 Pseudo-orthonormal projections

Lemma 1.2. Let ay,...,a; be vectors of V with Volg(ai,...,a;) # 0. Let W be the
linear span of ay, ..., a, and W+ denote its pseudo-orthogonal space. Define a linear map
m:V =V by
(ar,a;) (aj,a) ai
(ay,ai) (ag,ar) ap
v,a v,a v
w(v) = v,a) v, ) forveV.
(ar,a1) (a1, ay)
<a1€7 a1> <ak7 ak>

Then 7 is the pseudo-orthogonal projection onto W+.



Proof. If v = a;, then each term in the numerator is zero and we obtain 7(v) = 0. This
means 7|y = 0.
If v.€ W+, then we obtain that

(al,al) Ce (al,ak> ap
<ak, a1> R <ak, ak) ag
0 e 0 v
w(v) = =v.
(aj,a;) ... (aj,ay)
(ag,a1) ... (ag,ag)
This means 7|y, 1 is the identity, and we complete the proof. O

We set Wy, = (ay,...,ag)r. Let m, : V — W be the pseudo-orthogonal projection.
Set

% = Volk(al, ag, ... ,ak) = det((ai, aj>7;,j:1 77777 k)l/z.

We set Vy = 1, by convention.
Lemma 1.3. Assume that Vi, 20 for k=1,... ,n. Let us put

<a1731> e <a1, ak—1> ap

1 - - . . .
b, = ——b; where b, = .
\Vka,ll <ak—l> al> ce <ak—17 ap_1) ap1

<ak, a1> cee <ak, ak71> ag

Then by, ..., b, form a pseudo-orthonormal basis so that
(al,...,ak)R:<b1,...,bk)R, kzl,...,n.
Proof. Since
. 0 1=1,2 k—1
ai’ b — ) ) ) )
< ©) {sz i=k,
we have
<3_1,3_1> e <a1,ak,1> <a1,f)k> (al,al) ce (al,ak,1> 0
<l~)k, Bk> = : - : : - = .
(ap-1,a1) ... (&p-1,a6-1) (@r-1,bx) (ag-1,a1) ... (ap_p,ar,-1) O
(ag,a1) ... (ap,ar_1) (ag, bg) (ar,a1) ... (apap) Vi
=Vi_1°Vi>.
This completes the proof. n
Let W be a subspace generated by linearly independent vectors ay, ..., ay.
space-like if Vol (ay, ..., a;)? > 0,

We say that the subspace W is < light-like if Voly(ay,. .., a;)* = 0,

time-like if Volg(ay,...,a;)* < 0.
This notion does not depend on the choice of basis ay,. .. ,a.
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Lemma 1.4. The following conditions are equivalent.

e The restriction of the non-degenerate bilinear form { | ) to W is degenerate.
o W s light-like.

2 Frames along curves

Let ay,...,a, denote a frame defined on a curve v(t). We define K“ by

d
aA:KAA where A ="(a; ... a,).
If a,...,a, form a pseudo-orthonormal frame, then (a;,a;) = 0if i # j and (a;,a;) = &;.
So we have
d d d
0=taiay) = (paia)) + (a;, 2 a;) = ey ek

Lemma 2.1. Let ay,...,a, and by,..., b, denote two frames defined along v(t). We
assume that A = PB where A = '(a; ... a,), B =%b; ... b,) and P is a regular
matriz. We define K4, KP by %A = KA4A, %B = KBB. Then we obtain

dP
KA =PK8p~' + — P
dt
Proof. Since KAPB = KAA=4A=4(PB) =B+ P = 4" B + PKPB, we have
dP
K4P=— 4+ PKP".
a "
Multiplying P~! from the right, we obtain the result. O

2.1 Frame in RZ

We assume that Vj, = Vol (2 ey dk”) #£0for k=1,2,...,n. We consider pseudo-

dto dt2 )tk
orthonormal frame a;, a,, ..., a, so that
dy  d%y
(al,...,ak)R:<E,...,W>R, k:1,2,...,n—1.
and (ai,...,a,)r = R}. We have
dy d dy dk-1 d
(@@ - (@) @
ax ~ : : :
A = 5 10 A = k1. ko1, k1 K1 (k:17-~~7n_1)
|Vk_1Vk’ <((iitk7?la [zli_z> <((iitlc71ya [thkf,l\/> Cclltk7'17’
<d’“_*r dyy <d’“_v @) dty
dtk o dt : dtk o dtk—1 dtk
and . i
5_ (d—z,e1> <dtn—j,el> (S5}
n ~ . .
a, = == 5 an = : - : .
’<an?an>|1/2 n—1
(%,e@ (Cfltn—j,en> e,



We remark that V,? = (—1)9|% Py L2 and | &y &y 4L = o|V,| where 0 =

; dt dt? atn dt dt2 o din
; dy d°y 'y
81gn|$ a2 o am
Now we define the curvatures r; (k=1,...,n) by

