ℝ³内の非特異曲面の中心射影の普遍性 Versality of central projections of regular surfaces in ℝ³

Shuhei Honda

Saitama University, M2, Fukui laboratory

January 21, 2021 研究集会「接触構造、特異点、微分方程式及びその周辺」

- Introduction
- 2 Preliminary
- Main topics
 - Criteria of singularity
 - Singularity type of a central projection at elliptic point
 - Singularity type of a central projection at hyperbolic point
 - Singularity type of a central projection at parabolic point
 - Summary
- 4 References

- Introduction
- 2 Preliminary
- Main topics
- 4 References

Introduction

Figure: a central projection of a regular surface

Introduction

Let $y \in \mathbb{R}^3$ called a **viewpoint**. And we call the line \mathcal{L} which is through viewpoint and f(x) the **viewline** to f(x).

A **central projection** of a regular surface f(x) from y to a z_1z_2 -plane is defined as the following map

$$\pi: (\mathbb{R}^2, 0) \times (\mathbb{R}^3, y) \longrightarrow (\mathbb{R}^2, \pi(0, y)), \ (x, y) \mapsto \pi_y(x)$$

where

$$\pi_y(x) := \begin{pmatrix} \langle t(x,y)f(x) + (1-t(x,y))y, \mathbf{e}_1 \rangle \\ \langle t(x,y)f(x) + (1-t(x,y))y, \mathbf{e}_2 \rangle \end{pmatrix},$$

$$t(x,y):=rac{\langle y, m{e}_3
angle}{\langle y-f(x), m{e}_3
angle} \ \ ext{and} \ \ m{e}_1, m{e}_2, m{e}_3 \ : \ ext{canonical basis of } \mathbb{R}^3.$$

We regard π as the **central projection unfoldings** with parameters y.

- Introduction
- Preliminary
- Main topics
- 4 References

Preliminary (differential geometry 1/2)

Let consider a parametrized regular surface

$$f: (\mathbb{R}^2,0) \longrightarrow (\mathbb{R}^3, f(0,0)): (x_1,x_2) \longmapsto f(0,0) + x_1 \boldsymbol{u} + x_2 \boldsymbol{v} + Q(x) \boldsymbol{w}$$

where $\textit{\textbf{u}}, \textit{\textbf{v}}, \textit{\textbf{w}}$: orthonormal frame of \mathbb{R}^3 and

$$Q(x) := \sum_{k \geq 2} H_k(x_1, x_2), \ H_k(x_1, x_2) := \sum_{i+j=k} \frac{1}{i! \ j!} a_{ij} x_1^i x_2^j.$$

We set the first and second fundamental quantities of the regular surface f

$$E := \langle f_{x_1}, f_{x_1} \rangle, \quad F := \langle f_{x_1}, f_{x_2} \rangle, \quad G := \langle f_{x_2}, f_{x_2} \rangle,$$

$$L := \langle f_{x_1x_1}, \mathbf{n} \rangle, \quad M := \langle f_{x_1x_2}, \mathbf{n} \rangle, \quad N := \langle f_{x_2x_2}, \mathbf{n} \rangle$$

where **n** is the unit normal vector $\frac{f_{x_1} \times f_{x_2}}{|f_{x_1} \times f_{x_2}|}$ and the **Gauss curvature**

$$K:=\frac{LN-M^2}{EG-F^2}.$$

- If K > 0 at x, we call a point f(x) elliptic point.
- If K = 0 at x, we call a point f(x) parabolic point.
- If K < 0 at x, we call a point f(x) hyperbolic point.

Preliminary (differential geometry 2/2)

We set the second fundamental quantities of f

$$L := \langle f_{x_1x_1}, \mathbf{n} \rangle, \ M := \langle f_{x_1x_2}, \mathbf{n} \rangle, \ N := \langle f_{x_2x_2}, \mathbf{n} \rangle.$$

Definition

 (dx_1, dx_2) is an **asymptotic direction** of f at x_0 if the second fundamental form

$$II := L dx_1^2 + 2M dx_1 dx_2 + N dx_2^2$$

vanishes at x_0 .

