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Bilinear Extension Estimates
For f € L?(R") let

eVlf) = | F)eMletag.
Rn

Note that ¢!Vl is a homogeneous (or free) solution to the wave equation and is
(essentially) the extension operator for the cone {7 = [£|}.

Bilinear Extension
Suppose supp f, supp g C {|¢| = 1}. For which p do we have

Heit|V|feit|V|g||LfT(R1+n) S ||f||L2(R")||g||L2(R")?
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Bilinear Extension
Suppose supp f, suppg C {|¢| ~ 1}. For which p do we have

HeitlvlfeitlvlgHLfI(an) S Ifllzz ) llgll L2 wny?
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Bilinear Extension
Suppose supp f, suppg C {|¢| ~ 1}. For which p do we have

V1" Vg ]| o gaimy S I lz2@n) gl z2grny?

¢ |Immediate observation:

o~

f, G have compact support = ¢'‘IV feitIV

g has compact Fourier support

hence by Bernstein’s inequality followed by Holder
R e Py ey [ v PRI P P

and thus the case p = oo is always true.
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Bilinear Extension Estimates

Can do better by exploiting the curvature of the cone. More precisely, the
Strichartz estimate

([ S ez
Ly~ (RnH1)

implies that, after an application of Holder,

eIV 7e g i S MVIFY nsr 1€V g] yney
Lt Lot L

S lzzllglice.
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Bilinear Extension Estimates

Can do better by exploiting the curvature of the cone. More precisely, the
Strichartz estimate

1A ney SN2
L (Rn+1)

t,x

implies that, after an application of Holder,

1191 £ 1g]| iy S 1EMVF] ynt [€1Vg] s
Lt Lt Lt

S lzzllglice.

Hence

n—+1
1<p<00-

curvature = bilinear extension estimate for

In general range is sharp (just take f = g and use fact that linear Strichartz is
sharp).
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Bilinear Extension Estimates
Alternative approach is to exploit transversality. For example, we have

Theorem
Assume that supp f C {|¢ — e1| < 1}, supp g C {|€ + e1| < 1}. Then

it\V|fezt\V|

e ollz. S 1 0eslollzs
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Bilinear Extension Estimates
Alternative approach is to exploit transversality. For example, we have

Theorem
Assume that supp f C {|¢ — e1| < 1}, supp g C {|€ + e1| < 1}. Then

it\V|fezt\V|

e ollz. S 1 0eslollzs

e Proof follows by a change of variables together with Plancheral and
Cauchy-Schwartz.
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Bilinear Extension Estimates
Alternative approach is to exploit transversality. For example, we have

Theorem
Assume that supp f C {|¢ — e1| < 1}, supp g C {|€ + e1| < 1}. Then

it\V|fezt\V|

e ollz. S 1 0eslollzs

e Proof follows by a change of variables together with Plancheral and
Cauchy-Schwartz.

e Version is true for general phases ¢'t®1(V) f ¢1t®2(V) g under the
transversality assumption

[VE1(§) — VPa(n)| 2 1

for £ € supp f, 7 € supp g.

5/24
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Bilinear Extension Estimates

}|6“W|.f6itlvlg||,;fI(RHW,) Sz ey llgll 22 ey

To summarise

n+1<p<oo

curvature —
n—1

transversality = 2<p<x

6/24
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Bilinear Extension Estimates

Heit‘vlf@itlvlg||,;fI(RHW,) S I lze @ llgllp2 ey

To summarise

n+1
curvature = 1 <p< oo
n—
transversality = 2<p<x

e The region Z—ﬂ < p < oo only requires curvature, and is a linear estimate.

6/24
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Bilinear Extension Estimates

Heit‘vlf@“lvlg||Lf,I(RHn) S ll2 ey llgll 2 @ny-
To summarise
n+1
curvature - <p<
n—1
transversality = 2<p<

e The region "“ < p < oo only requires curvature, and is a linear estimate.

e The fully transverse case p = 2 is a bilinear estimate, and does not need
any curvature. In particular is true for hyperplanes (i.e. solns to transport
equation).

