A FOURIER RESTRICTION ESTIMATE FOR A SURFACE OF FINITE TYPE

Stefan Buschenhenke

University of Birmingham joint work with Detlef Müller and Ana Vargas

Interactions between Harmonic Analysis and Geometric Analysis
Samita/Tokyo
November 2016

Let S be a smooth, compact hypersurface in \mathbb{R}^n with surface measure σ .

Let S be a smooth, compact hypersurface in \mathbb{R}^n with surface measure σ . The restriction operator is $R(f) = \hat{f}|_{S}$, where

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} \mathrm{d}x$$

is the Fourier transform of $f \in L^1(\mathbb{R}^n)$.

Let S be a smooth, compact hypersurface in \mathbb{R}^n with surface measure σ . The restriction operator is $R(f) = \hat{f}|_{S}$, where

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} \mathrm{d}x$$

is the Fourier transform of $f \in L^1(\mathbb{R}^n)$. For which $1 \leq p, q \leq \infty$ does

$$R:L^p(\mathbb{R}^n)\to L^q(S,\sigma)$$

give a bounded Operator?

Let S be a smooth, compact hypersurface in \mathbb{R}^n with surface measure σ . The restriction operator is $R(f) = \hat{f}|_{S}$, where

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} \mathrm{d}x$$

is the Fourier transform of $f \in L^1(\mathbb{R}^n)$. For which $1 \leq p, q \leq \infty$ does

$$R:L^p(\mathbb{R}^n)\to L^q(S,\sigma)$$

give a bounded Operator?

Adjoint Operator:
$$R^*(g)(x) = \widehat{gd\sigma}(x) = \int_S g(\xi)e^{-ix\cdot\xi}d\sigma(\xi)$$
.

We always have

$$\|\widehat{g}\widehat{\mathrm{d}\sigma}\|_{\infty} \leq \|g\|_{L^1(S,\sigma)}$$

We always have

$$\|\widehat{g}\widehat{\mathrm{d}\sigma}\|_{\infty} \leq \|g\|_{L^1(S,\sigma)}$$

i.e. $R^*: L^q(S,\sigma) \to L^p(\mathbb{R}^n)$ is bounded for $p=\infty$, q=1

We always have

$$\|\widehat{\operatorname{gd}\sigma}\|_{\infty} \leq \|g\|_{L^1(S,\sigma)} \lesssim \|g\|_{L^q(S,\sigma)},$$

i.e. $R^*: L^q(\mathcal{S}, \sigma) \to L^p(\mathbb{R}^n)$ is bounded for $p = \infty$, $q \ge 1$

We always have

$$\|\widehat{\operatorname{gd}\sigma}\|_{\infty} \leq \|g\|_{L^1(S,\sigma)} \lesssim \|g\|_{L^q(S,\sigma)},$$

i.e. $R^*: L^q(S, \sigma) \to L^p(\mathbb{R}^n)$ is bounded for $p = \infty$, $q \ge 1$ If $S \subset \mathbb{R}^{n-1}$ this is sharp.

Let S be a compact hypersurface with non-vanishing Gaussian curvature. Boundedness of $R^*: L^q(S) \to L^p(\mathbb{R}^{n+1})$:

• Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary
- n = 1 solved (Zygmund 74).

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary
- n = 1 solved (Zygmund 74).
- n > 2: q = 2 solved (Stein, Tomas 75).

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary
- n = 1 solved (Zygmund 74).
- $n \ge 2$: q = 2 solved (Stein, Tomas 75).
- Other values of q: improvements in the 90's by Bourgain's work (then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary
- n = 1 solved (Zygmund 74).
- $n \ge 2$: q = 2 solved (Stein, Tomas 75).
- Other values of q: improvements in the 90's by Bourgain's work (then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).
- Confirmed for $p > 2\frac{n+3}{n+1}$ (Tao 2003).

- Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$
- Both conditions are known to be necessary
- n = 1 solved (Zygmund 74).
- $n \ge 2$: q = 2 solved (Stein, Tomas 75).
- Other values of q: improvements in the 90's by Bourgain's work (then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).
- Confirmed for $p > 2\frac{n+3}{n+1}$ (Tao 2003).
- Further progress by multilinear approach (Bourgain and Guth 2011), "polynomial method" (Guth 2015)

Let S be a compact hypersurface with non-vanishing Gaussian curvature. Boundedness of $R^*: L^q(S) \to L^p(\mathbb{R}^{n+1})$:

• Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$

Let S be a compact hypersurface with non-vanishing Gaussian curvature. Boundedness of $R^*: L^q(S) \to L^p(\mathbb{R}^{n+1})$:

• Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$

Let S be a compact hypersurface with non-vanishing Gaussian curvature. Boundedness of $R^*: L^q(S) \to L^p(\mathbb{R}^{n+1})$:

• Conjecture: $\frac{1}{q'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$

• Hölder: (q, p) implies (\tilde{q}, p) for $q \leq \tilde{q}$

Let S be a compact hypersurface with non-vanishing Gaussian curvature. Boundedness of $R^*: L^q(S) \to L^p(\mathbb{R}^{n+1})$:

• Conjecture: $\frac{1}{a'} \ge \frac{n+2}{np}$ and $p > \frac{2n+2}{n}$

- Hölder: (q, p) implies (\tilde{q}, p) for $q \leq \tilde{q}$
- Nikishin-Maurey-Pisier factorisation: (∞, p) implies (p, p) for $S = S^n$

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Sjölin 74, Ruiz 1983, Barcelo 1986

$$R^*: L^{q,p}(\gamma) \to L^p(\mathbb{R}^2) \text{ for } p > 4 \text{ and } \frac{1}{q'} \geq \frac{m+1}{p}.$$

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Sjölin 74, Ruiz 1983, Barcelo 1986

$$R^*: L^{q,p}(\gamma) \to L^p(\mathbb{R}^2) \text{ for } p > 4 \text{ and } \frac{1}{q'} \geq \frac{m+1}{p}.$$

Let
$$\Gamma = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} | \frac{x}{z} \in \gamma, \ 1 \le z \le 2\}.$$

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Sjölin 74, Ruiz 1983, Barcelo 1986

$$R^*: L^{q,p}(\gamma) \to L^p(\mathbb{R}^2) \text{ for } p > 4 \text{ and } \frac{1}{q'} \geq \frac{m+1}{p}.$$

Let
$$\Gamma = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} | \frac{x}{z} \in \gamma, \ 1 \le z \le 2\}.$$

Barcelo 1986, B. 2015

$$R^*: L^{q,p}(\Gamma) \to L^p(\mathbb{R}^3)$$
 for $p > 4$ and $\frac{1}{q'} \ge \frac{m+1}{p}$.

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Sjölin 74, Ruiz 1983, Barcelo 1986

$$R^*: L^{q,p}(\gamma) o L^p(\mathbb{R}^2) \text{ for } p > 4 \text{ and } rac{1}{q'} \geq rac{m+1}{p}.$$

Let
$$\Gamma = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} | \frac{x}{z} \in \gamma, \ 1 \le z \le 2\}.$$

Barcelo 1986, B. 2015

$$R^*: L^{q,p}(\Gamma) o L^p(\mathbb{R}^3) \text{ for } p > 4 \text{ and } \frac{1}{q'} \geq \frac{m+1}{p}.$$

Let
$$\Gamma = \{(x, |x|^m) \in \mathbb{R}^n \times \mathbb{R}\}.$$

Let
$$\gamma = \{(x, x^m) | x \in [0, 1]\}, m > 2.$$

Sjölin 74, Ruiz 1983, Barcelo 1986

$$R^*: L^{q,p}(\gamma) \to L^p(\mathbb{R}^2)$$
 for $p > 4$ and $\frac{1}{q'} \ge \frac{m+1}{p}$.

Let
$$\Gamma = \{(x, z) \in \mathbb{R}^2 \times \mathbb{R} | \frac{x}{z} \in \gamma, \ 1 \le z \le 2\}.$$

Barcelo 1986, B. 2015

$$R^*: L^{q,p}(\Gamma) \to L^p(\mathbb{R}^3)$$
 for $p > 4$ and $\frac{1}{q'} \ge \frac{m+1}{p}$.