0 E9K1 0 ce 0
d aj —&1K1 0 E3K9 . aj

Is = 0 —eg9ky 0 0
a : .. .. . a
" . : : ' Enkln—-1 "

0 e 0 —Enp—1Kn—-1 0

where ¢; = (a;, a;).
Let k;, © =1,...,q, be positive integers with 1 < k; < kg < --- < k; < n, We say that
7 is a curve of type (ki,..., k), if

| ' 1 (1 & {k1,..., ky})
V-1V, <0 (j=1,...,q), or, equivalently & = Y
kj—1 Vi (J q) 4 Y {—1 (i€ {k1,..., kg}),

since €; = sign(a;, a;) = sign(V;_?V;?).
Theorem 2.2. Then we have

Vi1 Vi |

V, oV,
b VaaVa|
(VA

(i=1,...,n—2), 5nmn_1:5n_1asign(Vn2)‘Vv 2|.
1Vn-—1

Ei+1kKi =

Remark 2.3. It is also possible to show a similar formula for curves in Euclidean space.
It was obtained in Gluck’s paper [3]. The authors did not know Gluck’s paper [3], when
they first showed Theorem 2.2.

We first see the following

Lemma 2.4. (a,,4a,) = V,_,? and (£2,a,) = (=1)i0|V,|.

dtm n
Proof. Since
di o 1 din 0 ©1
(%en) (Gm-e1)
dy d"y
a .e)=(—1 n+ti e;.e M M. = <_t7e7f_1> < 7th?e’L—]_>
< T ) l> ( ) < (2 Z> Y 7 <d_'z’el+1> <dt2/’el+1> )
(4, en) (4L, en)
forv=1,...,n, we have
1 -
<Z_;/7el> <ill:n—f?/7el> <anvel> n
(ap,a,) = dwi dn_l; ) o= ;(euei>Mi2 =Voi?.
<E>en> <dtn_—17€n> <anven>



We also have

- (B e) (27 ey) P

—.a = : . : = (-9 = ... —L

(St an) R I el P
(E,en> <dt—n,en>

and we completes the proof.

Proof of Theorem 2.2. Since k; = <%ai,ai+1> fori=1

() = (G W)
FNds T T Nds Vi Vil ViV

(v ) oma® v

n — 2, we obtain

1 dt / d N ‘ o
md8<dtaz’ a1 (Slnce <ai,az-+1> — 0)
i+
1—1
(Trodny L (a Ly 0
1 1 : . : :
|V Vi Vi | [, )]V (dditf?,gl—” <ﬁd¥,§;z?> . 0
$<dt2/’ d_/Z> dt<dt’Z’ dti— ?/> <dtz+1 7al+1>
47
(since <dt7 a1)=0, j=12...1i-1)
: —12Vig?
BTG Vz+1|
ViVi ViV
ZSign((Vi_fViQ)(V;QViH?))@ _ Vie1Vigi]

|‘/1V;2| _Ei€i+l |VY1‘/;2|
We also have that

””‘1:<%a”‘l’a”>:%lvjﬁ_w |vi:|>:<—1 T |a" )

|Vn 2Vn 1|d$ Vn 1|
n—2
@@ - G 0
B 1 1 : - : :
- 2 n—2 n—2 n—2
|an2vn71 ’ |<7/77/>|1/2 <Z3Ti;117 %}) cee <§3T—éf; Ccllfini%> p 0
%<dtn*¥>d_z> %<dt"*¥7dt"—*;> <Wz’an>
Sign(Vn—22 Vn—2| <C:n—lgn|an—2‘/vn
(1)1 Wl = (~1y0sign(vi?) 2ol
|‘/iVn—1 | |‘/1Vn—1 |
which completes the proof.
As a consequence, we have, for i =1,2,...,n — 2,
AL AV VL ViVl Vil
i+1R1kK2 - Ky = ) Sy
' ARG A A Vi)

_ : 2 [Va|
and €,k kg -+ - K1 = oeq sign(V, )|V1”1;n_1|'




Remark 2.5. Assume that V; = t%(v; + O(t)), v; # 0, for i =1,...,n. Then

il = e (et oy ).

0104

We denote e; and v; by e;(y) and v;(y) respectively when we want to mention the curve
v(t). Let us consider a family of curves 7,(t) with parameter a € (=4,0). If e; = e;(7a)
(i=1,...n—1) do not depend on a, then we have

Lllii% lg% t61+26i_6i—1_€i+1/{/i (’7{1 (t)) — 15% Lllli% t€1+2€i_€i—1_€z‘+1/{/i ('7(1 (t)) .