Definition

We call a line in \mathbb{R}^3 which is generated by an asymptotic direction of f at x_0 an **asymptotic direction line** of f at x_0 .

Example (asymptotic line and asymptotic direction line)

Let $f(x) = (x_1, x_2, x_1 x_2 + \frac{x_1^3}{6})$. The origin is a hyperbolic point.

- Asymptotic lines are curves in f (orange curve and purple line).
- Asymptotic direction lines are curves in \mathbb{R}^3 (red and purple lines).

Preliminary (Singularity theory 1/2)

Let $f:(\mathbb{R}^m,0)\longrightarrow (\mathbb{R}^n,f(0))$ be smooth map germs. We set Jf(x) a Jacobi matrix of f. Then, the origin is

- regular point \Leftrightarrow rank Jf(0) = min(m, n),
- singular point \Leftrightarrow rank Jf(0) < min(m, n).

Definition (A-equivalence)

Let $f_i:(\mathbb{R}^m,0)\longrightarrow (\mathbb{R}^n,f_i(0))$ (i=1,2) denote smooth map germs. If there exist diffeomorphism germs φ and ψ so that the following diagram commutes

$$\mathbb{R}^{m}, 0 \xrightarrow{f_{1}} \mathbb{R}^{n}, f_{1}(0)$$

$$\varphi \downarrow \qquad \qquad \downarrow \psi \quad ,$$

$$\mathbb{R}^{m}, 0 \xrightarrow{f_{2}} \mathbb{R}^{n}, f_{2}(0)$$

 f_1 and f_2 are \mathcal{A} -equivalent $(f_1 \sim_{\mathcal{A}} f_2)$.

Preliminary (Singularity theory 2/2)

Let $TA_e(f)$ denote tangent space of f

$$TA_{e}(f) := tf(\theta_{m}) + \omega f(\theta_{n}) \subset \theta(f)$$

with $tf: \theta_m \to \theta(f): \xi \mapsto df \circ \xi$ and $\omega f: \theta_n \to \theta(f): \eta \mapsto \eta \circ f$.

We define the A_e -codimension of f by

$$cod(\mathcal{A}_e, f) := \dim_{\mathbb{R}} \frac{\theta(f)}{T\mathcal{A}_e(f)}.$$

Definition (A- (infinitesimal) versal unfolding)

Let $F: (\mathbb{R}^m \times \mathbb{R}^k, 0 \times 0) \to (\mathbb{R}^n, F(0, 0))$ be an unfolding of f with parameters y. Then, F is A- (infinitesimal) versal unfolding if

$$T\mathcal{A}_e(f) + \sum_{i=1}^k \mathbb{R} \frac{\partial F}{\partial y_i}(x,0) = \theta(f).$$

- Main topics

Criteria of singularity of a central projection

We consider criteria of singularity type of π_y whose \mathcal{A}_e -codimension ≤ 3 and versality of each of them.

Theorem

- (1) Let $\lambda(x_1, x_2)$ be Jacobian of $\pi_y := \pi(x, y)$. Then, the following two condition (i), (ii) are equivalent.
 - (i) $\lambda(0,0) = 0$
 - (ii) the viewline is contained in the tangent space of f at the origin.
- (2) $(x_1, x_2) = (0, 0)$ is a singular point of π_y , π_y at 0 is A-equivalent to fold (x_1, x_2^2) \Leftrightarrow the viewline is not an asymptotic direction line.

Singularity type of a central projection at elliptic point

Lemma

We assume that viewline from viewpoint y is contained in tangent space of f at 0.

Then, if f is elliptic at 0, a central projection π has fold singularity at 0 for any viewpoint y.

 $(\cdot \cdot)$ f does not have any asymptotic direction at elliptic point.

