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Introduction

The Riesz-Thorin interpolation theorem

Theorem
Let 0 € (0,1), 1 < pg,p1 < 00, and 1 < ry, 1 < 0o. Suppose that
T is a linear operator from LP°(R"™) + LPt(R") to L™(R") 4 L"(R")
for which

[TFl[o < CollFllromey and [ TF[n < Gif[F||Lor ro).-
Define p and r by
1 1-6 0 1 1-6 6

= + and - := + —.
P Po P1 r n r

Then T is bounded from LP(R") to L"(R").
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Calderdn's first complex interpolation method

A couple (Xp, X1) of Banach spaces is said to be compatible if Xy
and Xj can be embedded into a Hausdorff topological vector space
Z. Let S:={z€C:0<Re(z) <1} and S be its closure.

Definition (Calderén's first complex interpolation functor)

Let (Xo, X1) be a compatible couple of Banach spaces. The space
F(Xo, X1) is defined to be the set of all continuous functions F :
S — Xo + Xi such that
Q sup [|F(2)llx+x < o0;
zeS
@ F is holomorphic on S;
© For each j = 0,1, the function t € R — F(j + it) € Xj is
continuous;

Q |[Fllroo.x) = maxj=o1supeer [[F U + it)|x; < oo.
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Calderdn'’s first complex interpolation method (cont.)

Definition (Calderdn's first complex interpolation space)
Let 6 € (0,1). Define

[Xo,Xl]g = {F(@) :Fe f(Xo,Xl)}.
The norm on [Xp, Xi]g is defined by

||f||[Xo,X1]9 = inf{||F||]:(X07X1) . f = F(0) for some F € F(Xp, X1)}.

Theorem (Calderén, 1964)

Let 6 € (0,1). Suppose that T is a bounded linear operator from X;
to Yj for j =0,1. Then, T is bounded from [Xo, Xi]g to [Yo, Yils-

Let 0 € (0,1), 1 < pp, p1 < o0, and % = 17—09 + %. Then
[LPo, LP1]y = LP
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Morrey spaces

Let 0 < g < p < oo. The Morrey space MG = ME(R") is defined
to be the set of all functions f € L] (R") such that

1_1
IFlg = _sup_|B(ar)]? (/
a€R",r>0 B(a

Remark: If p = g, then M§ = LP.

1/q
|f(x)|9 dx) < o0.

v

)

Let 0 < g < p < co. Then f(x) := |x|~"/P € M},
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Prevous results

Theorem (Stampacchia, 1964)

Let § € (0,1), 1 < pg,p1 < 00,1 <rg<sg<oo,andl <n <
s1 < oo. Define p, r, and s by

111 1 1 1 1 1 1
<77> = (]- — 9) <77> +0 <7a ) °
p rs Po o So pPL n s

If T is a bounded linear operator from LP to MY and from LP* to
M7, then T is bounded from LP to M.

s1’

V.

Theorem (Ruiz and Vega, 1995)

Let @ € (0,1) and n > 1. There exist 1 < py, p1 < 00, a bounded
linear operator T from M5 to L' and from M%' to L, but T is
not bounded from Mg to L' where L = 12 4 2.

v

The case n =1 can be seen in [Blasco, Ruiz, and Vega, 1999].
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Previous results (cont.)

Theorem (Cobos, Peetre, and Persson, 1998)
Let1 < qgp < pg<oo,andl < g < p1 < oo Define p and q by

1 1-6 0 1 1-6 0
= + — and - = +
P Po P1 q qo0 g1

Then [M&, MG]o C M4.

