Versality of central projections of regular surfaces

Shuhei Honda

Abstract

We discuss singularities of central projections of a regular surface in R®*. We describe
criteria of singularity types of central projections of a given surface in terms of its Monge
normal form and discuss their geometric meaning, which is often not clearly understood. We
consider all possible central projections of a fixed surface as a central projection unfolding
and discuss their A-versality. We obtain geometric criteria of versality for central projection
unfoldings. We also observe that geometric meaning of criteria of singularity types of central
projections become clear assuming the versality of central projection unfoldings.
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1 Introduction

The central projection of a point z from the center y (# z) onto a plane H in 3-dimensional
Euclidean space R3, that does not contains ¥, is the intersection of the line £ containing y and z
with the plane H. The center y = (y1, y2, y3) of this projection in often called a viewpoint and
the line £ is called viewline. We are going to investigate central projections regarding centers
Yy as parameters.

Historically speaking, central projections (perspective projections) have been used since the
ancient Greece. For star charts Thales of Miletus used the gnomonic projection, which is the
central projection of the sphere from the center onto a plane tangent to the sphere. In the
Renaissance period, there was interest in central projections as the drawing in perspective. G.
Desargues (see, for instance, [B, Theorem 2.32]) gave a mathematical comprehension to the
central projections.

Nowadays, computer vision (for instance, [3]) motivates to study singularities of central pro-
jection. One good example is to analyze view of pinhole camera model, which is also a central
projection. To understand the shape of a surface in R3, it is important to analyze its contours
by central projections. The key step is understanding the distribution of singularities of central
projections, which often have geometric meaning. Our main results contribute to give criteria for
distribution of singularities in generic context. The theory of singularities enables us to analyze
more complex image in computer vision.

In this paper, we investigate singularities of central projections of regular surfaces in R3
changing center as parameter. Let us prepare several notation. Let S be a surface parameterized
by f(z): U — R3. Here U is an open set of R? containig the origin. We are interestrd in local
behavior of S at f(0), and we express f as in the following form:

f=(fil@), f2(2), f3(2)) : U — R?: (w1, 22) = f(0) + 210 + 220 + Q(2)W (1.1)

where {u,v,w} is an orthonormal frame of R3. Here, Q(z) denotes a C*°-function whose k-th
Taylor polynomial is

k
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ZHl(l'l,l'z), Hl(xl,l‘g) = Z 71"7'!@1 o, (12)
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for any k at the origin. We call the expression (Il) Monge normal form for {u, v, w}.

We can fix H to be the z125-plane, since we can send H to the z12z9-plane by certain rotation
and translation. In the rest of this paper, we fix H to be the z1z9-plane. We denote Euclidean
inner product by (, ). Then, a restriction of a central projection to S is written as follows:

7:U xR — R?: (21, 22,y) = my(1,22) (1.3)

where
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We regard 7 as an unfolding of m, with parameters y. We call 7 a central projection
unfolding. Our main result for versality of 7 is the following Theorem:

t(z,y) = and ej,es, es : the standard basis of R3.

T, is written as



Theorem 1.1. Let S be a regular surface parameterized by f as in (I).
the family m to be a versal unfolding of the singularities of Ac-codim. < 3 of m, are given as in

Then, the criteria of

Table M.
’ type criteria for A.-versality geometric interpretation
’ fold always
cusp always
swallowtail always
butterfly 2a31 k1 — 3a3; # 0 the flecnodal curve is not singular
elder butterfly 2a31 k1 — 3a%1 # 0 and the flecnodal curve is not singular
(aco k1 — 3az1 aso) p1 — 18as0 k1 # 0 and y is not in a special position
unimodal not versal
lips always
beaks always
goose ko #0 f is not flat umbilic
ugly goose
gulls aqo ko — 3a3, # 0 f is the first order blue ridge
ugly gulls
type 12 not versal
type 16 not versal

Table 1: Criteria of versality of 7 at each singularity

We quickly review the history of mathematical research on central projection from singular-
ity theory viewpoint (cf. [@]). C.T.C.Wall [25] started to consider central projections from a
perspective of singularity theory and stated a general transversality theorem due to his student
J.M.S.David. He considered “generic” projections including central projections in [[@].

J.H. Rieger and M. A. S. Ruas [, 22] classified all corank one map germs with .A.-codimension
< 3. Criteria of singularities of m, have been given by O. A.Platnova [I9] and V.I. Arnold [, 2].
O. A. Platnova recognized that asymptotic straight lines appear as a set of viewpoints y so that
7, is not fold. She states the following paragragh ([T9], p.2798):

The only exclusions concern some points on isolated asymptotic lines in a hyperbolic
domain with fourth order contact (no more than two on a line) and on asymptotic
lines passing through parabolic points of the surface (not more than one on a line).

The asymptotic line here is that we call asymptotic straight line (in §2, Definition 2Z3). She
called the excluded points “h-focal” (“h” for “hyperbolic”) and “p-focal” (“p” for “parabolic”)
respectively. Since she mentioned “p’-focal” in [[9, Table 1], the author believes that she was
aware of the following treatment: Once we fix f, m, has the same type ¥ of singularity for a
viewpoint y on an asymptotic straight line except several points y. We call such a point X-focal
point.

Y. Kabata [I5] has written criteria of singularities of A.-codimension < 4 from plane-to-plane
map-germs and applied them to central projections of regular surfaces in the projective space
P3. He also gave the conditions of ¥-focal point in terms of the coefficients of the Monge normal
form f. We recall these results in our terminology for criteria of singularity types of a central
projection m, in §3.

As an applications of singularities of m,, H.Sano, Y.Kabata and J.L.Deolindo Silva and
T.Ohmoto [?4] classified regular surfaces on P? by using the classification of singularities of



central projections of them. And related to bifurcations, they have determined local topological
types of binary differential equations of asymptotic curves at parabolic point in P3 ([8]). From
these, we are motivated to investigate certain criteria of versality of central projection unfoldings.

Versality for several geometric unfoldings are already investigated in [M0] and [id]. T.Fukui
and M. Hasegawa show (K)-versality of distance squared unfoldings ([i0]). In [i4], criteria of
A-versality of orthogonal projection unfoldings are given. Both of them are concerned with ge-
ometric interpretation of conditions of versality. In this article, we show criteria of A-versality
of the central projection in §4. The key step is to compute the A.-tangent space. The compu-
tation is often complicated and we completed them using the aid of computer. The source code
of Maxima scripts are available at https://github.com/Shuhei-singularity123/Versality_
of _central_projection_of_regular_surface.

In §5 we show an application of our criteria of versality of m to geometric interpretations
of singularities of m,. Versal gulls series singularity of central projections is related to contact
type with a cone. J.Montaldi [I8] defines the notion of contact between two submanifolds
and established the relation to K-equivalence which is introduced by J. Mather ([i@, §2]). For
criteria of contact types of a surface, for instance, T. Fukui, M. Hasegawa, and K. Nakagawa [I1]
investigated contact type of a regular surface with right circular cylinders in R3.

2 Preliminary

2.1 Definitions from differential geometry

We consider a regular surface S parameterized by f as in (ICT). Let

E = <f”£1afz1>a F = <fﬂc17fr2>7 G = <ff£25f.rz>

and
L= <f:c1:c1an>a M = <f:c1:c27n>a N = <.fac2:c27n>

where n is the unit normal vector % The function E, F' and G (resp. L, M and N) are
xq T

called the first (resp. second) fundamental of S. The Gauss curvature is given by

LN — M?
Ty

Then,
e If K > 0 at x, the point f(x) is elliptic,
e If K =0 at x, the point f(x) is parabolic,
o If K <0 at x, the point f(x) is hyperbolic.

If there is a non-zero vector v such that

L M\ _ (B F\, . .
MNV—H,FGVOI'bOHleH,

we call k a principal curvature and a unit eigenvector generated by v for s a principal vector
on R3. We set x; and ko the principal curvatures of f at x. If k1 = kg at z, we call a point f(z)
umbilic point. We call a point f(z) flat umbilic point if k1 = ko = 0 at z.


https://github.com/Shuhei-singularity123/Versality_of_central_projection_of_regular_surface
https://github.com/Shuhei-singularity123/Versality_of_central_projection_of_regular_surface

Definition 2.1. We assume that f(0) is not an umbilic of a regular surface S parametrized by
f, with principal vectors vi (‘blue’) and vo (‘red’) corresponding to principal curvature k1, Ks.
We say that the point f(0) is a v;-ridge point (‘blue ridge point’ for ¢ = 1, ‘red ridge point’ for
1 = 2) if v;x;(0) = 0, where v;x; is the directional derivative of x; in v;.

Moreover, f(0) is a k-th order ridge point relative to v; if

vgm)m(()) =0 1<m<k) and V§k+1)/€i(0) £ 0,
where vgm)ni(O) is the m-times directional derivative of k; in v;. We call the set of ridge points
a ridge line or ridges.

The notion of ridge was introduced by Porteous [20] for the first time.

Lemma 2.2. Let S be the regular surface parameterized by f as in T3 and f(0) is a parabolic
point. Then, the origin is a first order blue ridge point if and only if

azo =0 and 3a§1 — agoke # 0.
Proof. See [0, Lemma 2.1], for example. O
Bruce and Wilkinson [6] studied subparabolic points in terms of folding maps in details.

Definition 2.3. We assume that f(0) is not an umbilic of a regular surface S, with principal
vectors vy ('blue’) and vo ('red’) corresponding to principal curvature k1, k2. We say that the
point f(0) is a v;-sub-parabolic point (’blue sub-parabolic point’ for i = 1, 'red sub-parabolic
point’ for ¢ = 2) if v;k;(0) =0 (i # j). We call the set of sub-parabolic points a sub-parabolic
line.

Lemma 2.4. Let S be the regular surface parameterized by f as in T3 and f(0) is a parabolic
point. Then, the origin is not red sub-parabolic point if and only if

az # 0.
Proof. See [0, Lemma 2.3], for example. O

Definition 2.5. We say (dxi,dzs) represents an asymptotic direction of S at f(0) if the
second fundamental form
IT = Ldx? + 2Mdx dzs + Ndxs

vanishes at x = 0. The tangent space of S at x = 0 contains a line £ which is generated by the
corresponding direction. We call £ an asymptotic straight line of S at f(0).

Remark 2.6. Asymptotic lines usually means the integral curves of asymptotic directions on
the surface. Thus, we do not call asymptotic straight line as asymptotic line in order to avoid
confusion.