6/24
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Bilinear Extension Estimates

Heit‘vlf@“lvlg||LfI(RHn) S ll2 ey llgll 2 @ny-

To summarise
+1

3

curvature —

lp
<p<L oo

[\

transversality =

e The region "“ < p < oo only requires curvature, and is a linear estimate.
e The fully transverse case p = 2 is a bilinear estimate, and does not need

any curvature. In particular is true for hyperplanes (i.e. solns to transport
equation).

e Can improve range of p by exploiting both Transversality and Curvature.
First progress below p = 2 due to Bourgain '91.
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Bilinear Extension Estimates

Heit‘vlf@“lvlﬂhfI(RHn) Sz ey llgll 22 ey

To summarise
+1

3

curvature —

[\

1 <p<
transversality = <p< oo

e The region "“ < p < oo only requires curvature, and is a linear estimate.

e The fully transverse case p = 2 is a bilinear estimate, and does not need
any curvature. In particular is true for hyperplanes (i.e. solns to transport
equation).

e Can improve range of p by exploiting both Transversality and Curvature.
First progress below p = 2 due to Bourgain '91.

e Conjecture of Klainerman-Machedon: Under suitable transversality and
curvature assumptions, the bilinear extension estimate holds for p > "*3

Timothy Candy — Bilinear Restriction Estimates and Applications 6/24



Bilinear Extension Estimates

Theorem (Wolff '01)

Let 242 < p < oo and assume

supp f C {|€ —e1| <1},  suppg C {[¢ +e1] < 1}.

Then

HeithIfez'tIVIgHLf‘E(RHH) S lle2@ey gl 2 @ny-
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Bilinear Extension Estimates

Theorem (Wolff '01)

Let 242 < p < oo and assume

supp f C {|€ —e1| <1},  suppg C {[¢ +e1] < 1}.

Then

HeitlvlfeitlvlgHLf‘w(Run) S 1 fllz ey llgll 2 ey -

e The endpoint p = Z—fl” is also known and is due to Tao '01.
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Bilinear Extension Estimates

Theorem (Wolff ’01)

Let 2 < p < oo and assume

supp f C {|€ —e1| <1},  suppg C {[¢ +e1] < 1}.

Then

HeitlvlfeitlvlgﬂLf‘z(Run) S fllzz@nyllgll e @n)-

e The endpoint p = Z—fl” is also known and is due to Tao '01.

e Although the above was stated for the cone, it is also true for general
surfaces under appropriate Curvature and Transversality assumptions. A
precise statement will be given later.
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Applications
e Linear Restriction.

Bilinear extension estimates originally devised to improve the range of linear
restriction estimates (i.e. Bourgain, Tao-Vargas-Vega).
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Applications

e Linear Restriction.
Bilinear extension estimates originally devised to improve the range of linear
restriction estimates (i.e. Bourgain, Tao-Vargas-Vega).

e Improved Strichartz Estimates.
For instance we have the following estimate due to J. Ramos '12

\Ie”‘vlflleg% A

1
2
t,x 2,q

with ¢ = QZ—E (¢ = 2 corresponds to standard Strichartz bound). Stronger
versions of this estimate (also due to J. Ramos’12) play a key role in the
profile decomposition for the linear wave equation.

8/24
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Applications
e Null Form Estimates.

The bilinear restriction estimate can be used as a building block to prove
estimates without any assumptions on the Fourier Transform of f and g.
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Applications
e Null Form Estimates.

The bilinear restriction estimate can be used as a building block to prove
estimates without any assumptions on the Fourier Transform of f and g.

