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Abstract

We investigate A-versality of the folding family introduced by Bruce and Wilkin-
son, which describes infinitesimal reflectional symmetry of a regular surface in Eu-
clidean 3-space. We obtain several geometric conditions which ensure A-versality
of the folding family.

We consider the restriction of the folding map

(0.1) f : R3 −→ R3, (x, y, z) 7−→ (x, y2, z),

to the surface M defined by an embedding g whose 2-jet is given by

(x, y) 7→ (x, y, a10x+ a01y + a20
x2

2
+ a11xy + a02

y2

2
).

We easily see the following:

• the map f |M is nonsingular at (0, 0) if v is not tangent to M, that is, (a10, a01) 6= 0,
• the map f |M has a singularity A-equivalent to cross-cap (S0) at (0, 0) if and only if
v is tangent to M and does not generate a principal direction of M at 0, that is,
(a10, a01) = 0 and a11 6= 0,

where v denotes a unit vector which is perpendicular to the reflection plane y = 0.
So if we investigate more degenerate singularity of f |M, it is natural to assume that

the embedding g is given by the following Monge form:

(0.2) g(x, y) = (x, y, h(x, y)) h(x, y) = k1x2+k2y2

2
+

m∑
i+j≥3

aij
xiyj

i!j!
+O(m+ 1).
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where m is an integer ≥ 3. Here O(m + 1) denotes a term whose absolute value is at
most a positive constant multiple of |(x, y)|m+1 near 0. When the origin is not umbilic
(that is, k1 6= k2), the vectors ∂x and ∂y generate principal directions at the origin. They
can be extended to the principal vectors on the surface which we denote by v1 and v2,
respectively.

Bruce and Wilkinson showed the list of singularities of the folding map f |M in a
generic context, mentioning several geometric meaning ([2, Page 68]), as follows:

S1 general smooth point
S2 parabolic smooth point of focal set
S3 cusp of gauss at smooth point of focal set
B2 general cusp point of focal set
B3 (cusp) point of focal set in closure of parabolic curve on symmetry set
C3 intersection point of cuspidal edge and parabolic curve on focal set

Here we use the notations introduced by Mond ([10]).
Bruce and Wilkinson ([2]) also introduced the folding family, which is the restriction

to M of the family of maps obtained by conjugating the map (0.1) by Euclidean motions.
They showed that the folding family is A-versal for a residual set of embeddings M ⊂ R3.
We recall these results as Theorem 1.2. Since Bruce and Wilkinson ([2]) did not show any
explicit criteria for A-versality in [2], it is an interesting problem to describe them. The
folding map is motivated by describing infinitesimal reflectional symmetry of a regular
surface, and the conditions being A-versal should have several geometric meanings.

In this paper, we first give criteria of singularities of the folding map f |M in terms of the
double point locus of f |M (Theorem 1.11). The main topic is to describe explicit criteria
forA-versality of the folding family and discuss their geometric meaning. Our main results
are stated as Theorem 1.4 for non-umbilic points, and Theorems 4.19 for umbilic points.
These are based on Lemma 1.9, which shows the necessary and sufficient conditions for A-
versality in terms of the coefficients of (0.2). We describe several consequences here. For
non-umbilic points, the geometric criteria for A-versality are stated using subparabolic
lines and ridge lines. For example, if the folding map has a B2 singularity, then the folding
family is A-versal if and only if the corresponding ridge line is nonsingular there (Theorem
1.4 (iv)). For umbilic points, we claim that the folding family is always A-versal when
the folding map has S1, S2, S3 and B2 singularity at Darbouxian umbilics (star, monstar
and lemon) (see Theorem 4.31).

Star Monster Lemon
Configuration of curvature lines at Darbouxian umbilics
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The paper is organized as follows. In §1, we recall the definition of the folding family,
and state a main theorems at a non-umbilic point clarifying several geometric meaning
of its A-verality. We also discuss here the crirteria of singularutuies of folding map
f |M in terms of the double point locus of f |M. In §2, we recall the duality between
focal/symmetry sets and the bifurcation sets of the folding families. In §3, we investigate
the conditions appeared in our main theorem for non-umbilic points. To do this we
describe derivatives of principal curvatures by principal vectors including higher orders.
In §4, we recall classification Darbouxian umbilics and show our main theorems for umbilic
points. In §5, we show Lemma 1.9, which is a key lemma in our calculation.

The authors are grateful to Farid Tari, since discussion with him motivates the paper.
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1 The folding family F

1.1 Definition of the folding family F

Bruce and Wilkinson ([2]) defined the folding family F as follows:
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Let M be a nonsingular surface in R3. Let G denote the group of motions of the
Euclidean space R3. We define

(1.1) F : M×G −→ R3 by F (p, A) = A−1 f A(p).

Remark that this map is actually defined on R3 × G and we are thinking its restriction
to M × G. Let Π0 denote the plane defined by y = 0. If H denotes the subgroup of G
preserving the region y ≥ 0, then F gives rise to a family of foldings at the plane Π =
A−1Π0. Remark that the quotient group G/H parametrizes the planes in R3. Identifying
the quotient group G/H with the space P of all planes in R3, we define the folding family

F : M×P −→ R3, by (p,Π) 7−→ F (p, A),

where A is a motion with Π = AΠ0. We also define fΠ : M −→ R3 by fΠ(p) = F (p, A).

Theorem 1.2 ([2, Proposition 2.2]). For a residual set of embedding M ⊂ R3 the folding
maps f |M : M −→ R3, have singularities A-equivalent to one of the following types:

type normal form Ae-codimension order of A-determinacy C
S0 (x, y2, xy) 0 2 1
S±
1 (x, y2, y3 ± x2y) 1 3 2
S2 (x, y2, y3 + x3y) 2 4 3
S±
3 (x, y2, y3 ± x4y) 3 5 4

B±
2 (x, y2, x2y ± y5) 2 5 2

B±
3 (x, y2, x2y ± y7) 3 7 3

C±
3 (x, y2, xy3 ± x3y) 3 4 3

Here C is an invariant due to Mond, which bounds the number of cross cap appeared
in stable deformations of each singularity. Moreover, these singularities are A-versally
unfolded by the family F .

We do not recall the theory on A-versality in the paper. We just remark that the
condition equivalent to the A-versality of the folding family is stated as (5.3). The notion
of A-versality is important, since two A-versal unfoldings of a map-germ are equivalent.
See also [11, §3] more for A-versality.

Since Bruce and Wilkinson ([2]) did not mention explicit conditons for A-versality
of the situation above, the theorem above becomes much useful after we clarify several
geometric meanings of the criteria of A-versality of F .

We recall the notions of ridge points and subparabolic points here.

Definition 1.3 ([7]). Let p be non umbilical point of a regular surface with principal
vectors v1, v2, and the corresponding principal curvatures κ1, κ2, which are defined near
p.

• We say that the point p is a vi-ridge point, i = 1, 2, if viκi(p) = 0, where viκi is the
directional derivative of κi in vi. Moreover, we say p is the first order vi-ridge if
v2i κi(p) 6= 0. The closure of the set of vi-ridge points is called a vi-ridge line if it is
of one-dimensional.
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• We say that the point p is a vi-subparabolic point if viκj(p) = 0 (i 6= j). The
closure of the set of vi-subparabolic points is called a vi-subparabolic line if it is
of one-dimensional.

We now state several geometric criteria of the singularity of the folding map and
A-versality of the folding families at non-umbilic points as follows.

Theorem 1.4. Assume that we consider a point on the surfaces, which is not umbilic,
and v generetes a principal direction there. We asuume that v2 is the principal vector,
which is an extension of v.

(i) The folding map f |M has a singularity A-equivalent to S±
1 if and only if the point is

neither v2-ridge nor v2-subparabolic. Moreover, the folding family F is automatically
A-versal there.

(ii) The folding map f |M has a singularity A-equivalent to S2 if and only if the point
is v2-subparabolic, but not v2-ridge and the v2-subparabolic line is not tangent to the
reflection plane Π0 there. Moreover, the folding family F is automatically A-versal
there.

(iii) The folding map f |M has a singularity A-equivalent to S±
3 if and only if the point is

v2-subparabolic, but not v2-ridge and v22κ1(0) 6= 0. Moreover, the folding family F is
A-versal if and only if the v2-subparabolic line is nonsingular. In this case, we au-
tomatically have that the v2-subparabolic line has 2-point contact with the reflection
plane Π0 there.

(iv) The folding map f |M has a singularity A-equivalent to B±
2 if and only if the point

is v2-ridge, but not v2-subparabolic and the double point locus D(f |M) has A±
3 sin-

gularity with tangent property with respect to v (see Definition 1.10). Moreover, the
folding family F is A-versal if and only if the v2-ridge line is nonsingular there.

(v) The folding map f |M has a singularity A-equivalent to B±
3 if and only if the point

is v2-ridge, but not v2-subparabolic and the double point locus D(f |M) has A±
5 sin-

gularity with tangent property with respect to v (see Definition 1.10). Moreover, the
folding map fΠθ is A-versally unfolded by the folding family F for a generic choice
of the 6-jet of (0.2). The condition for A-versality is explicitly stated in Lemma
1.9.

(vi) The folding map f |M has a singularity A-equivalent to C±
3 if and only if the point

is v2-subparabolic and v2-ridge and the v2-subparabolic line and the v2-ridge line are
nonsingular and intersect the reflection plane Π0 transversely. Moreover, the folding
family F is A-versal if and only if the v2-subparabolic line and v2-ridge line intersect
transversely there.

Please refer to §1.3 for the definition (and several properties) of the double point locus
D(f |M),

Remark 1.5. • The authors found that the item (iii), the condition for A-versality
for S3 singularity, is already obtained by Wilkinson (see after Corollary 3.3 of [1])

5



and that the item (vi), the condition for A-versality for C3 singularity, is already
obtained in [1, Theorem 4.6 (i)]. The authors show Theorem 1.4 without knowing
[1]. The authors are not able to find litertures to state the items (i), (ii) and (iv).

• The geometric meaning of the condition (B3 6= 0 in the notation of Lemma 1.9
below) of A-versality for B±

3 singularity is not clear for the authors.

Remark 1.6. In [5], we have discussed the conditions for A-versality of the subunfolding
of the folding family, obtained by restricting the motions to the rotations.

1.2 Criteria of singularities of f |M and A-versality of F

We start to describe a criteria of singularity of f |M in terms of Monge form (0.2).

Lemma 1.7. Let f |M be the folding map of the regular surface M. Then criteria of
singularities of f |M is given by the following table.

type condition
S±
1 ±a21a03 > 0.
S2 a21 = 0, a03 6= 0, a31 6= 0.
S±
3 a21 = 0, a31 = 0, ±a03a41 > 0.

B±
2 a21 6= 0, a03 = 0, ±B2 > 0.

B±
3 a21 6= 0, a03 = 0, B2 = 0, ±B3 > 0.

C±
3 a21 = 0, a03 = 0, ±a31a13 > 0.

where B2 =
a05
5

− a213
3a21

and B3 =
a07
7

− a15
a13
a21

+ 5
3
a23(

a13
a21

)2 − 5
9
a31(

a13
a21

)3.

Proof. Routine calculation. See [4, Proposition 2.2] or [9, page 707] for some detailed
computation. One can find the equivalent descriptions in other terminology at [1, page
254].

Remark 1.8. Bruce and Wilkinson ([2, page 64, lines 19–21]) stated that the key idea
in this approach is that singularities of f |M corresponds to infinitesimal reflectional sym-
metries of M in the plane y = 0. It is clear that M has reflectional symmetry in the
plane y = 0 if and only if h(x, y) is an odd function in y, that is, h(x, y) = h(x,−y). So
a naive condition for infinitesimal reflectional symmetry in the plane y = 0 is concerning
the limit of h(x,y)−h(x,−y)

2y
tending y → 0. For example, being hy(x, 0) = cxk + o(xk), c 6= 0,

for some positive integer k is such a condition. But if we investigate singularities of f |M,
we find several other infinitesimal reflectional symmetries in the plane y = 0.

Remark that the conditions appearing in Lemma 1.7 depend only on aij, where j is
odd. This is a consequence of the fact that to investigate singularities of fold maps is
descriptions of various infinitesimal reflectional symmetries of surfaces.

Lemma 1.9. The folding family F is A-versal if and only if the conditions shown in the
following table hold.
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Singularity of f |M Condition for A-versality of F
S±
1 always A-versal.
S2 k1 6= k2 or a12 6= 0.
S±
3 (a22 − k1k

2
2)(k1 − k2) + a12(2a12 − a30) 6= 0.

