Versality of the folding families
of regular surfaces

Toshizumi Fukui* and Atsuki Hiramatsu'

Department of Mathematics, Saitama University
255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan

E-mail addresses: tfukui@rimath.saitama-u.ac.jp, a.hiramatsu.23570gmail.com

March 14, 2024

Abstract

We investigate A-versality of the folding family introduced by Bruce and Wilkin-
son, which describes infinitesimal reflectional symmetry of a regular surface in Eu-
clidean 3-space. We obtain several geometric conditions which ensure A-versality
of the folding family.

We consider the restriction of the folding map
(0.1) [ R — R (1,y,2) — (2,97 2),
to the surface M defined by an embedding g whose 2-jet is given by
(z,y) = (z,y, 10T + a1y + Gzo% +anzry + Goz%).
We easily see the following:

e the map f| is nonsingular at (0, 0) if v is not tangent to M, that is, (ao, ap1) # 0,

e the map f|n has a singularity A-equivalent to cross-cap (Sp) at (0,0) if and only if
v is tangent to M and does not generate a principal direction of M at 0, that is,
(a10,a01) = 0 and aq; # 0,

where v denotes a unit vector which is perpendicular to the reflection plane y = 0.
So if we investigate more degenerate singularity of f|uq, it is natural to assume that
the embedding ¢ is given by the following Monge form:

(0.2) g(@.y) = (. v, h(z,y) hz,y) =820 4 5~ 0,28 4 O(m +1).
i+352>3
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where m is an integer > 3. Here O(m + 1) denotes a term whose absolute value is at
most a positive constant multiple of |(z,y)[™™ near 0. When the origin is not umbilic
(that is, k1 # ko), the vectors 0, and 0, generate principal directions at the origin. They
can be extended to the principal vectors on the surface which we denote by v; and ws,
respectively.

Bruce and Wilkinson showed the list of singularities of the folding map f|y in a
generic context, mentioning several geometric meaning ([2, Page 68]), as follows:

S1  general smooth point

Sy parabolic smooth point of focal set

S3  cusp of gauss at smooth point of focal set

By general cusp point of focal set

B;  (cusp) point of focal set in closure of parabolic curve on symmetry set
C3 intersection point of cuspidal edge and parabolic curve on focal set

Here we use the notations introduced by Mond ([I0]).

Bruce and Wilkinson ([2]) also introduced the folding family, which is the restriction
to M of the family of maps obtained by conjugating the map (O) by Euclidean motions.
They showed that the folding family is A-versal for a residual set of embeddings M C R3.
We recall these results as Theorem 2. Since Bruce and Wilkinson ([2]) did not show any
explicit criteria for A-versality in [2], it is an interesting problem to describe them. The
folding map is motivated by describing infinitesimal reflectional symmetry of a regular
surface, and the conditions being A-versal should have several geometric meanings.

In this paper, we first give criteria of singularities of the folding map f| in terms of the
double point locus of f|y (Theorem IIM). The main topic is to describe explicit criteria
for A-versality of the folding family and discuss their geometric meaning. Our main results
are stated as Theorem 4 for non-umbilic points, and Theorems ET9 for umbilic points.
These are based on Lemma 9, which shows the necessary and sufficient conditions for .4-
versality in terms of the coefficients of (IZ4). We describe several consequences here. For
non-umbilic points, the geometric criteria for A-versality are stated using subparabolic
lines and ridge lines. For example, if the folding map has a B, singularity, then the folding
family is A-versal if and only if the corresponding ridge line is nonsingular there (Theorem
4 (iv)). For umbilic points, we claim that the folding family is always A-versal when
the folding map has Sy, Ss, S3 and Bs singularity at Darbouxian umbilics (star, monstar
and lemon) (see Theorem AZ3T).

Star Monster Lemon
Configuration of curvature lines at Darbouxian umbilics



The paper is organized as follows. In §1, we recall the definition of the folding family,
and state a main theorems at a non-umbilic point clarifying several geometric meaning
of its A-verality. We also discuss here the crirteria of singularutuies of folding map
flm in terms of the double point locus of f|r. In §2, we recall the duality between
focal/symmetry sets and the bifurcation sets of the folding families. In §3, we investigate
the conditions appeared in our main theorem for non-umbilic points. To do this we
describe derivatives of principal curvatures by principal vectors including higher orders.
In §4, we recall classification Darbouxian umbilics and show our main theorems for umbilic
points. In §5, we show Lemma 9, which is a key lemma in our calculation.

The authors are grateful to Farid Tari, since discussion with him motivates the paper.
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1 The folding family F
1.1 Definition of the folding family F
Bruce and Wilkinson ([2]) defined the folding family F' as follows:



Let M be a nonsingular surface in R3. Let G denote the group of motions of the
Euclidean space R?. We define

(1.1) F:MxG—R by F(p A)=AofoA(p).

Remark that this map is actually defined on R?® x G and we are thinking its restriction
to M x G. Let Ilj denote the plane defined by y = 0. If H denotes the subgroup of G
preserving the region y > 0, then F gives rise to a family of foldings at the plane II =
A~Iy. Remark that the quotient group G/H parametrizes the planes in R?. Identifying
the quotient group G/H with the space P of all planes in R?, we define the folding family

F:MxP —)RS, by (p,H) — F(va)7
where A is a motion with IT = AIl,. We also define f'': M — R3 by f(p) = F(p, A).

Theorem 1.2 ([2, Proposition 2.2]). For a residual set of embedding M C R? the folding
maps flp : M — R3, have singularities A-equivalent to one of the following types:

type normal form A.-codimension | order of A-determinacy | C
So (7, 9% zy) 0 2 1
S (z, 9%y + 2%y) 1 3 2
So (z, 9%, v° + 23y) 2 4 3
ST | (2,92, 9 £ 2%y) 3 5 4
By | (z,y% 2%y £9°) 2 5 2
By | (x93 2%y £9") 3 7 3
CT | (2,92 2y £ 23y) 3 4 3

Here C' is an invariant due to Mond, which bounds the number of cross cap appeared
in stable deformations of each singularity. Moreover, these singularities are A-versally
unfolded by the family F'.

We do not recall the theory on A-versality in the paper. We just remark that the
condition equivalent to the A-versality of the folding family is stated as (5=3). The notion
of A-versality is important, since two A-versal unfoldings of a map-germ are equivalent.
See also [T, §3] more for A-versality.

Since Bruce and Wilkinson ([?]) did not mention explicit conditons for .A-versality
of the situation above, the theorem above becomes much useful after we clarify several
geometric meanings of the criteria of A-versality of F.

We recall the notions of ridge points and subparabolic points here.

Definition 1.3 ([[7]). Let p be non umbilical point of a regular surface with principal
vectors vy, v9, and the corresponding principal curvatures k1, ko, which are defined near

p.

e We say that the point p is a v;-ridge point, i = 1,2, if v;x;(p) = 0, where v;x; is the
directional derivative of k; in v;. Moreover, we say p is the first order v;-ridge if
v?k;(p) # 0. The closure of the set of v;-ridge points is called a v;-ridge line if it is
of one-dimensional.



We say that the point p is a v;-subparabolic point if v;x;(p) = 0 (i # j). The
closure of the set of v;-subparabolic points is called a v;-subparabolic line if it is
of one-dimensional.

We now state several geometric criteria of the singularity of the folding map and
A-versality of the folding families at non-umbilic points as follows.

Theorem 1.4. Assume that we consider a point on the surfaces, which is not umbilic,
and v generetes a principal direction there. We asuume that ve is the principal vector,
which 1s an extension of v.

(i)

(i)

(iii)

(vi)

The folding map f|x has a singularity A-equivalent to ST if and only if the point is
neither ve-ridge nor ve-subparabolic. Moreover, the folding family F is automatically
A-versal there.

The folding map f|m has a singularity A-equivalent to Sy if and only if the point
18 va-subparabolic, but not ve-ridge and the vy-subparabolic line is not tangent to the
reflection plane Iy there. Moreover, the folding family F is automatically A-versal
there.

The folding map f|m has a singularity A-equivalent to Sgc if and only if the point is
vo-subparabolic, but not ve-ridge and v3ik,(0) # 0. Moreover, the folding family F is
A-versal if and only if the ve-subparabolic line is nonsingular. In this case, we au-
tomatically have that the ve-subparabolic line has 2-point contact with the reflection
plane 11, there.

The folding map f|r has a singularity A-equivalent to By if and only if the point
is va-ridge, but not vy-subparabolic and the double point locus D(f|n) has Af sin-
gularity with tangent property with respect to v (see Definition TI0). Moreover, the
folding family F is A-versal if and only if the vo-ridge line is nonsingular there.

The folding map f|r has a singularity A-equivalent to BE if and only if the point
is vy-ridge, but not ve-subparabolic and the double point locus D(f|pm) has Agt sin-
gularity with tangent property with respect to v (see Definition TID). Moreover, the
folding map f1 is A-versally unfolded by the folding family F for a generic choice
of the 6-jet of (O2). The condition for A-versality is explicitly stated in Lemma
.

The folding map f|r has a singularity A-equivalent to Cf if and only if the point
15 va-subparabolic and vy-ridge and the vo-subparabolic line and the vo-ridge line are
nonsingular and intersect the reflection plane Iy transversely. Moreover, the folding
family F is A-versal if and only if the vo-subparabolic line and ve-ridge line intersect
transversely there.

Please refer to §I3 for the definition (and several properties) of the double point locus

D(f|m),
Remark 1.5. e The authors found that the item (iii), the condition for .A-versality

for S3 singularity, is already obtained by Wilkinson (see after Corollary 3.3 of [])



and that the item (vi), the condition for A-versality for Cj singularity, is already
obtained in [, Theorem 4.6 (i)]. The authors show Theorem I without knowing
[M]. The authors are not able to find litertures to state the items (i), (ii) and (iv).

e The geometric meaning of the condition (B3 # 0 in the notation of Lemma 9
below) of A-versality for Bgt singularity is not clear for the authors.