Definition 2.7. Let a(t) := (x1(t), z2(t)) be a regular plane curve and let 8 another plane curve
given as the zero set of a smooth function ® : R? — R. We say that the curve a has (k+1)-point
contact (k-th order contact) at ty with the curve g if ¢y is a zero of order k of the function
g(t) = ®(a(t)) = ©(z1(t), z2(t)), that is,

g(to) = g'(to) =+ =g® (tg) =0 and g+ (tg) #0

where ¢(9) denotes the i*"-derivative of the function g.



Definition 2.8. A point p on S is a flecnodal point if there is an asymptotic straight line
through p which has at least 4-point contact with S at p. Equivalently, p is a flecnodal point if
it is in the closure of the set of points where the projection along an asymptotic direction has a
swallowtail singularity. The flecnodal curve of S is the set of flecnodal points.

Theorem 2.9 ([id, Theorem 6.6 (ii)]). We assume that the origin of reqular surface S is hy-
perbolic and m, has the butterfly singularity at this point. Then, the flecnodal curve of S is not
singular if and only if 2kiaz; — 3a3; # 0.

2.2 Definitions from singularity theory

In this paper, “smooth” means C*°. We set &,, to be the R-algebra of smooth map-germs
R™,0 — R with a unique maximal ideal m,, = (x1, -+ ,Zm)¢ - We define

EL={f:(R™, 0 — (R, f(0)): f is a smooth map germ at 0}
which is an &,,-module. In particular,
m, & ={f €& : f(0) =0}

In this section, suppose that f and f; (i = 1,2) be smooth map germs in £,. We say f1 and fo
are A-equivalent (f; ~4 f2) if there exist diffeomorphism germs ¢ and v so that the following
diagram commutes:

R’m’o L Rnafl(o)

't
R™,0 —2 5 R, £,(0)

Definition 2.10 (A-stability). 1. Let F': (R™ x R* 0 x 0) — (R", F(0,0)) be a smooth
map germ. If F(x,0) = f(z), F is called an unfolding of f.

2. An unfolding F is trivial if there exist germs of diffeomorphisms & : (R™ x R* 0 x 0) —
(R™ x R* 0 x 0) and H : (R® x R*, 0 x 0) — (R x R¥ 0 x 0) such that

(1) h(z,0) = (z,0) and H(X,0) = (X,0).
11) The following diagram is commutative ;
(i) g diag

R™ x R¥,0x 0 2% R x RE,0x 0 —2 R¥, (0)

| P Ji
R™ x R¥,0x 0 -y R x RE 0 x 0 —2 R¥, (0)
where IT : (R™ x R¥,0 x 0) — R¥ 0 is the canonical projection.

3. We call f:R™ 0— R" 0 is A-stable if every unfolding of f is trivial.

Definition 2.11 (A.-versal unfolding). 1. Let F; : (R™xRF: 0x0) — (R", F;(0,0))(i =
be unfoldings of f. A triplet (s,¢,¢) is an A.-morphism from Fy to I if ¢ : (R¥1,0)
(R*2,0) is a smooth map germ, s : (R™ x R¥1 0x 0) — (R™,0) and ¢ : (R™ x R¥1, F;4(0,0)
0) — (R™, F1(0,0)) are unfoldings of id,, and id,, respectively such that

Fi(z,y) = t(Fa(s(z,9), (), y)-

1,2)
_)
X



2. Let F': (R™ xR 0) — (R", F(0,0)) be unfoldings of f with parameter y in R*. F is called
an A.-versal unfolding if for any unfolding (R™ x R!,0) — (R™,G(0,0)) of f, there exists
an A.-morphism from G to F.

Let £ : R™,0 — TR"™ be a smooth map germ such that Il o £ = f where II is a projection of
tangent vector bundle. We call £ the vector field along f or infinitesimal deformation of f. We
write 0(f) for the set of all the vector field along f. (f) is a &,,-module. For the identity maps
idy : R™ 0 = R™, 0 and id,, : R",0 — R",0, we write 6,, = 0(id,,) and 6, = 6(id,,) which are
the module of vector field germs. We define

tf i 0m = 0(f):Edf o, wf:0,—=0(f):n—=nof

and A.-tangent space of f

TA(f) = tf(Om) + wf(0n) CO(f).

Then, the A.-codimension of f is defined by

cod(Ae, f) == dimg Til(;f()f)

Definition 2.12 (A.-infinitesimal versal unfolding). Let f : (R™,0) — (R", f;(0)) be a smooth
map germ, and (R™ x R¥,0 x 0) — (R™, F(0,0)) be an unfolding of f with parameter y in R¥.
Then, F' is called an infinitesimal A.-versal unfolding if

k
TA(f) + ZRg—Zu,m — 0(f)

Theorem 2.13. Let f : (R™,0) — (R™, f;(0)) be a smooth map germ and F : (R™ xR* 0x0) —
(R™, F(0,0)) be an unfolding of f. Then, F is A.-versal if and only if F is infinitesimal A.-
versal.

Proof. See [26, Theorem 3.3 and Theorem 3.4 (7)]. O

Theorem 2.14. Let f : (R™,0) — (R™, f;(0)) be a smooth map germ and F : (R™ xR* 0x0) —
(R™, F(0,0)) be an unfolding of f. If f is A-stable, any F is A.-versal.

Proof. From [T, Theorem 1], we know T A.(f) = 0(f) if f is A-stable. O

Definition 2.15 (finite A-determinacy). A germ f is said to be k-A-determined if any g with
j*g = j*f is A-equivalent to f. The least integer k with this property is called the degree of
determinacy of f. A finitely A-determined germ is a k-.A-determined germ for integer k.

The following Theorem for k-.A-determinacy is important to prove versality of unfoldings.
Theorem 2.16 (|26, Thorem 1.2 (i)]). For a smooth map germ f in E,
m, 0(f) € TA(F)

if f is k-A-determined.



2.3 Criteria of singularity types of central projections

First of all, we recall several results for criteria of singularity type of smooth map germ g :
R? 0 — R2,0 with corank one at the origin. Let (z1,22) be coordinates of source. We define

Az, x2) == det ((%gl, ;—;’2) and take an arbitrary vector field 77 near the origin of the source such

that 7 spans ker dg on A = 0. We denote 7%\ := n(n*~1\).

Theorem 2.17 (Whitney [24, §4], Saji [23, Theorem 3]). For a plane-to-plane map-germ g,
A-types of fold, cusp, swallowtail, lips and beaks are characterized by the following table:

’ Type \ Normal form \ Criteria ‘
fold (z1,23) dA(0) # 0, nA(0) # 0
cusp (w1, 2122 + 23) | dA(0) # 0, nA(0) = 0, n*>A(0) # 0
swallowtail (r1, 2129 +23) | dA(0) # 0, nA(0) = n2X(0) = 0, n°\(0) # 0
lips(+), beaks(-) | (x1,73 & x3x2) | dA(0) =0, det Hx(0) # 0, n°A(0) # 0

where det Hy(0) is the Hessian of A at the origin.
We introduce a well-known fact as the following Lemma PZI3.

Lemma 2.18. The projection m, has a singular point at x = 0 if and only if the viewline L is
contained in the tangent space of S at f(0).

Now, we consider criteria of singularity types of m,. Thus, from Theorem I8, we suppose
that £ is a tangent of f at the origin and p1, py are coefficients which satisfy

y— f(0) = p1fa, (0) + P2 e, (0). (2.1)

Using the results of Kabata [[5], we obtain criteria of A-types of A.-codimension 2 to 4
for corank 1 plane-to-plane map-germ. We summarize preliminal results of criteria of A.-
codimension < 3 singularity types of m, as the following theorem.

Theorem 2.19 (Kabata [[H]). Suppose the reqular surface S is parameterized by f as in ()
and a viewpoint y is in u-axis, that is, y — f(0) = p1w. Then, criteria of Ae-codimension < 3
singularities of m, are written as in table B.

Remark 2.20. If f(0) is elliptic, 7, has only the fold singualrity at 0 for any y.

Remark 2.21. From criteria of butterfly and elder butterfly singualrites, it turns out that the
only exclusions concern some points on isolated asymptotic straight lines in a hyperbolic domain
with 4-th order contact (no more than two on a line). We call the excluded points h-focal (“h”
for “hyperbolic”). This is introduced by Platnova [T9] and is characterized by the coefficients of
Monge form f from Kabata [[5]. We often call this point butterfly-focal point.

In the same way, we define u-focal point (“u” for “unimodal”) as exceptional points charac-
terized as the formula in the table B.

Remark 2.22. 1. As seen in Remark EZZII, we also have an exceptional point on asymptotic
straight lines passing through parabolic points of the surface (not more than one on a line).
If azp # 0 for parabolic surface at the origin, the lips or beaks singularities appears from
viewpoints on the line except for the point. The exceptional point are called p-focal point
(“p” for parabolic) by Platonova U] and characterized by the condition in the table B from
Kabata [I5]. We often call p-focal point goose-focal point.



type A-normal form \ criteria for A-type
fold (xq,23) | az #0
cusp (z1, 2122 + 33) agz =0, a;; #0, azo #0
swallowtail (71,2170 + 73) as0 =0, a11 #0, azg =0, agg #Z 0
butterfly (21, 2179 + 25 £ 27) a0 =0, a11 # 0, azg = agg = 0,

(48as0 a7o—35ad,) a3, +42(a21 aso—40a31 aso) aso ai1 , 2
+ 220502, a2, P
+(—84aso ago a?; + 252a21 a2, a11) p1 + 75642, a2, # 0

elder butterfly

(71, 172 + 15)

azp =0, a11 # 0, azgo = aso =0,
(48as0 a70—35a§0) a%l +42(a21 ago—40a31 aso) aso a11 2
+ 220502, a2, P
+(784CL50 aeo a%l + 252a21 ago CL11) p1+ 7560%0 CL%I =0

unimodal (:E1,:E11’2 + 1’8 + Q,’g + chg) aso =0, a1 75 0, agg =a49 =as0 =0
((35(160 ago—24a2,) a3, +28(a21 aso aro—70as1 a2y) all) 5
+ 264602, a2, P
—28ag0 a11 (2(170 a1l — 7as GGO)PI + 784(1%0 a%l #0
lips (21,23 + 2329) aso = a1 =0, azg £ 0,
(resp. beaks) (resp. (w1,73 4+ x3w2)) | Ho(—a21,as0) < Hs,, (—a21,a30) p1 (resp. >)
goose (21,23 + 2329) a0 =a11 =0, agg # 0,