Let
$$\Gamma = \{(x, |x|^m) \in \mathbb{R}^n \times \mathbb{R}\}.$$

Stovall 2014

 $R^*: L^{q,p}(\Gamma) \to L^p(\mathbb{R}^{n+1})$ for $\frac{1}{q'} \ge \frac{m+n}{np}$ and p such that the restriction conjecture holds.

The proof involves affine arclength measure.

Let
$$S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$$
 By h denote the height of S , given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

Let
$$S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$$
 By h denote the height of S , given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

Ferreyra and Urciuolo 2009

$$R^*: L^q(S, \sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} > \frac{h+1}{p} \text{ and } p > 4.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

Ikromov, Kempe and Müller 2010

$$R^*: L^2(S, \sigma) \to L^p(\mathbb{R}^3) \text{ if } p \geq 2h + 2.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Necessary conditions

Let
$$S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$$

By h denote the height of S , given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Necessary conditions

Let
$$S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$$
 By h denote the height of S , given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

B., Müller and Vargas 2014

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Assume
$$R^*: L^q(S, \sigma) \to L^p(\mathbb{R}^3)$$
. Then $\frac{1}{q'} \ge \frac{h+1}{p}$, $p > \max\{3, \frac{h+1}{p}\}$ and $\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$.

Lorentz space?

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{a} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Lorentz space?

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

B., Müller and Vargas 2014

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

• By trivial considerations this gives the $L^q(S) \to L^p(\mathbb{R}^3)$ result, for $\frac{1}{a'} > \frac{h+1}{p}$.

Lorentz space?

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \geq \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

- By trivial considerations this gives the $L^q(S) \to L^p(\mathbb{R}^3)$ result, for $\frac{1}{a'} > \frac{h+1}{p}$.
- When $\frac{1}{p} \leq \frac{1}{q}$, the strong type result follows by interpolation.

Lorentz space?

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \geq \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

- By trivial considerations this gives the $L^q(S) \to L^p(\mathbb{R}^3)$ result, for $\frac{1}{a'} > \frac{h+1}{n}$.
- When $\frac{1}{p} \leq \frac{1}{q}$, the strong type result follows by interpolation.
- If $\frac{1}{q'} = \frac{h+1}{p}$ and $\frac{1}{p} \geq \frac{1}{q}$, $L^q(S, \sigma) \to L^p(\mathbb{R}^3)$ fails.

Let
$$S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$$
 By h denote the height of S , given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

$$R^*: L^{q,p}(S,\sigma) \to L^p(\mathbb{R}^3) \text{ if } \frac{1}{q'} \ge \frac{h+1}{p}, \ p > \max\{\frac{10}{3}, h+1\} \text{ and } \frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}.$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

Consider subsurface $S_{\varepsilon} = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | \varepsilon \le x_1 \le 2\varepsilon, \frac{1}{2} \le x_2 \le 1 \}$, where the principle curvatures are more or less constant

Consider subsurface $S_{\varepsilon}=\{(x_1,x_2,x_1^{m_1}+x_2^{m_2})|\varepsilon\leq x_1\leq 2\varepsilon,\frac{1}{2}\leq x_2\leq 1\}$, where the principle curvatures are more or less constant

Consider subsurface $S_{\varepsilon} = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | \varepsilon \leq x_1 \leq 2\varepsilon, \frac{1}{2} \leq x_2 \leq 1 \}$, where the principle curvatures are more or less constant

Rescaling: $S(K) = \{(x_1, x_2, x_1^2 + x_2^2 + \mathcal{O}(|x|^3)) | x_1 \in [0, 1], x_2 \in [0, K] \}, K = \varepsilon^{-\frac{m_1}{2}}$ and

$$\|R^*\|_{L^q(S(\varepsilon^{-\frac{m_1}{2}}))\to L^p(\mathbb{R}^3)} \lesssim \varepsilon^{\frac{1}{p}\left(\frac{3m_1}{2}+1\right)-\frac{1}{q'}\left(\frac{m_1}{2}+1\right)}.$$

$$S(K) = \{(x_1, x_2, x_1^2 + x_2^2 + \mathcal{O}(|x|^3)) | x_1 \in [0, 1], x_2 \in [0, K]\}$$

$$S(K) = \{(x_1, x_2, x_1^2 + x_2^2 + \mathcal{O}(|x|^3)) | x_1 \in [0, 1], x_2 \in [0, K] \}$$

$$\frac{1}{p} \frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{q'} = \frac{3}{p}$$

$$\frac{1}{3}$$

$$\frac{1}{q'} = \frac{2}{p}$$

On $\frac{1}{a'} = \frac{2}{p}$: Estimates invariant under parabolic scaling.