Remark 1.6. In [5], we have discussed the conditions for A-versality of the subunfolding
of the folding family, obtained by restricting the motions to the rotations.

1.2 Criteria of singularities of f|,, and A-versality of F

We start to describe a criteria of singularity of f|a in terms of Monge form ().

Lemma 1.7. Let f|yp be the folding map of the reqular surface M. Then criteria of
singularities of f|m is given by the following table.

type | condition

Sit +asiags > 0.

Sz 91 = 0, ap3 7é 0, asy 7& 0.

Sét as1 =0, az1 =0, *aggaq; > 0.

By | as #0, ags =0, £B; > 0.

B;E a21 # 0, ap3 =10, By =0, £B3 > 0.
C’;L as1 = 0, ags = 0, +asia3 > 0.

2
__ agps _ 913 __ a7 __ ais 5 aiz\2 _ 5 a13\3
where By = & — 3% and By = “ — a;592 + 3a23(a21) 9a31<—a21) .

Proof. Routine calculation. See [d, Proposition 2.2] or [U, page 707] for some detailed
computation. One can find the equivalent descriptions in other terminology at [, page
254]. m

Remark 1.8. Bruce and Wilkinson (|2, page 64, lines 19-21]) stated that the key idea
in this approach is that singularities of f|x corresponds to infinitesimal reflectional sym-
metries of M in the plane y = 0. It is clear that M has reflectional symmetry in the
plane y = 0 if and only if h(z,y) is an odd function in y, that is, h(z,y) = h(xz, —y). So
a naive condition for infinitesimal reflectional symmetry in the plane y = 0 is concerning
the limit of h(gcy);—’yl(z_y) tending y — 0. For example, being h,(z,0) = cz* + o(z"), ¢ # 0,
for some positive integer k is such a condition. But if we investigate singularities of f|4,
we find several other infinitesimal reflectional symmetries in the plane y = 0.

Remark that the conditions appearing in Lemma I depend only on a;;, where j is
odd. This is a consequence of the fact that to investigate singularities of fold maps is
descriptions of various infinitesimal reflectional symmetries of surfaces.

Lemma 1.9. The folding family F is A-versal if and only if the conditions shown in the
following table hold.



Singularity of flam | Condition for A-versality of F
S always A-versal.
SQ k’l%k’g 0’/’(1127&0
Sét (CLQQ — klk )(k’l k’g) + a12(2a12 — a30) 7£ 0
Bf aip # al“gzlz R2) or agy — 3k3 # s,
Bf Bs #0.
ko — k —3a12 + 42 (azy — 2a12)
+ 2 1 12 + 57 (30 12
03 ‘ a2 Qo4 — 3k’3 ald (a22 — k‘l ) 7é O
alz_ﬁ_an(’vz*h)

Here we define Bz by Bz =

3ag1
os—ski B q‘ where

a21

p — a2 a
p ="+ 5 (kg — ky) + 322 (a04 — 3ag + saz(b1—ka) kQ)) + - (ago — 2a12 + ﬁ(lﬂz — k1)),

10a21 a21 6a3,

2
3 _9 2 _ 3 azais a13 2 | aisags ai3 _ 2 _ aizasr
q =15006 — 300ak5 — 75 w1 ( aiy + 6azk; + . ) + 242, (age — kik; a9 ).

The proof of Lemma [ is long and we do not give it here, but in §8. Here, we simply
note that the A-versatility condition concerns the 3 (4, 6, respectively)-jet of h if f|r4 has
Sy or S3 (Bs or C3, Bs, respectively) singularity.

1.3 Double point locus of f|
We consider the double point locus D(f|x) of the folding map f|a:

(2,y) = (2,92 h(z,y)), hlz,y) = Bkt Z G iyl + O(m 4 1).

g
i+j>3

The double point locus D(f|r) is defined by h'(x,y) = 0 where

W (z,y) = (h(z,y) — h(z, —y))/2y.

Remark that
h/:a21 2+ag3y +a31 3+a13xy +O(>

Definition 1.10. We say that D(f|r() has tangent property with respect to the vecor
v if ay; # 0 and ap3 = 0 in the notation above. Geometrically this means that the vector
v is in the limit of tangent lines of g(D(f|r)) at 0 when the zero of '(x,y) is not isolated
at 0.

We now able to state criteria of singularities of the folding map f|, in terms of the
double point locus D(f|m).

Theorem 1.11. There is a correspondence between singularities of the folding map f|m
and singularities of the double point locus D(f|am) as follows:

Singularities of f|a Singularities of D(f|m)

S AT
So As
S;E Agt without tangent property with respect to v
By A3 with tangent property with respect to v
B A with tangent property with respect to v
Cy Df

3 4




X - L
) SR I o0 50

Ai‘_ A:o"r without A‘:)f_ with A;‘ with DI

tangent property tangent property tangent property

Ay
. .?: without 3_ with g with 4
Al tangent property tangent property tangent property D4
Proof. The proof is given by comparing Lemma IZ4 with the following lemma. O]

Lemma 1.12. (a) If £agiap3 > 0, then h' defines AL singularity.
(b) When as; =0, agz # 0, the kernel direction of the Hessian of h' is generated by O, .

e [fas #0, then h' defines Ay singularity.
e Ifas =0 and +agsay > 0, then h' defines A3 singularity.

(¢c) When as # 0, aps = 0, the kernel direction of the Hessian of h' is generated by 0,.

e [f+Bs >0, then h' defines Agt singularity.
e [f By =0 and £B3 > 0, then I/ defines A5i singularity.

(d) When ag; = ags = 0, and Fasias > 0, then b’ defines DT singularity.
(e) If none of the conditions above hold, then h' does not define AT, Ay, A5, AT, D
singularities.

Proof. The proof is routine and we show below its outline. For example, a detailed proof
except for the case of Az can be found in [3, §4]. The Ajs case can be proved similarly.
(a): The assertion (a) is trivial.
(b): When ag; = 0, we have

I %(a03y2 + az17% + a132%y) + O(4).
Thus if asjagz # 0, A’ defines A, singularity. When ag; = az; = 0, we have
W = Laosy® + a3z’y) + Gt 4+ @g2y? 4 W5t 4 O(5).

Thus if +a41a93 > 0, b’ defines Agt—singularity.
(c): When ap3 = 0 and ay; # 0, we have

h = (r+ ga%gf)z + Qﬁzly‘l + %x‘l + %”x?yZ + O(5),

and we obtain the first subcase. When B, = 0, replacing = by x — %yz, we obtain

Wo=2g? 4 65§1y6 + kx4 x2y® 4 x2® 4 xaty® + 2yt 4+ O(7),
which implies the second subcase.

(d): When as; = agg = 0, the cubic part of A’ defines three real lines (resp.one real
line) if a13 < 0 (resp. > 0), and we are done.

(e): The assertion is trivial. O



1.4 Non-umbilical points

When the surface M is not umbilic at the origin (i.e., k; # k), we can define the principal
curvatures ki, ko and the principal vectors vy, v and we can state the conditions above
in terms of x; and v;.

Lemma 1.13. If the origin is not an umbilic point of M, the conditions in Lemmas [[_1
and 2 are rephrased as follows.

type | condition for singularities condition for A-versality
Sli 1)2/{1(0) 75 0, ’U2K/2( ) 7'5 0.

SQ 1)2/{1(0) = 0, UQK,Q(O) 75 O Ulvglﬂ(()) 75 0.

Sy | v2k1(0) = 0, v2r2(0) # 0, v1vak1(0) = 0, vivak1(0) # 0. | v3k1(0) # 0.

By | va1(0) # 0, vas2(0) = 0, v}na(0) £ 322l (v1v262(0), v2k2(0)) 2 0.
CF | v2r1(0) = 0, v2k2(0) = 0, v1v2k1(0) # 0, vivara(0) # 0. | |oHa2rL 2202511 (0) # 0.

We give a proof of Lemma in §8.

2 Dual map and bifurcation sets
2.1 Dual map

For a regular surface X in R3, we consider the dual map & defined by
0: X — P, pr—1T,X.

Lemma 2.1. (i) The map 0 is singular at p if and only if p is a parabolic point of X.
Moreover, the rank of dop is 1 (resp.0) if it is not umbilic (resp. umbilc).

(11) The map § has a singularity A-equivalent to cuspidal edge at p if and only if p is
parabolic, neither umbilic, nor n-ridge where n 1s a principal vector corresponding
to the zero principal curvature.

Proof. (i): For a surface given by
(u,v) — p = (u,v, f(u,v)),
the tangent plane T, X is defined by v - & = ¢, |v| = 1, where

\/m( fu7 fv71)7 m

We consider the map

(u,v) — (v,¢) =

\/ﬁ( fus fva]-af_ufu_va)'

Composing the inverse of the transformation

1 T2 1
($‘1,$2,C)|—>< PR 29 5] 27C>7

\/l+mf+x2 \/l—l—ac%—i—zQ \/1+ac1+;r2




it is enough to consider the map represented by

(22) (u7v) = (_fm _fw %)

2 = (. When

uv

We see that the jacobian of (E2) is not of full rank if and only if f,., fo, —
[ =k% Sy N 5D i3 @ij zi,“f, the 2-jet of (22) is

u2 7.)2 u2 7.)2 u2 ’U2
(—lﬁu — Q305 — 21UV — G127, —kov — A2175 — A12UV — Qo35 - — ]ﬁ? - k27)
and 1-jet of the Jacobi’s matrix of (22) is

(2 3> —kl — a3oU — 210 —Qa21U — Q120 —klu
' —a1U — A2V —ko — a1ou — agzv  —kov )

If k1 = 0 and k2 # 0, then the rank of (233) at 0 is 1. The null direction is generated by
= — fuvOu + fuuO, there. This can be shown, checking by the identity:

— — v uJ v 5
1(=fu = For L) = (fuufoo = £2,)(0.1, whlfe oty

If ky = ko = 0, then the rank of (233) at 0 is 0.
(ii): We assume that k; # 0 and ky = 0. Since a unit normal of the map (Z32) is given
by

N

v= v (_u_ufg_ffu+vfufvv_v_vf3_ffv+ufufvv(1+f3+f3)3/2)a

gt

ol
its Taylor expansion is expressed as

1+2k1 3

v=(-u+ + tuv? v—l—Hkl 204 Lo 1 — ) 1 O(4).

