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The restriction operator

Let S be a smooth, compact hypersurface in R"” with surface measure o.
The restriction operator is R(f) = f|s,
where

7(6) = /]R (e i

is the Fourier transform of f € L1(IR").
For which 1 < p, g < oo does
R:LP(R") — LY(S,0)

give a bounded Operator?
Adjoint Operator: R*(g)(x) = gdo(x = [sg(§)e *¢do(¢).
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Trivial Results

We always have

lgdalloe < llgllir(s.o)
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lgdalloe < llgllir(s.o)
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Trivial Results

We always have

lgdolloe < llgllir(s.oy < lgllLa(s.o),

i.e. R*:L9(S,0) — LP(IR") is bounded for p =00, g >1
If S c R"! this is sharp.
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Surfaces with non-vanishing Gaussian curvature

Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : L9(S) — LP(R"1):
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Let S be a compact hypersurface with non-vanishing Gaussian curvature.

Boundedness of R* : L9(S) — LP(R"1):
o Conjecture: % > ”+2 and p > 2"+2
o Both conditions are known to be necessary

o n =1 solved (Zygmund 74).
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Surfaces with non-vanishing Gaussian curvature

Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : L9(S) — LP(R"1):

o Conjecture: % > ”+2 and p > 2"+2

o Both conditions are known to be necessary
o n =1 solved (Zygmund 74).
°

n>2:q=2solved (Stein, Tomas 75).
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Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : L9(S) — LP(R"*1):

: .1 n+2 2n+2
Conjecture: 7 > o -

Both conditions are known to be necessary
n =1 solved (Zygmund 74).
n>2:q =2 solved (Stein, Tomas 75).

Other values of g : improvements in the 90's by Bourgain's work
(then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).
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Both conditions are known to be necessary

n =1 solved (Zygmund 74).

n>2:q =2 solved (Stein, Tomas 75).

Other values of g : improvements in the 90's by Bourgain's work
(then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).

o Confirmed for p > 221‘;’ (Tao 2003).
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Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : LI(S) — LP(R"*1):

: .1 n+2 2n+2
o Conjecture: 7 > D -

Both conditions are known to be necessary

o n =1 solved (Zygmund 74).

@ n>2:q=2solved (Stein, Tomas 75).

o Other values of g : improvements in the 90's by Bourgain's work
(then Wolff, Moyua, Vargas, Vega, Tao (Bilinear approach)).

o Confirmed for p > 221‘;’ (Tao 2003).

o Further progress by multilinear approach (Bourgain and Guth 2011),
" polynomial method” (Guth 2015)

and p >
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Surfaces with non-vanishing Gaussian curvature

Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : L9(S) — LP(R"*1):
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Let S be a compact hypersurface with non-vanishing Gaussian curvature.
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o Conjecture: 7 > o and p > -
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o Holder: (g, p) implies (g, p) for g < §
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Surfaces with non-vanishing Gaussian curvature

Let S be a compact hypersurface with non-vanishing Gaussian curvature.
Boundedness of R* : L9(S) — LP(R"*1):

; .1 5 nd2 2n42
o Conjecture: 7 > o and p > -
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Stein-Tomas
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o Holder: (g, p) implies (g, p) for g < §
o Nikishin-Maurey-Pisier factorisation: (oo, p) implies (p, p) for S = S”
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Curves and surfaces of finite type

Let v = {(x,x™)|x € [0,1]}, m > 2.
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Curves and surfaces of finite type

Let v = {(x,x™)|x € [0,1]}, m > 2.

m+1

R* : L9P(y) — LP(R?) for p > 4 and % >

Let T = {(x,z) e R?xR| % €v, 1<z <2}
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Curves and surfaces of finite type

Let v = {(x,x™)|x € [0,1]}, m > 2.

R*: L9P(y) = LP(R?) for p > 4 and J; > M:L.

Let T = {(x,z) e R?xR| % €v, 1<z <2}

R*: L9P(T) = LP(R?) for p > 4 and J > ™.

Let I = {(x, |x|™) € R"xR}.

R* : L9P(T) — LP(R"*1) for % > M0 and p such that the restriction

np
conjecture holds.