$$S(K) = \{(x_1, x_2, x_1^2 + x_2^2 + \mathcal{O}(|x|^3)) | x_1 \in [0, 1], x_2 \in [0, K]\}$$

$$\frac{1}{p} \quad \frac{1}{3}$$

$$\frac{1}{4}$$

$$\frac{1}{q'} = \frac{3}{p}$$

$$\frac{1}{q'} = \frac{2}{p}$$

$$\frac{1}{q}$$

On $\frac{1}{a'} = \frac{2}{p}$: Estimates invariant under parabolic scaling.

On $\frac{1}{a'} = \frac{3}{p}$: Apply estimates for the Parabola.

$$S(K) = \{(x_1, x_2, x_1^2 + x_2^2 + \mathcal{O}(|x|^3)) | x_1 \in [0, 1], x_2 \in [0, K] \}$$

On $\frac{1}{a'} = \frac{2}{p}$: Estimates invariant under parabolic scaling.

On $\frac{1}{a'} = \frac{3}{p}$: Apply estimates for the Parabola.

Conjecture:

$$\|R^*\|_{L^q(S(K)) \to L^p(\mathbb{R}^3)} \lesssim K^{\left(\frac{1}{p} - \frac{1}{q}\right)_+}.$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

$$\|R^*\|_{L^q(S(K)) \to L^p(\mathbb{R}^3)} \lesssim K^{\left(\frac{1}{p} - \frac{1}{q}\right)_+}.$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

$$\|R^*\|_{L^q(S(K)) \to L^p(\mathbb{R}^3)} \lesssim K^{\left(\frac{1}{p} - \frac{1}{q}\right)_+}.$$

We could prove that

$$\|R^*\|_{L^q(S(K)) \to L^p(\mathbb{R}^3)} \gtrsim K^{\left(\frac{1}{p} - \frac{1}{q}\right)_+}.$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

$$\|R^*\|_{L^q(S(K))\to L^p(\mathbb{R}^3)}\lesssim K^{\left(rac{1}{p}-rac{1}{q}
ight)_+}.$$

We could prove that

$$\|R^*\|_{L^q(S(K))\to L^p(\mathbb{R}^3)}\gtrsim K^{\left(\frac{1}{p}-\frac{1}{q}\right)_+}.$$

Thus

$$\varepsilon^{\left(\frac{1}{q}-\frac{1}{p}\right)\frac{m_1}{2}} \lesssim \|R^*\|_{L^q(S(\varepsilon^{-\frac{m_1}{2}})) \to L^p(\mathbb{R}^3)} \lesssim \varepsilon^{\frac{1}{p}\left(\frac{3m_1}{2}+1\right)-\frac{1}{q'}\left(\frac{m_1}{2}+1\right)}.$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

$$\|R^*\|_{L^q(S(K)) \to L^p(\mathbb{R}^3)} \lesssim K^{\left(\frac{1}{p} - \frac{1}{q}\right)_+}.$$

We could prove that

$$\|R^*\|_{L^q(S(K))\to L^p(\mathbb{R}^3)}\gtrsim K^{\left(rac{1}{p}-rac{1}{q}
ight)_+}.$$

Thus

$$\varepsilon^{\left(\frac{1}{q}-\frac{1}{p}\right)\frac{m_1}{2}} \lesssim \|R^*\|_{L^q(S(\varepsilon^{-\frac{m_1}{2}})) \to L^p(\mathbb{R}^3)} \lesssim \varepsilon^{\frac{1}{p}\left(\frac{3m_1}{2}+1\right)-\frac{1}{q'}\left(\frac{m_1}{2}+1\right)}.$$

For $\varepsilon \to 0$:

$$\frac{1}{q}+\frac{2m_1+1}{p}\leq \frac{m_1+2}{2}$$

Necessary condition
$$\frac{1}{q} + \frac{2m_1+1}{p} < \frac{m_1+2}{2}$$

Consider the subsurface where $0.5 \le x_2 \le 1$.