Keep the notations of the previous theorem. Assume p° = %. Then

AAP
@ (Lu, Yang, and Yuan, 2014) [M5, My = M N ME:

@ (H. and Sawano, 2016)
(MG, Méilo

— P. _ —
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Calderon’s second complex interpolation method

Definition (Calderon’s second complex interpolation functor)

Let (Xo, X1) be a compatible couple of Banach spaces. G(Xo, X1) is
defined to be the set of all continuous functions G : S — Xy + Xi

such that:
G(z)
s
o ZZE H 1+]z] Xo+X1
@ Forevery j=0,1and t e R, G(j +it) — G(j) € X;

IG(+it)-G(+is)l x;
|t—sl

< o0 and G is holomorphic in S;

Q (Gllgxo.x) ::ﬁgﬁ 7oo<s:.:l<ps<00

Definition (Calderon's second complex interpolation space)
For 6 € (0,1), define

[Xo0, X1]? = {G'(0) : G € G(Xo, X1)}.

and [|f][ix, x10 := infr—c0) |G llg(x0,x1)-
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The second complex interpolation of Morrey spaces

Theorem (Lemarié-Rieusset, 2014)

Let1§q0§p0<oo,1§q1§p1<oo,and%:%. Define p
and q by

1 1-0 0 1 1-60 0

— = 4+ — and - := + —.

P Po P1 aq do a1

Then [MB, ME? = M5,
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Complex interpolation of quasi-Banach spaces

Let S:={z€ C:0< Re(z) < 1} and S be its closure. Let X be

a quasi-Banach space.

@ Amap f : S — X is said to be analytic, if for any zy € S,
there exist ) € (0,00) and {h;}22; C X such that the disk

A(z9,m) C S and for all z € A(z,7)
Z hi(z — z) in X.
j=0

@ A quasi-Banach space X is called analytically convex if there
exists a positive constant C such that, for any continuous and
bounded function f : S — X which is analytic in S,

SUPHf(Z)HX < C sup [[f(2)]x-
zeS\S
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The first complex interpolation method

Let (Xo, X1) be a compatible couple of quasi-Banach spaces such
that Xo + Xj is analytically convex.

Definition (The first complex interpolation functor)

The space F(Xp, X1) is defined to be the set of all continuous func-
tions F : S — Xy + Xi such that

Q sup, 5 ||F(2)lIx+x < oo and F is analytic in S;
@ for j = 0,1, the function t € R — F(j+it) € X is continuous.
Q |[Fllron.x) = maxj=o1supeer [[F U + it)|[x; < oo.

Definition (The first complex interpolation space)
For 6 € (0,1), define

[Xo,Xl]g = {F(@) - F e ]:(XQ,X;[)}

and [[f][1xo, %10 := infr=r(o) I Fll 7(x0,1)-

A
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The second complex interpolation method

Definition (The second complex interpolation functor)

Let (Xo, X1) be a compatible couple. Denote by G(Xo, X1) the set
of all continuous functions G : S — Xy + X such that:
G
Q sup H 1+(|Zz)|
ze$S
Q forevery j=0,1and t € R, G(j+it) — G(j) € Xj;
16 +i5)~G(i+it) x;
[t—s]

< oo and G is analytic in S;
Xo+X1

o ||GHQ(X0,X1) ‘= max sup
J=0,1 —so<s<t<oo

Definition (The second complex interpolation space)

For 6 € (0,1), define
[Xo0, X1]? == {G'(A) : G € G(Xo, X1)}.

and [|flix, x,10 = infr=cr(0) | Gllg(x0,%1)-
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Main theorem

Theorem (H. and Sawano, 2016)

Let § € (0,1),0 < go < po < o0, and 0 < g1 < p1 < 00. Assume
that p° = pl Define

1 1-6 0 1 1-6 0
— = + — and — =
% Po P1 q q0 ai

Let A:={f e M : NlinOO ”f_X{%§|f|§N}f”M§ = 0}. Then

@ /fmin(qo,q1) < 1, then

AC [MB,

_/\/lpl]‘9 C MP

Q [MG, MG]® = Mg,

Remark: This theorem is also valid for Morrey spaces on a metric
measure space (X, 1) equipped with a o-finite measure p.
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Proof of A C [M&, M2,

qdo’

We may assume that qo > q1. Suppose that f € M§ satisfies
Jim = X1 < emyfllvg =0 (1)
For every z € S, define
F(z) == sgn(f)|f|m ™ T m?,
Since f = F(f), once we show that F € F(M, ME), we can
conclude that f € [/\/l,;,o,./\/lq1
Proof of F € F(ME, ME'): Note that our assumptions yield B =