Arc length parameter Let s be the arc length parameter, that is, the parameter s

with ds = |Vj|dt. Then we have s = e|vi|1 t + o(t). Next let us denote derivative by s

by ’. Then [(7/,~)| = 1, and consider the derivative of (y/,7’) = £1 by s. Then we have
<7/77//> — 07 <7/,7///> + <’Y”,’Y”> — 0’ <fy/7,y(4)> + 2<7//’7///> + <7//77///> _ 07

and obtain that Vi* =1, V5> = (y",7"), Va> = (¢, 7"} (7", 7") = (7", 7")> = (0", 4")?,

1 0 _<,Y//’ 7//> —2<’7”, ’Y”/> _ <’V”, ’7///>
Vf _ 0 <’Y”, ’Y//> <’Y”, ’YW> <’7 ’Y(4)>
_<,}//7 ’Y//> <7///7 ’Y”> <,Y///7 ,y///> <’YW ’Y( )>
=20y ") = (") () (W) (v®,~7®)

Taylor expansion Let v : (—¢,e) = R} be a curve whose Taylor expansion is

= ¢ 1 1
> Sf— ot et ol + et 4, ¢ ERL
— 1! 2 3!
Since ‘flt? =i i —St7 we have
d]lry d.]2 ) )
<dth dtr> > = (i Cia) + (i1, Ca) + {Cins Cpr))E+ Jrja =12,
and obtain

Vi = 1{cjis cia) + (Gt ) + (Civs Ciprt))E+ -+ [y o120t
In particular,

Vi2 =(7,7) = (c1,c1) + 2(c1, ca)t + (2(ca, c3) + {ca, ) )t + -+ -
V2 = ’ Y Y e er) (e, el)
)H...

Q

) A [eear) (e2pe2)

+ (cr,c1) (er,e3) + (ea; ca)
<CQ, C1 2(02, Cg>

(c1,¢2) (c1,02)
(c1,¢3) (ca,sc2)

~ S~~~




2.2 Frame with respect to M(c).

We assume that ‘71@ = Volg11(7, ‘ZZ—Z, cee 65;,:—_117) # 0 for k=1,...,n. We consider pseudo-
orthonormal frame b+, ..., b, so that
d’)/ dk_l’7
by,....b :< ——> L k=1,...n—1,
by B =0 G G "

and (by,...,b,)r = Rl'. We have

k—2
by n@) e eaE)
c d dy d dy dk- d
L= by, by, = () (T3 - (> 77=7) o
ViV .| : : : : bl
‘ Rk 1’ dkfl,.y dk717 d'y dk717 dk727 dk717
<dtk_—17 7) <W7 E> s <dtk—1 ) dtk—2> diF—1
fork=1,...,n—1, and
n—2
b R <%el> <%}ael> <lfitn——;/7el> el
bn = ~—n, bn = : .
by )
n <fy’en> <Z—Z,en> .. <C(Zn—,;,en> €,
We setQYA/O = 1,j)y conveAntion. We remark that 1277? = (—}2‘1]7 ‘fl—z ‘573 f;,:NQ
Now we define the curvatures & (k=1,...,n— 1) by
0 Egky 0 0
d b, —E&1R1 0 EgRo b,
% = 0 —52/%2 0 0
" én'%nfl "
0 0 —én_1kn-1 0

where &; = sign(b;, b;).

and

Let k;, © =1,...,q, be positive integers with 1 < k; < ky < --- < k; < n. We say that

7 is a curve of type (ki,...,k,) with respect to M (c) if

o~ 1 &k, ...k
V2, V2<0(i=ky,...,k,), or,equivalently & = (Z # AR k),
—1 (ZE{kl,...,kq}),
since &; = sign(b;, b;) = sign(f/\ﬁl‘/}f).
Theorem 2.6. We have
&V Vil

éi Ki = ———————=— izl,...,n—Q, énl%n_ =
T Ny e ( ) 1

218 sign(V2)|V oV
(v, )2V

The proof is similar to that of Theorem 2.2. A similar statement to Lemma 2.4

becomes as follows.



Lemma 2.7. <f)n,f)n> = 172_1 and (42 b,) = (—1)‘1&!‘771’-

n dtm ?
As a consequence, we have, for i =1,2,...,n — 2,
e E |V V[V VeV & Vi
SiRiRe R = e e e o o2 o2 o2 W& a2 ool
(G @) 72 Vel Vs (Ve IV (& @7 Vil

5é1sign(V2) |Vl

n—1 .
Gz MVa-al

and énl%ll%z s /%n,1 =

Remark 2.8. Assume that |(v/,7')|Y2 = t?(0g+O(t)), 99 # 0, Vi = t%(;+O(t)), ; # 0,
fori=1,....,n. Then

| = |¢|éi-1Tei+1—28i—é0 ’@i—lﬁi+1| +0() ).
il =1 (el o

Let us consider a family of curves v,(t) with parameter a € (=9,9). Ifé; (i =0,1,...n—1)
do not depend on a, then we have

iiiz(l) %1_{% té0+2éi_éi—l—éi+1 ,%z (7(1 (t)) — 11_1)% 6111_)1% té0+2éi_éi—l—éi+1 ,%z (7(1 (t)) .