B±
2 a12 6= a13(k1−k2)

3a21
or a04 − 3k32 6= a12a13

a21
.

B±
3 B3 6= 0.

C±
3

∣∣∣k2 − k1 −3a12 +
a13
a31

(a30 − 2a12)

a12 a04 − 3k32 +
a13
a31

(a22 − k1k
2
2)

∣∣∣ 6= 0.

Here we define B3 by B3 =
∣∣∣ a12+

a13(k2−k1)
3a21

p

a04−3k32−
a12a13
a21

q

∣∣∣ where
p =a14

2
+ a15

10a21
(k2 − k1) +

a13
3a21

(a04 − 3a22 +
a23(k1−k2)

a21
) +

a213
6a221

(a30 − 2a12 +
a31
a21

(k2 − k1)),

q = 3
10
a06 − 9

2
a04k

2
2 − 3

10
a12a15
a21

+ a13
a21

(−a14 + 6a12k
2
2 +

a12a23
a21

) +
a213
2a221

(a22 − k1k
2
2 − a12a31

a21
).

The proof of Lemma 1.9 is long and we do not give it here, but in §5. Here, we simply
note that the A-versatility condition concerns the 3 (4, 6, respectively)-jet of h if f |M has
S2 or S3 (B2 or C3, B3, respectively) singularity.

1.3 Double point locus of f |M
We consider the double point locus D(f |M) of the folding map f |M:

(x, y) 7→ (x, y2, h(x, y)), h(x, y) = k1x2+k2y2

2
+

m∑
i+j≥3

aij
i!j!
xiyj +O(m+ 1).

The double point locus D(f |M) is defined by h′(x, y) = 0 where

h′(x, y) = (h(x, y)− h(x,−y))/2y.

Remark that
h′ = a21

2
x2 + a03

6
y2 + a31

6
x3 + a13

6
xy2 +O(4).

Definition 1.10. We say that D(f |M) has tangent property with respect to the vecor
v if a21 6= 0 and a03 = 0 in the notation above. Geometrically this means that the vector
v is in the limit of tangent lines of g(D(f |M)) at 0 when the zero of h′(x, y) is not isolated
at 0.

We now able to state criteria of singularities of the folding map f |M in terms of the
double point locus D(f |M).

Theorem 1.11. There is a correspondence between singularities of the folding map f |M
and singularities of the double point locus D(f |M) as follows:

Singularities of f |M Singularities of D(f |M)
S±
1 A±

1

S2 A2

S±
3 A±

3 without tangent property with respect to v
B±

2 A±
3 with tangent property with respect to v

B±
3 A±

5 with tangent property with respect to v
C±

3 D±
4
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A+
1

A−
1

A2

v

A+
3 without

tangent property

v

A−
3 without

tangent property

v

A+
3 with

tangent property

v

A−
3 with

tangent property

v

A+
5 with

tangent property

v

A−
5 with

tangent property

D+
4

D−
4

Proof. The proof is given by comparing Lemma 1.7 with the following lemma.

Lemma 1.12. (a) If ±a21a03 > 0, then h′ defines A±
1 singularity.

(b) When a21 = 0, a03 6= 0, the kernel direction of the Hessian of h′ is generated by ∂x.

• If a31 6= 0, then h′ defines A2 singularity.
• If a31 = 0 and ±a03a41 > 0, then h′ defines A±

3 singularity.

(c) When a21 6= 0, a03 = 0, the kernel direction of the Hessian of h′ is generated by ∂y.

• If ±B2 > 0, then h′ defines A±
3 singularity.

• If B2 = 0 and ±B3 > 0, then h′ defines A±
5 singularity.

(d) When a21 = a03 = 0, and ±a31a13 > 0, then h′ defines D±
4 singularity.

(e) If none of the conditions above hold, then h′ does not define A±
1 , A2, A

±
3 , A

±
5 , D

±
4

singularities.

Proof. The proof is routine and we show below its outline. For example, a detailed proof
except for the case of A5 can be found in [3, §4]. The A5 case can be proved similarly.

(a): The assertion (a) is trivial.
(b): When a21 = 0, we have

h′ = 1
6
(a03y

2 + a31x
3 + a13x

2y) +O(4).

Thus if a31a03 6= 0, h′ defines A2 singularity. When a21 = a31 = 0, we have

h′ = 1
6
(a03y

2 + a13x
2y) + a41

24
x4 + a23

12
x2y2 + a05

120
y4 +O(5).

Thus if ±a41a03 > 0, h′ defines A±
3 -singularity.

(c): When a03 = 0 and a21 6= 0, we have

h′ = a21
6
(x+ a13

6a21
y2)2 + B2

24a21
y4 + a41

24
x4 + a23

12
x2y2 +O(5),

and we obtain the first subcase. When B2 = 0, replacing x by x− a13
6a21

y2, we obtain

h′ = a21
6
x2 + B3

6!a321
y6 + ∗x4 + ∗x2y2 + ∗x6 + ∗x4y2 + ∗x2y4 +O(7),

which implies the second subcase.
(d): When a21 = a03 = 0, the cubic part of h′ defines three real lines (resp. one real

line) if a13 < 0 (resp.> 0), and we are done.
(e): The assertion is trivial.
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1.4 Non-umbilical points

When the surface M is not umbilic at the origin (i.e., k1 6= k2), we can define the principal
curvatures κ1, κ2 and the principal vectors v1, v2 and we can state the conditions above
in terms of κi and vi.

Lemma 1.13. If the origin is not an umbilic point of M, the conditions in Lemmas 1.7
and 1.9 are rephrased as follows.

type condition for singularities condition for A-versality

S±
1 v2κ1(0) 6= 0, v2κ2(0) 6= 0.

S2 v2κ1(0) = 0, v2κ2(0) 6= 0, v1v2κ1(0) 6= 0.

S±
3 v2κ1(0) = 0, v2κ2(0) 6= 0, v1v2κ1(0) = 0, v21v2κ1(0) 6= 0. v22κ1(0) 6= 0.

B±
2 v2κ1(0) 6= 0, v2κ2(0) = 0, v32κ2(0) 6= 5

3
v1v2κ2(0)2

v2κ1(0)
. (v1v2κ2(0), v

2
2κ2(0)) 6= 0.

C±
3 v2κ1(0) = 0, v2κ2(0) = 0, v1v2κ1(0) 6= 0, v1v2κ2(0) 6= 0. | v1v2κ1 v2v2κ1

v1v2κ2 v2v2κ2 | (0) 6= 0.

We give a proof of Lemma 1.13 in §3.

2 Dual map and bifurcation sets

2.1 Dual map

For a regular surface X in R3, we consider the dual map δ defined by

δ : X −→ P , p 7−→ TpX.

Lemma 2.1. (i) The map δ is singular at p if and only if p is a parabolic point of X.
Moreover, the rank of dδp is 1 (resp. 0) if it is not umbilic (resp. umbilc).

(ii) The map δ has a singularity A-equivalent to cuspidal edge at p if and only if p is
parabolic, neither umbilic, nor η-ridge where η is a principal vector corresponding
to the zero principal curvature.

Proof. (i): For a surface given by

(u, v) 7−→ p = (u, v, f(u, v)),

the tangent plane TpX is defined by v · x = c, |v| = 1, where

v = 1√
1+f2

u+f2
v

(−fu,−fv, 1), c = 1√
1+f2

u+f2
v

∣∣∣ 1 0 u
0 1 v
fu fv f

∣∣∣ .
We consider the map

(u, v) 7→ (v, c) = 1√
1+f2

u+f2
v

(−fu,−fv, 1, f − ufu − vfv).

Composing the inverse of the transformation

(x1, x2, c) 7→
(

x1√
1+x2

1+x2
2

, x2√
1+x2

1+x2
2

, 1√
1+x2

1+x2
2

, c
)
,
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it is enough to consider the map represented by

(2.2) (u, v) 7→
(
−fu,−fv, f−ufu−vfv√

1+f2
u+f2

v

)
.

We see that the jacobian of (2.2) is not of full rank if and only if fuufvv − f 2
uv = 0. When

f = k1
u2

2
+ k2

v2

2
+
∑

i+j≥3 aij
uivj

i!j!
, the 2-jet of (2.2) is

(−k1u− a30
u2

2
− a21uv − a12

v2

2
,−k2v − a21

u2

2
− a12uv − a03

v2

2
.− k1

u2

2
− k2

v2

2
)

and 1-jet of the Jacobi’s matrix of (2.2) is

(2.3)

(
−k1 − a30u− a21v −a21u− a12v −k1u

−a21u− a12v −k2 − a12u− a03v −k2v

)
.

If k1 = 0 and k2 6= 0, then the rank of (2.3) at 0 is 1. The null direction is generated by
η = −fuv∂u + fuu∂v there. This can be shown, checking by the identity:

η
(
−fu,−fv, f−ufu−vfv√

1+f2
u+f2

v

)
= (fuufvv − f 2

uv)(0, 1,
v+ffv−ufufv+vf2

u

(1+f2
u+f2

v )
3/2 ).

If k1 = k2 = 0, then the rank of (2.3) at 0 is 0.
(ii): We assume that k1 6= 0 and k2 = 0. Since a unit normal of the map (2.2) is given

by

ν =
ν̃

|ν̃|
, ν̃ = (−u− uf 2

v − ffu + vfufv,−v − vf 2
u − ffv + ufufv, (1 + f 2

u + f 2
v )

3/2),

its Taylor expansion is expressed as

ν = (−u+ 1+2k21
2

u3 + 1
2
uv2,−v + 1+k21

2
u2v + 1

2
v3, 1− u2+v2

2
) +O(4).

We now use Lemma A.1 and the notation there. We can take λ = fuufvv − f 2
uv. Then we

have ηλ(0) = k21a03. Since ψ(0) = k1, we have the result.

Remark 2.4. Under the notation of the proof above, the map δ has singularity A-
equivalent to swallowtail at p if and only if p is parabolic, the first order v2-ridge
(v2κ2(0) = 0, v22κ2(0) 6= 0), but not umbilic. For proof, we apply Lemma A.1, using
η2λ(0) = k1a04 + 3(a21a03 − a212) and (3.5). Remark that η2λ(0) is non zero if and only if
v22κ2(0) 6= 0 also.

Remark 2.5. We remark that the Gauss map of the surface X is represented by

(2.6) (u, v) 7→ (−fu,−fv).

in the notation of the proof above. When we assume k1 6= 0 and k2 = 0, −fuv∂u + fuu∂v
represents the null direction at 0 along the singular locus, and the singular locus is defined
by λ = fuufvv − f 2

uv. Then the map (2.6) has a singularity A-equivalent to

• a fold if p is not v2-ridge, that is, a03 6= 0,
• a cusp if p is the first order v2-ridge, that is, a03 = 0, and k1a04+3(a21a03−a212) 6= 0.
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2.2 Bifurcation sets of the folding family

The set of plane Π for which the folding map fΠ is not stable is the bifurcation set
B(F ) of the folding family F .

Remark that fΠ fails to be stable if fΠ has more degenerate singularity than a cross
cap (S0), or if fΠ has a self-tangent point, that is, two distinct points p and p′ with
fΠ(p) = fΠ(p′) and Im dfΠ(p) = Im dfΠ(p′).

A surface with a self-tangent point (left) as a deformation of B−
2 singularity (right).

The focal set F of a surface M in R3 is the locus of the centers of curvature of M,
and the symmetry set S of M is the closure of the locus of centers of spheres bi-tangent
to M. We denote F◦ (resp.S◦) the nonsingular locus of F (resp.S).

Theorem 2.7. B(F ) = δ(F◦) ∪ δ(S◦).

Proof. See [2, Proposition 2.3].

When the folding family F is A-versal, one can deduce local models for the bifurcation
sets B(F ).

Example 2.8 (S±
1 ). An A-versal unfolding of S±

1 singularity defined by (x, y) 7→ (x, y2, y3

±x2y) is given by f = (x, y2, y3±x2y+ay). The S1 locus in the parameter space is defined
by a = 0 and there is no A∗

1 locus.

Example 2.9 (S2). AnA-versal unfolding of S2 singularity defined by (x, y) 7→ (x, y2, y3+
x3y) is given by f = (x, y2, y3 + x3y + ay + bxy). The S1 locus in the parameter space is
parametrized by

t 7→ (a, b) = (−2t3, 3t2),

which corresponds to the mono-germ of f at (t, 0) under (a, b) described above, and there
is no A∗

1 locus.