Figure: a central projection of a sphere ([7])

Singularity type of a central projection at hyperbolic point

We assume that $a_{20}=0$, $a_{11}\neq 0$ and $y-f(0)=p_1\,f_{x_1}(0)\,$ i.e. f is hyperbolic at 0 and $\mathcal L$ is an asymptotic direction line of f at 0. The **criteria of singularity types of** π_y **whose** $\mathcal A_e$ -**codimension** ≤ 3 ([2], [4]) and **versality** of each of them are the following table in this case.

type	С	d	1	position of y	criteria of versality
cusp	0	3	2		always
$(x_1, x_1x_2 + x_2^3)$					
swallowtail	1	4	3		always
$(x_1, x_1x_2 + x_2^4)$					
butterfly	2	7	4	not <i>h</i> -focal ([2])	the flecnodal curve
$(x_1, x_1x_2 + x_2^5 \pm x_2^7)$					is not singular
elder butterfly	3	7	4	<i>h</i> -focal ([2])	the flecnodal curve
$(x_1, x_1x_2 + x_2^5)$					is not singular and y is
					not in a special position.
unimodal	3	8	5	not one of two	not versal
$(x_1, x_1x_2 + x_2^6 \pm x_2^8 + \alpha x_2^9)$				special positions	

 $c: A_e$ -codimension, d: A-determinacy order, I: order of contact with \mathcal{L} for f at 0 in criteria.

Singularity type of a central projection at hyperbolic point

We assume that $a_{20}=0$, $a_{11}\neq 0$ and $y-f(0)=p_1\,f_{x_1}(0)\,$ i.e. f is hyperbolic at 0 and $\mathcal L$ is an asymptotic direction line of f at 0. Then, g is h-focal \Leftrightarrow $(48a_{50}\,a_{70}\,a_{11}^2-35a_{60}^2\,a_{11}^2+42a_{21}\,a_{50}\,a_{60}\,a_{11}-1680a_{31}\,a_{50}^2\,a_{11}+2205a_{21}^2\,a_{50}^2)p_1^2+(-84a_{50}\,a_{60}\,a_{11}^2+252a_{21}\,a_{50}^2\,a_{11})\,p_1+756a_{50}^2\,a_{11}^2=0.$

Goose series singularities of a central projection at parabolic point

We assume that $a_{20} = a_{11} = 0$, $a_{02} \neq 0$ and $y - f(0) = p_1 f_{x_1}(0)$ i.e. f is parabolic at 0 and \mathcal{L} is an asymptotic direction line of f at 0.

type	С	d	1	additional criteria	criteria of versality
lips $(x_1, x_2^3 + x_1^2 x_2)$	1	3	2	$G \circ \gamma$ is 1-st order contact with S	always
or				and p_1 is more (resp. less) than	-
beaks $(x_1, x_2^3 - x_1^2 x_2)$				the curvature radius of $G\circ\gamma$	
goose	2	4	2	$G \circ \gamma$ is 2-nd order contact with S	f is not flat umbilic
$(x_1, x_2^3 + x_1^3 x_2)$					i.e. <i>a</i> ₀₂ ≠ 0
ugly goose	3	5	2	$G \circ \gamma$ is 3-rd order contact with S	f is not flat umbilic
$(x_1, x_2^3 \pm x_1^4 x_2)$					i.e. <i>a</i> ₀₂ ≠ 0
type 16	3	5	3	f(0) is 1-st or more order	not versal
$(x_1, x_2^4 + x_1^2 x_2)$				red subparabolic of f and	
				y is not in a special position	

$$G:(\mathbb{R}^2,0) \to (S^2,G(0)), \ \ G(x_1,x_2):= \frac{f_{x_1}(x_1,x_2) \times f_{x_2}(x_1,x_2)}{\|f_{x_1}(x_1,x_2) \times f_{x_2}(x_1,x_2)\|}: \ \text{the Gauss map of } f.$$

 γ : the **parabolic curve** of f.