Taylor expansion Let v : (—¢,e) = R} be a curve whose Taylor expansion is

[e o]

Cii_ Lo 1 3 n
;Ht—CO‘f—Clt—i‘ngt+§Cgt+"', CiGRq.
Since ‘5—; = (ifj)!ti*j, we have
djlfy djzfy o
<dt1'1 " dt2 > = (Cj1s Cja) + ({Cji115 Co) + (Cjrs Cpr))t+ -+ J1,02=0,1,2,. ..

and obtain

ViZ = [(cjis cia) + ({Cit1s Cia) + (Cjrs Cort))E+ -+ [y jam01, 1

2.3 Curves in M(c).

In order to investigate a curve in M(c), ¢ # 0, it is natural to use the frame with respect
to M(c). If we consider a curve v : (—¢,e) — M(c), we have

(v,7) =c

DY~

<7dgi§ dy d
(7 @> * <7 72> =0

d dv d
()G

d dv d d d
() + 4 )+ ) =
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and

2 k 1/2
C ey ) M) O
— (4, dy <d2_v dyy <dQ_7 dz_v> <d2_v dﬁ> <d2_v d’“_v>
‘7]€+1 _ gtv gg 1%2 ) Ccllt 6%2 ) Ccll%Q ggQ ) g§3 1%2 ) Ccll}gk
k k k ' 2 k 3 k k
(S (G99 (G E R (L, 4
We remark that
V2 =c,
7 el )
2 dt’ dt/’
72 <d’v d_7><d_fv d_’V>_ dy d2_7>2 _<d1 d_7>3
3 dt’dt/\de2’ dt2 dt’ d2 dt’dt/’
c 0 _<d_’Z7ilj_fZ> -3 d_z»%>
9 0 <d d’y> <d d27> <d d3
W e &0 EE R
_<d_;/>d_z <@;7d_z> <@;7?;> <@277@37
—3(dy day (dy dyy dy day o dy dy
t0 de2 30 dt a3 dt2 37 dt3
We thus conclude that
A s 72 “72‘ o o ‘C<7/77,>|1/2 o o 1
K1 —Slgn(%)|<7/’7/>|1/2|ﬁ2| = sign(c(y ’7>)|<7/,’7/>|1/2|C| = sign(c(y a'7>)|c|1/2
1727, |‘71‘73|

oo

e ey

_sign(ci) [ 1) — 6 = (P
(v, /) P72 el

_ﬂ@@@CM%ﬂWW@%%WW—WMWyﬂ

(V)P
N non 1 IN\2 1 1/2
—sign(ef)| L0 - S
e R G LR
g BT A
|<7,,7,>’1/2|‘/;32‘ |C(<’y/,7’> <’Y”,’Y”> _ <'7,,’Y”>2) _ <’Y,,’7/>3|

) Vs V3|
|fea] =

[V ARV

Remark 2.9. Let v, : (—e,e) — M(c) be a family of curves for ¢ € (=6,0) with o = 7.
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So we have V;(7.(t))? = O(c) when ¢ — 0 fori = 1,2. This means that

0 (i=1,2)
0 (i =3)

Vi1 Via | A<
AL A S 1<n—1
(v A2V | =g =<i< )

lim |7 (7e(£))] =

c—0

assuming (v',~') # 0, v # 0. This implies even for a curve in the light cone M(0), we
can define the notion of curvature k; for i > 4, whenever (v',~') # 0 and V;_y # 0.

3 Height functions, distance squared functions and
unfoldings

For x = (z1,...,2,), Yy = (Y1, ..., Yn) we consider the inner product defined by
Xy =21Y1 + -+ TpYn.

We consider the semi-Euclidean space with this inner product and denote it by (R}, - )
Set S" ' ={y € R} :y -y = 1}. We consider the map

- 1
ge: M(c)\ {0} - 5™, x= Za:iei = =X
i=1 ey Ti

We remark that

Sy (¢>0) Sy={yes"":(y,y)>0}
Ingc = SO (C = O) where SO = {y e st <y7y> = 0}
S_ (c<0) S.={yes":(yy) <0}

When ¢ # 0, the inverse is defined by

Img. — M(c)\ {0}, y+— ﬂy
[y, y)]

So M(c), ¢ > 0, is isomorphic to Sy, and M (c), ¢ < 0, is isomorphic to S_.
Remark 3.1. Consider Lorentz transformations

R? 5 R?, x>y = Px. P:(coshH —smh@)'

—sinh® cosh@

Remark that yi? +y»? = (21% + 22%) cosh 20 — 22,25 sinh 20. So the definition of S™' (and
thus St ) does depend on the inner product x -y.