Bifurcation set for S2 (Example 2.9) Bifurcation set for S±
3 (Example 2.10)
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Example 2.10 (S±
3 ). An A-versal unfolding of S±

3 singularity defined by (x, y) 7→
(x, y2, y3±x4y) is given by f = (x, y2, y3±x4y+ay+bxy+cx2y), S≥1 locus is parametrized
by

(t, c) 7→ (a, b, c) = (−ct2 ∓ t4 + 2t(ct± 2t3),−2(ct± 2t3), c)

which corresponds to the mono-germ of f at (t, 0), and there is no A∗
1 locus.

Example 2.11 (B±
2 ). An A-versal unfolding of B±

2 singularity defined by (x, y) 7→
(x, y2, y5 ± x2y) is given by f = (x, y2, y5 ± x2y + ay + by3). The S1 locus is defined
by a = 0, which corresponds to the mono-germs of f at the origin, while A∗

1 locus is
parametrized by

t 7→ (a, b) = (t4,−2t2)

which corresponds to the bi-germ of f at (0, t) and (0,−t).

Bifurcation set for B±
2 (Example 2.11) Bifurcation set for B±

3 (Example 2.12)

Example 2.12 (B±
3 ). An A-versal unfolding of B±

3 singularity defined by (x, y) 7→
(x, y2, y7 ± x2y) is given by f± = (x, y2, y7 − x2y + ay + by3 + cy5). The S1 locus is
defined by a = 0, which corresponds to the mono-germs of f at the origin, while A∗

1 locus
is parametrized by

(t, c) 7→ (a, b, c) = (t4(c+ 2t2),−t2(2c+ 3t2), c),

which corresponds to the bi-germ of f± at (0, t) and (0,−t).
Example 2.13 (C±

3 ). An A-versal unfolding of C±
3 singularity defined by (x, y) 7→

(x, y2, xy3 ± x3y) is given by f = (x, y2, xy3 ± x3y + ay + bxy + cy3). The S≥1 locus
is parametrized by

(t, c) 7→ (a, b, c) = (∓2t3,±3t2, c),

which corresponds to the mono-germ of f at (t, 0), while A∗
1 locus is parametrized by

(s, t) 7→ (a, b, c) = (±2s3 + st2,∓3s2 − t2,−s),

which corresponds to the bi-germ of f at (s, t) and (s,−t).

Bifurcation set for C+
3 (Example 2.13) Bifurcation set for C−

3 (Example 2.13)

We remark that the figure right is missing in [2, Fig. 2, page 67].
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3 Non-umbilic points: Proof of Lemma 1.13.

Let us describe the several computation of a regular surface defined by (0.2) at non-
umbilical point. We thus assume that k1 6= k2. The first observations are as follows.

v1κ1(0) =a30, v2κ1(0) = a21, v1κ2(0) =a12, v2κ2(0) = a03,(3.1)

v21κ1(0) =a40 − 3k31 +
3a221
k1−k2

, v2v1κ1(0) =a31 +
3a21a12
k1−k2

,(3.2)

v1v2κ1(0) =a31 +
a21(2a12−a30)

k1−k2
, v22κ1(0) =a22 − k1k

2
2 +

a12(2a12−a30)
k1−k2

,(3.3)

v21κ2(0) =a22 − k21k2 +
a21(2a21−a03)

k2−k1
, v2v1κ2(0) =a13 +

a12(2a21−a03)
k2−k1

,(3.4)

v1v2κ2(0) =a13 +
3a21a12
k2−k1

, v22κ2(0) =a04 − 3k32 +
3a212
k2−k1

.(3.5)

These are obtained by direct computations. See [3, 2.3] for some of the detail, for example.
We also have the expressions of the principal curvatures as follows:

κ1 =k1 + a30x+ a21y +
(
a40 − 3k31 +

2a221
k1−k2

)
x2

2
(3.6)

+
(
a31 +

2a21a12
k1−k2

)
xy +

(
a22 − k21k2 +

2a212
k2−k1

)
y2

2
+O(3),

κ2 =k2 + a12x+ a03y +
(
a22 − k21k2 +

2a221
k2−k1

)
x2

2
(3.7)

+
(
a13 +

2a21a12
k2−k1

)
xy +

(
a04 − 3k32 +

2a212
k2−k1

)
y2

2
+O(3).

A principal vector v2 is expressed by

v2 =
(

a21x+a12y
k2−k1

+
(

a31
k2−k1

+ 2a21(a12−a30)
(k2−k1)2

)
x2

2
+
(a22−k1k22

k2−k1
+

a30a12−a212−a221+a21a03
(k2−k1)2

)
xy

+
(

a13
k2−k1

+ 2a12(a21−a03)
(k2−k1)2

)
y2

2
+O(3)

)
∂x

+
(
1− a221

(k2−k1)2
x2

2
+ a21a12

(k2−k1)2
xy −

(
k22 +

a212
(k2−k1)2

)
y2

2
+O(3)

)
∂y.

We thus conclude that

v2κ1 =a21 +
(
a31 +

a21(a30−2a12)
k2−k1

)
x+

(
a22 − k1k

2
2 +

a12(a30−2a12)
k2−k1

)
y +O(2),(3.8)

v2κ2 =a03 +
(
a13 +

3a21a12
k2−k1

)
x+

(
a04 − 3k32 +

3a212
k2−k1

)
y +O(2).(3.9)

Proof of Lemma 1.13. We first consider the condition for singularities of the folding map
f |M.

The assertion for S±
1 is clear by (3.1). By (3.3), we have a31 = v1v2κ1(0) when a21 = 0

and the assertion is clear. In a similar way to the computation above, we obtain that the
coefficient of x2 in the expression of v2κ1 is

a41 − k1a21(5k1 + k2)+
2a21(2a22−a40+k31)+a31(2a12−a30)

k1−k2
(3.10)

+
a21((a12−a30)(2a12−a30)a12+2a03a212−7a312)

(k1−k2)2
.

The assertion for S±
3 follows, since (3.10) is non-zero when a21 = a31 = 0 and a41 6= 0.

The assertion for C±
3 follows by (3.1), (3.3) and (3.4).
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Remark that, if a03 = 0, we have

v32κ2(0) =a05 − 18a03k
2
2 +

10a12a13
k2−k1

+
3a212(5a21−3a03)

(k2−k1)2
(3.11)

a13 =v1v2κ2(0)− 3v2κ1(0)v1κ2(0)
k2−k1

(3.12)

and we conclude that

B2 =
a05
5

− a213
3a21

=
v32κ2(0)

5
− (v1v2κ2(0))2

3v1κ2(0)
.

So the condition that ±(a05 − 5a213/2a21) > 0 for B±
2 singularity is equivalent that

±(v1κ2(0) · v32κ2(0)− 5
3
(v1v2κ2(0))

2) > 0.

From now on, we consider A-versality of the folding family.
The assertions for S±

1 and S2 are clear.
The assertion for S±

3 follows, since v2v2κ1(0) 6= 0 by (3.3).
For B±

2 singularity the condition in Lemma 1.9 is equivalent that

(v1v2κ2(0), v
2
2κ2(0)) 6= 0

by (3.5), and thus shows the assertion.
For C±

3 singularity, the condition in Lemma 1.9 is equivalent that∣∣∣∣v1v2κ1(0) v22κ1(0)
v1v2κ2(0) v22κ2(0)

∣∣∣∣ 6= 0

from (3.3) and (3.5). This shows the assertion.

Remark 3.13. The origin is v2-subparabolic (resp. v2-ridge) if and only if the constant
principal curvature line κ1 = k1 (resp.κ2 = k2) is perpendicular to the reflection plane
y = 0 there, whenever it is not v1-ridge (resp. v1-subparabolic), by (3.6) and (3.7).

Remark 3.14. We can conclude that the v1-curvature line is parametrized by

t 7→ (x, y) = (t, a21
k1−k2

t2

2
+ ( a31

k1−k2
+ a21(3a12−2a30)

(k1−k2)2
) t

3

6
+ a t4

24
+O(5))

where a = a41
k1−k2

+
3a21(2a22−a40+k31)+(4a12−3a30)a31

(k1−k2)2
+

a21(3a30−4a12)(3a12−2a30)−3a221a03+9a321
(k1−k2)3

, working
the equation of curvature lines: ∣∣∣∣ hxx 1+h2

x dy2

hxy hxh2
y −dx dy

hyy 1+h2
y dx2

∣∣∣∣ = 0.

This shows that the folding map f |M has a S2 (resp.S3, S4) singularity at 0 with respect
to the principal direction v2 if and only if 0 is v2-subparabplic but not v2-ridge and the
v1-curvature line throgh 0 has 2 (resp. 3, 4)-point contact with the reflecftion plane y = 0.

Remark 3.15. Let (u, v) denote a curvature coordinate of a surface p = p(u, v). Let ν
denote its unit normal. When the principal curvature κ2 is not zero, we can define a focal
set q = p+ (1/κ2)ν, and its Gauss map is g = pv/|pv|. Since

gu = (κ1)v
κ1−κ2

pu

|pv |
, and gv =

pvv ·pu

|pv ·pv ||pu·pu|2
pu − κ2ν,

the Gauss map g is singular when v2κ1 = 0, where v2 = ∂v, and v1 = ∂u generates the
kernel field there. Then the Gauss map g has a singularity at 0 if and only if v2κ1(0) = 0
(that is, a21 = 0). Moreover, the Gauss map g has a singularity A-equivalent to
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• a fold at 0 if and only if v1v2κ1(0) 6= 0 (that is, a31 6= 0).
• a cusp at 0 if and only if v1v2κ1(0) = 0 (that is, a31 = 0) and v21v2κ1(0) 6= 0 (a41 6= 0).

Remark 3.16. Since the Gauss curvature of the focal set q = p+(1/κ2)ν at (u, v) = (0, 0)
is given by

− v2κ1(κ2)4

v2κ2(κ1−κ2)2
(0) = − a21k42

a03(k1−k2)2
,

elliptic (resp. hyperbolic) points of the focal set correspond to S−
1 (resp.S+

1 ) singularities
of the folding maps. This fact mentioned in the third paragraph from the bottom in page
68 in [2] with changing the sign.

4 Umbilics

4.1 Classification of umbilics

We consider a nonsingular surface

(4.1) p : C −→ C× R, z 7→ (z, h(z)), where h(z) = k
2
zz +

m∑
k=3

Hk(z) +O(m+ 1),

and Hk(z) is a real-valued homogeneous polynomial of degree k in variables z, z. We
remark that this surface has an umbilic point at the origin.

The first fundamental form is expressed as

I = dp · dp = dz dz̄ + dh dh̄ = h2z dz
2 + (1 + 2|hz|2)dz dz̄ + h2z̄ dz̄

2.

Since px × py = (−hx − hy
√
−1, 1) = (−2

√
−1hz̄, 1), a unit normal is expressed as

ν =
1

1 + |2hz|2
(−2

√
−1hz̄, 1).

The second fundamental form is thus expressed as

II = d2p · ν =
1

1 + |2hz|2
(hzz dz

2 + 2hzz̄ dz dz̄ + hz̄z̄ dz̄
2).

Therefore the equation of curvature lines is

(4.2)
√
−1

∣∣∣∣ h2
z hzz dz̄2

1+2|hz |2 hzz̄ −dz dz̄

h2
z̄ hz̄z̄ dz2

∣∣∣∣ = 1√
−1

((H3)zz dz
2 − (H3)z̄z̄ dz̄

2) + h.o.t. = 0.

Set

(4.3) H3(z) = αz3/6 + βz2z/2 + βzz2/2 + αz3/6.

We consider the resultant of (H3)z and (H3)z̄ as

(4.4) DH3 =

∣∣∣∣∣
α 2β β̄ 0
0 α 2β β̄
β 2β̄ ᾱ 0
0 β 2β̄ ᾱ

∣∣∣∣∣ = |α|4 − 6|α|2|β|2 − 3|β|4 + 8Reαβ̄3.
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The cubic H3 has three real roots (resp. one real root) if and only if the origin is elliptic
(resp.hyperbolic) umbilic, that is, DH3 > 0 (resp.< 0).

We also consider the characteristic polynomial H ′
3 for (4.2), which is defined by

(4.5) H ′
3(z) =

1√
−1

(z2(H3)zz(z)− z̄2(H3)z̄z̄(z))).