We now use Lemma BT and the notation there. We can take A = fuu foo — f2,- Then we
have n\(0) = kfaps. Since 1(0) = ki, we have the result. O

Remark 2.4. Under the notation of the proof above, the map § has singularity A-
equivalent to swallowtail at p if and only if p is parabolic, the first order wvs-ridge
(v9k2(0) = 0, v3Kk2(0) # 0), but not umbilic. For proof, we apply Lemma B, using
7*X(0) = kyags + 3(as1a0s — ay) and (B3H). Remark that n?A(0) is non zero if and only if
v3K2(0) # 0 also.

Remark 2.5. We remark that the Gauss map of the surface X is represented by

(2'6) (u,v) = (_fm _fv)'

in the notation of the proof above. When we assume k; # 0 and ky = 0, — f,00u + fuuOy
represents the null direction at 0 along the singular locus, and the singular locus is defined
by A = fuufoo — f2,- Then the map (Z8) has a singularity A-equivalent to

e a fold if p is not ve-ridge, that is, ags # 0,
e a cusp if p is the first order vo-ridge, that is, ag3 = 0, and kiags + 3(az1a03 — a%Q) #0.

10



2.2 Bifurcation sets of the folding family

The set of plane II for which the folding map f! is not stable is the bifurcation set
B(F) of the folding family F'.

Remark that fU fails to be stable if f!! has more degenerate singularity than a cross
cap (Sp), or if f has a self-tangent point, that is, two distinct points p and p’ with
fM(p) = f1(p) and Im df'(p) = Im df"(p").

A surface with a self-tangent point (left) as a deformation of B, singularity (right).

The focal set F of a surface M in R? is the locus of the centers of curvature of M,
and the symmetry set S of M is the closure of the locus of centers of spheres bi-tangent
to M. We denote F° (resp.S°) the nonsingular locus of F (resp. S).

Theorem 2.7. B(F) = §(F°) U(S°).
Proof. See [2, Proposition 2.3]. O

When the folding family F' is A-versal, one can deduce local models for the bifurcation
sets B(F).

Example 2.8 (S{). An A-versal unfolding of Si singularity defined by (z,y) +— (z,y?, 3>
+22%y) is given by f = (z,y? y>+2*y+ay). The S; locus in the parameter space is defined
by a = 0 and there is no A7} locus.

Example 2.9 (S;). An A-versal unfolding of Sy singularity defined by (z,y) — (x, 9%, y3+
23y) is given by f = (z,y?%,v* + 23y + ay + bzy). The S; locus in the parameter space is
parametrized by

t > (a,b) = (—2t*,3t%),

which corresponds to the mono-germ of f at (¢,0) under (a, b) described above, and there
is no A7} locus.

Bifurcation set for Sy (Example 279) Bifurcation set for S3 (Example Z-10)

11



Example 2.10 (S7). An A-versal unfolding of S5 singularity defined by (z,y)
(z,y?, y2 £aty) is given by f = (z,vy? v* 2ty +ay+bry+cr?y), S>; locus is parametrized
by

(t,c) = (a,b,c) = (—ct® F t* 4 2t(ct £ 2t3), —=2(ct £ 2t*), c)
which corresponds to the mono-germ of f at (¢,0), and there is no Aj locus.

Example 2.11 (Bf). An A-versal unfolding of By singularity defined by (z,y)
(9%, vy° £ 2%y) is given by f = (z,y? y° & 2%y + ay + by®). The S; locus is defined
by a = 0, which corresponds to the mono-germs of f at the origin, while A} locus is
parametrized by

t > (a,b) = (t*, —2t%)

which corresponds to the bi-germ of f at (0,¢) and (0, —t).

.
.

.
.
.
.
.

Bifurcation set for By (Example Z11) Bifurcation set for B (Example Z12)

Example 2.12 (Bf). An A-versal unfolding of Bf singularity defined by (z,y) +
(x,9%,y" £ 2%y) is given by fi = (z,y%y" — 2%y + ay + by® + cy®). The S; locus is
defined by a = 0, which corresponds to the mono-germs of f at the origin, while A} locus
is parametrized by

(t,c) = (a,b,c) = (t*(c+ 2t7), —t*(2c + 3t*), ¢),
which corresponds to the bi-germ of fi at (0,¢) and (0, —t).

Example 2.13 (CF). An A-versal unfolding of C5 singularity defined by (z,y)
(z,y?, 2y® + 23y) is given by f = (z,y? zy® + 23y + ay + bry + cy®). The Ss; locus
is parametrized by

(t,c) = (a,b,c) = (F2t3, £3t% ¢),

which corresponds to the mono-germ of f at (¢,0), while A} locus is parametrized by
(5,t) = (a,b,c) = (£2s® + st F3s* — 1?, —s),
which corresponds to the bi-germ of f at (s,t) and (s, —t).

Bifurcation set for C§y (Example 213) Bifurcation set for Cj (Example 2-T3)
We remark that the figure right is missing in |2, Fig. 2, page 67].
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3 Non-umbilic points: Proof of Lemma I.T3.

Let us describe the several computation of a regular surface defined by (0=2) at non-
umbilical point. We thus assume that k; # ky. The first observations are as follows.

(3.1) v1/<a1(0) =az,  vak1(0) = ag, vika(0) =arz,  vara(0) = ags,
(3.2) 1r1(0) =aqo — 3k7 + gagl Uz’Uml(O) =az + 3a217clz2

(33) “1“2%1<0> g+ 2l 30 (0) =z — yhf + 22mecom)
(3.4) 2h2(0) =gy — kiky + 2212021-a00), mm(o) gy G2

(3:5)  vivaha(0) =ars + 3(121_(;1127 vika(0) =aos — 3k + k:iallil

These are obtained by direct computations. See [3, 2.3] for some of the detail, for example.
We also have the expressions of the principal curvatures as follows:

(36) k1 =k 4+ azor + a1y + (a40 3]{;3 2a2]i2)%2
—|—(a31 —+ 2“21“12)xy + (CLQQ k2l€2 + 2a12 )% + O(3),
(3.7) Ko =ko + a12% + ag3y + (a22 kiks + 2a21 )%

+(a1s + 2292) gy 4 (agy — 3k5 + 2‘“,31 )L +0(3).

A principal vector vs is expressed by

a21T+aioy as1 2a21(a12—as0) z2 aso— k1k2 a30a127a%27a§1+a21a03
U2 _< ka—k1 +( T T (k)2 )2 +( ok T (ko—k1)2 )y

ai2(a21—a 2
+( + AT +0)o,

2

a3 x az1a a} 2
+<1 T k) 2 T ook Y — (k3 + (kg—lzl)Q)% + 0(3)>8y'

We thus conclude that

(3.8) VoK1 =91 + (a31 + %)$ + (a22 — k’1k‘2 %)y + 0(2),
(3.9) vatiy =apz + (a13 + 3292 ) 7 + (ags — 3k + 3%2 =)y +0(2).

Proof of Lemma II3. We first consider the condition for singularities of the folding map
flame

The assertion for Si° is clear by (Bl). By (B23), we have as; = v1v241(0) when ag; = 0
and the assertion is clear. In a similar way to the computation above, we obtain that the
coefficient of 22 in the expression of vgk; is

(3.10) aq1 — kyagy (5ky + ko)+ 2a21(2a22_a40:1k?3;a31(2a12_a30)
+a21((a12 a30)(2a12—azo)a12+2a03a3,— 7a12)
(k1—k2)?

The assertion for S’;E follows, since (BIM) is non-zero when as; = az; = 0 and a4 # 0.
The assertion for C follows by (81), (823) and (84).

13



Remark that, if ag3 = 0, we have

a?,(5a21—3a
(311> USKQ(O) =Qp5 — 18@03]@% + 1%{;122;3 + 3 12((]{527221)?; 03)
(3.12) (13 =0102#2(0) — 3v2mk(2031];11m(0)

and we conclude that

B, — o5 _ afy _ v3r2(0) _ (viv2r2(0)?
2 5 3aa1 5 3v1k2(0)

So the condition that 4 (ags — 5a25/2a91) > 0 for B singularity is equivalent that

+(v1k2(0) - V3R (0) — g(vl’vglﬁg(O))Q) > 0.

From now on, we consider A-versality of the folding family.

The assertions for Sf and S, are clear.

The assertion for S5 follows, since vyvyr;(0) # 0 by (B33).

For Bf singularity the condition in Lemma [C9 is equivalent that

(v1v22(0), v3K2(0)) # 0

by (B3), and thus shows the assertion.
For C§ singularity, the condition in Lemma [ is equivalent that

vz (0) vk (0))
v U2k (0)  v3K(0)
from (B33) and (B3). This shows the assertion. O

Remark 3.13. The origin is vy-subparabolic (resp. ve-ridge) if and only if the constant
principal curvature line k; = ki (resp. ko = ko) is perpendicular to the reflection plane
y = 0 there, whenever it is not v;-ridge (resp. vi-subparabolic), by (B8) and (BZ7).

Remark 3.14. We can conclude that the v;-curvature line is parametrized by

a 2 a a21(3a12—2a 3 4
te (2,y) = (t 7205 + (2 + 2fueRel)l +oll + 0(5))

3az21(2a20—aq0+k3)+(4a12—3asz0)az1 |, a21(3azo—4a12)(3a12—2a30)—3a2,ao3+9a3
_ a4l 21 22 40 1 30)Aa3 30 30 214903 21
where @ = ;#4-+ T + (k1 —F2)3

the equation of curvature lines:

, working

hew 14+h2  dy?
hay hzhg —dx dy
hyy 14+h2  dz?

= 0.