S: the characteristic surface defined by

$$p_1 a_{02} z_1 + R_1 z_2^3 / 6 + R_2 z_2^4 / 24 - z_3 + 1 = 0.$$

Goose series singularities of a central projection at parabolic point

S : **the characterisitic surface** defined by

$$p_1 a_{02} z_1 + R_1 z_2^3 / 6 + R_2 z_2^4 / 24 - z_3 + 1 = 0$$

where

$$R_1 := \frac{a_{03} a_{30}^2 - a_{21}^3}{\left(a_{12} a_{30} - a_{21}^2\right)^2 p_1^2}$$

and

$$R_2 := (3a_{30}^4 a_{02}^4 + S_1 a_{02} + S_0)/a_{30}^4 a_{02}^4,$$

$$S_1 := 8a_{21}(a_{21}^3 a_{40} - 3a_{21}^2 a_{30} a_{31} - a_{13} a_{30}^3 + 3a_{21} a_{22} a_{30}^2) - (a_{21}^4 a_{40} - 4a_{21}^3 a_{30} a_{31} + a_{04} a_{30}^4 - 4a_{13} a_{21} a_{30}^3 + 6a_{21}^2 a_{22} a_{30}^2),$$

$$S_0 := 3a_{30}^2 (a_{12} a_{30} - a_{21}^2)^2 + 3a_{03}^2 a_{30}^4 + 8a_{03} a_{12} a_{21} a_{30}^3 - a_{21}^2 a_{30}^2 a_{30}^4 + 8a_{30}^2 a_{30}^2 a_{30}^4 + 8a_{30}^2 a_{30}^2 a_{$$

Goose series singularities of a central projection at parabolic point

If $\mathcal L$ is the 2-nd order contact with f at the origin $(\Leftrightarrow a_{30} \neq 0)$ and f is not flat umbilic $(\Leftrightarrow a_{02} \neq 0)$,

- $G \circ \gamma$ is 1-st order contact with $S \Leftrightarrow \frac{k_2}{p_1} \neq \frac{1}{a_{30}} \begin{vmatrix} a_{30} & a_{21} \\ a_{21} & a_{12} \end{vmatrix}$.
- $G \circ \gamma$ is 2-nd order contact with $S \Leftrightarrow$

$$\frac{k_2}{p_1} = \frac{1}{a_{30}} \begin{vmatrix} a_{30} & a_{21} \\ a_{21} & a_{12} \end{vmatrix} \quad \text{and} \quad H_3(-a_{21}, a_{30}) \neq \frac{1}{2} H_{4x_1}(-a_{21}, a_{30}) p_1.$$

• $G \circ \gamma$ is 3-rd order contact with $S \Leftrightarrow$

$$\frac{k_2}{p_1} = \frac{1}{a_{30}} \begin{vmatrix} a_{30} & a_{21} \\ a_{21} & a_{12} \end{vmatrix}, \ H_3(-a_{21}, a_{30}) = \frac{1}{2}H_{4x_1}(-a_{21}, a_{30}) p_1 \text{ and}$$

$$a_{30}(H_{5_{x_1}}(-a_{21},a_{30})p_1-3H_4(-a_{21},a_{30}))p_1\neq \frac{1}{2}(H_{4_{x_1x_1}}(-a_{21},a_{30})p_1-2H_{3_{x_1}}(-a_{21},a_{30}))^2.$$

Gulls series singularities of a central projection at parabolic point

We can assume that $a_{20} = a_{11} = 0$, $a_{02} a_{40} - 3a_{21}^2 \neq 0$ and $y - f(0) = p_1 f_{x_1}(0)$.

type	С	d	1	additional criteria	criteria of versality
gulls	2	5	3	f(0) is not red subparabolic of f	f is the first order
$(x_1, x_1x_2^2 + x_2^4 + x_2^5)$				and A_4 -contact with $C_{y,d,\theta}$	blue ridge
					$\Leftrightarrow a_{02} a_{40} - 3a_{21}^2 \neq 0$
ugly gulls	3	7	3	f(0) is not red subparabolic of f	f is the first order
$(x_1, x_1x_2^2 + x_2^4 + x_2^7)$				and " A_6 -contact with $C_{y,d,\theta}$ " or	blue ridge
				" A_5 -contact with $C_{y,d,\theta}$ and y	$\Leftrightarrow a_{02} a_{40} - 3a_{21}^2 \neq 0$
				is not ug-focal"	
type 12	3	6	4	f(0) is not red subparabolic of f	not versal
$(x_1, x_1x_2^2 + x_2^5 + x_2^6)$				and y is not one of two	
				special positions	

 $C_{y,d,\theta}$: a **cone** whose vertex is y in \mathbb{R}^3 , direction of the central axis is d in S^2 and ungle is θ in (0,1).