Hy(—a21,a30) = H3,, (—a21,a30) p1 and
Hs(—as1,a30) # 5Ha, (—as1,a30) p1

ugly goose

('Tla LE% + .Iill'g)

az = a1 =0, azgo # 0,

asi,azo) = Hsz,, (—az1,a30) p1,
as1,a30) = 3Huy, (—as1,a30) p1 and
a30(Hs 4, (—a21, a30)p1 — 3Ha(—a21,az0))p1

# %(H4m1z1(—a217a30)p1 - 2H3zl(_a217a30))2

Hy(—
H3(—

gulls

(1, 2123 + 23 + 73)

azg =an =0, azo =0, aso # 0, az1 # 0,
(33, aso + 5a12 a3y — 10az21 az1 aqo0) p1 # 5aqo (as0 a0z — 3a3)

ugly gulls

(21, T125 + x5 + 5)

azo = ay1 =0, azg =0, agg # 0, az1 # 0,
(3&%1 aso + 5a12 ‘142;0 — 10a21 a31 a40) p1 = 5aqo (a0 ao2 — 3a§1),
225a3; a3, azo — 315a3; aso (3az1 aso — 5as1 aso) aso
— 157503, a3, as1
3 9 2
4 756a3, agy — 315:?a21 a0 (as1 a250 —2a40 a41) aso
— 1575a21 as2 ayo + 4200a21 azy Ao
— 5250a21 a3 aio aq1
—875a13 a20+26225(a21 asz+azz as1) ato—1750a3; ad,
9a3, (a21 ago — 5a40 a41)
5a40 )
—5a2 (ao3 as0 —9a21 azz)
9(12 aso+5a12 a2 P
—3(3az21 aso —5a31 aq0) 21 40
— 20a21 a31 aqo0
+3150a21 a2, (3a3; aso + 5a12 a2y — 10a21 agy a40) # 0

—T70a40

type 12

(z1, T35 + 3 + 25)

a0 = ay1 =0, azg = as0 = 0, aso # 0, az1 # 0,
(@21 ago — Sag1 aso)p1 + 6asi aso # 0

type 16

(71, 2229 + 25 + 73)

az = ay1 =0, azg =0, agg # 0, az; =0,
(a12 aso — 10a22 a4o + 10a3,)p3
—(as0 ao2 — 25a12 a40)p1 — Daso apz # 0

Table 2:

Criteria of A-type of m,




2. As seen in the above, there is an exceptional point on asymptotic straight lines passing
through parabolic points of the surface (not more than one on a line) if azop = 0 and a4 # 0
for parabolic surface at the origin. It is called p’-focal by Platonova [9]. pi, has the ugly
gulls singularity where a viewpoint y is p’-focal. Kabata [I5] has characterized by the
condition in the table B. We often call p’-focal point gulls-focal point.

3. In the same way, we define 12-focal point (“12” for “type 12 singularity”) and 16-focal
point (“16” for “type 16 singularity”) as exceptional points characterized as the formula in
the table D.
3 Versality of central projection unfoldings

We can set an orthonormal frame

cos 0 —sinf
u = 0 vo=|[1],w= 0
sin 6 0 cos 6

with 6 in (0, 5] by certain rotation and translation. Let S be given by Monge form as in (IZT)
where the degree 2 polynomial of Q(x) is written as

k
Hg(ﬂl‘) =kiz120 + ?2333 (31)

In the rest of this paper, we define the central projection m, and its unfolding 7 in [ as germs
at £ = 0. Our main claims summarized the table [ are the following Theorem B to B4.

Theorem 3.1. Suppose the origin is a singularity of m, with A.-codimension < 1. Then, 7 is
an Ac-versal unfolding of the singularity of my.

Theorem 3.2. 1. If the origin is a butterfly singularity of my, then the following two condi-
tions are equivalent.

(t) m is an Ac-versal unfolding of the singularity of my;

(ii) the flecnodal curve is not singular at 0, that is, 2as1 k1 — 3a3; # 0.

2. Suppose that m, has the elder butterfly singularity at the origin. Then, m is an A.-versal
unfolding of the singularity of m, if and only if

2@31 kil — 30,%1 7é 0 and (a60 k‘l — 3a21 a50)p1 — 18@50 ]{/‘1 75 0

The later condition means that there is a special degenerate position of a viewpoint y for
Ac-versality.

3. Suppose that m, has an unimodal singularity at the origin. Then, m is not an A.-versal
unfolding of the singularity of .

Theorem 3.3. 1. Suppose that 7, has a gulls or ugly gulls singularity at the origin. Then,
the following two conditions are equivalent.

(i) m is an A.-versal unfolding of the singularity of m,;

(ii) the origin is the first order blue ridge point, that is, aso ko — 3 a3; # 0.

10



2. If my has a typel2 singularity at the origin, then m is not an A.-versal unfolding of the
singularity of m,.

Theorem 3.4. 1. If the origin is a goose or ugly goose singularity of m,, then the following
two conditions are equivalent.
(i) m is an A.-versal unfolding of the singularity of m,;
(ii) the origin is not flat umbilic point, that is, ko # 0.

2. Suppose that the origin is a type 16 singularity of my. Then, 7 is not an A.-versal unfolding
of the singularity of m,.

Remark 3.5. The conditions (Theorem B2 (i7), Theorem B33 (i¢) and Theorem B (i7)) above
have already appeared as criteria of versality of orthogonal projection (cf.[Id, Theorem 6.8]).

From Theorem T3 and P8, to prove the versality of m of a singularity of m, which is
k-A-determined, we only need to show that the following equality

ony Omy Omy B
TA.m, + <(’)y1 B Dys = 0(my). (3.2)

holds modulo mFes.
We write the k-th order Taylor polynomial of the central projection 7, at the origin as follows:

k i
Cii X1 T
my(z) = E (d;) illjf' (3.3)
i+j>1

In the proof of the theorems above, we assume that Ha(z) = ky 2120+ %230% in (I2) and suppose
that £ is the asymptotic straight line written as f(0) 4+ tw. Then, p; # 0 and p, = 0 in (EII).
Thus, the coefficients of the 3-jet of 7, are as follows:

_ o e _ Y3
10 = dio = cor =0, doy = ¢:= 55 # 0,
Co0 =doo =0, c11 = =8 dy; =& £0, cop=—222 dpa =0
20 — #20 — Y, €11 — sin@? 11—p1 ,» C02 — singy w02 — Y,
p— asg C p— C J— C — agps3 C
30 = — iy, 21 = —(a21p1 4 2k1) 5, ci2 = — (a2 py + k2)5—5ags Cos = — 4y,
_ _ 2c¢ __ 2kjccosé __ 3koccosb
dzo = 0, dn = 75 # 0, diz = =505~ doz = “ X505

We also assume that m,(0,0) = (0,0).

3.1 Proof of Theorem B for the case of A.-cod.m, <1
3.1.1 Fold and cusp

These singularities are stable. It is clear that the central projection unfolding 7 is A.-versal
unfolding in this case by Theorem T4

11



3.1.2 Swallowtail

Proof of Theorem EA in the hyperbolic case. The swallowtail singularity is 4-.4-deternined. Thus,
it is enough to show (B2) that

on, Omy Omy

TAm, +{( —, —, — 3.4
" <8y1 0y 5y3>R ( )

spans 0(m,) over R modulo m3&3. From criteria of the swallowtail singularity, k1 # 0, aqo # 0

and azp = 0. Thus, we have c3p = 0 and several coefficients of degree 4 monomials of m, at 0 as

follows:
Q40 C

- and d40 =0.
sin 0

Ci0 = —

Since (OO ) = d01 Oy g”y in T A.m,/m3£3, we know all degree 4 monomials of the second
4

component < OO > are contained in T'A.m,/mj€%. Working modulo these monomials, (x2 003> =
4

C11
4
(acol> are in T A.my,.

. 0 1 aﬂ'y .
Using (3:202) = g T2 ) Jzy 1L T Acm, modulo (

L0, 97y is contained in T A, modulo ™2 This means that all degree 4 monomials except
8?1:1 Y m%

scgm + rn
m;

, degree 3 monomials of the

second component except (l%) is in T Aemy. From < 2002) Cil g% in TA.my modulo

3 5
xgm% + mi , we know that the degree 3 monomial 7205 is contained in T A.m,.
Tomj + mj 0

) are in T'A.m, modulo (

0 1 omny 3 1 Omy
—— Y and ot
(x201> d 2201 5$2 an <11x% o Z2 8301

4
From this, (33109U2> and (x1> are in T'A.m, modulo (

2 5
We also know that degree 2 monomials (x OO ) and ( T’ m )
201

x2m2 + m?
from

0

<7Ty7§1>91 (1 can/24) [(z12200

e - 4 .
Ty 55 ci1 cao/6 zien

aso k1 p3 c*

8y2
lowtail singularity. Working modulo these monomials, the following elements are written as

T2 _i <7Ty762> 0 _i 0 0 _LIE?)%
0/ dn 0 " \x2)  doy \(my.e2)) \@P) T dor Oy

and are in T A.m, modulo (xem + m%)ey. Therefore, the three monomials (%2) (ﬁ) and
2

0 . . .
<$3> are contained in T'A,.m,/m°es. From this, we know <:%1> = Cio g’;y is in T'A¢m, modulo
1

vectors

The determinant of the above matrix is . This does not vanish from criteria of swal-

mt
(z2 + zom)es + <m3

12



Finally, we consider the following four vectors

omy

Iy 2

Bus 0 —¢/p 0 —c¢/pt\ [m1e1

T e din oen/2 dar/2 1€

| = 2

1?1% 0 do1 c1 di ziep
2297y 0 0 0 do1 r2ey

1 63}2

2 6
in (84) modulo (z2 + rom + m?)ep. The determinant of the above matrix is kly# and does

. T 0 m% 0 . .
not vanish. It follows that ) ) and | | are contained in (B3).
0 I 0 1

Therefore equality (B2) is satisfied.
3.1.3 Lips/Beaks

Proof of Theorem B in the parabolic case. From criteria of the lips/beaks singularity, k1 = 0,
ko # 0 and agg # 0. Then, we know ¢1; = 0 and ¢po # 0.
The lips/beaks singularities are 3-A-deternined. Thus, we need to prove equality (82) where

’. 0 _ 1 omy x% _ 1 <7T 362>3 . 0 SU%
Since (Os> = 7,7 O35, and <0> =z Y 0 , degree 3 monomials 0 and 0

. 4092 0 P x% + m%
are in T A.m,/m3E5. In the same way, we know | 5 | is in T'A.m, modulo 3 from
x m

2 2
0) _ 1 ,20m
JJ% T do172 0z

The determinant of the following 6 x 6 matrix D defined by the following:

' 0 <7ry762>2 x 8& x 8& x 8& 1T Omy
<7Ty,62> s O » Tlaz, 0 P23z, T2z, T1T255,
— Dt 0 O LE% x‘;’ $%$2 -Tlxg
B zo) \zizo)  \O ) \0O)’ 0 ) 0

where
dpr din O 0 0 0
0 0 d3 0 0 2do1 d11
D= 0 0 0 0 030/2 C21
' 0 dii 0 ¢30/2 can c12/2
dor di1  co2 0 c21/2 c12
0 d01 0 0 0 Co2
x% + (a12 azo—a3, )p1—ks2 azo

y%. From criteria of lips and beaks, this

4
m
2 .
on T'A.m, modulo (x% 5 is asg 1pr5enT0g

2 3 2 2
does not vanish. Thus, we get monomials 0 , 0 , T2 , 1 , T1T2) anq (12
T2 122 0 0 0 0

in T A, /mi&s.