Let v : (—¢,6) — X be a curve in X = R} or M(c). We define height function by
hy(t) = (7(t),y) for y € R}. We consider the height unfoldings

H: (X x P/ (0,y0)) — R, (t,y) — hy(t) — uo,

12



~

H: (X xP xR, (0,y0,u9)) — R, (t,y,u) = hy(t) — u,
where P =R, M(c), S*7', Sy, S_, So, TgM(c). Here

TeM(c) ={y € R} : (y,x) =0, (y,y) = c}.

We remark that
)

d dy d? d?~y
defines a subspace in Ry, which we call the binormal space. So the bifurcation set of H
d d?
By ={y € P: 2 hy(t) = S5hy(t) = 0}

is the intersection of the union of binormal spaces with P. The discriminant of H

Dy = {y € P hy(t) —up = %hy(t) — o}

is the intersection of the union of normal spaces with P and hy(t) = uo.
For a curve 7 : (—¢,¢) — R, we also consider the distance squared function

1
Oy(t) = —5{y =)y —7(t)
for y € R}, and the distance squared unfoldings
O (R X RZ, (anﬂ)) - Rv (taY) = ¢y(t) — Uo, and

~

O (R xRy xR, (0,y0,u0)) — R, (t,y,u) = oy(t) — u.

We remark that the bifurcation set of ®
. d d?
By = {y € R} : 26,(t) = 256, (t) = 0}

is the focal set of 7. The discriminant of ®

d
Do = {y R 1 6y(t) —uo = 6y (1) = o}

is the tube of ~.
Let Tp denote the tangent space of P at y. We remark that at y = (y1,...,y,) with

yr 70
n_ /_0 0 _ Ton
Tqu_<a—y1,...,@>R P =Ry
Tp=qTyM(c) = <<ei7ei>yiaiyl — (e1,e1)y 38% =2, 7n>R P = M(c)
TySn71:<yiaiy1_ylaiyi :i:27'~-an>R stnilﬂg—’—’s_

and, at a point y = (y1,...,yn) with y; # 0, yp41 # 0,

0 g . 0

g .
TySo = <yi8_y1_y18_y" L=2,...,p; yjm_yp—l-la_y?] :p+2,---7n>R
7 P J
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and, at a point y = (y1,...,¥n) €

T<M (c) is spanned by

TEM (¢) with 1y — 22y; # 0 the tangent space of

w; = 1 T2 yQi_ 1 1 Y1 i L o oy i (i=3,...,n).
<el, el> i Yi| Oy <82, ez) T Yi| Yo <ei7 ei> T2 Y2|0y;
Set Vp = (vhy : v € Tp)r. Since hy(t) = > (es, es)ys7s(t), we have
((i)w P=R?
<<el7el>yi'71 — (e, ei>y1%>R pP=gS"15.5_
Vp = ((er,e1)(ei, e (yim — v17i))p = (Wim — y17i)w P = M(c)
(Wit — 1%, 0= 2,5 Y Yot — Yps1 Vs J =P +2,...,n), P =T,5
x x T
< ? yZ’yl— ! y172+ ! ylfyi:z':3,...,n> P =T:M(c)
L M T Ui Ti Yi T2 Yo
Consider the linear map ¢p : R} — R} defined by 1p(z) = Ypz where
( (er,en)y, —(ez,e)yn 0
: : pP=g8"19.5_
(e1,e1)yn 0 —(en, en)
Y2 U1 0
: : P = M(c)
Yn 0 —
Y2 —W 0 0 0 0
Yp = 0 - 0 0 0
P yp A1 P _ SO
0 0 0 Yp+2  —Yp+1 0
0 0 0y 0 —Yp+1
T2 Y21 |T1 N 1 Y1 0
Ti Yi Ty Y T2 Yo
: : P =T¢M(c)
T2 Y21  |T1 N 0 1 Y
L \Izi Y T Y T2 Y2
Then
(Y )r pP=g"15.85_
P=M
ervm— | % ©
(v, y")e P=25
<X7 y>R P = TﬁM(C)
Wherey* = (<el7el>y17--'7<enaen>yn)7y/: (yla 7yp70a 70)7y”: (07"'a07yp+17"-7yn)-



3.1 Height function and unfoldings

Let 7 : (—¢,e) = R} be a curve whose Taylor expansion is
1 2 1 3 n
CO—f—Clt—f—ngt—f—ant—f—..., ciGRq.
Assume that X = Ry.

Proposition 3.2. The following conditions are equivalent.
(i) There is'y so that hy(t) is Ay singularity at t = 0.
(i) rank(cq, e, ..., ) <rank(ep, e, ..., Ch,Crit)-

Proof. Since
d’ d’
h <_,yy>7 j:1727"'7

dv'Y ~ \dt
we have that hy(t) is Ay singularity at ¢t = 0 if
dhy d*hy d*hy d"1hy,
This is equivalent that
djW . dkH'y
Such y exists if and only if
d’)/ dk’}/ d’}/ dk’}/ dk+1,y
rank(a, ceey w) (O) < rank(E, ceay W7 W)(O),
which completes the proof. O]

Proposition 3.3. Assume that X = R}, P = Ry, M(c) or that X = (R}, - ), P =
S S S, S0 If hy(t) has Ay singularity at t = 0, then the following conditions are

equivalent.
(i) The unfolding H is R*"¢-versal.