This shows that the folding map f| has a Sy (resp. S3, Sy) singularity at 0 with respect
to the principal direction v, if and only if 0 is ve-subparabplic but not v,-ridge and the
vi-curvature line throgh 0 has 2 (resp. 3, 4)-point contact with the reflecftion plane y = 0.

Remark 3.15. Let (u,v) denote a curvature coordinate of a surface p = p(u,v). Let v
denote its unit normal. When the principal curvature k5 is not zero, we can define a focal
set ¢ = p + (1/kq)v, and its Gauss map is g = p,/|p,|. Since

_ (k1)v Py

Dyy Py
Gu = ira Ip, [

and = —rtwle g kg
9v = Tp,p,lpu-pul? Pu

2V,

the Gauss map g is singular when vyk; = 0, where v5 = 9, and v; = 9, generates the
kernel field there. Then the Gauss map g has a singularity at 0 if and only if vyk1(0) =0
(that is, as; = 0). Moreover, the Gauss map g has a singularity .A-equivalent to

14



e a fold at 0 if and only if vjvek;(0) # 0 (that is, ag; # 0).
e acusp at 0 if and only if v1vek1(0) = 0 (that is, az; = 0) and v?vek1(0) # 0 (ag # 0).

Remark 3.16. Since the Gauss curvature of the focal set ¢ = p+(1/k2)v at (u,v) = (0,0)
is given by

i vgnl(ng)4 (0) . aglkg
voka(k1—kK2)? ao3 (k1—k2)?2?

elliptic (resp. hyperbolic) points of the focal set correspond to Sy (resp. S;") singularities
of the folding maps. This fact mentioned in the third paragraph from the bottom in page
68 in [?] with changing the sign.

4 Umbilics
4.1 Classification of umbilics

We consider a nonsingular surface

(41) p:C—CxR, =z (zh(z)), whereh(z)=52z+ i Hi(z) +O(m +1),
k=3

and H(z) is a real-valued homogeneous polynomial of degree k in variables z, z. We
remark that this surface has an umbilic point at the origin.
The first fundamental form is expressed as

I =dp-dp=dzdz+dhdh = h*dz* + (1 + 2|h.|*)dz dz + h? dz>.
Since p, x p, = (—hy — hyv/—1,1) = (=2y/—=1hz, 1), a unit normal is expressed as

1

Y1 R

(=2v/—1hs, 1).

The second fundamental form is thus expressed as

1

M=d’p v=-——""
LR BT

(hzz dZQ + 2hzg dzdz + hgg d22)

Therefore the equation of curvature lines is

h2  hy, dz?
142|hz|? hyz —dzdz

1
= —((Hs),.dz* — (Hs)s: dz*) + h.o.t. = 0.
h% hzz de

(4.2) V-1 Ve

Set
(4.3) H3(z) = az®/6 + B2°2/2 + B2Z% /2 + az® /6.

We consider the resultant of (H3), and (Hs); as

0
288
0

Q3 i

(4.4) Dy, =

3

= ]04|4 — 6]a|2]ﬁ]2 - 3|ﬁ]4 +8Re a3

oo R
o N

TR ™

o

™I

Qi
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The cubic Hj has three real roots (resp. one real root) if and only if the origin is elliptic
(resp. hyperbolic) umbilic, that is, Dy, > 0 (resp. < 0).
We also consider the characteristic polynomial Hj for (A=), which is defined by

(4.5) Hy(2) = 5(2%(Hs)z2(2) — 2 (Hs)z:(2))).

Its zeros define the characteristic directions of the singularity of curvature lines at the
origin. The characteristic polynomial H} has three real roots (resp.one real root) if and
only if Dp; > 0 (resp. < 0) where

2

=l
=

§
s

3a 2

b
b

0
V=T = 3(27]al* — 18|a?|8> — |B]* — 8ReaB?).

0

—3a

\/jl
We say a characteristic direction is a double characteristic direction if it is generated
by a double root of Hj(z).

An umbilic is said to be right-angled if there are two characteristic directions that
are orthogonal to each other. It is well-known that this is equivalent that |a| = |3|. This
also implies Dy, < 0 and DHé > 0.

We are now able to state the classification result of Darbouxian umbilics.

(4.6) DHé (Z) =

= =
W‘ ﬁ‘l
™ 1
. [SR(§eV]
| |
(NSRS
[/ S fo]]

e We say that the umbilic is star if |a| > |3].

* If Dy, > 0, then there are three directions which are limits of principal direc-

tions.
* If Dy, <0, then there is one direction which is a limit of principal directions.

e We say that the umbilic is monstar if || <[] and Dy, > 0.
e We say that the umbilic is lemon if Dy; < 0.

When a = 1, the bifurcation of generic umbilics is shown in S-plane as follows:

|8] =1 (circle), Dp, =0 (dotted), Dp; =0 (thick)
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Remark 4.7. The locus Dy, = 0 is parametrized by
(4.8) Cx S = C? (a,¢) — (o, 8), where = (@e V1 —2ae?V1)/3,

and its singular locus is defined by cos (arga + %¢) = 0. Similarly, the locus Dg; = 0 is
parametrized by

(4.9) CxS'—=C?% (a,¢) = (a,B), where B= —ae 2Vl _ 2qefV T
and its singular locus is defined by sin (arg a+ %) = 0.

Remark 4.10. Replacing z by e~ "% V=13 in H;3(z), n € Z, in (B3), we can reduce

to the case a € R. Then the argument of 5 becomes arg  — w.

Definition 4.11 (S>-direction, By-direction and Cj-direction). Set

— 0v=T
wp = e’V71  and U@Ze\/_—l.

Let IIy denote the plane generated by (wg,0) and (0,1) in C x R passing through the
origin. A normal vector to Il is given by a vector vy, represented by the complex number
Vg.

We say that vy generates a So-direction (resp. Bs-direction, Cs-direction) if

as1(wg) =0 (resp. # 0,=0), and apz(wy) # 0 (resp. = 0,=0),
where the definition of a;;(wg) (¢ + j = 3) is given as follows:
Hi(wz) = ozg,o(w)”%3 + agl(w)x%‘y + alg(w)% + aog(w)%g.
In other words, vy generates a Sp-direction (resp. Bp-direction, Cs-direction) if and only
if
|a| sin(360 + arg o) + | 8] sin(f + arg ) =0 (resp. # 0, = 0), and
|| sin(36 + arg o) — 3| 5| sin(f + arg B) #0 (resp. = 0, = 0).

Moreover, we say that vy generates a simple (resp.double) S,-direction (or Bs-
direction), if wy is a simple (resp.double) root of the cubic as(w) (or ags(w)).

If vy is not such a direction, f™ has a singularity A-equivalent to Si*. Moreover, the
singularity of f is A-versally unfolded by the family F'.

We remark that Sse-direction (or Cs-direction) is orthogonal to a characteristic direc-
tion (see the second formula of (E=24)).

Lemma 4.12. We consider an umiblic defined by (). Then the numbers of Sa-
directions, By-directions and Cs-directions are summarized as follows:

DH3 DHé OéBg 7£ 5453 O[BS = 5453
T | + [ 35 +3B, |25 +2B,+C5 (B£0), 3C; (B=0)
0 + | 35+ 28, 255 + By + (s
- + | 35 + B 25, + Cs
0 0 — Sy + Cs
- 0 252 + Bg Cg
- — Sy + By Cs
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e Case: Dy, #0, Dy =0

« If afB® # af>, then there are one simple Sy-direction and one double So-
direction.
x If aB® = aB3, then there are one double Sy-direction and one Cs-direction.

e Case: Dy, =0, Dy # 0.

« If aB® # ap®, then there are one simple Bo-direction and one double Bs-
direction.
x If aB® = aB3, then there are one simple By-direction and one Cs-direction.

e When Dy, = 0, Dy = 0, we automatically have aB? = ap® and there are one
double Ss-direction and one Cs-direction.

Proof. Routine calculation. See the items (i)—(iv) in the proof of Proposition below
also.
Assume that a3® = @8%. When Dy =0 and Dy, # 0 (resp. Dy # 0 and Dy, = 0),

the computation reduces to case @« = 1 and f = —3 (resp. —1), which is analyzed in
Example B32 (resp.B31). When Dy, = Dy, = 0, the computation reduces to case
a = [ =1, which is analyzed in Example EZ33. O]

4.2 A criteria of S; and S5 singularities

We here formulate a criterion that the folding map f¢ has S, or Ss singularities using
curvature lines.

Theorem 4.13. Let Ly denote the section of the surface by the reflection plane 1ly. If vy
generates an So-direction, then f'¢ has a singularity A-equivalent to

e Sy if a nonsingular curvature line approaching the umbilic in the direction generated
by wy has 2-point contact with Lyg.

e S3 if a nonsingular curvature line approaching the umbilic in the direction generated
by wy has 3-point contact with Ly.

Before the proof of this theorem we introduce the notion of asymptotic curvature line.
We say that a curve

(4.14) Yis 2 =79(s) =18 *l-pz% +p3%+0($4), p1 # 0,

represents an asymptotic curvature line of order k if it satisfies the equation for
curvature lines (E=2) up to order k, that is,

h2  hy, dz?
14+2|hz|? hyz —dzdz
h% zZz dZ2

V=1 (7(s)) = O(s**).

In order to show Theorem B3, it is enough to show the following.

Proposition 4.15. Let Ly denote the section of the surface by the reflection plane Ily. If
vy generates an Ss-direction, then f has a singularity A-equivalent to
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e Sy, if and only if Hij(wy) # 0, that is, an asymptotic curvature line of order 2
approaching the umbilic in the direction generated by wy has 2-point contact with
Ly.

e S3, if and only if Hij(wy) = 0 and Hi(wy) # 0, that is, an asymptotic curvature
line of order 3 approaching the umbilic in the direction generated by wy has 3-point
contact with Lg.