For instance, for waves u = eIV f, v = €'*IVlg we have

[0rudv — Vu - VU”L;{I S Hf”H

9ll gz

for g > 23 and s = 242 — ntl (see Lee-Vargas '08).
n+1 2 q
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Applications
e Null Form Estimates.

The bilinear restriction estimate can be used as a building block to prove
estimates without any assumptions on the Fourier Transform of f and g.

For instance, for waves u = eIV f, v = €'*IVlg we have

[0rudv — Vu - VU”L;{I S Hf”H

9ll gz

for g > 23 and s = 242 — ntl (see Lee-Vargas '08).
n+1 2 q

The null form Qo (u,v) = dud, — Vu - Vu is a substitute for the lack of
transversality, in particular, this estimate fails for a general bilinear form like
[Vu - V.

9/24
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Applications: Nonlinear Dispersive PDE

¢ In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.
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Applications: Nonlinear Dispersive PDE

e In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.
o Let
T ={(—00,t1),[t1,t2), ., [tn,00)}
and
J ={(—00,51),[s1,82)s ey [Sn1,00) }
be (finite) partitions of R.
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Applications: Nonlinear Dispersive PDE

e In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.
o Let
T ={(—00,t1),[t1,t2), ., [tn,00)}
and
J ={(—00,51),[s1,82)s ey [Sn1,00) }
be (finite) partitions of R.
e Given families (fr)rez and (gs) ez, we want
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Applications: Nonlinear Dispersive PDE

e In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.
o Let
T ={(—00,t1),[t1,t2), ., [tn,00)}
and
J ={(—00,51),[s1,82)s ey [Sn1,00) }
be (finite) partitions of R.
e Given families (fr)rez and (gs) ez, we want

| (3 100e¥112) (32 1019, )|
J

LP
IeT b

S (Sl) (sl
I J
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Applications: Nonlinear Dispersive PDE

e In applications to nonlinear dispersive PDE, it is useful to have a slightly
stronger version of the bilinear restriction estimate.
o Let
T ={(—00,t1),[t1,t2), ., [tn,00)}
and
J ={(—00,51),[s1,82)s ey [Sn1,00) }
be (finite) partitions of R.
e Given families (fr)rez and (gs) ez, we want

| (3 100e¥112) (32 1019, )|
J

LP
IeT b

S (Sl) (sl
I J

¢ Implied constant independent of Z, 7, (so the number of intervals plays no
role) and the families (f7)rez, (9.7) e
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Observations

H ( Z Ilz(t)eiﬂvlﬁ) (Z ]lJ(t)eitlvng> ‘

IeT

p
Lt,x

< (S502) " (T loslzz)

I

<

Nl=
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Observations

[(aste™iss) (s ™a)

IeT

p
Lt,:c

S () (S loslzs)

I

<

Nl=

o The function u = 3", 1;(t)e!V! f; is known as a (rescaled U?) atom, or
alternatively as an ¢2 family of free solutions. Thus we are asking:

Does bilinear restriction estimates hold for ¢> families?
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Observations

[(aste™iss) (s ™a)

IeT

p
Lt,:c

S () (S loslzs)
I J

<

Nl=

o The function u = 3", 1;(t)e!V! f; is known as a (rescaled U?) atom, or
alternatively as an ¢2 family of free solutions. Thus we are asking:

Does bilinear restriction estimates hold for 2 families?

e Bilinear restriction for ¢2 families = bilinear restriction for homogeneous
solutions

(just take Z = {R}, J = {R} to be the trivial partitions).
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Observations

e Bilinear restriction for free solutions = bilinear restriction for /7 families,
since

H (Z Ilz(t)eitlv‘fl) ( > ﬂJ(f)eitlv‘gJ) ‘
Jeg

1€

p
Lt,m

1
- (Z HeltherltlwgJ”Iif,z(meRn)) ’
I1,J
1
< (™l el )
I1,J

(S 0ss)* (3 aots)

IeT JeJg
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Observations

e Bilinear restriction for free solutions = bilinear restriction for /7 families,
since