Next, we consider the generation of degree 1 monomials and remaining degree 2 monomials. A

. 0 ary - . . 3
degree 2 monomial | , | = dix% aﬂy is contained in T'4.7, modulo 2 +m3&7. Fur-
x5 01 T2 T2 + Tomy

13



2 3
. . . . . x5 +m
themore, we consider linear independence of the following elements in T'A. 7, modulo <x2 n m%) :
2 2
<7Ty,62>61 0 do1 0 di1 xr1 ez
omy
gg;l _ 0 0 630/2 C21 T2 €1
L = 2
e di1 co2 ca1/2 c12 riel
or
) o doy O 0 o2 T1T2 €1

2
. .. — —k
The determinant of the above matrix is — (212.930=a21)P1—kz aso

4. From criteria of lips and beaks,

2p1° sin®0
2
This does not vanish. Therefore, (xO ), <%2>, (%1) and (5510302> are in T\ A, /m3&3.
1
2
Finally, we get the remaining monomial Jé)l in (B4) modulo xZ;mQ since (%1) =
2

_p19my O

c Oy’

3.2 Hyperbolic surfaces with A.-cod.m, = 2,3

Using criteria of the butterfly singularity, we know two coefficients both of two coefficients k;
and asg does not vanish and asp = a49 = 0. Thus, coefficients of the 3-jet of m, is the same as in
the case of the swallowtail singularity. The coeflicients of the 7-jet of 7, at 0 are as follows:

2
c 6c¢
ci0 = dao =0, c31 = —(as1 pi + 3az1 p1 + 6k1) , d31 = —,
P1Y3 Py
aso p1 ¢ 3 2 c? 24 ¢
cs0 = ————— #0, dso =0, ca1 = —(aa1 py +4az1 py + 12a21 p1 + 24k1)——, dy1 = —,
Y3 p1Ys b1
c? 9 c?
c6o = —(aso p1 + 6as0)—, deo = 0, c7o = —(azopy + Taeo p1 + 42a50) ——, dzo = 0.
Ys P1Ys

3.2.1 Butterfly

Proof of 1 in Theorem Z2. Since the butterfly singularity is 7-.A-deternined, it is enough to show
that (84) spans (m,) over R modulo m§&3.

Since 007 = ﬁ07gzz in TA.m,/m8€EF, we get all monomials <007> in TA.m,/m8,.
<x2006> is generated by <x2006) = iOG ggi in T A.m,/m§&Z over R.

.1320

. 0
In the same way, all monomials ($2 Ok) and ( 0

rom§ +mf\ |
modulo ol since

2
1 or 0 1 om 220,
— 290, —2 = d —0—% = .
dmxz k D2y (ZQOk) an o laxl (d“mgOl>

C11

l) for k=3to5,l=4to6arein T'A.m,

2 4 8 2
From (332002) = iszOz ggi‘ in T'A.m, modulo (iﬁ%iﬁ%) (mQOOg> is in T Acmy. Thus,
215 2
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2 2,12 4 8
. 1501 0 . xrsms + roms + m .
degree 3 monomials | 2 and | o are in TA.m, modulo (7272 ' 3272 7 72 ) since
230, Tomy + my

1 o 220, 1 o 0
— 2501 —2¢ = 2 d —220,=—% = .
0113[:2 13%1 (dungl) o do1 2 13332 x%Ol

C11

2 4 8
. . . . . T5mo + romy, + my
Using the following linearly independent elements in 7'A.m, modulo (a:%mg + 2ym3 + m]

1 Omy 3 1 ,0rm 0
Y = d —p222Y — ,
611$2 83:1 <dufE% an d01 $2 81‘2 JJ%

C11

2
we know degree 2 monomials <:%2> and <£%> are in T A.m, /m§E3.

We consider the following fifteen elements

t ((%761)@17 <7Ty761>627 <7Ty762>617 <7Ty,€2>€27
Ty Ty Ty 2 01y Ty 3 0my 301y 2, . Omy 4 0Ty 5 0my 601y
0zy P13y P20y P10z, P12 3,0 P10z, Y102, T17232,0 Y102, 10w, P10,

3 2 2
- D, t [ L2€1, T2€2, T1T2€1, T1X2€2, T7€2, T1T2€1, T1T2€2,
= 4 4 3 5 5 6 6 7 )
rier, ries, rix2e1, Tie1, Triez, Triey, Ties, Tie]

0 0 C11 0 0 621/2 0 0 0 631/6 C50/120 0 060/720 0 670/5040
0 0 0 ci1 0 0 /2 0 0 0 0 ¢50/120 0  c0/720 O
dor 0 di1 0 O do1/2 0 0 0 d3i1/6 0 0 0 0 0

0 dor 0 di1 O 0 d21/2 0 0 0 0 0 0 0 0

C11 d11 C21 d21 0 (131/2 d31/2 (150/24 0 (141/6 660/120 0 C70/720 0 *

0 0 ci1di1 O c21 do1 0 0 c31/2 c50/24 0 c60/120 0 c70/720

0 d(]l C11 d11 0 021/2 d21/2 0 0 031/6 0 0 0 0 0
Di=] 0 0 0 0 0 ec1 du 0 0 co 0 0  cs0/24 0 cgo/120

0 0 0 do1 O c11 di1 0 0 c21/2 0 0 0 0 0

o 0 0 0 O 0 0 0 0 c11 0 0 0 0 c50/24

0 0 0 0 d01 0 0 C11 dll 0 C21/2 d21/2 631/6 d31/6 C41/24

o 0 0 0 O 0 do1 0 0 c11 0 0 0 0 0

0 0 0 0 0 0 0 0 d01 0 C11 d11 621/2 d21 631/6

0 0 0 0 0 0 0 0 0 0 0 d01 C11 dll 621/2

o 0 0 0 O 0 0 0 0 0 0 0 0 do1 ci1

romj + m$
in T A.m, modulo 23€3 + 2" "2). The determinant of D; is
Toms + m,

(48as0 aro — 35a%0) k’% ) 9 o a2, k2 pb 23
+42(a21 ago—40a31 tl50) aso k1 p1— 84(150 kl (a60 kl — 30,21 a50) p1+ 756@50 kl m.

+ 220542, a2,

Thus, the fifteen monomials above are in T'A.m, since y is not butterfly-focal point.
Finally, we consider the following five elements

t (Omy Omy Omy v\ — Dt X1 0 CU% 0 xi’
Fyr By ? Oz P10y P10z, ) = 2 0/ \z1)'\0 ) \22)'\0

where
—c¢/pp 0 —c¢/pi 0 ¢/p}
0 —c/p1 0 —c/p? 0
Dy =1 cnn dyy c21/2 da/2 ¢31/6 ],
0 do1 c11 diin  c21/2
0 0 0 d01 C11
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ﬂ _(—n 1 537ry B fé and 1 837ry B fé .
Oy101, 0 ) 2 oy10x2 0 6 o103\ 0
The determinant of Dy is (2a3; k1 — 3a§1) oz

if and only if 2a31k; — 3a3; does not vanish. O

Therefore, the five monomials above are in (B)

Remark 3.6. Our source code for computation the determinant of D; and D5 is available at

2.

3.2.2 Elder butterfly

Proof of 2 in Theorem E2A. The elder butterfly singularity is 7-A-determined which is equal to
the determinacy of the butterfly singularity. Thus, we should prove equality (B=2) holds for
k = 7. We know the fifteen elements expressed by D; in the subsection BZZ1 are not linearly
independent since y is butterfly-focal. The other elements used in the subsection B2 of (B3)
are linearly independent if 2as;k; — 3a3; does not vanish. Thus, we retake the following fifteen

1 8
elements in (82) modulo z3€3 + <x2m2 + mz):

3 7

Tomy + My
omy omy
-2 tan 6,
Oys + 0y1

t

<7Ty7€1>6]_, <7Ty,61>€2, <7Ty762>ela <7Ty562>627 )
omy omy 2 Omy omy 307y 23 omy 2 Omy 40my 507y 60Ty

Ozl xl a(El :I;]- Owl x1x2 Owg xl aCEl 1 BZEQ mlx? 8:102 x]- 812 xl 89:2 ) {L‘]- 8902

3 2 2
_ d11 t [ T2€1, T2€2, T1T2€1, T1T2€2, T{€2, T{T2€1, T1T2€2,
—\D 4 4 3 5 5 6 6 7
12 ri€1, ri€2, r1x2€1, Tri€1, Ti€2, T1€1, T1€2, T1€]

where the (14, 15)-matrix Dy is

0 0 C11 0 0 (121/2 0 0 0 (331/6 (150/120 0 (160/720 0 (!70/5040
0 0 0 c1 0 0 en/2 0 0 0 0  ¢50/120 0 cgo/720 O
do1 0 di1 0 O do1/2 O 0 0 d31/6 0 0 0 0 0
0 dor 0 dyn O 0 d21/2 0 0 0 0 0 0 0 0
c11 di1 c21 do1 0 ¢31/2 d31/2 ¢50/24 0 c41/6 c60/120 0 c70/720 0 *

0 0 C11 d11 0 C21 d21 0 0 031/2 C50/24 0 660/120 0 670/720

0 0 0 0 0 C11 dll 0 0 C21 0 0 650/24 0 660/120

0 0 0 d(n 0 C11 d11 0 0 (321/2 0 0 0 0 0

o 0 0 0 O 0 0 0 0 c11 0 0 0 0 c50/24

0 0 0 0 d01 0 0 C11 d11 Cco2 621/2 d21/2 031/6 d31/6 641/24

o 0 0 0 O 0 do1 0 0 c11 0 0 0 0 0

0 0 0 0 0 0 0 0 d01 0 C11 dll 621/2 d21/2 031/6

0 0 0 0 0 0 0 0 0 0 0 d(]l C11 dll C21/2

o 0 0 0 O 0 0 0 0 0 0 0 0 do1 c11
and

0 0
0, — f3(0) y3 )y3 f3( )klpl, 7(y3+£?;(c))y3’0’
. o (2k1 (y3+f3(0))+a21 f3(0)p1) _ (2ys+£3(0)) ys3 0, 0, 3a21 p1 (y3+£3(0))+6k1 (2y3+f3(0))+az1 f3(0) 101
d11 — 3 2 ) 2 » U 6
Y3 pic P1
as0 f3(0)p1 () Saso (y3+/3(0))+ago f3(0)p1 (j TacoP1 (y3+£3(0))+42as50 (2a50 y3+3(0))+azo f3(0) pi
120 L 720 » 5040 p1
6 24