Its zeros define the characteristic directions of the singularity of curvature lines at the
origin. The characteristic polynomial H ′

3 has three real roots (resp. one real root) if and
only if DH′

3
> 0 (resp.< 0) where

(4.6) DH′
3
(z) =

∣∣∣∣∣∣∣∣
3α√
−1

2β√
−1

−β̄√
−1

0

0 3α√
−1

2β√
−1

−β̄√
−1

β√
−1

−2β̄√
−1

−3ᾱ√
−1

0

0 β√
−1

−2β̄√
−1

−3ᾱ√
−1

∣∣∣∣∣∣∣∣ = 3(27|α|4 − 18|α|2|β|2 − |β|4 − 8Reαβ̄3).

We say a characteristic direction is a double characteristic direction if it is generated
by a double root of H ′

3(z).
An umbilic is said to be right-angled if there are two characteristic directions that

are orthogonal to each other. It is well-known that this is equivalent that |α| = |β|. This
also implies DH3 ≤ 0 and DH′

3
≥ 0.

We are now able to state the classification result of Darbouxian umbilics.

• We say that the umbilic is star if |α| > |β|.
∗ If DH3 > 0, then there are three directions which are limits of principal direc-
tions.

∗ If DH3 < 0, then there is one direction which is a limit of principal directions.

• We say that the umbilic is monstar if |α| < |β| and DH′
3
> 0.

• We say that the umbilic is lemon if DH′
3
< 0.

When α = 1, the bifurcation of generic umbilics is shown in β-plane as follows:

Star

Lemon
Monstar

3 ridges

1 ridge

|β| = 1 (circle), DH3 = 0 (dotted), DH′
3
= 0 (thick)
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Remark 4.7. The locus DH3 = 0 is parametrized by

(4.8) C× S1 → C2, (α, ϕ) 7→ (α, β), where β = (αe−2ϕ
√
−1 − 2αeϕ

√
−1)/3,

and its singular locus is defined by cos
(
argα + 3ϕ

2

)
= 0. Similarly, the locus DH′

3
= 0 is

parametrized by

(4.9) C× S1 → C2, (α, ϕ) 7→ (α, β), where β = −αe−2ϕ
√
−1 − 2αeϕ

√
−1,

and its singular locus is defined by sin
(
argα + 3ϕ

2

)
= 0.

Remark 4.10. Replacing z by e−
argα+2nπ

3

√
−1z in H3(z), n ∈ Z, in (4.3), we can reduce

to the case α ∈ R. Then the argument of β becomes arg β − argα+2nπ
3

.

Definition 4.11 (S2-direction, B2-direction and C3-direction). Set

wθ = eθ
√
−1, and vθ =

eθ
√
−1

√
−1
.

Let Πθ denote the plane generated by (wθ, 0) and (0, 1) in C × R passing through the
origin. A normal vector to Πθ is given by a vector vθ, represented by the complex number
vθ.

We say that vθ generates a S2-direction (resp.B2-direction, C3-direction) if

a21(wθ) = 0 (resp. 6= 0,= 0), and a03(wθ) 6= 0 (resp. = 0,= 0),

where the definition of aij(wθ) (i+ j = 3) is given as follows:

H3(wz) = a30(w)
x3

6
+ a21(w)

x2y
2

+ a12(w)
xy2

2
+ a03(w)

y3

6
.

In other words, vθ generates a S2-direction (resp.B2-direction, C3-direction) if and only
if

|α| sin(3θ + argα) + |β| sin(θ + arg β) =0 (resp. 6= 0, = 0), and

|α| sin(3θ + argα)− 3|β| sin(θ + arg β) 6=0 (resp. = 0, = 0).

Moreover, we say that vθ generates a simple (resp.double) S2-direction (or B2-
direction), if wθ is a simple (resp. double) root of the cubic a21(w) (or a03(w)).

If vθ is not such a direction, fΠθ has a singularity A-equivalent to S±
1 . Moreover, the

singularity of fΠθ is A-versally unfolded by the family F .

We remark that S2-direction (or C3-direction) is orthogonal to a characteristic direc-
tion (see the second formula of (4.24)).

Lemma 4.12. We consider an umiblic defined by (4.1). Then the numbers of S2-
directions, B2-directions and C3-directions are summarized as follows:

DH3 DH′
3

αβ3 6= αβ3 αβ3 = αβ3

+ + 3S2 + 3B2 2S2 + 2B2 + C3 (β 6= 0), 3C3 (β = 0)
0 + 3S2 + 2B2 2S2 +B2 + C3

− + 3S2 +B2 2S2 + C3

0 0 − S2 + C3

− 0 2S2 +B2 C3

− − S2 +B2 C3
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• Case: DH3 6= 0, DH′
3
= 0

∗ If αβ3 6= αβ3, then there are one simple S2-direction and one double S2-
direction.

∗ If αβ3 = αβ3, then there are one double S2-direction and one C3-direction.

• Case: DH3 = 0, DH′
3
6= 0.

∗ If αβ3 6= αβ3, then there are one simple B2-direction and one double B2-
direction.

∗ If αβ3 = αβ3, then there are one simple B2-direction and one C3-direction.

• When DH3 = 0, DH′
3
= 0, we automatically have αβ3 = αβ3 and there are one

double S2-direction and one C3-direction.

Proof. Routine calculation. See the items (i)–(iv) in the proof of Proposition 4.20 below
also.

Assume that αβ3 = αβ3. When DH′
3
= 0 and DH3 6= 0 (resp.DH′

3
6= 0 and DH3 = 0),

the computation reduces to case α = 1 and β = −3 (resp.−1), which is analyzed in
Example 4.32 (resp. 4.37). When DH′

3
= DH3 = 0, the computation reduces to case

α = β = 1, which is analyzed in Example 4.33.

4.2 A criteria of S2 and S3 singularities

We here formulate a criterion that the folding map fΠθ has S2 or S3 singularities using
curvature lines.

Theorem 4.13. Let Lθ denote the section of the surface by the reflection plane Πθ. If vθ

generates an S2-direction, then f
Πθ has a singularity A-equivalent to

• S2 if a nonsingular curvature line approaching the umbilic in the direction generated
by wθ has 2-point contact with Lθ.

• S3 if a nonsingular curvature line approaching the umbilic in the direction generated
by wθ has 3-point contact with Lθ.

Before the proof of this theorem we introduce the notion of asymptotic curvature line.
We say that a curve

(4.14) γ : s 7→ z = γ(s) = p1s+ p2
s2

2
+ p3

s3

6
+O(s4), p1 6= 0,

represents an asymptotic curvature line of order k if it satisfies the equation for
curvature lines (4.2) up to order k, that is,

√
−1

∣∣∣∣ h2
z hzz dz̄2

1+2|hz |2 hzz̄ −dz dz̄

h2
z̄ hz̄z̄ dz2

∣∣∣∣ (γ(s)) = O(sk+1).

In order to show Theorem 4.13, it is enough to show the following.

Proposition 4.15. Let Lθ denote the section of the surface by the reflection plane Πθ. If
vθ generates an S2-direction, then f

Πθ has a singularity A-equivalent to
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• S2, if and only if H ′
4(wθ) 6= 0, that is, an asymptotic curvature line of order 2

approaching the umbilic in the direction generated by wθ has 2-point contact with
Lθ.

• S3, if and only if H ′
4(wθ) = 0 and H ′

5(wθ) 6= 0, that is, an asymptotic curvature
line of order 3 approaching the umbilic in the direction generated by wθ has 3-point
contact with Lθ.

Proof. The assertions are proved by evaluating (4.2) along a curve defined by (4.14). By
this evaluation, the left hand side of (4.2) becomes

(4.16) H ′
3(p1)s+[H ′

4(p1)+O(|p2|)]s2+[H ′
5(p1)+

k2

2
|p1|2H ′

3(p1)+O(|p2|, |p3|))]s3+O(s4),

where

(4.17) H ′
k(z) =

1√
−1

[z2(Hk)zz(z)− z2(Hk)zz(z)], for k = 3, 4, 5, . . . .

If the curve (4.14) has at least 3-point contact with Lθ, we have p1 = wθ and p2 = 0.
If H ′

4(wθ) 6= 0, (4.16) is not zero. This shows the first assertion.
If the curve (4.14) has at least 4-point contact with Lθ, we have p1 = wθ and p2 =

p3 = 0. If H ′
5(wθ) 6= 0, (4.16) is not zero. This shows the second assertion.

Remark 4.18. Computation in the previous section has several interesting consequences
at umbilic. Consider the surfaces defined by (0.2). When k1 6= k2, the tangent direction
of the locus κ1 = k1 (resp. κ2 = k2) is generated by a21∂x − a30∂y (resp. a03∂x − a12∂y)
by (3.1), whenever (a21, a30) 6= 0 (resp. (a12, a03) 6= 0). Tending k2 → k1, we obtain that
the limit of the tangent directions is generated by a21∂x − a30∂y (resp. a03∂x − a12∂y). A
similar argement using (3.2), (3.3), (3.4) and (3.5) shows that, tending k2 → k1, the limit
of tangent directions to the levels of viκj, i, j = 1, 2, at 0 is generated by a12∂x − a21∂y,
whenever (a21, a12) 6= 0.

Setting z = x+ y
√
−1 in (4.3) and (4.5), we have

H3 =Re(α + 3β)x3/6− Im(α + β)x2y/2− Re(α− β)xy2/2 + Im(α− 3β)y3/6,

H ′
3 =Im(α + β)x3 +Re(3α + β)x2y − Im(3α− β)xy2 − Re(α− β)y3.

If the origin is v2-subparabolic (that is, a21 = 0), then Im(α + β) = 0, and the limit
direction is generated by ∂x. We remark that this direction is a characteristic direction
since this is a root of H ′

3.
If we have a C3-direction with respect to v2 (that is, a21 = a03 = 0), then, a discussion

similar to the above shows that, tending k2 → k1, the corresponding subparabolic line
and the corresponding ridge line have the same limiting tangent direction (generated by
∂x) at the umbilic whenever a12 6= 0.

4.3 Criteria of A-versality of the folding family

We consider criteria of A-versality of the folding family at umbilics of surfaces. Since the
case for S1 singularity is always A-versal (see Lemma 1.9), we state other singularities
cases.

Theorem 4.19. We use the notations prepared in §4.1.
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(1) Assume that vθ generates an S2-direction,

• If the folding map fΠθ has an S2-singularity, then the folding map fΠθ is A-
versally unfolded by the folding family F , if and only if vθ does not generate a
characteristic direction.

• If the folding map fΠθ has an S3-singularity, then the folding map fΠθ is A-
versally unfolded by the folding family F , if and only if the both of following
conditions hold.

∗ vθ does not generate a characteristic direction, and
∗ vθ generates a simple S2-direction (equivalently, wθ generates a simple
characteristic direction).

(2) Assume that vθ generates a B2-direction and the folding map fΠθ has a B2-singularity.
The folding map fΠθ is A-versally unfolded by the folding family F , if and only if
one of the following conditions holds.

• vθ generates a simple B2-direction, or
• vθ generates a double B2-direction and the circle Cθ has 4-point contact with the
surface (i.e., H4(vθ) 6= k3/8), where Cθ is the section of the curvature sphere
(or the tangent plane when k = 0) with the plane generated by the normal
(0, 0, 1) and vθ.

(3) Assume that vθ generates a C3-direction and f |M has a C3 singularity. Then the
folding map is A-versally unfolded by the folding family if and only if one of the
following conditions holds.

• H ′
3 is a cube (that is, we have a triple characteristic direction), or

• H3 is not a cube and the corresponding subparabolic line has 2-point contact
with the corresponding ridge.

This theorem is a consequence of the following proposition. The reason that the
criterion for A-versality for B3 singularity is missing is that the authors are not aware the
geometric meaning of the A-versality condition (that is, B3 6= 0) for B3 singularity.