Proof. The assertions are proved by evaluating (E=2) along a curve defined by (214). By
this evaluation, the left hand side of (E=2) becomes

(4.16) Hi(p1)s+ [Hy(p1) +O(|pa])]s> + [Hi(p1) + 5 p1|*Hi(p1) + O(|pal. |ps]))]s* + O(s),
where

(417> H;c(’z) = \/%[22<HR>ZZ(Z> _22(Hk)22<z)]7 for k:374757""

If the curve (EI4) has at least 3-point contact with Ly, we have p; = wy and py = 0.
If Hj(wy) # 0, (Ed8) is not zero. This shows the first assertion.

If the curve (E4) has at least 4-point contact with Ly, we have p; = wy and py =
ps = 0. If H.(wy) # 0, (B8) is not zero. This shows the second assertion. O

Remark 4.18. Computation in the previous section has several interesting consequences
at umbilic. Consider the surfaces defined by (IZ2). When ki # ks, the tangent direction
of the locus k1 = ki (resp. kg = k) is generated by as10, — a3p0, (resp. ag30; — a120y)
by (B1), whenever (a1, as0) # 0 (resp. (ay2,a03) # 0). Tending ks — k1, we obtain that
the limit of the tangent directions is generated by ag10, — az0, (resp. aps0; — a120,). A
similar argement using (83), (833), (84) and (B3H) shows that, tending ko — k1, the limit
of tangent directions to the levels of v;x;, 7,7 = 1,2, at 0 is generated by a120, — a10,,
whenever (as,a12) # 0.
Setting 2 = z + yv/—1 in (E23) and (E3), we have

Hs =Re(a +38)2° /6 — Im(a + B)x*y/2 — Re(a — B)xy? /2 + Im(a — 33)y? /6,
Hj =Im(a + B)z* + Re(3a + )2’y — Im(3a — B)zy® — Re(a — B)y°.

If the origin is vo-subparabolic (that is, az; = 0), then Im(a + #) = 0, and the limit
direction is generated by 0,. We remark that this direction is a characteristic direction
since this is a root of Hj.

If we have a Cs-direction with respect to vy (that is, ag; = ag3 = 0), then, a discussion
similar to the above shows that, tending ks — k1, the corresponding subparabolic line
and the corresponding ridge line have the same limiting tangent direction (generated by
0,) at the umbilic whenever a5 # 0.

4.3 Criteria of A-versality of the folding family

We consider criteria of A-versality of the folding family at umbilics of surfaces. Since the
case for S! singularity is always A-versal (see Lemma [9), we state other singularities
cases.

Theorem 4.19. We use the notations prepared in §4.1.
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(1) Assume that vy generates an Sy-direction,

e If the folding map f° has an S,-singularity, then the folding map f° is A-
versally unfolded by the folding family F', if and only if vy does not generate a
characteristic direction.

e If the folding map f has an Ss-singularity, then the folding map f is A-
versally unfolded by the folding family F', if and only if the both of following
conditions hold.

x vy does not generate a characteristic direction, and
% vy generales a simple Sy-direction (equivalently, wy generates a simple
characteristic direction).

(2) Assume that vy generates a By-direction and the folding map f¢ has a Bo-singularity.
The folding map f" is A-versally unfolded by the folding family F, if and only if
one of the following conditions holds.

e vy generates a simple Bsy-direction, or

e vy generates a double By-direction and the circle Cy has 4-point contact with the
surface (i.e., Hy(vg) # k*/8), where Cy is the section of the curvature sphere
(or the tangent plane when k = 0) with the plane generated by the normal
(0,0,1) and vy.

(3) Assume that vy generates a Cs-direction and f|p has a Cs singularity. Then the
folding map is A-versally unfolded by the folding family if and only if one of the
following conditions holds.

e H! is a cube (that is, we have a triple characteristic direction), or
e Hj; is not a cube and the corresponding subparabolic line has 2-point contact
with the corresponding ridge.

This theorem is a consequence of the following proposition. The reason that the
criterion for A-versality for B singularity is missing is that the authors are not aware the
geometric meaning of the A-versality condition (that is, Bs # 0) for Bj singularity.

Proposition 4.20. We consider an umbilic defined by (B). Then the conditions for
singularities of the folding map f|m and A-versality of the folding family are summarized
as follows:

Condition for singularity type

Condition for A-versality

S | £Hj(we) Hs(vg) > 0 always versal.
Sa | Hi(we) =0, Hs(vg) # 0, Hj(wy) # 0 | Hi(vg) # 0
+ Hé(MG) =0, Hzll('wO) =0 / /
Sy -+ Hy (vg) HY (wg) > 0 H;(ve) (Hj(ve) + 3Hs(wp)) # 0
By | Hj(wp) # 0, Hs(vg) = 0, £B2(wg) >0 | Hj(vg) # 0 or Hy(vg) # %
H(wg) #0, Hs(vg) =0
+ 3\(Wo 5 3\Vo )
Bs | By(wy) =0, By(uy) >0 Bs(ws) # 0
H(wy) =0, H3(vg) =0 3H) (wg) H}(ve)+3Hs(w
+ 3\Wo ) 3\l ) ! (we) (vg)+3H3(wp)
5 T H (w0 Hy(vg) > 0 Hs(vo)| oty "y | 70

20




Here H(z) is defined as (BI4). The definitions of Ba(wg), Bs(wg) and Bs(wy) will be
given later as (B28), (B=21) and (E2R).

Proof. By the rotation defined by z — wyz, we can send 1l to Il and vy to 0,, and we
can apply Lemmas T4 and 9, which are summarized the criteria of singularities and
A-versality as follows:

Condition for singularity type Condition for A-versality
Sli tas a3 > 0. always versal.
Sy | ag =0, agz # 0, as; # 0. as # 0.
Sy | an =0, az =0, , £agzas > 0. a12(2a12 — asz) # 0.
2
Bg: a91 7é 0, ap3 = 0, :t(a% — %Zﬁ) > 0. a12 7£ 0 or apq 7é 3k3.
Bt ag 7& 0, aps = 0 3ags = Haiy/asn, a2 % 0.
N :|:(a%7 — Z;‘I’ + (Z;?)Z — gagl(%)g) > 0 Qo4 — 3]€3 al;:lls
C5 | ag1 =0, ags = 0, ia31a13 > 0. a12(3asiai2 + a13(2a12 — asp)) # 0.
where
2
(421) P :% + 3(21;’1 ((104 - 3@22) + Ga 2 ((I30 — 2@12)
(4.22) q :13_0(106 — 9a04k2 — 1—?’04“1;;1 + Zﬁ( ayy + 6aak? + v )

a2
13 _ 1.3 __ ai2a31
+ 2 (CLZQ k as1 )

We define a;;(w) by

il

(4.23) hwz) = L2z + i (W) ZE 4 O(m + 1).

Then, by direct computation, we have

(4.24)
azo(w) =6Hz(w), ag(w) =— Hy(w), an(w) =— Hy(), apz(w) =— 6Hz(75),

and we also conclude

2a19(w) — asp(w) = —2(H§(\/L_—1) + 3H;(w)).

Using these relations, we can prove the following assertions, taking resultants of the
corresponding cubics.

(i
(ii
(iii
(i

) There is a non-zero w with ag (w) =
) There is a non-zero w with as(w) =
) There is a non-zero w with ajs(w) =
v) There is a non-zero w with as; (w) =

0 if and only if |o| = |/].
— azo(w) = 0 if and only if Dy = 0.
) =0 if and only if Dy, = 0.
) = 0 if and only if a3 = ap®.

2(w)
z(w

Il ||

aq
2a
ags(
agz(w
In the same way as above, we can further show the following relations:

agi(w) = — 2Hj(w), aws(w) =2H;(75),
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and, we obtain that
3@31&12 + a13(2a12 — ago) :6H4(w9)H§(w9) — 4H4(U9)(H:/3(U9) + 3H3(w9))

Furthermore, we also have

aza(w)= i(6H4(w)—Kjl(w)), apa(w)= 4!H4(\/L_—1), ag(w)= —31HL(w),
(4.25) azs(w)= BHY!(57) ~AHY (757), ara(w)= —3UH( A7), aos(w)= ~5H5( 7).
as(w)= AH (7). aos(w)=  61Hs( ). aor(w)= —T1Hr (7).

where

1 _ 1 _ _
Hj!= \/jl[ZS(Hk)zzz—Z3(Hk)zzz], H'= \/jl[24(Hk)zzzz—z4(Hk)zzzz], Kj = 2%(Hy)zz+2%(Hy)zz.

Finally we obtain the corresponding expression for Bs, B3 and Bs as follows:

H' (vg)?

(4.26) By (wg) = — 24H5(vg) + 3 H‘Z(dﬁ) ,
(427) B3('LUO) :6!H7<Ua) + 48H6(1}9) gg((i?) + %(3]{&//(1} ) 4H”(U@))(H ((Ue)))Q

H/ (v

— 3 (wo) (755",

H(wy) p(wp)
4.28 Bs(w 2H (0p) B (v ’
- )= o) — 3k - Tt 1(we)

where p(wg) (resp. q(wy)) is defined by changing a;; by a;;(wg) in (E=21) (resp. (B222)) and
substituting using (=23). We complete the proof. O

Example 4.29. When a > 0 and g = 0, this is a star, and we have

Hj(wpz) =|a(cos 36 % — sin 36 _35'32%*243 ).
We then conclude that the folding map f™¢ has a singularity A-equivalent to

e S5 singularity, if 30 # 0 mod 7.
o CF singularity, if 30 = 0 mod 7, and H/(wg) # 0, H(vg) # 0. Moreover, the
folding family F is A-versal at f1 if H}(wq) — H}(vg) # 0.

Example 4.30. When a = 0 and S # 0, this is a lemon, and we have
Hj(wgz) =|B|(cos(f + arg B) =5+ 300 gin(6 + arg B)W)
We then conclude that the folding map f¢ has a singularity A-equivalent to

o ST singularity, if § + arg 3 # 0 mod 7.
e CF singularity, if @ + arg3 = 0 mod 7, and H}(wg) # 0, H)(vs) # 0. Moreover,
the folding family F' is A-versal at % if 3H)(wq) + H}(vg) # 0.