The proof involves affine arclength measure.
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Known results

Let S = {(Xl,X2,X{n:L —|—X£’72)’X1,X2 € [0, 1]}, my > my > 2.
By h denote the height of S, given by ; = mll + m%
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Known results

Let S = {(x1,x2, X;™ + X3 2)|x1,x2 € [0, 1]}, m1 > mp > 2.
By h denote the height of S, given by % = mll + m%

. 3)if 1w htl
R*: L9(S,0) = LP(R®) if ;; > *5= and p > 4.

=
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Known results

Let S = {(x1,x2, X;™ + X3 2)|x1,x2 € [0, 1]}, m1 > mp > 2.
By h denote the height of S, given by % = mll + m%

R*: L%(S,0) — LP(R3) if p>2h+2.

7 V.
P
1
o S~ 1 _ bl
[FUJ 7T p
[IKM]
1 | | » 1
1 " ' i
3 2 1
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Known results

Let S = {(x1,x2, X;™ + X3 2)|x1,x2 € [0, 1]}, m1 > mp > 2.
By h denote the height of S, given by % = mll + m%

R*: L9P(S,0) — LP(R3) if % > %, p > max{%, h+ 1} and
%‘i_ 2m,1)+1 < m12+2.
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Necessary conditions

Let S = {(x1,x2, x{™ + x372)|x1, %2 € [0 1]}, m1 > m2 > 2.
By h denote the helght of S, given by % 5= Fl + E.

R*: L9P(S,0) — LP(R?) if _; > h+1, p > max{%, h+1} and
%‘i_ 2m,1)+1 < m12+2.
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Necessary conditions

Let S = {(x1,x2, x,™ + X3 2)|x1, %2 € [0 1]}, m1 > m2 > 2.
By h denote the helght of S, given by % 5= m_1 + E.

R*: L9P(S,0) — LP(R?) if _; > h+1, p > max{%, h+1} and
%‘i_ 2m,1)+1 < m12+2'

Assume R* : L9(S,0) — LP(R?). Then & > "1, p > max{3,h + 1} and
1 + 2mi+1 < m12+2
q P )
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Lorentz space?

Let S = {(x1,x2, x{™ + x32)|x1, %2 € [0,1]}, m1 > mp > 2.
By h denote the height of S, given by % = m% + miz

R*: L9P(S,0) = LP(R3) if L > M3, p > max{}, h+1} and
1 + 2mp+1 < m12+2.
q P
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By h denote the height of S, given by % = m% + miz

R*: L9P(S,0) = LP(R3) if L > M3, p > max{}, h+1} and
1 + 2mp+1 < m12+2-
q P

o By trivial considerations this gives the L9(S) — LP(IR3) result, for

1 o htl
q/> P .
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Lorentz space?

Let S = {(x1, X2, x;™ + x32)|x1, %2 € [0 1]}, m1 > m2 > 2.
By h denote the he|ght of S, given by % 5= 71 + E.

R*: L9P(S,0) = LP(R3) if L > M3, p > max{}, h+1} and
1 + 2mp+1 < m12+2-
q P

o By trivial considerations this gives the L9(S) — LP(IR3) result, for

1 h+1l
q > 3

o When %) < %, the strong type result follows by interpolation.
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Lorentz space?

Let S = {(Xl,X2,X{nl +X2m2)’X1,X2 S [0, 1]}, my > mp > 2.
By h denote the height of S, given by % = m% + miz

R*: L9P(S,0) = LP(R3) if L > M3, p > max{}, h+1} and
1 2mi+1 m1+2
1 2mdl o mtz

q p

o By trivial considerations this gives the L9(S) — LP(IR3) result, for

1 o htl
q/> P .