BL — B By using the decomposition Fy(z) := x{m<1}F(Z) and
F(z) — Fo(z), we have F(z) € MP + ME and

q1 q

Fi(z) ==
sup [[F(2)l peo ez < ||f\| pt HfIIMp < oo.
zeS

The continuity of F on S and t € R +— F(j + it) € M can be
checked by utilizing (1).
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Proof of A C [M£2, MF]y (cont.)

qdo’

Proof of F € F(ME, M2 (cont.): For the proof of F is analytic
in S, it suffices to show that F|s, is analytic where ¢ € (0,1/2) and
S.:={z€S:e<Re(z) <1—c¢}. Forafixed zp € S., we set

_ min(Re(2 — €), Re(1 — ¢ — z))
2

and h; = £(0) ((ﬁ _ f) |og\fy) Then, the disk A(z,7) C S.

n!
and for all z € A(zy,7)
e .
D hi(z = z0) = F(z) in MBS + MEL.
Jj=0
' ing PO — PL_ P i
Finally, by using % — q — g again, we have
P

F(+it = fll Ve < 00
maxsup|F(j+ i)l = maxfllp <o
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Proof of [M#%, MP]y C M”

1

Let f € [ME2, MEt]s. Then, there exists F € F(ME2, Ma!) such
that

f = F(#) and HFHI(MZS,MZD S HfH[M"O Mo

90>
For a fixed ball B = B(a,r) CR" and z € S, define

1 z 1—z z

r;)ZJrE_(WJFqT)XBF(z).

Gg(z) :=|B|

By using the properties of F € F(M&, ME), we can check that
Gg € F(L%, L%) and

1Gall 7o,y < IF I Fomeo aery S W llpuze azy,- (2)
If we can prove that

1Ge(0)lla < [|GBllF(La0, L) (3)
then by combining (2) and (3), we have f € M%.
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The proof of [M#, MFB]g C M5 (cont.)

Proof of ||Gg(0)||1s < ||GBH; Lao 1) Let u € (0, min(qo, q1)). Set
ro:=% r:=9% andr:= I Then we have

1Ge(O)llza = [ 1GB(O)"[[cr = sup / Ga(0, x)|"g(x) dx

Ig ILr/ -

Let g = ZLVZI ajxe, where a, > 0. For every z € S, we define

N

of 1 u C n

Gg(z,x) = Z <|Ek| /E |Gg(z,y)] dy) Xe (x) (z€S,xeR").
k=1 J

Then we have

1Ga (0, x)|"g(x) dx = / Ca(6,)g(x) dx < | Ga(6) - (4)
Rn n
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The proof of [M#, MFB]g C M5 (cont.)

Proof of ||Gg(0)lLs < ||GBl| (L%, 1) (cont.): Note that Ga(-,x) is
subharmonic on S and continuous on S, because

1
ZESr—>|E| |Gg(z, x)|" dx

have the same property. Therefore, log Gg(-, x) is subharmonic on
S. Consequently

1
log Gg(0, x) < Z/ P;(6, t)log Gg(j + it, x) dt,
. R

where P;(0,t) = 2(Cosh(ﬂ)j?£7r19)3+1cos(ﬂe)). By using Jensen's in-

equality, we have
Gg(0,x) < (0, x)* A0, x)°
where £(6, x) = =g Je Gg(j+it,x)P;(6, t) dt (Vj = 0,1).
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Proof of [M%, MFP]y C MFE (cont.)

Proof of ||Gg(0)|[La < [|GBl|F(Lew, n) (cont.): By using Holder's
inequality, we have

1GB(O) - < 1fo(8, )" 10, - (5)

We use Holder's inequality again to obtain

1 L 1
|E |/ |GB(J+It7.y)| dy< 1 </ ’GB( + it, y)]ql dy> ,
o |l

so ||Ge(j+it, )|l < ||Ge(j+it, I{q;, for all t € R. Consequently,

(Sl

1 .y
150l < gy [, 1GeU + )l (0. ) .
(6)
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Proof of [M%, MFP]y C MFE (cont.)