The determinant of D15 is a3, kq® ((ago k1 — 3ag1 aso) p1 — 18aso kl)m' Therefore, we get

the claim. Our source code for the computation of the determinant of D5 is available at [2]. O
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3.2.3 Unimodal

Proof of 8 in Theorem E3. From the assumption and criteria, asg = 0 and agy does not vanish.
The unimodal singularity is 8-.A-deternined. If we know versality of this type, we check equality

2 3
(B2) where k = 8. We consider whether seven monomials 1 , 0 , l , 02 , 1 ,
0 T 0 7 0

4
<£3> and <$1> are in (B4) modulo m9&2. However, we can only choose the following elements
1

in (B4) modulo my€3 to generate the monomials above:

t [ Omy omy omy omy oy 20wy 30my
(ayl’ By20 Oys’ Owa’ Tlomer Tz .’1?107:1;2)
- p% Z?n (2 0 - p? Z?n 6 0 B p‘lL Z?n 6 0 B p? Z?n 6 riéq
0 7p%3§r19 0 7p51)’3§r19 0 7p‘113§r19 0 1’562
T 0 e 0 e 0 g | | “1e
- 11 di 21 d21 31 ds1 a1 r1€2 T
0 do 1 du C21 da1 Cs1 rien
0 0 0 do c1 di1 Ca1 x}leQ
0 0 0 0 0 d01 C11 €1

From gﬂy and 811’ are not linearly independent in this part, these monomials cannot generate

the seven elements Therefore, we know that an unfolding 7 is not versal at the unimodal
singularity. O

3.3 Parabolic surfaces so that 7, has gulls series singularities with A.-
cod.m, <3

The Taylor series of central projection 7, is (B23) where c2; # 0 from criteria of the gulls series
singularities which are azp = 0 and a2; # 0. Several coefficients of the 7-jet of 7, are expressed
as follows:

2 2
Cq0 = _% d40 = 0 c31 = —(a31p1 —|—3a21)%, d31 = ?Tf
2
C22 = —(ag2 Pt + 2a12p1 + 2/€2)p1 50 €13 = —(a13p1 + ao3) o
2
cs0 = —(asop1 + 5a40) o Ca1 = —(aq1 p? + 4a31 p1+ 126l21)p1 e
cs2 = —(az2 P} + 3azz p? + 6a12 p1 + sz)p 7
2
céo = —(ago p3 + 6asop1 + 30a4o)p1 usr C51 = —(as1 p3 + 5aq1 p? + 20az1 p1 + 60@1)@,
2
cro = —(aro p} + Taeo P + 42as0 p1 + 210@40)1,%0?
3.3.1 Gulls

Proof of 1 in Theorem B3 at gulls singularity. Since gulls type is 5-A-determined, we should
show that equality (B2) holds for & = 5. From criteria of gulls singularity, aso # 0 and

cg0 # 0. From the element - 05 ggz = ( 0 >7 all degree 5 monomial of second component are

Os
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. . 0 0 . m$
in TA.m,/m§&3. Thus, we know a monomial (x%) = df(ln (< >4> in T'A.m, modulo <m§>
6

Ty, €2 2
S same, a monomia. s in m, modulo since = ——(m,,€e2) ey. Usin
: 0 ey x4 4+ mj 0) " @\ e &
. . a3 +mj
the following linearly independent elements of T'A.m, modulo | "% £
: Ty + msy
2 c 2 4
1) 87Ty . C()QQL'lLCQOg aﬂy - 021(E1£L'QOQ + %.’Elt’EQOQ 387Ty [ €217174
r1Ug— = y 1‘1027 = and Lo = y
O dp12103 Oy dy1712207 o1 0
0 $1$203 1‘4 1 4
we get monomials and . Thus 2) = X (m,, es) ey is in T A.m, modulo
& (IlOg 0 ’ 0 dgl < v 2> 1 ery
4 6 4 4 6
Tom5 + m! . 0 0 .. T5 + xom5 +m
272 772 | An degree 3 monomial 3] = % 3 ) isin TA.my modulo | 2 272 2.
mj xs o1 \ (my, e2) my
We consider the following fourteen elements
2 2 3
t <7Tybel>el7 <7Ty76129627 <7Tydv 62>62; <7Ty>e2> glv <7Ty7628> €2, <g’y562> €1,
OTy. OTy. Ty 20my OTy. 20my ITy. 207y
xl 89:1 ? xz 8:701 ? .'I;Q 8:102 ) xl E)wl ) fL‘le aml ? .’I;z 8:1}1 ) .'I;]_.TQ 89:2 ? x2 8{1:2
x 2 2 2 2 2 2 3
— Dt 2€2, T1T2€2, T3€1, Ty€3, T1T2€1, T1T2€2, X1X3€1, T1T5€2, TH€],
= 4 3 2,.2 3 5
ri{eé, rirz2€1, ri{rz€1, r1rs€1, riey
where
0 0 002/2 0 621/2 0 012/2 0 003/6 C40/24 031/6 022/4 613/6 050/120
0 0 0 c¢o2/2 0 ¢a1/2 O c12/2 0 0 0 0 0 0
doy diy O 0 0 do1/2 O 0 0 0 0 0 0 0
0 0 d3 o 0 0 2dprdin O 0 0 0 dordai+d?, O 0
0 0 0 d3 o 0 0  2doidii O 0 0 0 0 0
0 0 o0 0 0 0 0 0 d3, 0 0 0 3d%,din 0
D = 0 d11 0 0 C21 d21 612/2 0 0 640/6 C31/2 622/2 013/6 C50/24
0 0 0 dll 0 0 C21 d21 612/2 0 640/6 631/2 622/2 0
do1 d11 co2 0 c21/2d21/2 ci2 0 co3/2 0 ¢31/6 c22/2 c13/2 0
0 0 0 0 0 d11 0 0 0 0 C21 012/2 0 C40/6
0 0 0 0 0 0 0 diy 0 0 0 co1 c12/2 0
0 0 0 0 0 0 0 0 0 0 0 0 a1 0
0 do1 O 0 0 di1 co2 0 0 0  c21/2 c12 co3/2 0
0 0 0 dOl 0 0 0 d11 Cco2 0 0 021/2 C12 0

The determinant of the matirx D is

4 2 2 2 2 6 .26
a3 a40(3a3; aso p1 + Saiz ajo pr — 10az;1 azi ago pr — 5agy ke + 15a3, aso) pi c

2304038

Our source code for computation of the determinant of D is available at [I2]. Thus, we can get
the monomials above at gulls type.

: 0\ . . z3 + zom3 0
A monomial | 5| is in T A.m, modulo (2 272 4 mi€Z from Lo Omy 3). In
x 4 Togq do1 ™1 Oz x5

23 + xom3 + mj

0 1 on
the same way, we know = L 222" in T A.m, modulo
v x? do1 ™1 Oz ey Toe1 + m3

). A degree 1
1

2 2 4
monomial (O) = —p—l% is in (B4) modulo (xQ‘ + xamy m2>.
T ¢ Oy2

:@—i—m%

0 0

om,  om\ _ [ {2122 3 Co1 Co2
dz10 T10zy ) = o /' Lo 0 e

18

3
We have no other way to generate two monomials <x1x2> and <m1> which is to use pair of

elements

o =
Q



x% + :vgm% + m%
mg
if and only if f is the 1-st order blue ridge point at the origin (that is, a4 k2 — 3 a3, # 0).

in T A.m, modulo ( ) This two elements are linearly independent to each other

2?
Finally, we get remaining monomials (x()l), (%2) and ( ) by linearly independent elements

% _ _pilxl - é-ﬁ? 7 <7T'y7 62> _ do1xo an % _ Co2%2 + CAI%
8y1 0 0 0 8x2 0

ZToms + m3

in (B4) modulo ( 2) respectively.

mg

3.3.2 Ugly gulls

Proof of 1 in Theorem B3 at ugly gulls singularity. The ugly gulls singularity is 7-.A-deternined.
Thus, if we know versality of this type, we check the equality (B2) in the case of k = 7. The
4-jet of each derivative of central projection m, is the same as the case of gulls singularity.

If aqo k2 —3a3, = 0, T, is not versal at the origin from the same reason in the gulls case. We
assume that f is the 1-st order blue ridge at the origin.

Since dp; # 0 and <OO ) = d01 073 aﬂ“’ in T A.m,/m5E3, degree 7 monomials of the second
7

7
component are in T'4.m,. Degree 7 monomials of the first component except (%1> and all degree

. 0 . m$
6 monomials are in T'A.m, modulo z
m

06 2
on C2171To + C1273/2 (my, e >7 dl xl omy C02T2
19) “ly 10) 2 yy €2 — 0142 and O O .
® 0y ° ( di1x2 ' 0 0 65 do1

2 6 4 m8
In the same way, monomials 2200 a0 ) are in T A, modulo ( *2™2 ng from
0 1‘204 my

the following linearly independent vectors

ory C2171Z2 + 1273 /2 <7Ty,62>6 d§ 8 ory C02T2
szng = 1'203 < d11.132 y 0 and 1'20467]:2 = 1’204 d01 .