Proposition 4.20. We consider an umbilic defined by (4.1). Then the conditions for
singularities of the folding map f |M and A-versality of the folding family are summarized
as follows:

Condition for singularity type Condition for A-versality
S±
1 ±H ′

3(wθ)H3(vθ) > 0 always versal.
S2 H ′

3(wθ) = 0, H3(vθ) 6= 0, H ′
4(wθ) 6= 0 H ′

3(vθ) 6= 0

S±
3

H ′
3(wθ) = 0, H ′

4(wθ) = 0
±H3(vθ)H

′
5(wθ) > 0

H ′
3(vθ)(H

′
3(vθ) + 3H3(wθ)) 6= 0

B±
2 H ′

3(wθ) 6= 0, H3(vθ) = 0, ±B2(wθ) > 0 H ′
3(vθ) 6= 0 or H4(vθ) 6= k3

8

B±
3

H ′
3(wθ) 6= 0, H3(vθ) = 0,

B2(wθ) = 0, ±B3(wθ) > 0
B3(wθ) 6= 0

C±
3

H ′
3(wθ) = 0, H3(vθ) = 0,
∓H ′

4(wθ)H
′
4(vθ) > 0

H ′
3(vθ)

∣∣∣ 3H′
4(wθ) H′

3(vθ)+3H3(wθ)

2H′
4(vθ) H′

3(wθ)

∣∣∣ 6= 0
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Here H ′
k(z) is defined as (4.17). The definitions of B2(wθ), B3(wθ) and B3(wθ) will be

given later as (4.26), (4.27) and (4.28).

Proof. By the rotation defined by z 7→ wθz, we can send Πθ to Π0 and vθ to ∂y, and we
can apply Lemmas 1.7 and 1.9, which are summarized the criteria of singularities and
A-versality as follows:

Condition for singularity type Condition for A-versality
S±
1 ±a21a03 > 0. always versal.
S2 a21 = 0, a03 6= 0, a31 6= 0. a12 6= 0.
S±
3 a21 = 0, a31 = 0, , ±a03a41 > 0. a12(2a12 − a30) 6= 0.

B±
2 a21 6= 0, a03 = 0, ±(a05

5
− 1

3

a213
a21

) > 0. a12 6= 0 or a04 6= 3k3.

B±
3

a21 6= 0, a03 = 0, 3a05 = 5a213/a21,
±(a07

7
− a15

a13
a21

+ 5
3
a23(

a13
a21

)2 − 5
9
a31(

a13
a21

)3) > 0.

∣∣∣ a12 p
a04 − 3k3 − a12a13

a21
q

∣∣∣ 6= 0.

C±
3 a21 = 0, a03 = 0, ±a31a13 > 0. a12(3a31a12 + a13(2a12 − a30)) 6= 0.

where

p =a14
2

+ a13
3a21

(a04 − 3a22) +
a213
6a221

(a30 − 2a12),(4.21)

q = 3
10
a06 − 9

2
a04k

2 − 3
10

a12a215
a221

+ a13
a21

(−a14 + 6a12k
2 + a12a23

a21
)(4.22)

+
a213
a221

(a22 − k3 − a12a31
a21

).

We define aij(w) by

(4.23) h(wz) = k
2
zz +

m∑
i+j≥3

aij(w)
xiyj

i!j!
+O(m+ 1).

Then, by direct computation, we have

a30(w) =6H3(w), a21(w) =−H ′
3(w), a12(w) =−H ′

3(
w√
−1

), a03(w) =− 6H3(
w√
−1

),
(4.24)

and we also conclude

2a12(w)− a30(w) = −2(H ′
3(

w√
−1

) + 3H3(w)).

Using these relations, we can prove the following assertions, taking resultants of the
corresponding cubics.

(i) There is a non-zero w with a21(w) = a12(w) = 0 if and only if |α| = |β|.
(ii) There is a non-zero w with a21(w) = 2a12(w)− a30(w) = 0 if and only if DH′

3
= 0.

(iii) There is a non-zero w with a12(w) = a03(w) = 0 if and only if DH3 = 0.
(iv) There is a non-zero w with a21(w) = a03(w) = 0 if and only if αβ3 = αβ3.

In the same way as above, we can further show the following relations:

a31(w) =− 2H ′
4(w), a13(w) =2H ′

4(
w√
−1

),
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and, we obtain that

3a31a12 + a13(2a12 − a30) =6H4(wθ)H
′
3(wθ)− 4H ′

4(vθ)(H
′
3(vθ) + 3H3(wθ)).

Furthermore, we also have

a22(w)=
1
4
(6H4(w)−K′

4(w)), a04(w)= 4!H4(
w√
−1

), a41(w)= −3!H′
5(w),

a23(w)= 3H′′′
5 (

w√
−1

)−4H′′
5 (

w√
−1

), a14(w)= −3!H′
5(

w√
−1

), a05(w)= −5!H5(
w√
−1

),

a15(w)= 4!H′
6(

w√
−1

), a06(w)= 6!H6(
w√
−1

), a07(w)= −7!H7(
w√
−1

),

(4.25)

where

H′′
k=

1√
−1

[z3(Hk)zzz−z3(Hk)zzz ], H
′′′
k =

1√
−1

[z4(Hk)zzzz−z4(Hk)zzzz ], K
′
k= z2(Hk)zz+z2(Hk)zz .

Finally we obtain the corresponding expression for B2, B3 and B3 as follows:

B2(wθ) =− 24H5(vθ) +
4
3

H′
4(vθ)

2

H′
3(wθ)

,(4.26)

B3(wθ) =6!H7(vθ) + 48H6(vθ)
H′

4(vθ)

H′
3(wθ)

+ 20
3
(3H ′′′

5 (vθ)− 4H ′′
5 (vθ))(

H′
4(vθ)

H′
3(wθ)

)2(4.27)

− 80
9
H ′

4(wθ)(
H′

4(vθ)

H′
3(wθ)

)3,

B3(wθ) =

∣∣∣∣∣ H ′
3(wθ) p(wθ)

24H4(vθ)− 3k32 −
2H′

3(vθ)H
′
4(vθ)

H3(vθ)H
′
3(wθ)

q(wθ)

∣∣∣∣∣ ,(4.28)

where p(wθ) (resp. q(wθ)) is defined by changing aij by aij(wθ) in (4.21) (resp. (4.22)) and
substituting using (4.25). We complete the proof.

Example 4.29. When α > 0 and β = 0, this is a star, and we have

H3(wθz) =|α|(cos 3θ x3−3xy2

6
− sin 3θ 3x2y−y3

6
).

We then conclude that the folding map fΠθ has a singularity A-equivalent to

• S±
1 singularity, if 3θ 6≡ 0 mod π.

• C±
3 singularity, if 3θ ≡ 0 mod π, and H ′

4(wθ) 6= 0, H ′
4(vθ) 6= 0. Moreover, the

folding family F is A-versal at fΠθ if H ′
4(wθ)−H ′

4(vθ) 6= 0.

Example 4.30. When α = 0 and β 6= 0, this is a lemon, and we have

H3(wθz) =|β|(cos(θ + arg β)x
3+3xy2

2
− sin(θ + arg β)3x

2y+y3

2
).

We then conclude that the folding map fΠθ has a singularity A-equivalent to

• S±
1 singularity, if θ + arg β 6≡ 0 mod π.

• C±
3 singularity, if θ + arg β ≡ 0 mod π, and H ′

4(wθ) 6= 0, H ′
4(vθ) 6= 0. Moreover,

the folding family F is A-versal at fΠθ if 3H ′
4(wθ) +H ′

4(vθ) 6= 0.

There are cases where A-versality can be determined by 3-jet, which is worth stating
as a theorem.
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Theorem 4.31. Assume that the umbilic is star, monstar or lemon. If the folding family
fΠθ has S2, S3 or B2 singularity, then fΠθ is A-versally unfolded by the folding family F .

Proof. A consequence of the table and the items (i) – (iv) in the proof of Proposition
4.20.

Example 4.32. When α > 0 and β = α, the H3 is a cube. This is the case that
DH3 = DH′

3
= 0, we have

a21(wθ) =− 8|α| cos2 θ sin θ, a03(wθ) =− 8|α| sin3 θ.

In this case we have one double S2-direction (that is, θ = π/2) and one C3-direction (that
is, θ = 0). Since a12(wθ) = 8|α| cos θ sin2 θ, we obtain that the folding map fΠθ is not
A-versally unfolded by the folding family F , even though fΠθ may define S2, S3 or C3

singularities.

Example 4.33. When α > 0 and β = −3α, we have H ′
3 is a cube. Then DH′

3
= 0 and

a21(wθ) =8|α| sin3 θ, a03(wθ) =4|α|(5 + cos 2θ) sin θ.

In this case, we have one C3-directions (that is, θ = 0). Since

a12(wθ) =− 8|α| cos3 θ, 2a12(wθ)− a30(wθ) =24|α| cos θ sin2 θ.

If vθ generates a C3-direction and fΠθ defines C3 singularity, then the folding family F is
A-versal at fΠθ , whenever H ′

4(wθ) 6= 0.

We first show the item (3) of Theorem 4.19.

Proof of Theorem 4.19 (3). We assume that αβ3 = αβ3. By Remark 4.10, we can assume
that both α and β are non-zero real. Since

a21(wθ) =− 2(β sin θ + α sin 3θ),

a03(wθ) =− 2(β sin θ − α sin 3θ),

we have sin θ = sin 3θ = 0. It is enough to consider the case θ = 0. We assume that fΠ0

defines a C3 singularity, which means a31(wθ)a13(wθ) 6= 0. Then

a12(wθ) =2(β cos θ − α cos 3θ) = 2(β − α),(4.34)

2a12(wθ)− a30(wθ) =− 2(β cos θ + 3α cos 3θ) = −2(β + 3α).(4.35)

If H3 is a cube, the folding family is not A-versal, by Example 4.32. We assume that
(4.34) is not zero. If (4.35) is zero (that is H ′

3 is a cube), then the folding family is
A-versal, since a31(wθ) 6= 0. We then assume that (4.35) is not zero.

We consider the surface defined by (0.2). We remark that the coefficient of x2/2 in
(3.8) is

a41 − a21k1(5k1 + k2) +
a21(4a22−3a40+2k31)+(2a12−a30)a31

k1−k2
+

a21(2a03−7a21)+a12(4a12−6a30)+2a230
(k1−k2)2
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and the coefficient of x2/2 in (3.9) is

a23 + 3a21k
2
2 +

3(a12a31+2a21(a22−k32))

k1−k2
+

6a21(a221−a212+a12a30)

(k1−k2)2
.

Assume that a21 = a03 = 0 and consider parametrizations of the zeros of (3.8) and (3.9).
Tending k2 → k1 we obtain the following: The limit of v2-subparabolic lines is represented
by

t 7→ (x, y) = (t, a30a31
a12(a30−2a12)

t2

2
+O(3)),

and the limit of v2-ridge lines is represented by

t 7→ (x, y) = (t,−2a12a13−2a30a13+3a12a31
3a212

t2

2
+O(3)).

We thus complete the proof, since

a30a31
a12(a30−2a12)

+ 2a12a13−2a30a13+3a12a31
3a212

= 2(a30−a12)(−3a12a31+(a30−2a12)a13)

3a212(2a12−a30)
.

We also see several examples, as consequences of Proposition 4.20.

Example 4.36. When α > 0 and β = −(1/3)α, which is the case that DH3 = 0, DH′
3
6= 0

with C3-direction, we have

a21(wθ) =− 4
3
|α| sin θ(1 + 3 cos 2θ), a03(wθ) =8|α| cos2 θ sin θ.

In this case, we have two simple S2-directions (that is, θ = ± tan−1
√
2), one double

B2-direction (that is, θ = π/2) and one C3-direction (that is, θ = 0). Since

a12(wθ) =
4
3
|α| cos θ(1− 3 cos 2θ), 2a12(wθ)− a30(wθ) =

4
3
|α| cos θ(9 cos 2θ − 5),

we obtain the following:

• If vθ generates a simple S2-directions, then the folding family F is A-versal at fΠθ ,
whenever fΠθ is S2 or S3 singularity.

• If vθ generates a double B2-direction, then the folding family F is A-versal at fΠθ

whenever H4(vθ) 6= k3/8.
• If vθ generates a C3-direction and fΠθ defines a C3 singularity, then the folding
family F is A-versal at fΠθ , whenever 3H ′

4(wθ)− 2H ′
4(vθ) 6= 0.

Example 4.37. When α > 0 and β = −α, which is the right-angled umbilic with a
C3-direction, we have

a21(wθ) =8|α| sin θ sin
(
π
4
+ θ

)
sin

(
π
4
− θ

)
, a03(wθ) =4|α| sin θ(2 + cos 2θ).

In this case, we have two S2-directions (that is, θ = ±π/4), which generate characteristic
directions, and one C3-direction (that is, θ = 0). Since

a12(wθ) =4|α| cos θ sin
(
π
4
+ θ

)
sin

(
π
4
− θ

)
, 2a12(wθ)− a30(wθ) =4|α| cos θ(2− 3 cos 2θ),

we obtain the following:
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• If vθ generates a simple S2-directions, then the folding family F defines A-versal at
fΠθ , whenever fΠθ defines an S2 or S3 singularity.