, the strong type result follows by interpolation.

o If 3 =" and 1 > 2, L9(S,0) = LP(R?) fails,

T =
|
Q=
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Different situations

Let S = {(x1,x2, X{™" + %3 2)|x1, % € [0 1}, my > my > 2.
By h denote the helght of S, given by 1 5= n%1 + L

my’

R*: L9P(S,0) = LP(R3) if L > "L, p > max{}, h+ 1} and
1 + 2mi+1 < m12+2.
q P
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Let S = {(x1,x2, X{™" + %3 2)|x1, % € [0 1}, my > my > 2.
By h denote the helght of S, given by 1 5= n%1 + L

my’

R*: L9P(S,0) = LP(R3) if L > "L, p > max{}, h+ 1} and
1 + 2mi+1 < m1+2.
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Different situations

Let S = {(X1,X2,X1ml —|-X2m2)|X1,X2 S [0, 1]}, my > my > 2.
By h denote the height of S, given by % =141

my my*

R*: L9P(S,0) = LP(R3) if L > "L, p > max{}, h+ 1} and

o
1, 2m+1 - m+2
+p < TS
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Different situations

Let S = {(X1,X2,X1ml —|-X2m2)|X1,X2 S [0, 1]}, my > my > 2.
By h denote the height of S, given by % =141

my my*

R*: L9P(S,0) = LP(R3) if L > "L, p > max{}, h+ 1} and

1, 2m+1 - m+2
q+ < o
1
= 1
Po3A
i————\“—\
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Different situations

Let S = {(x1,x2, X{™" + %3 2)|x1, % € [0 1}, my > my > 2.
By h denote the helght of S, given by 1 5= n%1 + L

my’

R*: L9P(S,0) = LP(R3) if L > "L, p > max{}, h+ 1} and
1 + 2mi+1 < m1+2.
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1 2m;+1 my+2
q+ P <=7

Necessary condition

Consider subsurface S. = {(x1,x2, x{™* + x5 2)|e < x1 < 25,% <xp <1},
where the principle curvatures are more or less constant
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Necessary condition % + 2’";“ < ’"12+2

Consider subsurface S. = {(x1,x2, x{™* + x5 2)|e < x1 < 25,% <xp <1},

where the principle curvatures are more or less constant
e
To 1

mi mo
Ty Xy

N[—=
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Necessary condition % + 2’";“ < ’"12+2

Consider subsurface S. = {(x1, %2, x{™ + x3)|e < x1 < 2¢, 3 5 <xo < 1},

where the principle curvatures are more or Iess constant
To 1

mi + x;”?

0 j T 1

2
Rescaling: S(K) = {(x1,x2,x2 + x5 + O(|x|®))|x1 € [0,1], % € [0, K]},
K=¢"7 and

Lo S s (1) (34),
La(S(e™ 72 )= LP(R3) ™
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Long-stretched paraboloid

S(K) = {(x1, %2, 54 + x5 + O(Ix%)) 1 € [0, 1], x2 € [0, K]}
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Long-stretched paraboloid

S(K) = {(x1, %2, 54 + x5 + O(Ix%)) 1 € [0, 1], x2 € [0, K]}
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Long-stretched paraboloid

S(K) = {(x1, %2, 54 + x5 + O(Ix%)) 1 € [0, 1], x2 € [0, K]}

S
W= ol

»
>

Q=

. Estimates invariant under parabolic scaling.

: Apply estimates for the Parabola.

Q= Q=
Tlw BIN
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Long-stretched paraboloid

S(K) = {(x1, %2, 54 + x5 + O(Ix%)) 1 € [0, 1], x2 € [0, K]}

S
W= ol

»
>

Q=

On % = %: Estimates invariant under parabolic scaling.
On $ = %: Apply estimates for the Parabola.
Conjecture:

(:-3)..

IR* | Lags(ky)—rrre) S K
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1 2m;+1 my+2
q+ p <732

Necessary condition

Conjecture:

(3-3)..

IRl La(s(k)y—rr(m3) S K

November 2016 13 /22



Necessary condition % + 2"1;“ < ’"12+2

Conjecture:

(3-3)..

IRl La(s(k)y—rr(m3) S K

We could prove that

(3-3)..

IR*|La(s(ky)—Lr(r3) Z K
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Necessary condition % + 2’";“ < ’"12+2

Conjecture:

1_
IR [ La(s(ky)—rr(r3) S KN

We could prove that

I1R*[|La(s(k))—Lr(R3) 2 K(
Thus

()

NE
/\
‘u\'—‘
~
w
B
E
+
AN
S~—
|
Q\‘,_.
—
e
+
=
N—r

< * m
SR ooy < 2
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Necessary condition % + 2’";“ < ’"12+2

Conjecture:
: (-2
IR [ a(s(ky)—Lrma)y S KNP /.