> from the following linearly independent vectors

23
Furthermore, we get ( é) 2) and (zQOO > from the following linearly independent vectors
o2
on C21T1T2 + 1273 /2 (my, e3)° dj, 5 on Co2T
2 Yy _ 2 21L122 + C12%5 ys €2 _ (%0122 2 y 2 02T2
7201 o, 701 < di1z ’ 0 o 0 and 505 Ory 7302 do1

r3m3 + zom§ + m3
Tomj + m$

32 1 24 6 8
. roms + xroms + xromg + m
are in T' 4.7, modulo ( 22t e 2 2 from

in T'A.my modulo < 0

4
) respectively. We know two elements <x2> and (;)3)
2

r2m32 + xomj + m$
4
(my,e2)”\ _ dg1 73 and anﬂy _ Cozéﬂ% .
0 0 Oxo do1735
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0 .. . . 2
To show that (x ) and remaining monomials whose degree is degree 2 or more except (%1) ,
2

0 T1T2 mz{’ 0 . . .
22) 0o ' Lo and 23 are in (BA), we consider the elements of (Bd) given by the

following elemnts:

omy + 1 Omy + fg(O? <<7Tyael>),

dys tan 6 dy1 y3 p1 sin 6 <7-[-y7 €2>
2 3
t <7Ty,61>61, <7Ty,61>€2, <7Ty762>e27 <7Ty,€1><7'ry,62>€1, <’/Ty762> €1, <7Tya62> €1,
ﬂ'y oy 2 Omy 2 0my Ty 2 0wy
1 890 » X2 g, 0 T2 390 » 1 Bac » L1275, 83: » L2z, L1722 8:8 » L2925
2 omy 2 o 2 0wy 4 Omy 4 Omy 3 om 50y

T1T2 EITR T1T2 6z fleazg Ty EITR Ty I , 12 Bmz X7 G
T2 €2, T1T2 €2, 1‘2 €1, $2 €2, 55%302 €1,
_ ( d ) t rizs €g, 1125 €1, 2175 €3, T3 ey,
- D1 1‘411 ey, SC% €a, I%l‘g e, I?IQ €o, IE%QZ% ey, Ill'g e,
xi ey, CL"? €2, T1T2€1, T1T5 €1, Iy ey, 1"?1’2 €y, .’ﬂ{ (5]

where Dy is the (21, 22)-matrix expressed as follows:

0 0 R 0 Lo o0 d g0 o0 oG o0 S W W b
0 0 0 %2 o 22 ¢ 12 0 0 % o @ 0 0 %8 o0 0 0 0 0
didiy 0 0 0 % o o o o0 o o % o 0 00 0 0 0 0 0
c d c d a c d =% ag
00 0 0 0 O 0 0 “2f1 o o o o 2t s 9 o cdo B2 g 5L
0 0 d% 0 0 0 2pndy 0 0 0 0 0 0 Bo 0 oo o %290 o0 o
00 0 0 0 0 0 0 d& 0 0 0 0 0 3d3,din 0 O 0 0 0 0 0
c c c d c c c c c c c c
0 dn 0 0 cndn H0 0 o0 SR Gsogpoo oS
0 0 0 dix 0 0 co1 dox %2 0 0 %0 g 31 22 0 0 g0 1 o 88 0
c d c c d c c c c c
dondis con 0 G- B cn £ o0 0 I oo o0 o0 H O 0O
0 0 0 0 0 d1 O 0 0 0 0 co1 don 2 0 %40 o S S22 s ca Ja
00 0 0 0 O 0 dix O 0 0 0 0 e 42 0 o0 0o B oo
00 0 0 0 0 0 0 0 0 0 0 21 0 0O 0 % o o0 o0
0 dot 0 O O diy c2 O 0 0 0 <@ . s 9 o W@l 22 o % g
0 0 0 d()l 0 0 0 d11 Ccp2 0 0 0 0 Cgl Cc12 0 0 0 6‘21 0 0 0
00 0 0 0 O 0 0o 0 0 0 0 O 0 0 0 0 0 ¢ 0 %40 ¢
00 0 0 0 do 0 0 0 0 0 0 dii co2 0 0 0 2L ¢y 0 BL 0
00 0 0 0 0 0 dao O 0 0 0 O 0 2 0 0 0 2L 0 0 0
00 0 0 0 O 0 0 0 0 0 0 O 0 0 0 0 0 0 0 co <0
0 0 0 0 0 0 0 0 0 0 dOl 0 0 0 0 0 d11 Ccp2 0 CQTl C12 Cgl
00 0 0 0 O 0 0 0 0 0 0 dai O 0 0 0 0 ¢ 0 2L 0
0 0 0 0 0 O 0 0 0 0 0 0 O 0 0 0 doi O 0 0 cop &
ai13 = co2 d11 + c12do1, a3z = do1 c31 + 3c21 d11, s = Sego dir + cso dot,
— 2 —
P22 == do1d21 +diy, Bs2 = do1ds1 + 3di1da
and ok
_ 2 azi _ 3 aiz2p1 2 ao3
d = c? 07 1’ 0’ 0’ 0’ D1’ 251n0’ 0 0 0 07 2sin 6’ p%’ 2p1sinf 7 6sin6? 2451n0’ 0’
T prys a31 p1+6az1 @22 pitdaia p1+6ks  asopi+10as0 @41 pi+8asi p1+36a21  aso p3+12as0 p1+90asg
6p1sinf 4p% sin 6 ’ 120pp sin€ 24pf sin 6 ’ 720pf sin 6
. d . .
The determinant of ( D does not vanish from the non-degenerate condition of ugly gulls
1

singularity. Our source code for Gauss elimination method of the determinant of ( 1()1 > is
1

available at [TZ].

The elements which generate remaining degree 1 to 3 monomials are nothing else the following
eight elements:
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t [ Omy Omy <7Ty7 62> omr, Omy omy, 2 0my 3 0my,

dy1’ Oy’ 0 ) Oy Owma’ “18zy> 7 Oxo 7 Oxo
— Dyt x 0 To x% 0 T1T2 x% 0
2 0 ) 71 ) 0 ) 0 ) 1'% ) 0 ) 0 ) xll?.
where
— 0 0 0 —p7 0 0 —p3 0
0 -<£ 0 0 -5 0 0 -5
P1 Py P
0 0 do1 0 0 di1 0 0
D2 — 0 0 0 0 0 C21 640/6 0
0 din co2 €21/2 do1/2 ci12 c31/6 d3i/6
0 d01 0 0 d11 Cp2 021/2 d21/2
0 0 0 0 do1 0 0 di1
0 0 0 0 0 0 0 do1
These are in (B83) if and only if a4 ke — 3a3; # 0 O

3.3.3 Type 12

Proof of 2 in Theorem 3. From the assumption and criteria, aqo = 0 and asq does not vanish.
The type 12 singularity is 6-.A-deternined. Thus, we need to prove equality (B2) where k = 6. We

0

2 3 4
T2 i 0 T1T2 x] iy .
(0), (0), (x%)’ ( 0 ), (O) and (O) However, we can only choose the following

elements in (84) modulo m$&3:

t [ Omy Omy <7Tya €2> omy,  Omy oy 2 01y
Oy’ Oys? O ' Ox1’ Oz’ L1 Oxs? xl Oxo

. . x
consider whether several seven elements in (B2) modulo m$€3 generate seven elements < 1>,

_c _c 0 0 _—<  _c
P1 pi T Pt z1€1

c cos @ c cosf 0 0 c cos @ c cos @ Toe
Y3 P1Yys P% Y3 P? Y3 % 1
0 do1 0 0 di1 0 0 x%el

= 0 0 0 0 C21 0 C50/24 riez + e

0 Co2 621/2 d21/2 C12 031/6 C41/24 $1‘§261
0 0 0 di1 Co2 021/2 631/6 xiel
0 0 0 do1 0 0 621/2 rieé1

to generate the monomials above. Since gﬂy and aﬂ? are not linearly independent in this part,

these elements cannot generate the seven elements and we know an unfolding 7 is not versal at
the type 12 singularity. O

3.4 Parabolic surfaces so that 7, has goose series singularities with
A-cod.m, < 3

The Taylor series of central projection , is (833) where c39 # 0. Thus, the cofficients of terms
whose degree is upto 3 are expressed as the same in the case of lips/beaks. Several coeflicients
of the 5-jet of m, are written as follows:

2

, dgo =0,
=, da1 = = (6sin 6 + azp p? cos ) —5—

ca0 = —(aso p1 + 4aso)

c31 = —(az1p1 + 3a21)

@ ‘OI\JS ‘n

Pys
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co2 = — (a2 p? + 2a12 p1 + ka)p v dag = (2a2; cos 9)
c13 = —(a13p1 + aog) , diz = (3(a12 p1 + 2k2) cos 0) =<

2 2 B
cos = —p1 (ags + 6k3 y% cos G)y—g, dos = 4dags cos 0y—3,

py’

dso =0,
d41 = {24 sin 0 + (0,40 P1 + 8(130)])1 COSs 0} 3

cs0 = —(aso py + Baso p1 + 20(130)101 7

ca1 = —(aq pi +4az p1 + 12a21) 55,

c3a = —{(az2 pi + 3ag pi + 6ar2 p1 + 6k2) sin 6 + 2azg ko pi cos a}pfyﬁ ’
d32 = 2(0,31 P1 + 6@21) CcOs epl y3 5
c23 = —{(az3 p? + 2a13 p1 + 2a93) sin @ + 6aa ka2 p1 cos 9};?7

das = 3 (azo p? + dara p1 + 6ks) cos e);—z

c1a = —12ky (a12 p1 + k2) COS@C (6114 p1+ (104) , dig = 4(a13p1 + 2a03)

Cos = —20(103 ]CQ COS 917220 — aps p;c .
Y3 3

3.4.1 Goose

Proof of 1 in Theorem at goose singularity. Since the goose singularity is 4-.A-determined,

we should show equality (83) holds for & = 4. We consider whether all monomial bases of

my&Z /m3E3 are in T'A.m, modulo m3€3. First, we assume that the surface f is not flat umbilic at
4 4

the origin. Since dg; # 0, <004) = (11:04 ZZ; and <%2> = dfil <<7Ty’062> ), degree 4 monomials

0

0 3 . 0
( O4> and (%2> are in T'A.m, modulo m3€Z. Furthermore, (x%) = dilaxg gwy is contained in