• If vθ generates a C3-direction and fΠθ defines C3 singularity, then the folding family
F is A-versal at fΠθ , whenever 3H ′

4(wθ)− 2H ′
4(vθ) 6= 0.

Proof of Theorem 4.19 (1), (2). The proof is already done when the umbilic is star, mon-
star and lemon. So we consider the case |α| = |β| or DH′

3
= 0 or DH3 = 0. The following

cases have been already analyzed.

• DH′
3
= DH3 = 0 (Example 4.32).

• singular locus of DH′
3
= 0 (Example 4.33).

• DH3 = 0, αβ3 = αβ3, DH3 6= 0 (Example 4.36).
• |α| = |β|, αβ3 = αβ3, DH3 6= 0 (Example 4.37).

Without loss of generality, we can assume that α ≥ 0. We first consider the case that the
umbilic is right-angled (that is, |α| = |β|) with no C3-direction (that is, αβ3 6= αβ3). We
can assume that α > 0. We obtain that

a21(wθ) =− 4|α| cos
(
θ − arg β

2

)
sin

(
2θ + arg β

2

)
,

a03(wθ) =2|α|(sin 3θ − 3 sin(θ + arg β)).

Thus there are three simple S2-direction (that is, θ = −arg β
4
, 2π−arg β

4
, π+arg β

2
) and one

simple B2-direction. Since

a12(wθ) =4|α| sin
(
θ − arg β

2

)
sin

(
2θ + arg β

2

)
,

we have the following:

• If vθ generates a simple S2-directions with θ =
π+arg β

2
, then the folding family F is

A-versal at fΠθ , whenever fΠθ defines an S2 or S3 singularity.
• If vθ generates a simple S2-directions with θ =

arg β
4
, 2π+arg β

4
, then the folding family

F is not A-versal at fΠθ .
• If vθ generates a B2-direction and fΠθ defines B2 singularity, then the folding family
F is A-versal at fΠθ , whenever H4(vθ) 6= k3/8.

We next consider the case that DH′
3
= 0 with no C3-direction (that is, αβ3 6= αβ3).

Using the notation of (4.9), we obtain that

a21(wθ) =8 sin2(θ − ϕ
2
) sin(θ + ϕ),

a03(wθ) =2|α|(sin 3θ + 3 sin(θ − 2ϕ) + 6 sin(θ + ϕ)).

Thus there are one simple S2-direction (that is, θ = −ϕ), one double S2-direction (that
is, θ = ϕ/2), and one simple B2-direction. Since

a12(wθ) =8 sin2(θ − ϕ
2
) cos(θ + ϕ),

2a12(wθ)− a30(wθ) =2|α| sin
(
θ − ϕ

2

)
(3 sin

(
2θ + ϕ

2

)
+ sin 3ϕ

2
),

we have the following:
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• If vθ generates a simple S2-direction, then the folding family F is A-versal at fΠθ ,
whenever fΠθ defines an S2 or S3 singularity.

• If vθ generates a double S2-direction, then the folding family F is not A-versal at
fΠθ . (In [2, line 9, page 70], Bruce and Wilkinson mentioned that “S2 is not versally
unfolded by F”, which should be read as pointing out this fact.)

• If vθ generates a B2-direction and fΠθ defines B2 singularity, then the folding family
F is A-versal at fΠθ .

Thirdly, we consider the case that DH3 = 0 with no C3-direction (that is, αβ3 6= αβ3).
Using the notation of (4.8), we obtain that

a21(wθ) =− 4
3
|α| sin

(
θ − ϕ

2

)
(3 cos

(
2θ + ϕ

2

)
+ cos 3ϕ

2
),

a03(wθ) =8|α| cos2(θ − ϕ
2
) sin(θ + ϕ).

Thus there are one simple B2-direction, one double B2-direction and three simple S2-
directions. Since

a12(wθ) =− 4
3
|α| cos

(
θ − ϕ

2

)
(3 cos

(
2θ + ϕ

2

)
+ cos 3ϕ

2
),

we have the following:

• If vθ generates a simple S2-direction, then the folding family F is A-versal at fΠθ ,
whenever fΠθ defines an S2 or S3 singularity.

• If vθ generates a simple B2-direction, then the folding family F is A-versal at fΠθ .
• If vθ generates a double B2-direction and fΠθ defines B2 singularity, then the folding
family F is A-versal at fΠθ if and only if H4(vθ) 6= k3/8.

Remark 4.38. When α = β = 0, then any direction vθ is a C3-direction and the folding
map can have C3 singularity, but the folding family F is not A-versal at fΠθ .

5 Proof of Lemma 1.9

We consider a motion p 7−→ A(p) = (a1 a2 a3)p+ a0 where

a0 = w
(

τ1
1
τ3

)
, a1 =

1√
1−v2

(√
1−u2−v2

−u
0

)
, a2 =

(
u√

1−u2−v2
v

)
, a3 =

1√
1−v2

(
−uv

−v
√
1−u2−v2

1−v2

)
.

Here we remark that (a1 a2 a3) is an orthogonal matrix. We consider the motions

A(p) =


√
1−u2−v2x−uvz√

1−v2
+uy+wτ1

−ux+vz
√
1−u2−v2√

1−v2
+
√
1−u2−v2y+w

vy+
√
1−v2z+wτ3

 , p =
(

x
y
z

)
,

in F = A−1 f A(p) (see (1.1)), and we obtain

(5.1) Fu|(u,v,w)=0 =

(
y(1−y)
x(1−2y)

0

)
, Fv|(u,v,w)=0 =

(
0

z(1−2y)
y(1−y)

)
, Fw|(u,v,w)=0 =

(
0

2y−1
0

)
.
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Setting f = F |(u,v,w)=0, we have

(5.2) f =
(
x, y2, k1x

2+k2y2

2
+

m∑
i+j≥3

ai,j
xiyj

i!j!
+O(m+ 1)

)
.

We are looking for the condition that F is an A-versal unfolding of f , that is,

(5.3) E⊕3
2 = TRf + TLf + VF .

where TRf = 〈fx, fy〉E2 , TLf = f−1E⊕3
3 , VF = 〈Ḟu, Ḟv, Ḟw〉R. Here Ḟu = Fu|(u,v,w)=0,

Ḟv = Fv|(u,v,w)=0, and Ḟw = Fw|(u,v,w)=0.
In the notation in [11, §3], this is Ge-versality with G = A. See Versality Theorem 3.3

loc. cite. also.
If f is m-A-determined, then we have

(〈x, y〉m+1
E2 )⊕3 ⊂ TRf + TLf.

Now we return to the case for the folding family. We assume that the map-germ
(x, y) 7→ (x, y2, f(x, y)) is m-determined. We consider the condition that the matrix

M̃ =

T̃1 W̃e1 O O Ṽ1
T̃2 O W̃e2 O Ṽ2
T̃3 O O W̃e3 Ṽ3


is of full rank, where

T̃s =((ϕj
j1,j2

)∗(xi1yi2)∗(ϕ1fx + ϕ2fy)es)i1+i2≤m; j=1,2,j1+j2≤m (s = 1, 2, 3),

W̃ =
(
W̃0 W̃1 . . . W̃⌊m/2⌋

)
, W̃k = ((xi1yi2)∗(xj1yj2fk))i1+i2≤m, j1+j2≤m−2k,

Ṽ1 =((xi1yi2)∗(y(1− y)e1 0 0))i1+i2≤m,

Ṽ2 =((xi1yi2)∗(x(1− 2y)e2 f(1− 2y)e2 2ye2))i1+i2≤m,

Ṽ3 =((xi1yi2)∗(0 y(1− y)e3 0))i1+i2≤m.

Here we define

(xj1yj2)∗(xi1yi2) =

{
1 (i1, i2) = (j1, j2)

0 otherwise

(ϕj
j1j2

)∗ϕi
i1i2

=

{
1 (i, i1, i2) = (j, j1, j2)

0 otherwise

where ϕi =
∑

i1,i2
ϕi
i1.i2

xi1yi2 .

Because of the submatrices W̃0es (s = 1, 2, 3), we can remove

• the columns corresponding to xi1y2i2es (i1 + 2i2 ≤ m, s = 1, 2, 3), and
• the rows corresponding to xj1y2j2es (j1 + 2j2 ≤ m, s = 1, 2, 3)

from the matrix M̃ . The matrix obtained by this operation is denoted by

M =

T1 We1 O O V1
T2 O We2 O V2
T3 O O We3 V3

 where W =
(
W1 W2 . . . W⌊m/2⌋

)
.

We set T =
(

T1
T2
T3

)
.
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5.1 S1 singularity

We assume that f is A-equivalent to S1 singularity, that is, a21 6= 0 and a03 6= 0. Remark
that S1 singularity is 3-determined (m = 3). The matrix M is expressed as follows:

ϕ1
00 ϕ1

10 ϕ1
01 ϕ1

11 ϕ1
21 ϕ1

03 ϕ2
00 ϕ2

10 ϕ2
01 ϕ2

11 ϕ2
03 e1 e2 e3 Ḟu Ḟv

ye1 1 1

xye1 1

x2ye1
1
2

a21
2

::

y3e1
1
6

a03
6

::

ye2 2

xye2 2 −2

x2ye2 1
a21
2

::

a21
2

− k1

::::::::::::
y3e2 1

a03
6

::

a03
6

− k2

::::::::::::
ye3 k2

:
1

xye3 a21 k1
:

a12
::

k2
:

x2ye3
a31
2

::
a21

a30
2

:: :
k1

a22
2

::
a12
::

a21
2

::

k2
2

::

a21
2

::

y3e3
a13
6

::::

a12
2

::::

a04
6

::

a03
2

::::

k2
2

::::

a03
6

First, by Gauss’s elimination method using boxed elements as pivots, we eliminate ele-
ments with wavy lines below. Next, by Gauss’s elimination method using the underlined
elements as pivots, we eliminate elements with double wavy lines below. Thirdly, by
Gauss’s elimination method using the double underlined elements as pivots, we eliminate
elements with wavy lines below with underlines. Now it is easy to see that this matrix is
always of full rank.

5.2 S2 singularity

We assume that f is A-equivalent to S2 singularity, that is, a21 = 0, a03 6= 0 and a31 6= 0.
Remark that S2 singularity is 4-determined (m = 4). The non-zero entries of the matrix
T is shown in the following tables.

ϕ1
00 ϕ1

10 ϕ1
01 ϕ1

20 ϕ1
11 ϕ1

02 ϕ1
30 ϕ1

21 ϕ1
12 ϕ1

03 ϕ1
40 ϕ1

31 ϕ1
22 ϕ1

13 ϕ1
04

ye1 1
xye1 1
x2ye1

1
2

y3e1
1
6

x3ye1
1
6

xy3e1
1
6

ye3
xye3 k1
x2ye3

a31
2

a30
2 k1

y3e3
a13
6

a12
2

x3ye3
a41
6

a31
2

a40
6

a30
2

k1
2

xy3e3
a23
6

a13
6

a22
2

a12
2

k1
6
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ϕ2
00 ϕ2

10 ϕ2
01 ϕ2

20 ϕ2
11 ϕ2

02 ϕ2
30 ϕ2

21 ϕ2
12 ϕ2

03

ye2 2
xye2 2
x2ye2 1
y3e2 1
x3ye2

1
3

xy3e2 1

ye3 k2
xye3 a12 k2
x2ye3

a22
2 a12

k2
2

y3e3
a04
6

a03
2

k2
2

x3ye3
a32
6

a22
2

a31
6

a12
2

k2
2

xy3e3
a14
6

a04
6

a13
2

a03
2

a12
2

k2
2

The non-zero elements of the matrix W are given as follows:

e1 xe1 e2 xe2 e3 xe3 Ḟu Ḟv Ḟw

ye1 −1
xye1

x2ye1

y3e1
a03
6

x3ye1
a31
6

xy3e1
a13
6

a03
6

ye2 2
xye2 −2
x2ye2 −k1
y3e2

a03
6

a03
6

− k2
x3ye2

a31
6

a31
6

− a30
3

xy3e2
a13
6

a03
6

a13
6

− a12
ye3 1
xye3

x2ye3

y3e3
a03
6

x3ye3
a31
6

xy3e3
a13
6

a03
6
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We thus looking for the condition so that the following matrix is of full rank.