Consider the subsurface where $0.5 \le x_2 \le 1$.

Test the restriction operator for $f(x) = 1 \in L^q(S)$:

Consider the subsurface where $0.5 \le x_2 \le 1$.

Test the restriction operator for $f(x) = 1 \in L^q(S)$:

$$\widehat{f} d\sigma(\xi) = \int_0^1 e^{i(\xi_1 x_1 - \xi_3 x_1^{m_1})} dx_1 \int_0^1 e^{i(\xi_2 x_2 - \xi_3 [x_2^2 + \mathcal{O}(x_2^3)])} dx_2$$

Consider the subsurface where $0.5 \le x_2 \le 1$.

Test the restriction operator for $f(x) = x_1^{-\frac{1}{q}} \log(x_1)^s \in L^q(S)$:

$$\widehat{f} \widehat{d\sigma}(\xi) = \int_0^1 e^{i(\xi_1 x_1 - \xi_3 x_1^{m_1})} x_1^{-\frac{1}{q}} \log(x_1)^s dx_1 \int_0^1 e^{i(\xi_2 x_2 - \xi_3 [x_2^2 + \mathcal{O}(x_2^3)])} dx_2$$

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997: Let $Q=[0,1]\times [0,1]$ be the unit square.

Decompose
$$Q imes Q = \bigcup_{(k,l)} au_k imes au_l$$
 in a "suitable" way.
$$\|\widehat{f} \widehat{\mathrm{d}} \sigma\|_{2p}^2 = \|\widehat{f} \widehat{\mathrm{d}} \widehat{\sigma} \widehat{f} \widehat{\mathrm{d}} \sigma\|_p$$

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997: Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

$$\|\widehat{f} \widehat{d\sigma}\|_{2p}^{2} = \|\widehat{f} \widehat{d\sigma} \widehat{f} \widehat{d\sigma}\|_{p}$$

$$\leq \left(\sum_{(k,l)} \|\widehat{f} \widehat{d\sigma_{k}} \widehat{f} \widehat{d\sigma_{l}}\|_{p}^{p*} \right)^{\frac{1}{p^{*}}} \leq \dots ,$$

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

$$\|\widehat{f} d\widehat{\sigma}\|_{2p}^{2} = \|\widehat{f} d\widehat{\sigma} \widehat{f} d\widehat{\sigma}\|_{p}$$

$$\leq \left(\sum_{(k,l)} \|\widehat{f} d\widehat{\sigma}_{k} \widehat{f} d\widehat{\sigma}_{l}\|_{p}^{p*} \right)^{\frac{1}{p^{*}}} \leq \dots,$$

where $p^* = \min\{p, p'\}$.

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

$$\|\widehat{f} \widehat{\mathrm{d}\sigma}\|_{2p}^{2} = \|\widehat{f} \widehat{\mathrm{d}\sigma} \widehat{f} \widehat{\mathrm{d}\sigma}\|_{p}$$

$$\leq \left(\sum_{(k,l)} \|\widehat{f} \widehat{\mathrm{d}\sigma_{k}} \widehat{f} \widehat{\mathrm{d}\sigma_{l}}\|_{p}^{p*} \right)^{\frac{1}{p^{*}}} \leq \dots ,$$

where $p^* = \min\{p, p'\}$.

Goal: Establish a bilinear estimate

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_p \leq C(k,l,p)\|f\|_{L^q(\sigma_k)}\|g\|_{L^q(\sigma_l)}.$$

The "bilinear implies linear" argument due to Tao-Vargas-Vega 1997:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

$$\|\widehat{f} \widehat{\mathrm{d}\sigma}\|_{2p}^{2} = \|\widehat{f} \widehat{\mathrm{d}\sigma} \widehat{f} \widehat{\mathrm{d}\sigma}\|_{p}$$

$$\leq \left(\sum_{(k,l)} \|\widehat{f} \widehat{\mathrm{d}\sigma_{k}} \widehat{f} \widehat{\mathrm{d}\sigma_{l}}\|_{p}^{p*} \right)^{\frac{1}{p^{*}}} \leq \dots ,$$

where $p^* = \min\{p, p'\}$.