There are cases where A-versality can be determined by 3-jet, which is worth stating
as a theorem.
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Theorem 4.31. Assume that the umbilic is star, monstar or lemon. If the folding family
Yo has Sy, S or By singularity, then f is A-versally unfolded by the folding family F.

Proof. A consequence of the table and the items (i) — (iv) in the proof of Proposition
. [

Example 4.32. When o > 0 and § = «, the H3 is a cube. This is the case that
Dy, = DHé = 0, we have

ag1(wy) = — 8|a| cos® fsin b, ags(wg) = — 8la|sin® 4.

In this case we have one double Sy-direction (that is, # = 7/2) and one Cs-direction (that
is, ® = 0). Since ajz(wg) = 8|a|cosfsin?f, we obtain that the folding map f% is not
A-versally unfolded by the folding family F', even though f¢ may define S,, Ss or Cs
singularities.

Example 4.33. When « > 0 and 8 = —3a, we have Hj is a cube. Then Dpyy =0 and
as1(wp) =8|asin® 0, aos(we) =4|a|(5 + cos 26) sin 6.
In this case, we have one Cs-directions (that is, # = 0). Since
a12(wy) = — 8la| cos® b, 2a12(wg) — aso(wy) =24 cos §sin” 6.

If vy generates a Cs-direction and f% defines Cj singularity, then the folding family F is
A-versal at f1¢ whenever Hj(wy) # 0.

We first show the item (3) of Theorem B—TJ.

Proof of Theorem F-19 (3). We assume that o3° = @3°. By Remark EI0, we can assume
that both a and 8 are non-zero real. Since

as1 (wy) = — 2(Bsin @ + asin 30),
aps(wy) = — 2(Fsin @ — acsin 30),

we have sin @ = sin 30 = 0. It is enough to consider the case § = 0. We assume that f1o
defines a Cj singularity, which means asz;(wg)ais(wy) # 0. Then

(4.34) aia(wy) =2(f cos — acos36) = 2(8 — a),
(4.35) 2a12(wy) — azo(wy) = — 2(B cos b + 3acos 30) = —2(5 + 3a).

If Hs is a cube, the folding family is not A-versal, by Example B233. We assume that
(B233) is not zero. If (EZ33) is zero (that is Hj is a cube), then the folding family is
A-versal, since agi(wy) # 0. We then assume that (E=35) is not zero.

We consider the surface defined by (IZ2). We remark that the coefficient of z%/2 in
(BR) is

a1 (4a22 —3a40+2k3)+(2a12—az0)as1r | az1(2a03—T7az1)+a12(4a12—6as0)+2a3
41 — Cl21k’1(5k’1 + kfz) + k1_1k2 + (k1—k2)2 20
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and the coefficient of z?/2 in (B9) is

2 3(a12a31+2a21 (a22—k3)) 6az21 (a2, —a?,+a12a30)
ags + an k2 + ooz k) 4 Gon(eh—aiyts

Assume that as; = agg = 0 and consider parametrizations of the zeros of (BJ) and (819).
Tending k2 — k; we obtain the following: The limit of vy-subparabolic lines is represented
by

t— (l’,y) = (t M% + 0(3))7

> a12(azo—2a12)

and the limit of vo-ridge lines is represented by

t (:L‘, y) — (t, _20126113*2&302&13+3a12a31 2 + 0(3))

3ai, 2
We thus complete the proof, since
a30a31 2a12a13—2a30a13+3a12a31 _ 2(a30—a12)(=3a12a31+(az0—2a12)a13) 0
a12(azo—2a12) 3a2, 3a2,(2a12—aszp) :

We also see several examples, as consequences of Proposition E210.

Example 4.36. When a > 0 and 3 = —(1/3)a, which is the case that Dy, =0, Dp; # 0
with Cs-direction, we have

as (wy) = — 5|alsind(1 + 3 cos 26), aos(wp) =8|a| cos? Asin 6.

In this case, we have two simple Sy-directions (that is, § = +tan™! \/5), one double
By-direction (that is, § = w/2) and one Cs-direction (that is, # = 0). Since

a12(wy) =3|acosO(1 — 3cos20),  2aiz(wy) — azo(wy) =3|a| cos6(9 cos 20 — 5),
we obtain the following:

e If vy generates a simple S,-directions, then the folding family F' is A-versal at f!e,
whenever f1 is Sy or S3 singularity.

o If vy generates a double By-direction, then the folding family F' is A-versal at f
whenever Hy(vg) # k3/8.

o If vy generates a Cs-direction and f¢ defines a O3 singularity, then the folding
family F is A-versal at f¢, whenever 3H}(wq) — 2H}(vg) # 0.

Example 4.37. When o > 0 and f = —a, which is the right-angled umbilic with a
Cs-direction, we have

as1(wg) =8|a|sinfsin (% + ) sin(% — 6), aoz(wey) =4|cr| sin 0(2 + cos 20).

In this case, we have two Sa-directions (that is, # = 4+ /4), which generate characteristic
directions, and one Cj-direction (that is, # = 0). Since

a12(wy) =4]ar| cosOsin(F + 0) sin(F — 0), 2a12(wy) — aso(wy) =4|a| cos (2 — 3 cos 26),

we obtain the following:
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e If vy generates a simple Sy-directions, then the folding family F' defines A-versal at
Yo whenever f¢ defines an S; or Sy singularity.

o If vy generates a Cs-direction and f¢ defines Cs singularity, then the folding family
F is A-versal at f¢_ whenever 3H}(wq) — 2H}(vg) # 0.

Proof of Theorem [[.19 (1), (2). The proof is already done when the umbilic is star, mon-
star and lemon. So we consider the case [a| = || or Dy; = 0 or Dy, = 0. The following
cases have been already analyzed.

e Dy, = Dy, =0 (Example B32).

singular locus of Dy = 0 (Example B33).

Dy, =0, a® = ap®, Dy, # 0 (Example E3G).
la| = |B], aB® = @B, Dy, # 0 (Example B=37).

Without loss of generality, we can assume that o > 0. We first consider the case that the
umbilic is right-angled (that is, |a| = |8]) with no Cs-direction (that is, a3® # a3®). We
can assume that a > 0. We obtain that

as (wy) = — 4| cos(@ — %) sin(26’ + #),
aoz(we) =2|c|(sin 30 — 3sin(f + arg f)).

_argB 2m—argB mw+targfs )
’ 2

VRt and one

Thus there are three simple Sp-direction (that is, 0 =
simple Bs-direction. Since

a12(wy) =4|o| sin (6 — %) sin (26 + %),
we have the following:

o If vy generates a simple Ss-directions with 6 = ”aTrgﬂ, then the folding family F' is
A-versal at f¢, whenever f¢ defines an S, or S3 singularity.

o [f vy generates a simple Ss-directions with 6 = #, w, then the folding family
F is not A-versal at f.

o If vy generates a By-direction and f¢ defines B, singularity, then the folding family
F is A-versal at fU¢ whenever Hy(vg) # k3/8.

We next consider the case that Dy, = 0 with no Cy-direction (that is, a3* # a8%).
Using the notation of (E9), we obtain that

as1(we) =8 sin?(f — %) sin(6 + ¢),
aos(wy) =2|c|(sin 30 + 3sin(f — 2¢) + 6sin(6 + ¢)).

Thus there are one simple Sp-direction (that is, # = —¢), one double Sy-direction (that
is, 8 = ¢/2), and one simple Ba-direction. Since

a12(wy) =8sin?(H — %) cos(0 + @),
2a12(wy) — asp(wy) =2 sin(@ — %) (3 sin(2«9 + %) + sin %),

we have the following:
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e If vy generates a simple Sy-direction, then the folding family F is A-versal at fle,
whenever f1¢ defines an S, or Sz singularity.

o If vy generates a double Ss-direction, then the folding family F' is not A-versal at
M. (In [2, line 9, page 70], Bruce and Wilkinson mentioned that “Ss is not versally
unfolded by F”, which should be read as pointing out this fact.)

o If vy generates a Bo-direction and f¢ defines B singularity, then the folding family
F is A-versal at flo,

Thirdly, we consider the case that Dy, = 0 with no Cs-direction (that is, a83% # as?).
Using the notation of (AR), we obtain that

ag (we) = — %\Oz\ sin(@ — %)(3 cos(29 + %) -+ cos %),
aos(wy) =8|a| cos?(0 — %5) sin(f + ¢).

Thus there are one simple Bs-direction, one double Bs-direction and three simple Ss-
directions. Since

a1a(wy) = — 3| cos (0 — £)(3cos(20 + £) + cos 22),
we have the following:

e If vy generates a simple S,-direction, then the folding family F is A-versal at fe,
whenever f1¢ defines an S, or S singularity.

o If vy generates a simple By-direction, then the folding family F is A-versal at f.

o If vy generates a double By-direction and f!'¢ defines B, singularity, then the folding
family F is A-versal at % if and only if Hy(vg) # k3/8. O

Remark 4.38. When o = 3 = 0, then any direction vy is a Cs-direction and the folding
map can have Cj singularity, but the folding family F is not A-versal at f.

5 Proof of Lemma 1”9

We consider a motion p — A(p) = (a; a2 a3)p + ay where

T1 V1—u2—p2 U —Uuv
— — 1 — — _1 7,2
ao—w<713> , @1 = V102 ( —u ) , Qg = (\/l—uQ—v2>7 as = T (v\/lu —v .

0 v 1—v2
Here we remark that (a; ay as3) is an orthogonal matrix. We consider the motions

Vi1—u?—v?z—uvz Suytwr
V1—v? 1
e —u2—p2 e
A(p) _% \ﬁvzqur oZ—Zytw |0 P ( ) ;
vy+v1—v2z+wTrs

ne 8

in FF'= Ao fo A(p) (see (CM)), and we obtain

y(1-y) 0

(1-y) 0
(51) Fu|(u,v,w):0 = (f(lé/y)) ) Fvl(u,v,w)zo = (2(12y)) ) Fw|(u,v,w):0 = <2y0—1> .
0
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Setting f = F|(uvw)=0, We have
22 +koy? m iyl
(5.2) = (22 B0 S e B 4 O(m 4 1))
i+5>3
We are looking for the condition that F' is an A-versal unfolding of f, that is,
(5.3) EP =TRf+TLf+ Vp.

where TRf = (fu, [)er, TLf = fTIE?, Vi = (F,,F,, F,)s. Here F, = Fou (uy0,)=0,
Fv = Fv|(u,v,w)=07 and Fw = Fw|(u,v,w)=0-

In the notation in [, §3], this is G.-versality with G = A. See Versality Theorem 3.3
loc. cite. also.