) The unfolding H is R* _yersal.

) The unfolding H is R-versal.
iv) The unfolding H is K-versal.

) rank(cy, e, ..., c6m1) =k — 1 (when P =RY).
rank(y, c1,¢2,. .., 1) = k (when P =8""15, S ).
rank(yo, c1,¢Ca,...,cx_1) = k (when P = M(c), ¢ #0).
rank(y(,yo,c1,Co, ... Ck—1) = k+ 1 (when P = S;).

Remark 3.4. The unfolding
H:Rx M) =R, (ty)= (v(),y)

1s R*™I-versal if and only if the unfolding

Rx S* =R, (ty)r
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is R™-versal, since M(c), ¢ # 0, is isomorphic to Sy or S_. This may not be equivalent
to the R*9-versality of the unfolding

H:RxST—=R, (ty)— (v(1),y).

Proof. We may assume that yo; # 0 when P = S"71 S, S | M(c); yo1 # 0 and
Yop+1 7 0 when P = Sy. The unfolding H is R*"¢-versal, if and only if

_ dhy k+2
& = <E>& +Vp+ (Dr+ "),

Since % = —1, this is equivalent that the unfolding H is R*&-versal, and R-versal. The

unfolding H is K-versal if and only if

dh
£ =g hy), + Vet D+ (e

These two conditions are equivalent, since

(TG ), = 5500 = (),

Thus the condition is equivalent that

E =Vp+ (g + (t*)e,.

that is, rank Ap = k — 1 where

A, — (Cl,...,Ck_l) P:Rg
"\ Yeler,. .. en1) P =M(c), S, 8., 5, S,

Let W = {c1,...,Cr_1)r. Since

rank Ap =dim(¢p(W)) = dim W — dim(W N Ker ¢p)
=dim(W + Ker¢p) — dim Ker ¢p
we have the result. O

If this holds, then the bifurcation set By is locally diffeomorphic to the bifurcation
set of a R*"&-versal unfolding of A singularity with the same number of parameters.

Proposition 3.5. The following conditions are equivalent.
(i) There isy so that hy'(0) is Ay singularity at t = 0.
(i) rank(co,c1,ca,. .., ) < rank(co,c1,c2, ..., Chy Crat)-

Proof. We have that h 1(0) is Ay, singularity at ¢ = 0 if

dh d*h d*h
hy(0) = Z20) = S0 = = S =0, S 0) A0
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This is equivalent that

<§—3(0),y> —0, j=0,1,... .k <%(O),y> £0.

Such y exists if and only if

Cl"}/ dk’y d’)/ dk")/ dk+1’y
rank(y, priRRey W> 0) < rank(% P7ETE W> (0),

which completes the proof. O]

Proposition 3.6. Assume that X = R}, P = Ry, M(c) or that X = (R}, - ), P =
S S, 5, S, and that hy,(t) has Ay singularity att = 0. Then the following conditions
are equivalent.

(i)  The unfolding H is R-versal.

(ii)  The unfolding H is K-versal.

(iii) rank(co, c1, ..., ck—1) =k (when P =Ry)
rank(y§, co, ¢1, .., cp_1) =k +1 (when P=5""15,,5")
rank(yo, co, ¢1, ..., k—1) =k +1 (when P = M(c))
rank(yg, ¥g, Co, €1, -« Cp—1) =k + 2 (when P = Sy).

Proof. We assume that yo; # 0. We use the same notation as the proof of Proposition
3.3.
Then the unfolding H is R-versal if and only if

dh
&= <d_ty>€t + (Vhyly=yo : V € Tp)r + <tk+2>5t‘

The unfolding H is K-versal if and only if

dh
& = <d_ty hy>gt + (Vhyly=yo : v € Tp)r + (t**?)e,.