H (Z le(t)eitlv‘fl) ( > ﬂJ(f)eitlv‘gJ) ‘
Jeg

1€

p
Lt,m

1
- (Z HeltherltlwgJ”Iif,z(meRn)) ’
I1,J
1
< (™l el )
I1,J

1 1
= (X elE)" (3 loallzs)”
IeT JeJg

¢ In the interesting region p < 2, this is weaker than the estimate we want,
since /P C (2!
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Bilinear Restriction for /Z families

Theorem (C.-Herr’16, wave version)

Letp > 2. Letu =Y, 1;(t)e"IVIf1, v =3 ;1,(t)eVg, be (* families
with

supp@ C {|€ —e1| < 1},  supp® C {|§ +e1] < 1}.

1 1
2 2
ol 5 (3 0f2032) (3 o3
I J

Then
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Bilinear Restriction for /Z families

Theorem (C.-Herr’16, wave version)

Letp > 2. Letu =Y, 1;(t)e"IVIf1, v =3 ;1,(t)eVg, be (* families
with

supp@ C {|€ —e1| < 1},  supp® C {|§ +e1] < 1}.

1 1
2 2
ol 5 (3 0f2032) (3 o3
I J

Then

e Forn = 2therange p > 3 was obtained in Sterbenz-Tataru’10 via the
homogeneous estimate and an interpolation argument.
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Bilinear Restriction for /Z families

Theorem (C.-Herr’16, wave version)

Letp > 2. Letu =Y, 1;(t)e"IVIf1, v =3 ;1,(t)eVg, be (* families
with
supp@ C {|€ — e1] < 1}, supp? C {|§ +e1| < 1}.

1 1
2 2
ol 5 (3 0f2032) (3 o3
I J

Then

e Forn = 2therange p > 3 was obtained in Sterbenz-Tataru’10 via the
homogeneous estimate and an interpolation argument.

e proof follows argument of Tao’01, Lee-Vargas’10 (does not follow from
homogeneous case).
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General Version: Assumptions

We assume we have phases ®; : A; — R satisfying, for some constants C;, Co,
Cs, N
© (Transversality) For all € € Ay, n € As we have

|IV®1(&) — Vda(n)| > Cy.
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General Version: Assumptions

We assume we have phases ®; : A; — R satisfying, for some constants C;, Co,
Cs, N
© (Transversality) For all € € Ay, n € As we have

|IV®1(&) — Vda(n)| > Cy.

® (Curvature) Let X;(a,h) = {£ € Aj N (Ax + h)|P; (&) = Pr(§ — h) +a}.
Then for all (a,h) € R'™™, ¢, ¢ € 3;(a, h), and n € Ay we have

[(V@;(§) = VE;(£)) A (VE;(§) = V()| > Col¢ =&
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General Version: Assumptions

We assume we have phases ®; : A; — R satisfying, for some constants C;, Co,
Cs, N
© (Transversality) For all € € Ay, n € As we have

|IV®1(&) — Vda(n)| > Cy.

® (Curvature) Let X;(a,h) = {£ € Aj N (Ax + h)|P; (&) = Pr(§ — h) +a}.
Then for all (a,h) € R'™™, ¢, ¢ € 3;(a, h), and n € Ay we have

[(V@;(§) = VE;(£)) A (VE;(§) = V()| > Col¢ =&
® (Regularity) ®; € CN(A;) and

sup H@“(I)jHLm(AJ_) g Cg.
[r|<N
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General Version: Assumptions

We assume we have phases ®; : A; — R satisfying, for some constants C;, Co,
Cs, N
© (Transversality) For all € € Ay, n € As we have

|IV®1(&) — Vda(n)| > Cy.