If f is m-A-determined, then we have

({2, y)y2 ¥ C TRf + TLS.

Now we return to the case for the folding family. We assume that the map-germ
(z,y) = (z,y? f(x,y)) is m-determined. We consider the condition that the matrix

. 7?1 Wel O O ‘21

M=|T, O We 0O V

s O O Wes Vi

is of full rank, where
To =((¢), ;)7 (@ y2) (8" fo + & ) €s)irtigems jm12gitiozm (s =1,2,3),
W=Wo Wi ... W), W= (") (@92 )issin<m, j1+ia<m- 26,
Vi =((="y)"(y(1 — y)er 0 0))iyir<m,
Vs :((xilyiz)*@ﬂ —2y)es f(1—2y)es 2yes))iiriy<m,
Vs =((2"y)"(0 y(1 = y)es 0))iy +iz<m-

Here we define

(271y72)* (2"1y2) = {1 (i1,82) = (J1, J2)

0 otherwise

ot g 1 i) = G
J27 e 0 otherwise
where ¢' = Zil i ﬁlhizx“y"?.
Because of the submatrices Wye, (s =1,2,3), we can remove
e the columns corresponding to z'1y?2e, (i; + 2iy < m, s = 1,2,3), and
e the rows corresponding to z/'y*2e, (j; +2j> <m, s =1,2,3)
from the matrix M. The matrix obtained by this operation is denoted by

T1 W€1 O O ‘/1
M = TQ O WGQ O ‘/2 where W = (W1 WQ ce th/gj) .
T3 O O W83 Vz),
Ty
We set T' = (Tz).

T3
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5.1 S singularity

We assume that f is A-equivalent to S; singularity, that is, as; # 0 and ag3 # 0. Remark
that S; singularity is 3-determined (m = 3). The matrix M is expressed as follows:

1 1 1 1 1 1 2 2 2 2 2 : :
%o $10 $a1 P11 b3y P P00 P10 P01 $11 Poa e1 e2 es Fy Fy
yey 1 1
2 1 a
yer } o
2
1 a
y ey L 93
vez
zrye2 2 —2
2 a a
e L e 3k
=< A
AN
3 a prY.
e 2 a0 o,
~ SOSU
AR
yes ko 1
=2
Tyes a21 k1 a1z ko
a2} 22 —2
2 a a a a k a
~ ~e ~e ~ ~ ~ ~
3 a13 a1z ag4 ag3 ko ag3
v-es 2 6 2 2 6
~e ~e ~ ~e ~e
A x A

First, by Gauss’s elimination method using boxed elements as pivots, we eliminate ele-
ments with wavy lines below. Next, by Gauss’s elimination method using the underlined
elements as pivots, we eliminate elements with double wavy lines below. Thirdly, by
Gauss’s elimination method using the double underlined elements as pivots, we eliminate
elements with wavy lines below with underlines. Now it is easy to see that this matrix is
always of full rank.

5.2 S, singularity

We assume that f is A-equivalent to Sy singularity, that is, ag; = 0, ag3 # 0 and agz; # 0.
Remark that Sy singularity is 4-determined (m = 4). The non-zero entries of the matrix
T is shown in the following tables.

B0 Plo P01 P P Do D30 S Pia b3 Sio P D D1z P
yer 1
Tye; 1
4521181 %
yley i
ziyer i
zy’e :
yes
Tyes ]{1
ey | 3 a0 y
yes | ¢ 5
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$o Do P 9% P D Pl 9h ¢y O
yeo 2
TYyes 2
z’yes 1
yies 1
xy3eg 1
yes ko
ryes | aiz ko
$29€3 %?’ ai2 %%
yles | ot ) 7
aiyes | U g g 7

The non-zero elements of the matrix W are given as follows:

e re; ey xeys es3 wes F, F, F,

ye; —1
rye;
z*ye,
yie
ziye
zy’ey

SQE
= o

o

e
=)
o

yeo 2
TYyes -2

r’yes —ky

y3e2
ziye;
ry’es

=] |Q
o DO
= (98]
2 |2
8®|g
S o~
w2

Eel
=
(9¥)
)
o
(9]
B ol
o7
Q
£
[\

yes 1
ryes
r*yes
yes
zPyes
ry’es

w
I
=}
Y

5ol

=)
=

5]
D=
o
)
=
<o
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We thus looking for the condition so that the following matrix is of full rank.

[ejenen]

[e=jenen)
[e]enlien]

[e]enen]

ooHIN

O ONODOoO O ©O © oo

oS O No o

O HYOoOo O
Ho© O OO O

o O ocoo

oS O oo o

ap3—k2

6

0

0 0 00 O
0 0 00 O
0 0 00 O
0
0

0

07 N

M

3 3

| Ao
= T
%Ta

o O OO
oS © oo

o O OO

e
o %600
— ™)
3761760 o
S] [S]
S O oo

(=R el o]

o - o0

MmO OO

S O oo

0
0
0
2 k2

0
0
0
0

o

o

o .26

2o

204 203
Y 2 0
32 a2 3 1
6 2 6 2

0 0 0O

0
3
2

0, az; # 0 and

ap3

0

0
*
*
*

0O 00 O0O0O0OO
0 00 0 00 0 ky—kKk
0O 00 O0O0O0OO

0 0 = 0 % O

0 0 = 0 % O

0

0
Since az; # 0, ap3 # 0, we conclude that this matrix is of full rank if and only if the

upper-right 2 x 3 matrix is of full rank, that is, k; # ko or a5 # 0.
a;3 # 0. Remark that Cj5 singularity is 4-determined (m = 4). In a similar way to the

By applying the row-addition transformation to this matrix 12 times, we can remove the
discussion above, we obtain the following matrix for 7.

first 12 rows and columns 3-10, 12 and 14-16, yielding the following matrix.

We assume that f is A-equivalent to Sy singularity, that is, ag;

5.3 (5 singularity

[ejenen)

oo O
[e]enien]

[e]enen]

ooHIN

o O oNoOoO
—~ N
o o OOOL_N.AI_m
N
©c o ocojee
o © cocooco
o o o
) o)
0376160000
31 s
o o ococooco
o © cocooco
o o cocooH
o O cocoHO
o o cocooco
o o cooNoOo
o o oNooOo
o O HvoO OO
o Ho O CcoO0 O
HoO O © cooOo
o © cocooco
o o cocooco
o © cocooco
o o cocooco
o o ococococo

|
| BT
Hes

S O oo

& o~
om
S 3

|l mo

o O OO

S O oo

o
0000&6%7600

oS O OO

(=R s =E=]

MmO OO

0O 000 O O
0

0

2 k2

0 0 00 O
0
0

0
0
0
0

04 0 0

a04

0 0 0O

o o

= o
m© —H©
3 S}

N
o Sl

e o
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By applying the row-addition transformation to this matrix 12 times, we can remove the
first 12 rows and columns 3-10, 12-15, yielding the following matrix:

O O 0 00O 0 1 —ks
0 O 0 O 0 0 k'z—k'l O —a12
B0 0 00 0 ap— % ’“k’“ —oz
40 0 000 —a2 5
i * * *
@ as aE 0 ok ok * * *

Since agiaiz # 0, we then conclude that this matrix is of full rank if and only if

ko — ki —3aiz + Z—;f(a?,o — 2a1) 20
ai12 apgq — 3]{?% —l— %(QQQ — k‘lk‘%) ’

5.4 S3 singularity

We assume that f is A-equivalent to Sy singularity, that is, as; = a3 = 0, agz3 # 0 and
aq1 # 0. Remark that S3 singularity is 5-determined (m = 5). In a similar way to the
discussion above, the matrix 7', removing zero columns, is obtained as follows:

OO O OO O0O0OOOO O O © © O © oo~
O O OO O0O00OOoON O O O O O © ©Oo0o
O O O OO O0OO0OONO O © ©O O O © ©O0o0o

=

8,
wl\)
I
V)
OO O O OO OO0 O © ©O O O O o000

QO O O OO OO O O © © O © O+

o
=

Q
e
(=]

b
(]

a O OO0 O ©O OO O0OO0OOCO O © ©O ©O © O o000
0 O OO0 O O OO OO0 © © © © © ©Ooo
e O O O OO0 © OO OO0 O O O O O O OoO
\go OO O O OO O+HOODOO O © © O © ooo

Q

GOOOODOOOOOOODDOOOODOOOO

‘D
(NN}
=
v O

Q

3
= O N
o

‘n
o o
o
Q
N
= O N
‘9

)
B o
o
O O O OO0 O OCOOOOOOOD O O O O O OO

‘,_?FO O O OO O O OO OO0 O © © O Cokr OO0

i <]
N o
oo

Q

= O N
o

o
=
‘S
= o
=
£
(S
(o)
o
‘g
=
(=)
O O O O OO0 O OCOO0OOOO O © O © O O OO0

ot o
5]
L O o
(=)
‘D
‘P
© N
=
2
oo
N O N
Q
39
‘m
I

e O O O O O OO0 0O O OO OO0 © O © © © oo

‘9
N
o
‘P
o o
o
Q
(SN S}
> B l=
Q
N
= O N
39

Q
oo
o

Q
N o
o

()
N

Q
o
o

e
(N
5N

S]
o

2
N O N

-
»
I

IS} Q
o»‘:}»‘g ONT O O 000 O DCO0OCOOO O © O O O ONROO
O Cofo O O OO0 O COCOOOOO O O OOk O OO0
Colf© © O O OO0 O CO0OOOOO O Ook O O OO0
O O O 0O 0O O OO0 O 0O0CO00OCO0 OO0 © o coo
O O O 0O 0O O OO0 O 0O0CO0OCOOLo © © o coo
oooooooooooooooooog‘woooooooo
IS
ooa‘som\go O 00O O O COUFOOOO O O © O © O OO0
Q
Om‘sow‘goOOOOOOOHOOOOOOOOOOOOOO
‘8000ooooooooooooooooooooooo
o offo © © o oo o OfrocCOCO0 © O © © © OoO
orlfo © O O CCcoOONMFOOOOOOOO © O O O O Oo0
P o © © © © 0 oo CooocoOO O O O © © © OO0

5
=
o
o o
)
=
N
)
o W
)
=
jwo
5
=
o
o »|

-
»
=
»
=
»

The non-zero elements of the matrix W are given as follows:
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2f y'f  f?