Goal: Establish a bilinear estimate

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_p \leq C(k,l,p)\|f\|_{L^q(\sigma_k)}\|g\|_{L^q(\sigma_l)}.$$

Important: How does the constant depend on the specific pair of subsurfaces over (τ_k, τ_l) ?

Let $Q = [0,1] \times [0,1]$ be the unit square. Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

Let $Q = [0,1] \times [0,1]$ be the unit square. Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

Let $Q=[0,1]\times[0,1]$ be the unit square. Decompose $Q\times Q=\bigcup_{(k,l)}\tau_k\times\tau_l$ in a "suitable" way.

Let $Q=[0,1]\times[0,1]$ be the unit square. Decompose $Q\times Q=\bigcup_{(k,l)}\tau_k\times\tau_l$ in a "suitable" way.

Let $Q = [0,1] \times [0,1]$ be the unit square. Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

In some cases, we need to decompose further:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

In some cases, we need to decompose further:

Let $Q = [0,1] \times [0,1]$ be the unit square.

Decompose $Q \times Q = \bigcup_{(k,l)} \tau_k \times \tau_l$ in a "suitable" way.

In some cases, we need to decompose further:

The main reason for this decomposition is that the curvatures are essentially constant.

Global bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k\widehat{\mathrm{gd}\sigma_l}}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

Global bilinear estimates:

$$\|\widehat{f}\widehat{\mathrm{d}\sigma_k}\widehat{\mathrm{g}}\widehat{\mathrm{d}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l)\frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}}\|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon>0$, $R\geq 1$ and certain cuboids $Q_{k,l}(R)\to \mathbb{R}^3$, $R\to \infty$.

• Global bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l)\frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}}\|g\|_{L^2(S_l,\sigma_l)}.$$

for
$$\varepsilon > 0$$
, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

• Induction on scales: reduce ε step by step.

Global bilinear estimates:

$$\|\widehat{f}\widehat{\mathrm{d}\sigma_k}\widehat{\mathrm{g}}\widehat{\mathrm{d}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l)\frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}}\|g\|_{L^2(S_l,\sigma_l)}.$$

for
$$\varepsilon > 0$$
, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

- Induction on scales: reduce ε step by step.
- Find a suitable rescaling to a "nice" situation ("isotropic" wave packets)

Global bilinear estimates:

$$\|\widehat{f}\widehat{\mathrm{d}\sigma_k}\widehat{\mathrm{g}}\widehat{\mathrm{d}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

$$\|\widehat{f}\widehat{\mathrm{d}\sigma_k}\widehat{\mathrm{g}}\widehat{\mathrm{d}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l)\frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}}\|g\|_{L^2(S_l,\sigma_l)}.$$

for
$$\varepsilon > 0$$
, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

- Induction on scales: reduce ε step by step.
- Find a suitable rescaling to a "nice" situation ("isotropic" wave packets)
- Decompose into wave packets (well localised in position and momentum space)

Global bilinear estimates:

$$\|\widehat{f\mathrm{d}\sigma_k}\widehat{\mathrm{g}\mathrm{d}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

$$\|\widehat{f}\widehat{\mathrm{d}\sigma_k}\widehat{\mathrm{g}}\widehat{\mathrm{d}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l) \frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}} \|g\|_{L^2(S_l,\sigma_l)}.$$

for
$$\varepsilon > 0$$
, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

- Induction on scales: reduce ε step by step.
- Find a suitable rescaling to a "nice" situation ("isotropic" wave packets)
- Decompose into wave packets (well localised in position and momentum space)
- Geometric argument

Global bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq C(p,k,l)\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)},$$

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l)C_{\varepsilon}R^{\varepsilon}\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon > 0$, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

Global bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq \frac{C(p,k,l)}{\|f\|_{L^2(S_k,\sigma_k)}} \|g\|_{L^2(S_l,\sigma_l)},$$

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq \frac{C(p,k,l)}{C_\varepsilon}R^\varepsilon\|f\|_{L^2(S_k,\sigma_k)}\|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon > 0$, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

• We need a quantitative version of the classical ε -removal argument, being sensitive to the dependence of the constant C(p, k, l).