® (Curvature) Let X;(a,h) = {£ € Aj N (Ax + h)|P; (&) = Pr(§ — h) +a}.
Then for all (a,h) € R'™™, ¢, ¢ € 3;(a, h), and n € Ay we have

[(VE;(§) = V@;(£)) A (VP;(8) = V()| = CaS — £
® (Regularity) ®; € CN(A;) and
sup [[0"®; || (a,) < Cs.
l|<N
e Conditions on phases are based on assumptions used in Lee-Vargas’'10,

Bejenaru’16.

Timothy Candy — Bilinear Restriction Estimates and Applications 14/24



General Version

Theorem (C.-Herr'16)

Letp > "*3 . Assume that the phases ®, and ®, satisfy the transversality,
curvature and regularity assumptions.

Letu=>,1;(t)e®® V) fr, 0 =3 1;(t)e?®Vg,; be ¢? families with
suppu C Ay, suppv C As.

Then

1 1
2 2
lwollze S (3 U2132) " (32 Nloul3:)
I J

Timothy Candy — Bilinear Restriction Estimates and Applications 15/24




General Version

Theorem (C.-Herr'16)

Letp > ”*3 . Assume that the phases ®, and ®, satisfy the transversality,
curvature and regularity assumptions.

Letu=>,1;(t)e®® V) fr, 0 =3 1;(t)e?®Vg,; be ¢? families with
suppu C Ay, suppv C As.

Then

1 1
2 2
lwollze S (3 U2132) " (32 Nloul3:)
I J

e The implied constant depends on the constants C;, Co, C3, N but is
otherwise independent of the phases ®; and ®.
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General Version

Theorem (C.-Herr'16)

Letp > ”*3 . Assume that the phases ®, and ®, satisfy the transversality,
curvature and regularity assumptions.

Letu=>,1;(t)e®® V) fr, 0 =3 1;(t)e?®Vg,; be ¢? families with
suppu C Ay, suppv C As.

Then

1 1
2 2
lwollze S (3 U2132) " (32 Nloul3:)
I J

e The implied constant depends on the constants C;, Co, C3, N but is
otherwise independent of the phases ®; and ®.

e Case of homogeneous solutions: Lee-Vargas’'10, Bejenaru’16.
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General Version

Theorem (C.-Herr'16)

Letp > ”*3 . Assume that the phases ®, and ®, satisfy the transversality,
curvature and regularity assumptions.

Letu=>,1;(t)e®® V) fr, 0 =3 1;(t)e?®Vg,; be ¢? families with
suppu C Ay, suppv C As.

Then

1 1
2 2
lwollze S (3 U2132) " (32 Nloul3:)
I J

e The implied constant depends on the constants C;, Co, C3, N but is
otherwise independent of the phases ®; and ®.

e Case of homogeneous solutions: Lee-Vargas’'10, Bejenaru’16.
o &; = (m}+ 1€12)2 and Ay = {|€ — e1] < 1}, Ay = {|€ + e1| < 1} satisfies
conditions with constant independent of the masses my, mo.
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Transference Principle

Motivation for why we need to consider ¢? families rather than just free solutions,
comes from the transference principle.
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Transference Principle

Motivation for why we need to consider ¢? families rather than just free solutions,
comes from the transference principle.

o Existence for dispersive PDE requires careful choice of Banach space
X C C(I, H®). Should think of X as containing pertubations of free
solutions (say for the wave equation e’V f).
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Transference Principle

Motivation for why we need to consider ¢? families rather than just free solutions,
comes from the transference principle.

o Existence for dispersive PDE requires careful choice of Banach space
X C C(I, H®). Should think of X as containing pertubations of free
solutions (say for the wave equation e’V f).

e Need to prove estimates for functions in X. For instance, may want to prove

lwvllzy, < lullxlollx-

16/24
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Transference Principle

Motivation for why we need to consider ¢? families rather than just free solutions,
comes from the transference principle.

e The Transference Principle states that it is enough to prove estimates for
homogeneous solutions. Thus

le M e Vlgloy < lzzllgllzz

= llwvlly S llullxllvllx
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Transference Principle