S
s

e <

Q

S o o o=
cocoooo

Ocn|

2>y

SO OO o oo
O OO O OO oo

wyt | g

xty 50

$2y3 % % a% k1603
y5 %og 0 0 a% kzgoa

We are thus looking for the condition that the following matrix is of full rank:

0 0o 1 0o 0 0o 0 0 0 0 00O 0O O O ©0 0 0 ©0O ©O0O 0 0 0 0 0 0 0 0 0 0 0 0o 0o 00 0 0o 0o 0o o0 0o 1 0 0
o 0o 0 0 1 0 0 0 00 0O 0O O O 0O 0O 0 O O 0O 0 0 00 0 0 0 0 0 0 0 0 00 o0 0 0 0 o0 0o 0 0 0
o o o o o o % 0o 0000 0 0 0o 0 0o 0 0 0O 0 0 0 000 0 0 0 0 0 0o 0 00 o o 0o 0o o o o 0 0
o o o o o o o Lt oo o0 0o o o o o 0o o o o o 0o 0 0 0% o 0o o 0 0o 0o 00 o0 o 0o 0o o o o 0 0
oo o o o o o o Lo oo o o o 0o o 0 0 0o 0 0 0 000 0O 0 0 0 0 o 0o 00 o o 0o 0o o o o 0 0
o o o o o o o o o % o0 0 0o 0o 0o 0o 0 0O 0 0 0 o0 o0 0 0 o HT o o 0 0o 0o 00 o0 o 0o o0 o 0 0 0 0
o 0 o o o 0o 0o o 0 o0o&o o o o o o 0o o 0o o o o oo o0o% o o o o o 0o 00 o o o 0o 0o o0 o0 0 o0
0 0o o o o o 0o 0 0 0 04 0 o 0o 0o o 0o o o o o o 0 0 o %233 o k%3 o o o0 0o o o 0o 0o o o [
0o 0o o o 0 0 0 0 0 0 0 Ok 0 0o 0o 0o o0 o0 o0 0o 0 o0 o0 0o 0 79 o o 03 "J%Qi 0 0o 00 o0 o 0o 0o o o o0 0 0
o 0o o o 0 0 0 0 0 0 0O 0 2 0 0 0 0 0 0O 0O 0 0 0 0 0 0 0 0 0 0 0 0 00 o0 0o 0 0 o0 0o o 0 2
0o 0o 0o 0 0 0O 0O 0 00O OO 0O 0O 2 0 0 0 0O O 0O 0 0 00 0 0 0 0 0 0 0 0 00 o0 0o 0 0 o0 0 -2 0 0
o 0o o o 0 0 0 0 00 0O O O O 0O 1 0 0 0O 0O 0 0 00 0 0 0 0 o0 0 0o 0 00 o o 0 0o o o o —k1 0
o 0o o o o 0o 0o 0o 0000 0 o o o 0 0 1 0 o o o 0o o0 o0 o o o o o % o 0o o o o 0 o o0 o0 W ko0
0o o o o o 0o o 0 0000 0O O O 0o 0o 0 0 % 0o 0 0 000 0 0 0 0 0 o 0o 00 o o 0o 0o o o o -%0 o
o o0 0 o 0o 0o 0 0 0 0 0 0 0 0 0 0 0 0 0o 0 0 1 o 0o 0 0 0 0 0 0 o a2 oo 0 o o 0o o0 o ) 0 a0
<1 a4 k1ag3 a41 _ 240
0 o 0o 0 0o 0 0o 0 0 0 00 0 0 0 0O 0o 0 0 0 0 0 0 o o0 0 0o 0 0 o 4L o o ofg o 0o o o 0 0 %4124,
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By applying the row-addition transformation to this matrix 18 times, we can remove the
first 18 rows and columns 3, 5, 8, 10-17, 19, 21, 22, 24, 26-28, yielding the following
matrix:

1 —ko

ka—k1 —a12
a% GTS * * * * *
‘”% * * *
%% a%aTg, * % % % * * *
%%% %%% Kok ok ok ok Kk ok ok ok * * *
% %% alﬁ* * * k% * * * *

Since agsayq # 0, we then conclude that this matrix is of full rank if and only if the upper
right 3 X 3 matrix is of full rank, that is,

(as2 — k1k3) (k1 — ko) + a12(2a12 — asg) # 0.
5.5 B, singularity
We assume that f is A-equivalent to By singularity, that is,

asy 7& 0, ap3 = O, and 3@05 - 5(1%3/CL21 7é 0.

Remark that Bs singularity is 5-determined (m = 5). In a similar way to the discussion
above, the matrix T, removing zero columns, obtained as follows:
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first 18 rows and columns 3, 5, 8, 10-17, 19, 21, 22, 24, 26-28, yielding the following

By applying the row-addition transformation to this matrix 18 times, we can remove the
matrix

a g
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— *
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| * 3
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conclude that this matr

)2 0.

ai3
a21
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C113(]6‘1 - k’2) 7é 3az1a12

is,

0 and B3 # 0.

7). With the same arguments as above,
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Remark that Bj singularity is 7-determined (m

5.6 Bj; singularity
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The matrix W looks like



0 0 0 0 0O 0 0 0 o0 0 0 0 0 0
0 0 0 0 o 0 0 0 O 0 0 0 0 0
@2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 22 9 0 0 0 0 0 O 0 0 0 0 0
Lia 0 0 0 o 0 0 0 o 0 0 0 0 0
%41 3 221 g 0 0 0 0 O k1o21 0 0 0 0
3 3 g %2 g 0 0 0 0 kag21 0 0 0 0
2
@13
aey O 0 0 o 0 0 0 o0 0 0 0 0 0
‘Igé “2441 agl 0 “%1 0 0 0 0 agjaggtkiazy kl;zl 0 0 0
a3363 a1223 aés agl 0 a%l 0 0 0 3a12a21+aé3’€1+a31k‘2 k2;21 0 0 0
2 .
om0 0 0 0 0 0 kat1a 0 0 0 0
:gé Tgé <L2441 0 ‘Lgl 0 ‘131 0 0 daggagy +3agjagpt3agiky agjag0+tagiky “2%’“1 0 3‘1281’“%
a3 a33 a23 @41 @13 @31 g 921 ( 18asjagptdajgaggotlaggagy+6aggzky+3ag1ky Baipasytaigkytagiky asiky apiky 3agykykag
144 36 i2 24 6 6 2 72 6 2 2 1
ass ais 933 aog 0 w3 o o %2 12a1pa13a21 +3ag4a3; +afgky +6a21ag3ky ajgks 0 o21k2 3ag1k3
240 120 72ag; 12 6 2 Zag; 6 2 8
2 2
LA 0 i3 g 0 0 o0 isha 0 0 0 0
5040 T2agq T2ag9,

By applying the

row-addition transformation to the matrix M 33 times, we can remove

the first 18 rows and columns 3, 5, 8, 10, 12, 14, 17, 19, 21-30, 32, 34, 35, 37, 39, 41, 43,
44, 46, 48, 50-53, and second from last, yielding the following matrix:

a1 k2—k1 —a12
2
o a a k5(ag1—2k1)
% an -ty —op - Hleazi
3
a13 _a12 k5 _agq
6 2 276
* aTl * * * * * * * *
ag3 a3 a1 a13 _kaaig a13 ag4 _age _a14 _g2.  _ a13
6 6 2 > 0 - 0 % 6 2 6 —k3(a12—35")
* * * (LTI * * * * * * *
2 2 2 2 2
a1s a13 5ai3 kaayg a3 _a1a a6 k3 (ags— 213
120 12 T2a91 Tadag T2a91 24 20 ~ 8 \@047 g
* ok % * % * % * * % K *
* * * * * * m * * * * * * * *
1
asg a13 as] a15
* * 12 12 54 24 * * k * * * *
* ok % * * % * % * * % K * *
* * * * * * * * % * * * * * * * *
* * * * * * 612% * * * * * * * *
215 a13 297
* 240 144 720 * * ook X * *
. a a 5 a13\2 5 a13\3 ; :
Since az # 0 and By = ¢ — a1572 + 3ax3(922)* — gas(22)° # 0, we obtain that this
.. . s a1 a21 a21
matrix is of full rank if and only if
ai3(ka—Fk1)
12 + 3a21 p 7& 0
3 a12a13 ’
dos — 3ky — ST g

A Criteria of singularity types of maps

Assume that f : (R?,0) — (R?,0), (u,v) — f(u,v), has rank one singularity at 0 and
an unit normal vector is extended to v on the singular locus. Set A = det(f, f, V),
1 = det(t nv v), where t is a unit tanget vector of the singular locus, and 7 is a vector

field whose restriction is null to the singular locus. We have that (f,v)

(R%,0) —

(R® x R?,(0,(0))) is an embedding, if and only if 1(0) # 0.

Lemma A.1. The singularity of f is A-equivalent to

e cuspidal edge, if 1 (0) # 0, nA(0) # 0;
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o swallowtail, if 1(0) # 0, nA(0) = 0, n?X(0) # 0;
e cuspidal cross-cap, if (0) =0, nA(0) # 0, ¢'(0) # 0.

Proof. See [R, §1-2] and [6, §1]. ]
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