4 5
T A.m, modulo <$2 +4m2>.
my

4 5
To show that other monomials except a monomial (:%1) are in (84) modulo (i% I 23), we
2 2
consider the elements expressed as the following table:
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1 ez T2 €eq T2 €2 1% (5] wf €2 Tr1xT2 €] Tr1T2 €2 wg (5] :Eg €2
Omy e 0 0 0 e 0 0 0 ko c2 cos 6
R P1 2 2y3
<7Ty,62>61 0 d01 0 0 0 d11 0 0 0
<7Ty,€2>€2 0 0 do] 0 0 0 d11 0 0
(my,e2)’er 0 0 0 0 0 0 0 dz, 0
(my,e2) ey 0 0 0 0 0 0 0 0 0
a
67;:;} 0 0 dll C30/2 0 C21 d21 C12/2 0
D7y
5y di Co2 0 c21/2  do1/2 ci2 0 co3/2 dos/2
1 gZi 0 0 0 0 0 di1 0 0
ar
T2 Bmil 0 0 0 0 0 0 0 di1
Xy gzz dOl 0 0 0 d11 Cco2 0 0
Oy
T2 ar; 0 0 d01 0 0 dll Co2 0
2 Omy
D o 0 0 0 0 0 0 0 0
w12 52 0 0 0 0 0 0 0 0
@2 oty 0 0 0 0 0 0 0 0 0
]
z? G 0 0 0 0 dor 0 0 0 0
w123 o 0 0 0 0 0 0 dox 0 0
Oy
5 pae 0 0 0 0 0 0 0 0 do1
3 o7,
7 8112’ 0 0 0 0 0 0 0 0 0
2wy G 0 0 0 0 0 0 0 0
sz} 5oL 0 0 0 0 0 0 0 0
m? el $‘;’ (=) I?Ig e z?:cg (=) rlrg er mlzg (=) Ig er Z;l el .'L'?.’.EQ el :E?:Eg el mlmg el
0 —d31/6 0 —day /4 0 —d13/6 0 0 0 0 0
0 0 d21/2 0 0 0 do3/6 0 d31/6 daa/4 d15/6
0 0 0 d21/2 0 0 0 0 0 0 0
0 0 0 0 2do1 d11 0 0 0 0 do1 do1 + d3, 0
0 0 0 0 0 0 ds, 0 0 0 3d2, diy
640/6 0 C31/2 d31/2 022/2 d22/2 613/6 650/24 641/6 632/4 C23/6
031/6 d31/6 622/2 d22/2 613/2 d13/2 604/6 (;41/24 632/6 623/4 614/6
c30/2 0 c21 d21 c12/2 0 0 c40/6 c31/2 c22/2 c13/6
0 0 030/2 0 Cc21 d21 (112/2 0 (140/6 (131/2 622/2
C21/2 d21/2 Cc12 0 003/2 d03/2 0 C31/6 622/2 613/2 C04/6
0 0 C21/2 d21/2 C12 0 603/2 0 631/6 622/2 C13/2
0 0 0 d11 0 0 0 030/2 C21 612/2 0
0 0 0 0 0 di1 0 0 c30/2 21 c12/2
0 0 0 0 0 0 0 0 0 c30/2 c21
0 di1 co2 0 0 0 0 c21/2 C12 co3/2 0
0 0 0 di1 Co2 0 0 0 c21/2 C12 co3/2
0 0 0 0 0 d11 Ccp2 0 0 621/2 C12
0 d(n 0 0 0 0 0 0 Co2 0 0
0 0 0 d01 0 0 0 0 0 Co2 0
0 0 0 0 0 dol 0 0 0 0 Co2

(6 sin @+azo p? cos 9) c? a1 c® cosf _ (a12p1+2k2) c?

Qo1
P ys 2l ys P1ys
From Gauss elimination method of which our source code is available on Github [IZ], the con-

dition of fullrank of this matrix expressed as the table above is the same as criteria of goose
singularity. Thus, they are in (84).
.. . r1\ . . l‘g—&-m% . T1\ _  py Om
The remaining monomial o ) isin (B4) modulo o since < 0) =& R Thus,
7 is a versal unfolding of the singularity of 7, if f(0) is not flat umbilic.

cos 6

where agg = — and o =

Next, we consider in the case of flat umbilic, that is, k = 0. In this case, we have only

. T T2 l‘% T1T2 . . .
way to generate monomials o) Lo Lo and R That is using the following five

elements:
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(((mye)) omy om, om, om\ _ pof (o) (w2) (2%) (7122
0 )7 B’ Gus? Dma? 0wy ] o) \o) o)\ o))

O d01 O dll
C C
—a 0 —p 0
o— c C
D p1 tan 6 0 p% tan 0 0
0 0 630/2 C21
0 0 C21 /2 C12
From criteria of goose singularity and non linearly independency of ng and gzg in this part,
the rank of the above matrix is less than 4.
Therefore, we get criteria of versality of m at goose singularity. O

3.4.2 Ugly goose

Proof of 1 in Theorem at ugly goose singularity. From assumption and criteria, azg # 0. The
ugly goose singularity is 5-.A-deternined. We should show equality (82) holds for £ = 5. The
3-jet of each derivative of central projection 7, is the same in the case of the goose singularity.
In the same way of proof at goose singularity, we know 7 is not an A.-versal if f(z) is flat
umbilic. We enough to consider in the case of not flat umbilic.

Since

5
( 0 ) Lo [ o == ( 0 4> (mg) _ L <<7Ty762> )
05 d01 8%2 ’ To + 3%1 11 T1To d%l <7Ty, 62> ’ 0 dgl O

5
in T'A.m, modulo m$&F and do; # 0, we get <OO ), (O4> and <x2>
5 ZCQ 0

To show that the remaining monomials except %1
consider the elements in (Bd) expressed as the following table:

5 6
. T3+ my
are in (B32) modulo <x§ +m§>’ we
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. x] eg xg eq z9 eg a‘% e ] e riTo eq xyTo en a‘% e T% eo
=
Ty;’ —dq1 0 0 0 —doq/2 0 0 0 —do3/6
2 2
d 0 0 G 1G] 0 0 0 a0 g, . 0
v3 P1Y3
(g, e2)e1 0 do1 0 0 0 di1 0 0 0
(ry.ea)es 0 0 doy 0 0 0 dqq 0 0
(ry,e2)2eq 0 0 0 0 0 0 0 a2, 0
(my,ez)5e] 0 0 ) 0 0 0 0 0 0
<7ry,8e2)4e1 0 0 0 0 0 0 0 0 0
@Z? 0 0 dig €30/2 0 c21 day c12/2 0
o,
axg di €02 0 c21/2 da1/2 c12 0 c03/2 do3/2
L
z1 aw? 0 0 0 0 0 0 di1 0 0
o,
zo am‘lll 0 0 0 0 0 0 0 0 dqq
@1 % do1 0 0 0 dq1 co2 0 0 0
zo gzg 0 0 do1 0 0 0 dq1 co2 0
2 91y
o} Dar 0 0 0 0 0 0 0 0 0
zqxo ?}% 0 0 0 0 0 0 0 0 0
*3 gﬂy 0 0 0 0 0 0 0 0 0
oy
5 om
z3 ﬁ 0 0 0 0 dg1 0 0 0 0
7y
w1wy b 0 0 0 0 0 0 do1 0 0
50
xgﬁ 0 0 0 0 0 0 0 0 do1
<3 0T 0 0 0 0 0 0 0 0 0
dxq
e2aq 27U 0 0 0 0 0 0 0 0 0
1%2 Bz
mlmé—g:i 0 0 0 0 0 0 0 0 0
30Ty
3 g 0 0 0 0 0 0 0 0 0
*3 g"y 0 0 0 0 0 0 0 0 0
To
e2aq OTY 0 0 0 0 0 0 0 0 0
1%2 Dzy
. L 0 0 0 0 0 0 0 0 0
2001‘,2
397y
>3 o 0 0 0 0 0 0 0 0 0
4 Omy
o} oo 0 0 0 0 0 0 0 0 0
eday 4‘?3"? 0 0 0 0 0 0 0 0 0
T2
22,297y
o}e3 gan 0 0 0 0 0 0 0 0 0
@y g;y 0 0 0 0 0 0 0 0 0
z? ey z? eo (E?Zg el z%zg eo zlzg el 7 z% eo zg ey zg es
0 —d31/6 0 “doo /4 0 “d15/6 0 “doa/24
(d30,e1) 0 (do1,e1) (doi,es) (diaz,ei) 0 (doz,e1) (do3,e2)
0 0 d21/2 0 0 0 dos3/6 0
0 0 0 do1/2 0 0 0 dos3/6
0 0 0 0 2do1 di1 0 0 0
0 0 0 0 0 0 d3, 0
0 0 0 0 0 0 0 0
ca0/6 0 c31/2 ds1/2 c22/2 do2/2 c13/6 d13/6
c31/6 d31/6 c22/2 da2/2 c13/2 d13/2 c04/6 do4 /6
c30/2 0 co1 da1 ci12/2 0 0 0
0 0 c30/2 0 c21 dai1 c12/2 0
c21/2 d21/2 c12 0 co3/2 do3/2 0 0
0 0 c21/2 da1 /2 ci2 0 c03/2 do3 /2
0 0 0 di1 0 0 0 0
0 0 0 0 0 diq 0 0
0 0 0 0 0 0 0 di1
0 di1 co2 0 0 0 0 0
0 0 0 di1 o2 0 0 0
0 0 0 0 0 dig cp2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 do1 0 0 0 0 0 0
0 0 0 do1 0 0 0 0
0 0 0 0 0 do1 0 0
0 0 0 0 0 0 0 do1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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m% ey x‘ll eo x‘}xg ey x‘;’wg es x%xg ey x%x% eo xlxg ey xlmg eo 32421 el
0 —d41/24 0 —d32/12 0 —da3/12 0 —d14/24 0
(d40, e1) 0 (d31,e1) (dsi,e2) (d22, e1) (doa,e2) (diz,e1) (diz.ez) (dos,e1)