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0
a03
6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0
a31
6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0
a13
6

a03
6

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −k1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

a03
6

0 0 0 0 a03−k2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

0 0 0
a31
6

0 0 0 0
a31
6

−a30
3

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
a13
6

a03
6

0 0 0
a13
6

−a12 0

0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 k1 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a31
2

0
a30
2

k1 0 0 0 0
a22
2

a12 0
k2
2

0 0 0 0 0 0 0 0 0 0 0 0 0
a13
6

0
a12
2

0 0 0 0 0
a04
6

0
a03
2

0 0
k2
2

0 0 0 0 0 0
a03
6

0 0 0 0
a41
6

a31
2

a40
6

a30
2

k1
2

0 0 0
a32
6

a22
2

a31
6

a12
2

0 0
k2
6

0 0 0 0 0
a31
6

0 0 0 0
a23
6

a13
6

a22
2

a12
2

0
k1
6

0 0
a14
6

a04
6

a13
2

0
a03
2

a12
2

0
k2
2

0 0 0 0
a13
6

a03
6

0 0 0

By applying the row-addition transformation to this matrix 12 times, we can remove the
first 12 rows and columns 3-10, 12 and 14-16, yielding the following matrix.

0 0 0 0 0 0 0 0 0 0 0 1 −k2
0 0 0 0 0 0 0 0 0 0 k2 − k1 0 −a12
a31
2

0 0 0 0 0 0 0 0 0 ∗ ∗ ∗
a13
6

0 a03
2

0 0 0 ∗ 0 ∗ 0 ∗ ∗ ∗
a41
6

a31
2

a31
6

0 0 0 ∗ 0 ∗ 0 ∗ ∗ ∗
a23
6

∗ ∗ a03
2

∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗


Since a31 6= 0, a03 6= 0, we conclude that this matrix is of full rank if and only if the
upper-right 2× 3 matrix is of full rank, that is, k1 6= k2 or a12 6= 0.

5.3 C3 singularity

We assume that f is A-equivalent to S2 singularity, that is, a21 = a03 = 0, a31 6= 0 and
a13 6= 0. Remark that C3 singularity is 4-determined (m = 4). In a similar way to the
discussion above, we obtain the following matrix for T .

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0
a31
6

0 0 0 0 0

0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0
a13
6

0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −k1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −k2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

3
0 0

a31
6

0 0
a31
6

−a30
3

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
a13
6

0 0
a13
6

−a12 0

0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 1 0
0 0 k1 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0

a31
2

0
a30
2

k1 0 0 0 0
a22
2

a12 0
k2
2

0 0 0 0 0 0 0 0 0
a13
6

0
a12
2

0 0 0 0 0
a04
6

0 0 0
k2
2

0 0 0 0 0 0 0 0
a41
6

a31
2

a40
6

a30
2

k1
2

0 0 0
a32
6

a22
2

a31
6

a12
2

0
k2
6

0 0 0
a31
6

0 0 0
a23
6

a13
6

a22
2

a12
2

0
k1
6

0 0
a14
6

a04
6

a13
2

0
a12
2

0
k2
2

0 0
a13
6

0 0 0
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By applying the row-addition transformation to this matrix 12 times, we can remove the
first 12 rows and columns 3-10, 12-15, yielding the following matrix:

0 0 0 0 0 0 0 1 −k2
0 0 0 0 0 0 k2 − k1 0 −a12
a31
2

0 0 0 0 0 a12 − a30
2

k1k2
2

−a22
2

a13
6

0 0 0 0 0 −a12
2

k22
2

−a04
6

a41
6

a31
2

a31
6

0 ∗ ∗ ∗ ∗ ∗
a23
6

a13
6

a13
2

0 ∗ ∗ ∗ ∗ ∗


Since a31a13 6= 0, we then conclude that this matrix is of full rank if and only if∣∣∣∣k2 − k1 −3a12 +

a13
a31

(a30 − 2a12)

a12 a04 − 3k32 +
a13
a31

(a22 − k1k
2
2)

∣∣∣∣ 6= 0.

5.4 S3 singularity

We assume that f is A-equivalent to S2 singularity, that is, a21 = a31 = 0, a03 6= 0 and
a41 6= 0. Remark that S3 singularity is 5-determined (m = 5). In a similar way to the
discussion above, the matrix T , removing zero columns, is obtained as follows:

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
120

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 k1 0 0 0 0 0 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0

0 0
a30
2

0 k1 0 0 0 0 0 0 0 0
a22
2

a12 0
k2
2

0 0 0 0 0 0 0 0 0
a13
6

0
a12
2

0 0 0 0 0 0 0 0 0 0
a04
6

0
a03
2

0 0
k2
2

0 0 0 0 0 0 0
a41
6

0
a40
6

0
a30
2

0
k1
2

0 0 0 0 0 0
a32
6

a22
2

0
a12
2

0 0
k2
6

0 0 0 0 0 0
a23
6

a13
6

a22
2

0
a12
2

0 0
k1
6

0 0 0 0 0
a14
6

a04
6

a13
2

0
a03
2

a12
2

0 0
k2
2

0 0 0 0
a51
24

a41
6

a50
24

0
a40
6

0
a30
4

0
k1
6

0 0 0 0
a42
24

a32
6

a41
24

a22
4

0 0
a12
6

0 0 0
k2
24

0 0
a33
12

a23
6

a32
4

a13
12

a22
2

0
a12
4

a30
12

0
k1
6

0 0 0
a24
12

a14
6

a23
4

a04
12

a13
2

a22
4

0
a03
4

a12
2

0 0
k2
4

0
a15
120

0
a14
24

0 0
a13
12

0
a12
12

0 0 0 0 0
a06
120

0
a05
24

0 0
a04
12

0 0 0
a03
12

0 0
k2
24

The non-zero elements of the matrix W are given as follows:
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f xf x2f y2f f 2

y 0 0 0 0 0
xy 0 0 0 0 0
x2y 0 0 0 0 0
y3 a03

6
0 0 0 0

x3y 0 0 0 0 0
xy3 a13

6
a03
6

0 0 0
x4y a41

24
0 0 0 0

x2y3 a23
12

a13
6

a03
6

0 k1a03
6

y5 a05
120

0 0 a03
6

k2a03
6

We are thus looking for the condition that the following matrix is of full rank:
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a03
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a13
6

a03
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a41
24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0 0 0 0 0 0 0 0
a23
12

a13
6

a03
6

0
k2a03

6
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
120

0 0 0 0 0 0 0 0 0 0 0 0 0
a05
120

0 0
a03
6

k2a03
6

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −k1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
a03
6

0 0 0 0 0 0 0 0 0 0
a03
6

−k2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − a30
3

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
a13
6

a03
6

0 0 0 0 0 0 0 0 0
a13
6

−a12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0
a41
24

0 0 0
k1a03

2
0 0 0 0 0 0

a41
24

− a40
12

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0
a23
12

a13
6

a03
6

0
k2a03

2
0 0 0 0 0 0

a23
12

− a22
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0
a05
120

0 0 0 0 0 0 0 0 0 0
a05
120

− a04
12

0

0 0 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 k1 0 0 0 0 0 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
a30
2

0 k1 0 0 0 0 0 0 0 0
a22
2

a12 0
k2
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a13
6

0
a12
2

0 0 0 0 0 0 0 0 0 0
a04
6

0
a03
2

0 0
k2
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a03
6

0 0 0 0 0 0 0

a41
6

0
a40
6

0
a30
2

0
k1
2

0 0 0 0 0 0
a32
6

a22
2

0
a12
2

0 0
k2
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a23
6

a13
6

a22
2

0
a12
2

0 0
k1
6

0 0 0 0 0
a14
6

a04
6

a13
2

0
a03
2

a12
2

0 0
k2
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0
a13
6

a03
6

0 0 0 0 0 0

a51
24

a41
6

a50
24

0
a40
6

0
a30
4

0
k1
6

0 0 0 0
a42
24

a32
6

a41
24

a22
4

0 0
a12
6

0 0 0
k2
24

0 0 0 0 0 0 0 0 0 0 0 0
a41
24

0 0 0 0 0 0 0

a33
12

a23
6

a32
4

a13
12

a22
2

0
a12
4

a30
12

0
k1
6

0 0 0
a24
12

a14
6

a23
4

a04
12

a13
2

a22
4

0
a03
4

a12
2

0 0
k2
4

0 0 0 0 0 0 0 0 0 0 0
a23
12

a13
6

a03
6

0
k1a03

6
0 0 0

a15
120

0
a14
24

0 0
a13
12

0
a12
12

0 0 0 0 0
a06
120

0
a05
24

0 0
a04
12

0 0 0
a03
12

0 0
k2
24

0 0 0 0 0 0 0 0 0 0
a05
120

0 0
a03
6

k2a03
6

0 0 0

By applying the row-addition transformation to this matrix 18 times, we can remove the
first 18 rows and columns 3, 5, 8, 10-17, 19, 21, 22, 24, 26-28, yielding the following
matrix: 

1 −k2
k2−k1 −a12

a12−a30
2

k1k2
2

−a22
2

a13
6

a03
2

∗ ∗ ∗ ∗ ∗
a41
6

∗ ∗ ∗
a23
6

a13
6

a13
2

a03
2

∗ ∗ ∗ ∗ ∗ ∗ ∗
a51
24

a41
6

a41
24

∗ ∗ ∗ ∗ ∗
a33
12

a23
6

a13
4

a23
4

a13
2

a03
4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a15
120

a13
12

a05
24

a03
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗


Since a03a41 6= 0, we then conclude that this matrix is of full rank if and only if the upper
right 3× 3 matrix is of full rank, that is,

(a22 − k1k
2
2)(k1 − k2) + a12(2a12 − a30) 6= 0.

5.5 B2 singularity

We assume that f is A-equivalent to B2 singularity, that is,

a21 6= 0, a03 = 0, and 3a05 − 5a213/a21 6= 0.

Remark that B2 singularity is 5-determined (m = 5). In a similar way to the discussion
above, the matrix T , removing zero columns, obtained as follows:
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0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
120

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0
a21 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0
a31
2

a21
a30
2

0 k1 0 0 0 0 0 0 0 0 0 0
a22
2

a12
a21
2

k2
2

0 0 0 0 0 0 0 0 0
a13
6

0
a12
2

0 0 0 0 0 0 0 0 0 0 0 0
a04
6

0 0 0 0
k2
2

0 0 0 0 0 0 0
a41
6

a31
2

a40
6

a21
2

a30
2

0 0
k1
2

0 0 0 0 0 0 0
a32
6

a22
2

a31
6

a12
2

a21
2

0
k2
6

0 0 0 0 0 0
a23
6

a13
6

a22
2

0
a12
2

a21
2

0 0 0
k1
6

0 0 0 0 0
a14
6

a04
6

a13
2

0 0
a12
2

0 0
k2
2

0 0 0 0
a51
24

a41
6

a50
24

a31
4

a40
6

0
a21
6

a30
4

0 0
k1
6

0 0 0 0
a42
24

a32
6

a41
24

a22
4

a31
6

0
a12
6

a21
4

0 0
k2
24

0 0
a33
12

a23
6

a32
4

a13
12

a22
2

a31
4

0
a12
4

a21
2

a30
12

0
k1
6

0 0 0
a24
12

a14
6

a23
4

a04
12

a13
2

a22
4

0 0
a12
2

a21
12

0
k2
4

0
a15
120

0
a14
24

0 0
a13
12

0 0 0
a12
12

0 0 0 0 0
a06
120

0
a05
24

0 0
a04
12

0 0 0 0 0 0
k2
24

The non-zero elements of the matrix W are given as follows:

f xf x2f y2f f 2

y 0 0 0 0 0
xy 0 0 0 0 0
x2y a21

2
0 0 0 0

y3 0 0 0 0 0
x3y a31

6
a21
2

0 0 0
xy3 a13

6
0 0 0 0

x4y a41
24

a31
6

a21
2

0 k1a21
2

x2y3 a23
12

a13
6

0 a21
2

k2a21
2

y5 a05
120

0 0 0 0

Thus we look for the condition that the following matrix is of full rank.