We could prove that

(3-3)..

IR*|La(s(ky)—Lr(r3) Z K
Thus

LD SRy <P,

L9(S(=~ 7))~ LP(R3)
For e — 0:

1+2m1—|-1§m1-|-2
q p 2
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1 2m;+1 my+2
q+ P <=7

Necessary condition

Consider the subsurface where 0.5 < x, < 1. >
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Necessary condition % + 2’";“ < ’"12+2
A
Consider the subsurface where 0.5 < x, < 1. >

Test the restriction operator for f(x) =1 € L9(S):

1 m 1
fdo(§) = / el (S1x1—€3x l)dxl/ el(£2x2—£3[x22-|-(9(x§')])dx2
0 0

November 2016 14 / 22



Necessary condition % + 2’";“ < ’"12+2
A
Consider the subsurface where 0.5 < x» < 1. >

1
Test the restriction operator for f(x) = x; ? log(x1)® € LI(S):

1 o1 1
f/d;(g) = / ei(£1X1*§3x1 l)X1 ‘17 |Og(X1)st1/ e:(§2x27§3[x§+o(xg)])dxz
0 0

November 2016 14 / 22
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The bilinear method

The "bilinear implies linear” argument due to Tao-Vargas-Vega 1997:
Let Q =[0,1] x [0, 1] be the unit square.

Decompose Q x @ = k) 7k X 7/ in a "suitable” way.
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Let Q =[0,1] x [0, 1] be the unit square.

Decompose Q x @ = k) 7k X 7/ in a "suitable” way.

Ifdol3, =[lfdofdo],

1
i

< [ Y Ifdofdofz | <.
(k)

where p* = min{p, p'}.
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The bilinear method

The "bilinear implies linear” argument due to Tao-Vargas-Vega 1997:
Let Q =[0,1] x [0, 1] be the unit square.

Decompose Q x @ = k) 7k X 7/ in a "suitable” way.

Ifdol3, =[lfdofdo],

1
i

< [ Y Ifdofdofz | <.
(k)

where p* = min{p, p'}.
Goal: Establish a bilinear estimate

|fdokgdall, < C(k, 1, P)IIfllLaopllglLa(o)-
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The "bilinear implies linear” argument due to Tao-Vargas-Vega 1997:
Let Q =[0,1] x [0, 1] be the unit square.
Decompose Q x Q = U(k’,) Tk X 77 in a "suitable” way.

Ifdol3, =[lfdofdo],

1
pF

<Y Ifdowfdoyzr|] <...
(k.1

where p* = min{p, p'}.
Goal: Establish a bilinear estimate

Ifdowgdo|lp < C(k, 1, p)IfllLaoy) €]l La(o-

Important: How does the constant depend on the specific pair of
subsurfaces over (7, 7/)?

Stefan Buschenhenke November 2016 15 / 22
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Bidyadic decompostiton
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Bidyadic decompostiton

Let Q = [0,1] x [0, 1] be the unit square.
Decompose Q x @ = k) Tk X 7/ in a "suitable” way.

In some cases, we need to decompose further:
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Bidyadic decompostiton
Let @ =[0,1] x [0, 1] be the unit square.
Decompose Q@ x Q = U(k’,) Tk X 77 in a "suitable” way.

In some cases, we need to decompose further:
A

T

=
\/
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Bidyadic decompostiton

Let Q = [0,1] x [0, 1] be the unit square.
Decompose Q@ x Q = U(k’,) Tk X 77 in a "suitable” way.

In some cases, we need to decompose further:
A

T

»
|

Tk

The main reason for this decomposition is that the curvatures are
essentially constant.

November 2016
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o Global bilinear estimates:

|fdokgdo||pr3y < C(p, k, DIIflli2(s, o0&l 2(5),01)5

o Local bilinear estimates:
|fdokgdail|ir(q,,(r)) < Clpy ki NCRfll2(s,.00 181 L2(S),0)-

for £ >0, R > 1 and certain cuboids Qx(R) = R3, R — oc.
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et
The bilinear method

o Global bilinear estimates:

|fdokgdo||pr3y < C(p, k, DIIflli2(s, o0&l 2(5),01)5

o Local bilinear estimates:
|fdokgdail|ir(q,,(r)) < Clpy ki NCRfll2(s,.00 181 L2(S),0)-
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@ Induction on scales: reduce ¢ step by step.