These two conditions are equivalent, since

<%’hy>g = (t*, 1" e, = <%>&'

t

Thus this versality is equivalent to the condition:
& = (Vhy(t)|y=y, : v € Tp)r + (t")e, -
The remaining proof is similar to that of Proposition 3.3. O

If H (resp. H ) is K-versal, then the discriminant sets Dy and Dy is locally diffeo-
morphic to the discriminant set of a K-versal unfolding of Ay singularity with the same
number of parameters.
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3.2 Distance squared function and unfoldings

Let 7 : (—¢,e) = R} be a curve whose Taylor expansion is

1 1
Co + Clt =+ §Cgt -+ 503253 =+ . s C; - R;
We first remark that
d? iy
@ (t i =1,2
oy = (Thy =) — e, =12,

where ¢1(t) = 0 and ¢j41(t) = Lo;(t) + (‘;J—J,Cé—p (1 =1,2,...). Weset go(t) =0, by
convention. We remark that

©0(0) =p1(0) =0

©2(0) =(c1, 1)

©3(0) =3(c1, c2)

©4(0) =3(cq, co) + 4{cy, c3)

©5(0) =10{ca, ¢3) + 5(c1, cu)

06(0) =10(c3, c3) + 15(cq, c4) + 6{cy, C5)
(0)

Y2 0 35<03, C4> + 21<CQ, C5> -+ 7<Cl, Cﬁ)

We set 79 (1) = (%(t),w(t)).

Proposition 3.7. The following conditions are equivalent.
(i) There is'y so that ¢y is Ay singularity at t = 0.
(ii) rank(7M, 7@ .. 5%)(0) < rank(FW, 7@ . FEED)(0), and
rank(FM, 72 F®)(0) = rank(ey, ca, . . ., cp).
In particular, if rank(cy, co, . .., 1) = k+1, there is y so that ¢y (t) is Ay singularity at
t=0.
Proof. Now we have that ¢y is Ay singularity at ¢ = 0 if

d7 . dFt1
%(ﬁy(O) :0, (j = 1,2,,k’), W¢y(0) #0

Such y exists if and only if
rank<~<” ..., 79)(0) <rank(FV,7%, ..., 74)(0)
rank(F1, 7@ 38 (0) =rank(cy, co, . . ., i)
and we complete the proof. O

Proposition 3.8. Assume that ¢y, has Ay singularity at t = 0. Then the following

conditions are equivalent.
(i) The unfolding ® is R*"¢-versal.

) The unfolding ® is R-versal.
iii) The unfolding ® is KC-versal.
(i) g

) rank(c; ¢o ... ) =k — 1.
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Proof. The unfolding ® is Rye-versal if and only if

do oo 9¢
€:<—y> +<—y . > + (1)g + (2,
! dt /& Oy1 ly=yo OYn ly=yo/ R W+ (e
Since g@ —1, this is equivalent that the unfolding d is R-versal. This also is equivalent

that the unfolding d is KC-versal, since

d ko pk+1 < d >
_ = (tF ¢ = (=
<dt¢y’ ¢y>gt e =G % /s,
This condition is equivalent to the condition:

&= ) =i () = yadr + (D + (e, = (1), mE)r + (D + (e,

This means that any polynomial in ¢ of degree k& — 1 without constant term can be
expressed as a linear combination of v, (t) — 71(0), ..., Vu(t) — 7. (0) modulo #*. O

If this holds, then the bifurcation set Bg is locally diffeomorphic to the bifurcation set
of a R*"&-versal unfolding of A; singularity with the same number of parameters.

Proposition 3.9. The followz'ng conditions are equivalent.
(i) There is'y so that ¢;1(0) is Ay, singularity at t = 0.
(i) rank(FO,50), . 5% ) < rank(F®, 50 56+0)(0), and
rank(7©, 7MW ,'y(k))(O) = rank(co, c1, . .., Ck).
In particular, if rank(co, c1, ..., cpr1) = k+ 2, there is'y so that gb;l(O) is Ay singularity
att = 0.

Proof. The function ¢y is A, singularity at ¢ = 0 if and only if

doy d*py d*¢y d**'g,
— 0 — 0 —_— .. — 0 — .
8y(0) = “22(0) = “22(0) SO =0,  (0) £0
This is equivalent that
dj » korl’}/
(S0 =2y =0, =01,k (S0)y—50) #0.

rank(70, 5, 79)(0) < rank(7,5, ... 7440)(0)
rank('y( )7 ’Y( )7 7(2)a s 7;\)7(]6))(0) :rank(co, C1,C2y - .- 7Ck:)

and we complete the proof. O

Proposition 3.10. Assume that gb;ol(O) has Ay singularity at t = 0. Then the following
conditions are equivalent.

(i)  The unfolding ® is R-versal.
(ii)  The unfolding ® is KC-versal.
(iii) rank(co ¢y ... 1) = k.
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Proof. The unfolding ® is R-versal if and only if

a0+ (5

99y

e
Y=Yyo 8yn

_|_ tk+2 .
y=yo>R < >€t

The unfolding ® is K-versal if and only if

6= (o ts), + (57

These two conditions are equivalent, since

0oy
y=vo  OYn

+ tk+2 »
Y=Yo >R < >g

d b ik d
— by, = (tF " = <— > .
<dt¢y ¢y>gt < e =@/,
Thus this versality is equivalent to the condition:

gt = <’71<t)7 cee >P)/n(t)>R + <tk>5t'

This means that any polynomial in ¢ of degree k — 1 can be expressed as a linear combi-
nation of v, (¢),. .., v, (t) modulo t*. O

If ¢ (resp. CE) is K-versal, then the discriminant set Dg (resp. Dg) is locally diffeo-
morphic to the discriminant set of a K-versal unfolding of A, singularity with the same
number of parameters.