Motivation for why we need to consider ¢? families rather than just free solutions,
comes from the transference principle.

e The Transference Principle states that it is enough to prove estimates for
homogeneous solutions. Thus

Y fe ¥ gl e SN lez llgllee

= llwvlly S llullxllvllx

« Typical example is X = X, point is that can write elements of X* as
averages of free solutions, namely,

u(t,x) = / e”Teit‘vldeT
R
with [ (| frllz2dr < [lullxo..
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Weak Transference Principle

Important endpoint spaces do not satisfy transference principle. Instead we only
have a weaker variant.
e X satisfies the weak transference principle if

[(Srroe™ ) (Seswean)],,
< (T (S hoolty)’
7 J

W=

implies that
Juvllry S llullxllvflx-
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Weak Transference Principle

Important endpoint spaces do not satisfy transference principle. Instead we only
have a weaker variant.
e X satisfies the weak transference principle if

[(Srroe™ ) (Seswean)],,
< (T (S hoolty)’
7 J

W=

implies that
Juvllry S llullxllvflx-

e Typical examples of function spaces satisfying weak transference but not
transference include U2, V2, and null frame type spaces.
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Weak Transference Principle

Important endpoint spaces do not satisfy transference principle. Instead we only
have a weaker variant.
e X satisfies the weak transference principle if

[(Srroe™ ) (Seswean)],,
< (T (S hoolty)’
7 J

W=

implies that
Juvllry S llullxllvflx-

e Typical examples of function spaces satisfying weak transference but not
transference include U2, V2, and null frame type spaces.

e Main result can then be restated as:

If X satisfies weak transference — Bilinear restriction estimates hold in X
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Applications to DKG system

Dirac-Klein-Gordon system for a spinor 1 : R'*3 — C* coupled with a scalar
field ¢ : R**3 — R is given by

—Wﬂw+M¢=w}

, (DKG)
O¢ +m?6 = gv

« We use summation convention, ¢» = 1~4% 4T is conjugate transpose,
O = 9% — A is the wave operator, and M, m > 0.
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Applications to DKG system

Dirac-Klein-Gordon system for a spinor 1 : R'*3 — C* coupled with a scalar
field ¢ : R**3 — R is given by
—Wﬂm+M¢=w}

, (DKG)
O¢ +m?6 = gv

« We use summation convention, ¢» = 1~4% 4T is conjugate transpose,
O = 9% — A is the wave operator, and M, m > 0.
e Classical model in relativistic quantum mechanics
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Applications to DKG system

Dirac-Klein-Gordon system for a spinor 1 : R'*3 — C* coupled with a scalar
field ¢ : R**3 — R is given by
—iy Ot + Mep = cw}

. (DKG)
U¢ +m"¢ =y

« We use summation convention, ¢» = 1~4% 4T is conjugate transpose,
O = 9% — A is the wave operator, and M, m > 0.

e Classical model in relativistic quantum mechanics

e The Dirac matrices v* € C*** are given by

T\ -1)0 T T -6 0

with the Pauli matrices ¢/ given by

y (01 2 (0 —i s (1 0
"‘(10)’ U_(i o) 7=\ -1)
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I
Scattering and GWP for DKG
We consider the Cauchy problem for (DK G) with data
$(0) =10 : R* = €%, (4(0),9:0(0)) = (¢0,¢1) : R =+ R x R,
Let (X)7 denote o spherical derivatives (3;; = z;0; — x;0;).
Theorem (C.-Herr'16)

Suppose that2M > m > 0ando > 0orm >2M > 0ando > 3—70 There
exists § > 0 such that if

I{Z)7%ollzz + ()7 (b0, d1)ll g, -3 <O

2xH

then Cauchy problem is globally well-posed, and moreover the solution scatters
to free solutions as t — +oo.