• Global bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(\mathbb{R}^3)} \leq \frac{C(p,k,l)}{\|f\|_{L^2(S_k,\sigma_k)}} \|g\|_{L^2(S_l,\sigma_l)},$$

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq \frac{C(p,k,l)}{C_\varepsilon} R^\varepsilon \|f\|_{L^2(S_k,\sigma_k)} \|g\|_{L^2(S_l,\sigma_l)}.$$

for
$$\varepsilon > 0$$
, $R \ge 1$ and certain cuboids $Q_{k,l}(R) \to \mathbb{R}^3$, $R \to \infty$.

- We need a quantitative version of the classical ε -removal argument, being sensitive to the dependence of the constant C(p, k, l).
- For instance, the ε -removal uses some decay of the Fourier transform: $|\widehat{\mathrm{d}}\sigma_k(x)| < C'(k)(1+|x|)^{-s}$.

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l) \frac{C_{\varepsilon}R^{\varepsilon}}{\|f\|_{L^2(S_k,\sigma_k)}} \|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon>0$, $R\geq 1$ and certain cuboids $Q_{k,l}(R) o \mathbb{R}^3$, $R o \infty.$

• Induction on scales: reduce ε step by step.

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l) C_{\varepsilon} R^{\varepsilon} \|f\|_{L^2(S_k,\sigma_k)} \|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon>0$, $R\geq 1$ and certain cuboids $Q_{k,l}(R) o \mathbb{R}^3$, $R o \infty$.

- Induction on scales: reduce ε step by step.
- Start of the induction:

$$\begin{split} \|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{L^{p}(Q_{k,l}(R))} \leq &|Q_{k,l}(R)|^{\frac{1}{p}}\|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{\infty} \\ \leq &A(p,k,l)R^{N}\|f\|_{L^{2}(S_{k},\sigma_{k})}\|g\|_{L^{2}(S_{l},\sigma_{l})}. \end{split}$$

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l) C_{\varepsilon} R^{\varepsilon} \|f\|_{L^2(S_k,\sigma_k)} \|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon>0$, $R\geq 1$ and certain cuboids $Q_{k,l}(R) o \mathbb{R}^3$, $R o \infty$.

- Induction on scales: reduce ε step by step.
- Start of the induction:

$$\begin{split} \|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{L^{p}(Q_{k,l}(R))} \leq &|Q_{k,l}(R)|^{\frac{1}{p}}\|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{\infty} \\ \leq &A(p,k,l)R^{N}\|f\|_{L^{2}(S_{k},\sigma_{k})}\|g\|_{L^{2}(S_{l},\sigma_{l})}. \end{split}$$

• However, $A(p, k, l) \gg C(p, k, l)$.

Local bilinear estimates:

$$\|\widehat{\mathrm{fd}\sigma_k}\widehat{\mathrm{gd}\sigma_l}\|_{L^p(Q_{k,l}(R))} \leq C(p,k,l) C_{\varepsilon} R^{\varepsilon} \|f\|_{L^2(S_k,\sigma_k)} \|g\|_{L^2(S_l,\sigma_l)}.$$

for $\varepsilon>0$, $R\geq 1$ and certain cuboids $Q_{k,l}(R) o \mathbb{R}^3$, $R o \infty$.

- Induction on scales: reduce ε step by step.
- Start of the induction:

$$\begin{split} \|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{L^{p}(Q_{k,l}(R))} \leq &|Q_{k,l}(R)|^{\frac{1}{p}}\|\widehat{f}\widehat{\mathrm{d}\sigma_{k}}\widehat{g}\widehat{\mathrm{d}\sigma_{l}}\|_{\infty} \\ \leq &A(p,k,l)R^{N}\|f\|_{L^{2}(S_{k},\sigma_{k})}\|g\|_{L^{2}(S_{l},\sigma_{l})}. \end{split}$$

- However, $A(p, k, l) \gg C(p, k, l)$.
- Similar problem for "Schwartz tail" contributions of wave packets

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1] \}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$

Let $S=\{(x_1,x_2,x_1^{m_1}+x_2^{m_2})|x_1,x_2\in[0,1]\},\ m_1\geq m_2\geq 2.$ By h denote the height of S, given by $\frac{1}{h}=\frac{1}{m_1}+\frac{1}{m_2}.$ The initial analysis only gives a partial result:

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \geq m_2 \geq 2$. By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}$. The initial analysis only gives a partial result. Fix m_1 and choose $m_2' > m_2$, i.e. h' > h.