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a21
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a31
6

a21
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a13
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a41
24

a31
6

a21
2 0

k1a21
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a23
12

a13
6 0

a21
2

k2a21
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
120 0 0 0 0 0 0 0 0 0 0 0 0 0

a05
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a21
2 0 0 0 0 0 0 0 0 0 0

a21
2 −k1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −k2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0
a31
6

a21
2 0 0 0 0 0 0 0 0 0

a31
6 − a30

3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
a13
6 0 0 0 0 0 0 0 0 0 0

a13
6 −a12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0

a41
24

a31
6

a21
2 0

k1a21
2 0 0 0 0 0 0

a41
24 − a40

12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0

a23
12

a13
6 0

a21
2

k2a21
2 0 0 0 0 0 0

a23
12 − a22

2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0

a05
120 0 0 0 0 0 0 0 0 0 0

a05
120 − a04

12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
a21 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a31
2 a21

a30
2 0 k1 0 0 0 0 0 0 0 0 0 0

a22
2 a12

a21
2

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a21
2 0 0 0 0 0 0 0

a13
6 0

a12
2 0 0 0 0 0 0 0 0 0 0 0 0

a04
6 0 0 0 0

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a41
6

a31
2

a40
6

a21
2

a30
2 0 0

k1
2 0 0 0 0 0 0 0

a32
6

a22
2

a31
6

a12
2

a21
2 0

k2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a31
6

a21
2 0 0 0 0 0

a23
6

a13
6

a22
2 0

a12
2

a21
2 0 0 0

k1
6 0 0 0 0 0

a14
6

a04
6

a13
2 0 0

a12
2 0 0

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a13
6 0 0 0 0 0 0 0

a51
24

a41
6

a50
24

a31
4

a40
6 0

a21
6

a30
4 0 0

k1
6 0 0 0 0

a42
24

a32
6

a41
24

a22
4

a31
6 0

a12
6

a21
4 0 0

k2
24 0 0 0 0 0 0 0 0 0 0 0 0

a41
24

a31
6

a21
2 0

k1a21
2 0 0 0

a33
12

a23
6

a32
4

a13
12

a22
2

a31
4 0

a12
4

a21
2

a30
12 0

k1
6 0 0 0

a24
12

a14
6

a23
4

a04
12

a13
2

a22
4 0 0

a12
2

a21
12 0

k2
4 0 0 0 0 0 0 0 0 0 0 0

a23
12

a13
6 0

a21
2

k2a21
2 0 0 0

a15
120 0

a14
24 0 0

a13
12 0 0 0

a12
12 0 0 0 0 0

a06
120 0

a05
24 0 0

a04
12 0 0 0 0 0 0

k2
24 0 0 0 0 0 0 0 0 0 0

a05
120 0 0 0 0 0 0 0
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By applying the row-addition transformation to this matrix 18 times, we can remove the
first 18 rows and columns 3, 5, 8, 10-17, 19, 21, 22, 24, 26-28, yielding the following
matrix: 

1 −k2
a21 k2−k1 −a12
a31
2

a21
a21
2

k2a21
4

a21
2

∗ ∗ ∗
a13
6

−a12
2

∗ −a04
6

a41
6

a31
2

a21
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a23
6

a13
6

a21
2

∗ ∗ ∗ ∗ ∗ ∗
a51
24

a41
6

a31
4

a21
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a33
12

a23
6

a13
4

a31
4

a21
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a15
120

a13
12

a05
24

− k2a05
240

a05
120

∗ ∗ ∗


By applying the row-addition transformation again using the fact a21 6= 0 and B2 6= 0, we
conclude that this matrix is of full rank if and only if

a13(k1 − k2) 6= 3a21a12 or (a04 − 3k32)(k1 − k2) +
1
3
(a13
a21

)2 6= 0.

5.6 B3 singularity

We assume that f is A-equivalent to B3 singularity, that is,

a21 6= 0, a03 = 0, a05 − 5a213
3a21

= 0 and B3 6= 0.

Remark that B3 singularity is 7-determined (m = 7). With the same arguments as above,
the matrix T becomes

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
60 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
360 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
24 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
360

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a21 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a12 k2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a31
2 a21

a30
2 0 k1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a22
2 a12

a21
2

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a13
6 0

a12
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a04
6 0 0 0 0

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a41
6

a31
2

a40
6

a21
2

a30
2 0 0

k1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a32
6

a22
2

a31
6

a12
2

a21
2 0

k2
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a23
6

a13
6

a22
2 0

a12
2

a21
2 0 0 0

k1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a14
6

a04
6

a13
2 0 0

a12
2 0 0

k2
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a51
24

a41
6

a50
24

a31
4

a40
6 0

a21
6

a30
4 0 0 0

k1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a42
24

a32
6

a41
24

a22
4

a31
6 0

a12
6

a21
4 0 0

k2
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a33
12

a23
6

a32
4

a13
12

a22
2

a31
4 0

a12
4

a21
2

a30
12 0 0 0

k1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a24
12

a14
6

a23
4

a04
12

a13
2

a22
4 0 0

a12
2

a21
12 0 0

k2
4 0 0 0 0 0 0 0 0 0 0 0 0

a15
120 0

a14
24 0 0

a13
12 0 0 0

a12
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a06
120 0

5a2
13

72a21
0 0

a04
12 0 0 0 0 0 0 0 0

k2
24 0 0 0 0 0 0 0 0 0 0

a61
120

a51
24

a60
120

a41
12

a50
24 0

a31
12

a40
12 0 0

a21
24

a30
12 0 0 0 0

k1
24 0 0 0 0 0 0 0 0 0 0 0

a52
120

a42
24

a51
120

a32
12

a41
24 0

a22
12

a31
12 0 0

a12
24

a21
12 0 0 0

k2
120 0 0 0 0 0 0 0 0 0

a43
36

a33
12

a42
12

a23
12

a32
4

a41
12

a13
36

a22
4

a31
4

a40
36 0

a12
12

a21
4

a30
12 0 0 0 0

k1
12 0 0 0 0 0 0 0 0 0

a34
36

a24
12

a33
12

a14
12

a23
4

a32
12

a04
36

a13
4

a22
4

a31
36 0 0

a12
4

a21
12 0 0 0

k2
12 0 0 0 0 0 0 0

a25
120

a15
120

a24
24 0

a14
24

a23
12 0 0

a13
12

a22
12 0 0 0

a12
12

a21
24 0 0 0 0 0

k1
120 0 0 0 0 0 0 0

a16
120

a06
120

a15
24 0

5a2
13

72a21

a14
12 0 0

a04
12

a13
12 0 0 0 0

a12
24 0 0 0 0

k2
24 0 0 0 0 0

a71
720

a61
120

a70
720

a51
48

a60
120 0

a41
36

a50
48 0 0

a31
48

a40
36 0 0 0

a21
120

a30
48 0 0 0 0

k1
120 0 0 0 0 0 0

a62
720

a52
120

a61
720

a42
48

a51
120 0

a32
36

a41
48 0 0

a22
48

a31
36 0 0 0

a12
120

a21
48 0 0 0 0

k2
720 0 0 0

a53
144

a43
36

a52
48

a33
24

a42
12

a51
48

a23
36

a32
8

a41
12

a50
144

a13
144

a22
12

a31
8

a40
36 0 0

a12
48

a21
12

a30
24 0 0 0

k1
36 0 0 0 0 0

a44
144

a34
36

a43
48

a24
24

a33
12

a42
48

a14
36

a23
8

a32
12

a41
144

a04
144

a13
12

a22
8

a31
36 0 0 0

a12
12

a21
24 0 0 0

k2
48 0 0

a35
240

a25
120

a34
48

a15
240

a24
24

a33
24 0

a14
48

a23
12

a32
24 0 0

a13
24

a22
12

a31
48 0 0 0

a12
24

a21
24

a30
240 0 0

k1
120 0 0 0 0

a26
240

a16
120

a25
48

a06
240

a15
24

a24
24 0

5a2
13

144a21

a14
12

a23
24 0 0

a04
24

a13
12

a22
48 0 0 0 0

a12
24

a21
240 0 0

k2
48 0

a17
5040 0

a16
720 0 0

a15
240 0 0 0

a14
144 0 0 0 0

a13
144 0 0 0 0 0

a12
240 0 0 0 0 0 0 0

a08
5040 0

a07
720 0 0

a06
240 0 0 0

5a2
13

432a21
0 0 0 0

a04
144 0 0 0 0 0 0 0 0 0

k2
720

The matrix W looks like
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

a21
2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

a31
6

a21
2 0 0 0 0 0 0 0 0 0 0 0 0

a13
6 0 0 0 0 0 0 0 0 0 0 0 0 0

a41
24

a31
6

a21
2 0 0 0 0 0 0

k1a21
2 0 0 0 0

a23
12

a13
6 0

a21
2 0 0 0 0 0

k2a21
2 0 0 0 0

a2
13

72a21
0 0 0 0 0 0 0 0 0 0 0 0 0

a51
120

a41
24

a31
6 0

a21
2 0 0 0 0

a21a30+k1a31
6

k1a21
2 0 0 0

a33
36

a23
12

a13
6

a31
6 0

a21
2 0 0 0

3a12a21+a13k1+a31k2
6

k2a21
2 0 0 0

a15
120

a2
13

72a21
0

a13
6 0 0 0 0 0

k2a13
6 0 0 0 0

a61
720

a51
120

a41
24 0

a31
6 0

a21
2 0 0

4a30a31+3a21a40+3a41k1
72

a21a30+a31k1
6

a21k1
2 0

3a21k2
1

8
a43
144

a33
36

a23
12

a41
24

a13
6

a31
6 0

a21
2 0

18a21a22+4a13a30+12a12a31+6a23k1+3a41k2
72

3a12a21+a13k1+a31k2
6

a21k2
2

a21k1
2

3a21k1k2
4

a25
240

a15
120

a2
13

72a21

a23
12 0

a13
6 0 0

a21
2

12a12a13a21+3a04a2
21+a2

13k1+6a21a23k2
72a21

a13k2
6 0

a21k2
2

3a21k2
2

8

a07
5040 0 0

a2
13

72a21
0 0 0 0 0

a2
13k2

72a21
0 0 0 0

By applying the row-addition transformation to the matrix M 33 times, we can remove
the first 18 rows and columns 3, 5, 8, 10, 12, 14, 17, 19, 21-30, 32, 34, 35, 37, 39, 41, 43,
44, 46, 48, 50-53, and second from last, yielding the following matrix:

a21 k2−k1 −a12
a31
2

a21 a12−a30
2

−a22
2

− k22(a21−2k1)

4

a13
6

−a12
2

k32
2
−a04

6

∗ ∗ a21
2

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
a23
6

a13
6

a21
2

a13
2

0 − k2a13
12

0
a13
6

0
a04
6

−a22
2

−a14
6

−k22(a12−
a13
12

)

∗ ∗ ∗ a21
6

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ a21

2
a23
4

∗ ∗ ∗ ∗ ∗ ∗ ∗
a15
120

a13
12

5a213
72a21

0
k2a

2
13

144a21
0

a213
72a21

0 −a14
24

a06
20

− k22
8
(a04−

a213
18

)

∗ ∗ ∗ ∗ a21
24

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ a21

4
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ a23
12

a13
12

a21
24

a15
24

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ a21

120
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ a21
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ a21

24
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ a15
240

a13
144

a07
720

∗ ∗ ∗ ∗ ∗ ∗ ∗


Since a21 6= 0 and B3 = a07

7
− a15

a13
a21

+ 5
3
a23(

a13
a21

)2 − 5
9
a31(

a13
a21

)3 6= 0, we obtain that this
matrix is of full rank if and only if∣∣∣∣∣ a12 + a13(k2−k1)

3a21
p

a04 − 3k32 − a12a13
a21

q

∣∣∣∣∣ 6= 0.

A Criteria of singularity types of maps

Assume that f : (R2, 0) → (R3, 0), (u, v) 7→ f(u, v), has rank one singularity at 0 and
an unit normal vector is extended to ν on the singular locus. Set λ = det(fu fv ν),
ψ = det(t ην ν), where t is a unit tanget vector of the singular locus, and η is a vector
field whose restriction is null to the singular locus. We have that (f,ν) : (R2, 0) →
(R3 × R3, (0,ν(0))) is an embedding, if and only if ψ(0) 6= 0.

Lemma A.1. The singularity of f is A-equivalent to

• cuspidal edge, if ψ(0) 6= 0, ηλ(0) 6= 0;
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• swallowtail, if ψ(0) 6= 0, ηλ(0) = 0, η2λ(0) 6= 0;
• cuspidal cross-cap, if ψ(0) = 0, ηλ(0) 6= 0, ψ′(0) 6= 0.

Proof. See [8, §1–2] and [6, §1].
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