Gulls series singularities of a central projection at parabolic point

 $C_{y,d,\theta}$: a **cone** whose vertex is y in \mathbb{R}^3 , direction of the central axis is $d := (d_1, d_2, d_3)$ in S^2 and ungle is θ in (0,1).

We assume that \mathcal{L} is the 3-rd order contact with f ($\Leftrightarrow a_{30}=0, a_{40}\neq 0$) and f is not red subparabolic ($\Leftrightarrow a_{21}\neq 0$).

Gulls series singularities of a central projection at parabolic point

If f is the first order blue ridge $(a_{02} a_{40} - 3a_{21}^2 \neq 0)$, $d_2 = 0$ and $(a_{02} a_{40} - 3a_{21}^2) d_3 y_1 + a_{40} d_1 = 0$, then f is

• A_4 -contact with $C_{v,d,\theta} \Leftrightarrow$

$$AC_4 := (3a_{21}^2 a_{50} + 5a_{12} a_{40}^2 - 10a_{21} a_{31} a_{40}) p_1 - 5a_{40} (a_{40} k_2 - 3a_{21}^2) \neq 0.$$

• A_6 -contact with $C_{y,d,\theta}$ $\Leftrightarrow A_5$ -contact with $C_{y,d,\theta}$ and y is not ug-focal $\Leftrightarrow AC_4 = 0$ and

$$AC_6 - 70 a_{40} AC_5 = \tilde{A}_2 p_1^2 + \tilde{A}_1 p_1 + \tilde{A}_0 \neq 0.$$

where

 AC_k : non degenerate condition of A_k -contact and \tilde{A}_2 , \tilde{A}_1 and \tilde{A}_0 are expressed as using coefficients of f whose degrees are 7 or less.

Summary: versality of a central projection

Concerning the versality of singularity of π_y , we get the following results.

type	\mathcal{A}_e -cod.	\mathcal{A} -det.	versality
swallowtail	1	4	always
butterfly	2	7	the flecnodal curve is not singular
elder butterfly	3	7	the flecnodal curve is not singular
			and y is not in a special position
unimodal	3	8	not versal
lips	1	3	always
beaks	1	3	always
goose	2	4	f is not flat umbilic
ugly goose	3	5	
gulls	2	5	f is the first order blue ridge
ugly gulls	3	7	
$(x_1, x_1x_2^2 + x_2^3 + x_2^5 + x_2^6)$	3	6	not versal
$(x_1, x_2^4 + x_1^2 x_2)$	3	5	not versal

- Introduction
- 2 Preliminary
- Main topics
- 4 References

References

- [1] C. T. C. Wall, Geometric properties of generic differentiable manifolds, Lecture Notes in Mathematics 597 (Springer, Berlin, 1977), 707-774.
- [2] O. A. Platnova, Projections of smooth surfaces, Journal of Soviet Mathematics, Volume 35 (1986), 2796–2808.
- [3] K. Saji, Criteria for singularities of smooth maps from the plane into the plane and their applications, Hiroshima Math. J. Volume 40, Number 2 (2010), 229-239.
- [4] Yutaro Kabata, Recognition of plane-to-plane map-germs, Topology and its Applications 202 (2016) 216–238.
- [5] H. Sano, Y. Kabata, J. L. Deolindo Silva and T. Ohmoto, Classification of jets of surfaces in projective 3-space via central projection, Bulletin of the Brazilian Mathematical Society, New Series 48 (2017), 623–639.
- [6] S. Izumiya, M. C. R. Fuster, M. A. S. Ruas, F. Tari, Differential geometry from a singularity theory viewpoint, J. Geom. Symmetry Phys., Volume 41 (2016), 101-103.
- [7] GeoGebra, Central projection of sphere, https://www.geogebra.org/m/bUCVFJ64