Let $S=\{(x_1,x_2,x_1^{m_1}+x_2^{m_2})|x_1,x_2\in[0,1]\},\ m_1\geq m_2\geq 2.$ By h denote the height of S, given by $\frac{1}{h}=\frac{1}{m_1}+\frac{1}{m_2}.$ The initial analysis only gives a partial result. Fix m_1 and choose $m_2'>m_2$, i.e. h'>h.

Let $S=\{(x_1,x_2,x_1^{m_1}+x_2^{m_2})|x_1,x_2\in[0,1]\},\ m_1\geq m_2\geq 2.$ By h denote the height of S, given by $\frac{1}{h}=\frac{1}{m_1}+\frac{1}{m_2}.$ The initial analysis only gives a partial result. Fix m_1 and choose $m_2'>m_2$, i.e. h'>h. Observe

$$\|R_{BL}^*\|_{L^2(S_k,\sigma_k)\times L^2(S_l,\sigma_l)\to L^p(\mathbb{R}^3)}\leq C_{m_1,m_2}(p,k,l)$$

Let $S = \{(x_1, x_2, x_1^{m_1} + x_2^{m_2}) | x_1, x_2 \in [0, 1]\}, m_1 \ge m_2 \ge 2.$ By h denote the height of S, given by $\frac{1}{h} = \frac{1}{m_1} + \frac{1}{m_2}.$ The initial analysis only gives a partial result.

Fix m_1 and choose $m'_2 > m_2$, i.e. h' > h.

Observe

$$\|R_{BL}^*\|_{L^2(S_k,\sigma_k)\times L^2(S_l,\sigma_l)\to L^p(\mathbb{R}^3)}\leq C_{m_1,m_2}(p,k,l)\leq C_{m_1,m_2'}(p,k,l).$$

• Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$

- Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$
- Curvature with different signs: $\Phi(x_1, x_2) = x_1^{m_1} x_2^{m_2}$

- Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$
- Curvature with different signs: $\Phi(x_1,x_2)=x_1^{m_1}-x_2^{m_2}$
- Work in progress for $\Phi(x_1, x_2) = x_1^2 x_2^2 + \mathcal{O}(|x|^3)$.

- Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$
- Curvature with different signs: $\Phi(x_1,x_2)=x_1^{m_1}-x_2^{m_2}$
- Work in progress for $\Phi(x_1, x_2) = x_1^2 x_2^2 + \mathcal{O}(|x|^3)$.
- Results in higher dimensions

- Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$
- Curvature with different signs: $\Phi(x_1, x_2) = x_1^{m_1} x_2^{m_2}$
- Work in progress for $\Phi(x_1, x_2) = x_1^2 x_2^2 + \mathcal{O}(|x|^3)$.
- Results in higher dimensions However, any reasonable result would imply progress for the paraboloid as

$$\phi_m(x) = x_1^2 + x_2^2 + x_3^m$$

- Up to now, we can only handle functions of the form $\Phi(x_1, x_2) = \phi_1(x_1) + \phi_2(x_2)$
- Curvature with different signs: $\Phi(x_1,x_2)=x_1^{m_1}-x_2^{m_2}$
- Work in progress for $\Phi(x_1, x_2) = x_1^2 x_2^2 + \mathcal{O}(|x|^3)$.
- Results in higher dimensions

 However, any reasonable result would imply progress for the paraboloid as $m \to \infty$

$$\phi_m(x) = x_1^2 + x_2^2 + x_3^m \stackrel{m \to \infty}{\longrightarrow} \phi(x) = x_1^2 + x_2^2$$

Thank you for your attention!