Proof of [|Gg(0)|1s < ||Ggl|F(La0,La) (cont.): We combine the
previous inequalities to obtain

1-6
6@t < (125 [ 16t Polo.) ot
0
X (2/RHGB(1 + it)||{a P1(0, t) dt> . (7

Since Gg € F(L%, L%), ||Po(6,-)||x =1 — 6, and
|P1(6,-)||;x = 6, we have

1-6 0
168 (6, e < (supucs(ft, ')HL%) (supucs(uit,-)\m)
teR teR
< Gl F(Lao, Loy,

as desired.
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Proof of [M# M2’ C

Let f € [ME2, MEH?. Then f = G'(6) for some G € G(MP, MF)

and
”GHg(Mgg,Mgp S ”fH[Mg’g,Mgi]e- (8)
For z € S and j € N, write f;(z) = M%%W,Then fi(0) €
[Mao: Ml with
160 pnazg aazmy, < 161G aezt) )

By the first part of main theorem, we have f;(6) € M§, and com-
bining this with (8) and (9) yield

16060)Ladg < 1l naziy (10)
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Proof of [M# M~]? C M?P (cont.)

Since lim f;(0) = f in Mgy + Mg, 3{f, 122, C {fi}2; such that

J—)OO

lim £, (0)(x) = f(x) a.e.

k—00

Thus, by the Fatou lemma and (10), we obtain f € Mj with

1Fllaeg S 1 e aerge-

0>
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Proof of [M# M~]? D

Assume that go > g1. Let f € /\/lg. For z € S, we define
() Z
F(z) :=sgn(f)|f|"\ o "P1/) and G(z) := F(w) dw.
0
Since G'(0) = F(#) = f, the proof of f € [ME, ME1% is complete,

once we can show that G € G(ME, ME).
Proof of G € G(ME, MT): Let

GO(Z) = X{|f|§1}G(Z) and Gl(z) = X{If‘>1}G(Z).

P —
Since |Gj(z)| < (1+ |z|)|f|% for z € S and j € {0,1}, we have

1
162 oz = (1+IZ\)ZIIIf!"/prM (1+z]) lef\le
Jj=0

< 00.

Po G(z)
so G(z) € M + ME! and suP H Tz | gro g
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Proof of [M# M~]? O M?P (cont.)

Proof of G € G(MHE, ME) (cont.): The continuity of G on S
follows from ,
Gj(z + h) = Gj(2)| < [hlIf]

forevery j=0,1,z€ S, and h€ Cwithz4+ h€ S.
Let ¢ € (0,1/2) and S. := {z € S : ¢ < Re(z) < 1 —¢€}. Given
79 € S, by letting
1
=g min(Re(z) —€,1 — e — Re(z)),

we have A(z,7n) C S. and for all z € A(zp,n)

o £

G+

in M + Mg
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Proof of [M# M~]? O M?P (cont.)

P
Proof of G € G(ME, M) (cont.): Finally, since |F(j+it)| = |f|®
(Vt € R,Vj € {0,1}), we have

17 FG+ i9) dEl

HGHQ(MS&MQ}) = max  sup

J=0,1 —co<t<s<oo |t — 5|
< max ]f\"J
o
j=0.1 MG

P
< max |[fl| 5y, < oo.
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Closed subspaces of Morrey spaces

Let 0 < g < p < .
© The tilde space ./\/l is defined to be Mp = LOOMP,

* —
@ The star space MJ is defined to be ./\/lg =1L0N MZ
where L9 is the set of all compactly supported functions;

JE— MP
© The bar space My is defined to be MG := L~ N Mj

Let 6 € (0,1),0< qo < po <00, 0<q<pp <00, and 2 =2.

Definepandqby;.zlpT@ﬁLEand 1.— 1q—09—1—a. Then

[MC,O? 51]9 - Mgr
2] [MQm 31]9 = //—\/\lé
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