Appendix (definition of A-determinacy)

Definition (finitely A-determined)

A germ f is said to be k- \mathcal{A} -determined if any g with $j^kg=j^kf$ is \mathcal{A} -equivalent to f. The least integer k with this property is called the degree of determinacy of f. A finitely \mathcal{A} -determined germ is a k- \mathcal{A} -determined germ for some integer k.

Appendix (definition of contact)

Definition

Let $\alpha(t) := (x_1(t), x_2(t))$ be a regular plane curve and let β another plane curve given as the zero set of a smooth function $\Phi : \mathbb{R}^2 \to \mathbb{R}$. We say that the curve α has (k+1)-point contact (k-th contact) at t_0 with the curve β if t_0 is a zero of order k of the function

$$g(t) = \Phi(\alpha(t)) = \Phi(x_1(t), x_2(t))$$
, that is,

$$g(t_0) = g'(t_0) = \cdots = g^{(k)}(t_0) = 0$$
 and $g^{(k+1)}(t_0) \neq 0$

where $g^{(i)}$ denotes the i^{th} -derivative of the function g.

The curve α has (k+1)-point contact (k-th order contact) at t_0 with β if and only if the function g has an A_k -singularity $x_1^{k+1} \pm x_2^2$ at t_0 .

Appendix (ug-focal)

 A_6 -contact with $C_{y,d,\theta}$

 \Leftrightarrow A_5 -contact with $C_{y,d,\theta}$ and y is not ug-focal

 $\Leftrightarrow AC_4 = 0$ and

$$AC_6 - 70\,a_{40}\,AC_5 = \tilde{A}_2p_1^2 + \tilde{A}_1p_1 + \tilde{A}_0 \neq 0.$$

where

$$\tilde{A}_{2} = 225a_{21}^{3} a_{40}^{2} a_{70} + (1575a_{21}^{2} a_{31} a_{40}^{2} - 945a_{21}^{3} a_{40} a_{50}) a_{60} - 1575a_{21}^{2} a_{40}^{3} a_{51} + 756a_{21}^{3} a_{50}^{3} - 3150a_{21}^{2} a_{31} a_{40} a_{50}^{2} + (3150a_{21}^{2} a_{40}^{2} a_{41} - 1575a_{21} a_{22} a_{40}^{3} + 4200a_{21} a_{31}^{2} a_{40}^{2}) a_{50} - 5250a_{21} a_{31} a_{40}^{3} a_{41} - 875a_{13} a_{40}^{5} + (2625a_{21} a_{32} + 2625a_{22} a_{31}) a_{40}^{4} - 1750a_{31}^{3} a_{40}^{3},$$

$$\tilde{A}_{1} = -70a_{40} (45a_{21}^{3} a_{40} a_{60} - 81a_{21}^{3} a_{50}^{2} - 45a_{12} a_{21} a_{40}^{2} a_{50} + 315a_{21}^{2} a_{31} a_{40} a_{50} - 225a_{21}^{2} a_{40}^{2} a_{41} - 25a_{03} a_{40}^{4} + 75a_{12} a_{31} a_{40}^{3} + 225a_{21} a_{22} a_{40}^{3} - 300a_{21} a_{31}^{2} a_{40}^{2})$$
and
$$\tilde{A}_{0} = 3150a_{21} a_{40}^{2} (3a_{21}^{2} a_{50} + 5a_{12} a_{40}^{2} - 10a_{21} a_{31} a_{40}).$$

Example (contact with cones at parabolic point)

Let
$$f(x) = (x_1, x_2, \frac{1}{2}x_2^2 + \frac{1}{2}x_1^2 x_2 + \frac{1}{24}x_1^4).$$