3.3 Height unfolding for a curve in M(c)

Let v : (—e,e) - X = M(c) be a curve whose Taylor expansion is

1 1
Co+01+502t2+§t3+"', CiERZ.

If v(t) € M(c) and y € M (), then

64(0) = —3{y =90,y —1(0) = (y.7(0) — 2E = hy () - 2

where hy(t) = (y(t),y), and the height function with y € M ((') is exactly the distance
squared function.
We consider the height unfolding

@ (R x TEM(0), (0,y0)) — R, (ty) = hy(t) — uo.

O (R xTiM(c) xR, (0,y0,up)) — R, (t,y,u) — hy(t) — u.
We also consider the distance-squared unfolding

U (R x M(c),(0,y0)) — R, (t,y) = by(t) — uo,

V(R x M(d) xR, (0,y0,u)) — R, (t,y,u) — ¢y(t) — u.
By Propositions 3.2, 3.5, we have the followings
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Proposition 3.11. The following conditions are equivalent.
(i) Thereisy # 0 so that ¢y(t) is Ay singularity at t =0
(i) rank(eq, co, ..., ) <rank(ci, Co, ..., Cr, Cpy1)-

Proposition 3.12. The following conditions are equivalent.
(i) Thereisy # 0 so that ¢;*(0) is Ay singularity at t = 0
(i) rank(co,c1, o, ..., ) < rank(co,c1,C2, ..., Cry Chr1)-

Proposition 3.13. Assume that ¢ # 0. Assume that ¢y (t) (y # 0) has Ay singularity at
t = 0. Then the following conditions are equivalent.
(i) The unfolding ® is R*"¢-versal.

) The unfolding d is R™E_versal.
) The unfolding d is R-versal.
(iv)  The unfolding ® is K-versal.
) rank(x,yo,c1,C2, ... 0k-1) = k+ 1.

Proof. We show that (i) <= (v). The equivalence to the other conditions is shown in
a similar way and we omit the details. Set P = TSM(c) and assume x1ys — 2241 # 0
Remark that ® is R*"s-versal, if and only if

Et:< jty>+v + (2,

Since <6gf’ = (t*), this is equivalent that the matrix

T1 Y1 G
A= Ty Y2 Cj2
Ti Yi Cji

is of rank k — 1. Remark that A = Yp(cq,...,cr_1). Set W = {c1,...,cr_1)r. Since
rank A =dim(yp(W))) — dim W — dim Ker ¢
=dim(W + Ker¢p) — dim Ker ¢p = rank(x,y,c1,...,cp-1) — 2
we have the result. O
The case ¢ = 0 is similar when we assume that x and y are linearly independent.

Proposition 3.14. Assume that ¢y(t) (y # 0) has Ay singularity at t = 0. Then the

following conditions are equivalent.
(i)  The unfolding ¥ is R*"&-versal.

) The unfolding ¥ is R*™-versal.
(iii) The unfolding U is R-versal.

) The unfolding U is K-versal.

) rank(cy,co, ..., cm1) =k — 1.

Proof. We only show (i) <= (v), since the other part is similar to the proof of Lemma
3.3. By Lemma 3.2, ¢, (¢) has Aj, singularity at ¢ = 0, if and only if

y(cica oo cpcper) =(0 ... 01), [#0
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Then U is R*"&-versal if and only if

&= () 4 Vot (L + (4%,

We assume that y; # 0. Since (%> = (tF), this condition is equivalent that the matrix

Ap is of rank k — 1. Because (y,¢;) =0 fori=1,...,k, we have

Yy Y2 - Un
Yi(er e2 oo cpq) = (1(4]1) , where Y] = y:Z —:3/1 0 ,
TR
and, by detY; = y;"" 2> " | v;® # 0, we thus obtain rank(c; ... ¢;_1) = rank A. O

If U is R*"¢-versal, then the bifurcation set By is locally diffeomorphic to the bifurca-
tion set of a R*"#-versal unfolding of Ay singularity with the same number of parameters.
This leads to criteria of singularity types of focal set of curves.

Proposition 3.15. Assume that ¢y, ' (0) (yo # 0) has Ay singularity att = 0. Then the
following conditions are equivalent.

(i)  The unfolding ® is R-versal.
(ii)  The unfolding ® is K-versal.
(iii) rank(co,c1,c9,...,c61) = k.

Proof. Similar to that of Lemma 3.6. m

If & (resp. @) is KC-versal, then the discriminant set D¢ is locally diffeomorphic to
the discriminant set of a K-versal unfolding of A singularity with the same number of
parameters. This leads to criteria of singularity types of tubes of curves.
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