0 0 d31/6 0 ERYL 0 d1576 0 Toa/24
0 0 0 ds1 /6 0 dos /4 0 di3/6 0
0 0 0 0 do1 d21 +d3g 0 0 0 do1 do3/3
0 0 0 0 0 0 3d3, d11 0 0
0 0 0 0 0 0 0 0 dd;
c50/24 0 cq1/6 dg1/6 c32/4 d3a /4 c23/6 d23 /6 c14/24
cq1/24 dqy /24 c32/6 d32/6 ca3/4 do3 /4 c14/6 d14/6 co5/24
ca0/6 0 c31/2 d31/2 c22/2 d22/2 c13/6 d13/6 0
0 0 ca0/6 0 c31/2 ds1 /2 c22/2 daa/2 c13/6
c31/6 ds1/6 c22/2 d22/2 c13/2 d13/2 co4/6 dos/6 0
0 0 c31/6 d31/6 c22/2 dao /2 c13/2 di3/2 c04/6
3072 0 co1 da1 c12/2 0 0 0 0
0 0 c30/2 0 co1 da1 c12/2 0 0
0 0 0 0 c30/2 0 c21 do1 c12/2
c21/2 d21/2 c12 0 co3/2 do3 /2 0 0 0
0 0 c21/2 d21/2 c12 0 c03/2 do3 /2 0
0 0 0 0 2172 doy /2 c1o 0 co3/2
0 0 0 d11 0 0 0 0 0
0 0 0 ) 0 di1 0 0 0
0 0 0 0 0 0 0 di1 0
0 0 0 0 0 0 0 0 0
0 diq co2 0 0 0 0 0 0
0 0 0 di1 co2 0 0 0 0
0 0 0 0 0 di1 co2 0 0
0 0 0 0 0 0 0 dip o2
0 o1 0 0 0 0 0 0 0
0 0 0 do1 0 0 0 0 0
0 0 0 0 0 do1 0 0 0
0 0 0 0 0 0 0 do1 0
z‘i’ ey ziTo e zlzg ey zlzg ey 111421 ey
0 0 0 0 0
(dso,e1) (dai,e1) (d32, e1) (d23, e1) (d14,e1)
0 da1/24 d32/12 das /12 d14/24
0 0 0 0 0
0 0 (do1 d31 +3d11d21)/3 doi1 d22/2 (do1 d13 +do3 d11)/3
0 0 0 3do1 (do1 do1 + 2d3,)/2 0
0 0 0 0 4d3, d11
* * * * *
* * * * *
c50/24 ca1/6 c32/4 c23/6 c14/24
0 c50/24 ca1/6 c32/4 c23/6
cq1/24 c32/6 ca3/4 c14/6 co5/24
0 ca1/24 c32/6 c23/4 c14/6
ca0/6 c31/2 c22/2 c13/6 0
0 ca0/6 c31/2 c22/2 c13/6
0 0 ca0/6 c31/2 c22/2
c31/6 c22/2 c13/2 c04/6 0
0 c31/6 c22/2 c13/2 c04/6
0 0 c31/6 c22/2 c13/2
c30/2 c21 c12/2 0 0
0 c30/2 c21 c12/2 0
0 0 c30/2 c21 c12/2
0 0 0 c30/2 c21
c21/2 c12 co3/2 0 0
0 c21/2 c12 co3/2 0
0 c21/2 ci2 c03/2
0 0 0 co1/2 ci12
0 co2 0 0 0
0 0 cp2 0 0
0 0 0 cp2 0
0 0 0 0 o2
o aﬂ'y 1 377?! 1 8(1+i+.i)d
where d = Fot + o 5% and dij = gy 9ot 5al (0).

From Gauss elimination method, we know that the matrix expressed as the table above is of
fullrank from criteria of ugly goose singularity and the assumption ko # 0. Our source code is

available on GitHub [T2].
1 p1 97y

The degree 1 monomial ) = e M gy (B3). Therefore, if f(0) is not flat umbilic, 7

0 c Oy
is versal unfolding of the singularity of m,.
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3.4.3 Type 16

Proof of 2 in Theorem [F4. From assumption and criteria, azg = az; = 0 and ayqg # 0. The

type 16 singularity is 5-A-deternined. Thus, we need to check equality (B2) holds for k = 5.
I l‘%
0/"\0
However, we can only choose the following elements in (B) to generate elements above in

j59(7ry):
()= ( £ () @)
Jy1’ Oys m m 0)’ 0 ’

oy

Since By and ag;’ are not linearly independent, these elements cannot generates the seven
elements and we know that an unfolding 7 is not versal at the type 16 singularity. O

We consider whether two elements are generated by several elements in (84).

4 Geometric conditions of singularities for versality

We consider the contact of the surface S with cones. Since a cone in R? is determined by its
vertex, direction of central axis and angle, the moduli space of cones is of dimension six.

Consider a cone which has a vertex y = (y1,y2,y3) in R?, a direction vector of central axis
d = (dq,dz,d3) in S? and an angle € in (0, 7/2) where (d,y) # 0 and d is not parallel to the
position vector of y. Then, its implicit function is given by

Cyao(z1, 22, 23) = (d, 2 — y)° — |2 — y[” cos?0 = 0. (4.1)

The contact between the cone (EI) and the regular surface S parameterized by f(x1,z2) =
(1,22, Q(x)) is measured by the K-singularities of the function

C(l‘l,{L‘Q) = Cy’d’g(xl,l‘g,Q(x)) (42)
ZCk (x1,x9)+o0(x1,22)™ T where Cy(z1,2) Z

k>2 =

We call C(z1,z2) the contact function with cones.

Accordlng to [R], we define the notion of contact type. We recall that two map-germs
fyg : (R™0) — (R™,0) are K-equivalent if there are a diffeomorphism ¢ : (R™,0) — (R™,0)
and a smooth map A : (R™,0) — GL(R"™) such that g(¢(z)) = A(z) f(x).

In this section, we consider the Ay (or Aki)—contact type which is a K-modal z? + 2571, We
introduce some results of A<g-contact of cones with regular surfaces at a parabolic point. Before
stating the results, we need the following Lemma E-l. In this section, we assume that the vertex
of cones is not the origin in R3.

Lemma 4.1. One of generatriz is passing through the origin in R? if and only if the angle of
cones 0 is equal to the angle between the position vector of the vertexr y and the unit direction
vector of the central azis d of cones.

This lemma is shown by checking the condition of C'(0) = 0.

Lemma 4.2. We assume that one of generatriz is passing through the origin in R3. Then, the
contact function C(x1,x2) with cones has critical point at 0 if and only if

Yz =d1y2 —dayr = 0. (4.3)
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This condition means that the vertex y is in the tangent plane of the reqular surface S and the
orthogonal projection of the direction of central axis d belong to v = (0,0,1) is parallel to the
position vector of y.

The lemma above is proved by checking the rank of Jacobian matrix.

Lemma 4.3. We consider a cone Cy q9 whose vertez is satisfied (B33) and is not origin in R3.
We measure contact between this cone with the reqular surface S as follows:

1. The cone Cy g0 has Ai-contact with S if and only if none of the following conditions hold.

(Aza) the origin is flat umbilic.
(Asb) the origin is parabolic but not flat umbilic and the vertex y is contained in an asymp-
totic straight line of S at 0, that is, yo = 0 as same dy = 0.

2. Suppose that S is parabolic but not flat umbilic at the origin. The cone Cy a9 has As-
contact with S if and only if the condition (A3b) holds and none of the following conditions
hold.

(Dga) the vertex y is contained in the asymptotic straight line of S at x =0 and

d;
ds = — .
ko y1
This is the condition in which the rank of the Hesse matriz is 0.
(A3b) the vertex y is contained in the asymptotic straight line of S at x = 0, d3 # _kj;jl

and the asymptotic straight line is 3-rd or higher order contact with S.

The first item 7. in Lemma B3 is proved by checking the rank of Hesse matrix of C(x1,z2).
To prove the second item 2. in Lemma B3, we use criteria of A3z and Dy-singularity type (for
example, see Theorem 1.1. in [4]).

We consider more degenerate Ap-contact in the case of (Azb) in Lemma BZ3. It is relevant
to gulls series singularity of m, if 7 is versal at gulls series singularity. Using criteria of A<g-
singularity (for example, see Theorem 1.2 to 1.4 in [d]), we have the following Theorem B. The
proof is similar to that of the item 2. in Lemma B=3. See [I3] also, which is available in [IZ].

Theorem 4.4. Assume that the origin of the reqular surface S has parabolic but not flat umbilic
and the vertex of the cone y is contained in the asymptotic straight line of S.

1. The cone Cy q,9 has As-contact with S if and only if S has the 3-rd or higher order contact
with the asymptotic straight line at the origin and

(kg a40 — 30,31) ds Y1 + aao dy 7£ 0. (44)

After this, we assume that both of aso and ko asg — 3a3, do not vanish.

2. The cone Cy g9 has As-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, (B4) vanishes and

(3&%1 aso + 5a12 aio — 10(121 asq a40) Yy — 5a40 (kQ aqo0 — 3&31) 75 0 (45)
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3. The cone Cy q,9 has As-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, both of (EA) and (E3H) vanish and
AC5 = (45@%1 Q40 a60—54a§1 a§0+180a%1 as1 a4o a50—225a§1 aio a41—25a03 a30+225a21 a922 aio—
150&21 agl aio)yl — 270&%1 a40 A50 — 450(112 a1 aio + 900&%1 asy aio

does not vanish.

4. The cone Cy a0 has Ag-contact with S if and only if S has the 3-rd order contact with the
asymptotic straight line at the origin, (B4), (E3) and AC5 vanish and
ACG =
225&%1 0310 arog — 945(131 a40 a50 A6o + 1575@%1 asy aio asn — 15750,%1 aio asy
+ 756@%1 ago — 3150@%1 asy a4o ago + 3150@%1 aio a41 A50 — 1575@21 ang CLZO aso 2
+ 4200a21 a%l aio aso — 95250a91 asy GZO as1 — 87baq3 aio + 2625a91 ass aﬁo i
+ 2625a20 az1 ajy, — 1750a3; a3y
+ 210a40 (3a21 aso — Hasy aqo) (3a3; aso + Hais a3y — 10a21 azi aso)y1
— 3150a91 afm (3&%1 asp + 9aq2 CLZO — 10as1 a3 a40)

does not vanish.
Remark 4.5. Suppose that f(0) is not red subparabolic, that is, as; # 0.

1. The non degenerate condition of A4-contact in Theorem B means that criteria of gulls
singularity type of the central projection .

2. It follows from 3 and 4 in Theorem that the sum of the non degenerate conditions of

Asg-contact and Ag-contact
AC(; — 70 40 AC5 (4.6)

is equal to the non degenerate condition of ugly gulls singularity of m,. We call (E8) the
ug-focal condition.

Finally, we summarize geometric criteria of singularities of m, for versality.

Lemma 4.6. Suppose the reqular surface S is parameterized by f as in (I) and a viewpoint y is
in w-axis, that is, y — f(0) = p1 w. Then, geometric criteria of Ae-codimension < 3 singularities
of my are written as in table B if w is versal at x = 0.
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type A-cod. || ¢ | position of y | other condition
fold 0 1 (L is not asymptotic straight line.)
cusp 0 2
swallowtail 1 3
butterfly 2 4 | not h-focal
elder butterfly 3 4 | h-focal
unimodal 3 5 | not u-focal
lips (resp. beaks) 1 2 | not p-focal y is farther (resp. nearer ) f(0) than p-focal
goose 2 2 | p-focal viewlines passing through parabolic points
of S form cusipidal edge (cf. Platnova [19])
ugly goose 3 2 | p-focal viewlines passing through parabolic points
of S form swallowtail (cf. Platnova [19])
type 16 3 3 | not 16-focal | 1-st or higher order red subparabolic
gulls 2 3 | not p'-focal | not red subparabolic
ugly gulls 3 3 | p'-focal not red subparabolic
and not ug-focal condition
type 12 3 4 | not 12-focal | not red-subparabolic

Table 3: Geometric criteria of A-singularity of m, where c¢ is contact order of S with £ at z = 0.
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