Find a suitable rescaling to a "nice” situation ("isotropic” wave
packets)

Decompose into wave packets (well localised in position and
momentum space)

Geometric argument
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Some troubleshooters
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o Global bilinear estimates:
|Fdowgdayl o) < C(p. k. DIIFll 25,00 18]l 2(500)-
o Local bilinear estimates:
|Fdowgdoil e, (ry < C(p. k. 1) CRE|IFll 25,00 18]l 2(500)-

for £ >0, R > 1 and certain cuboids Qx(R) — R3, R — oc.

o We need a quantitative version of the classical e-removal argument,
being sensitive to the dependence of the constant C(p, k, /).

o For instance, the e-removal uses some decay of the Fourier transform:
[dok(x)| < C'(K)(1 + [x])~*.
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o Local bilinear estimates:
|fdokgdail|ir(q,, (r)) < C(p, ki NCRfll2(s,.00 81l L2(S,,0)-

for £ >0, R > 1 and certain cuboids Qx(R) — R3, R — oc.
o Induction on scales: reduce ¢ step by step.
o Start of the induction:

—_—— 1
Ifdokgdallir(q,(ry) <|Qki(R)[?|[fdokgda|s
S/4(p’ k7 I)RNH f”LQ(Sk,Uk)HgHLz(Sl,U/)'

o However, A(p, k,1) > C(p, k, ).

o Similar problem for " Schwartz tail” contributions of wave packets

Stefan Buschenhenke November 2016 19 / 22



- &=
Completing the proof

Let S = {(x1,%2, ™ +37)[xt, %2 € [0, 1]}, m1 > mp > 2.
By h denote the height of S, given by + = L + L

my my”°

November 2016 20 / 22



- &=
Completing the proof

Let S = {(x1,x2, X{™ 4+ x5 2)|x1,x2 € [0,1]}, my > mp > 2.
By h denote the height of S, given by % = mil + m%
The initial analysis only gives a partial result:

Sl
»
!

10 T ~a

Q=

\

November 2016



- &=
Completing the proof

Let S = {(x1,x2, X{™ 4+ x5 2)|x1,x2 € [0,1]}, my > mp > 2.
By h denote the height of S, given by % = mil + m%
The initial analysis only gives a partial result.

Fix my and choose m, > my, i.e. h' > h.

S AL
»
!

10 T ~a

Q=

\

November 2016



- &=
Completing the proof

Let S = {(x1,x2, X{™ 4+ x5 2)|x1,x2 € [0,1]}, my > mp > 2.
By h denote the height of S, given by % = mil + m%
The initial analysis only gives a partial result.

Fix my and choose m, > my, i.e. h' > h.

S AL
»
!

Q=

\

November 2016



- &=
Completing the proof

Let S = {(x1,x2, X{™ 4+ x5 2)|x1,x2 € [0,1]}, my > mp > 2.
By h denote the height of S, given by % = mil + m%
The initial analysis only gives a partial result.

Fix my and choose m, > my, i.e. h' > h.

Observe
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Completing the proof

Let S = {(x1,x2, X{™ 4+ x5 2)|x1,x2 € [0,1]}, my > mp > 2.
By h denote the height of S, given by % = mil + m%
The initial analysis only gives a partial result.

Fix my and choose m, > my, i.e. h' > h.

Observe

“REL”L2(5k,ak)><LQ(S/,U/)—>LP(]R3) < le,mz(pa k, /) < le,mé(p7 k, /)
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Related questions

o Up to now, we can only handle functions of the form
P(x1, %) = d1(x1) + d2(x2)

o Curvature with different signs: ®(x1,x) = x;™ — x5 2
o Work in progress for ®(x1,x2) = xZ — x5 + O(|x[3).
o Results in higher dimensions
However, any reasonable result would imply progress for the

paraboloid as
om(x) = xF 5+ "= G(x) = f + 5
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Thank you for your attention!
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