.
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to free solutions as t — +oo.

.

e Result is sharp up to spherical derivatives (i.e. optimal result would be
o =0).
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I
Scattering and GWP for DKG
We consider the Cauchy problem for (DK G) with data
$(0) =10 : R* = €%, (4(0),9:0(0)) = (¢0,¢1) : R =+ R x R,
Let (X)7 denote o spherical derivatives (3;; = z;0; — x;0;).
Theorem (C.-Herr'16)

Suppose that2M > m > 0ando > 0orm >2M > 0ando > 3—70 There
exists § > 0 such that if

I{Z)7%ollzz + ()7 (b0, d1)ll g, -3 <O

2xH

then Cauchy problem is globally well-posed, and moreover the solution scatters
to free solutions as t — +oo.

.

e Result is sharp up to spherical derivatives (i.e. optimal result would be
o =0).
e First GWP and scattering result in the resonant case m > 2M.
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Previous Results

e Special global solutions Chadam-Glassey’74 (examples of large data global
solutions).
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Previous Results

e Special global solutions Chadam-Glassey’74 (examples of large data global
solutions).

e Local subcritical results D’Ancona-Foschi-Selberg’07

e GWP and scattering in nonresonant case 2M > m: subcritical
Bejenaru-Herr ’14, endpoint Besov case with angular regularity Wang’'15

¢ In the case n = 1 related results can be found in Machihara’07,
Machihara-Nakanishi-Tsugawa’10, C.’13...
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Sketch of Proof

o Diagonlisation of Dirac operator: i) = ¢ 4+ ¢ where

1 1 4
me=g(r+ AR M), i = (V)0.

(and (€)ar = (M2 + |€]?)2) DKG system then equivalent to

(=0 £ (V)ar)thx =114 (V) (R(04)7"0)
(=0 £ (V)im)o+ = (V) (V)
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Sketch of Proof

o Diagonlisation of Dirac operator: i) = ¢ 4+ ¢ where

1 1 4
me=g(r+ AR M), i = (V)0.

(and (€)ar = (M2 + |€]?)2) DKG system then equivalent to
(=i £ (V) )ps = (V) (R(d4)7 )
(=0 £ (V)im)o+ = (V) (V)
e Duhamel Formula, duality: problem reduces to proving estimates for
/ ¢+@¢f)dtdm
R1+3
key role play by the resonance function

Tm,M = (€ = Mm F1 (§)ar £2 (M) 1]
(measures how far ¢, 1Y) and (2 are from free solutions).
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Sketch of Proof

e If 2M > m then get lower bound on r,, ,; = problem nonresonant.
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Sketch of Proof

e If 2M > m then get lower bound on r,, ,; = problem nonresonant.

e If 2M < m then no lower bound and no null structure —> seems to cause
difficulties in closing argument

e But in resonant case, have transversality when r,,, 5 = 0!l Thus can apply
bilinear restriction estimate + spherical Strichartz = gives result.

23/24

Timothy Candy — Bilinear Restriction Estimates and Applications



Summary

e Obtain (sharp) bilinear restriction estimates for families of ¢ solutions

(3 5100 ) (3 1005%05,)

Iez J b
S(TnlE) (Shaslzs)

I J
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e Would be of interest to extend more estimates in Harmonic analysis from
free solutions to ¢2 families!
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e Would be of interest to extend more estimates in Harmonic analysis from
free solutions to ¢2 families!

e Bilinear restriction estimates needed to control resonant interaction in DKG
system.
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Summary

e Obtain (sharp) bilinear restriction estimates for families of ¢ solutions

(3 5100 ) (3 1005%05,)

Iez J b
S(TnlE) (Shaslzs)

I J

e Would be of interest to extend more estimates in Harmonic analysis from
free solutions to ¢2 families!

e Bilinear restriction estimates needed to control resonant interaction in DKG
system.

Thank you for listening!!
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