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Introduction

>

M(A) : a family of nonnegative Borel regular measures with
compact support in A.

Frostman's Lemma: For a Borel set A C R?,
dim A = sup{a € [0,d] : 3 € M(A) such that

w(B(x,r)) < r®,  forall x € R? and r > 0}. (1)

(If A C S?!, then (1) holds for the spherical measure y with o = d — 1.)
For 0 < a < d, the a-dimensional energy of u is defined by

(1) = / x — v~ dpu(y)du(x). )

Relation between (1) and (2):

> [Ix =yl duly) = o 7 w(B(x, r))r= " dr,

> (1) implies Ig(p) < 0o for 0 < 5 < a.

> If Io(p) is finite, there exists v satisfying (1) such that
v(X) < 2u(X) for any Borel set X.

By this,
dim A = sup{a € [0, d] : 3 € M(A) such that /() < co}.



For 0 < a < d, we have the identity

1) = [ [ 1x =y du()duy) = Coa [ 1A IE1 .

L2 average over balls

> If /(1) < oo and A > 1, then

/ ) 2dE < A1 (u).
B(0,1)

» If B(0,1) is replaced by a smooth submanifold of lower dimension
(e.g. sphere, cone, curve, etc.), it is expected that the decay rate
gets worse.

» The curvature property of the underlying submanifolds becomes
important.



Theorem (Erdogan, 2004)

Let I,(p) < oo. Let X be a smooth compact submanifold with measure
dv such that

(O S 1672, v(B(x,p)) < 0"

Then there exists a constant C > 0 such that

/Z AOE) i (€) < CA@ (1)

for {(a) = max(min(a, a),a — d + b).



L2 spherical average
If 1,(p) < oo, then what is the optimal decay rate ¢ such that

| 9P < X1y

> [9()] < 1€]-@D72, u(B(x, p)) < po 1.
By the above theorem, ¢ = max(min(«, (d — 1)/2),a — 1).
» This estimate has been studied extensively after P. Mattila's
contribution (1987) to Falconer distance set problem.
(See P. Sjolin, J. Bourgain, T. Wolff, B. Erdogan,
R. Luca—K. Rogers, B. Shayya... )
» Known results: The L2 spherical average holds with decay rate

min(a, 451, if 0 < a< g, (Mattila)
(> a—1+ 9220 if & <o < 92 (Erdogan)
a-1, if 442 < o < d.(Sjolin)
For d > 3,
d— 2
(>a—1+ (d=a) . (Luca—Rogers)

(d—1)2d —a_1)



Remarks

» Their improvements were based on sophisticated method, such as
bilinear and multilinear estimate with induction on scale, polynomial
partitioning, which were developed in the study of the Fourier
restriction problem (and Bochner-Riesz conjecture).

» S9-1 can be replaced by any smooth submanifold with nonvanishing
curvature. (Sjélin, 1997)

» For d = 2, the sharp average estimate is known.



L? circular average

For0 < a <2, .
[ a2t < At G
> necessary conditio;lﬂ: ¢ < max(min(a, 1/2), «/2).
» Mattila (1987), Sjdlin (1997) : ¢ < max(min(e,1/2), o — 1).
» Wolff (1999) : ¢ < a/2.
» Erdogan—Oberlin (2013) : the same result as Wolff’s, for a certain

class of general curves in R?.



Two observations by Wolff (1999) to obtain (3):

1. we may assume that u(B(x,r)) < C,r® for all x € R? and r > 0
instead of I, (p) < 00;
If I,(11) < oo for a positive Borel measure supported in B(0, 1), then
1= 2"1<j<o(log Ry i for some R >1 and each p; satisfies

pi(RY) sup r=pi(B(x, 1) S la(p)-
(x,r)€ERYx[R—1,00)



2. assuming I, (p) = 1, it suffices to show

\ [ &duta)| < Xl

where supp g C AS' + O(1). Here v = (1 —()/2.

[ &0du)] < O gl

l

f |ﬁ()\eit)|2dt 5 A—(1—2K)

» Wolff obtained the sharp estimates using a refinement of the two
dimensional Kakeya maximal theorem.



[Sketch of proof of 2]

By duality, we have

/ A©)RdE = sup / A()g(€)de
AS140(1) llgll2<1|/AS$1+0(1)

Let ¢ be a Schwartz function which is equal to 1 on the support of f.
Then by rapid decay of 1,

/ ()Pt = / [ A(re™) Pt

s [, [ 10et - lariae)pas

)
S /\/(lerlst()\Sl,ﬁ))’Vdf

"o ) Pd
/ASl+O(zj_)|u(£) 5)

3V
ST +
A ( ASL+0(1) Z

j=1

S )\25.

5 /\2/{—1.



» Since y is a finite measure,

1
< el 18]l Laa)

\ [ &)antx

for any g > 1.

» It suffices to obtain k = k(q) for which

18]l Loany < CA"|lglle2

holds for some C > 0.

lgllLaqany < CA*[glle2

l

J 1RO )Pde < A~0-2)




Question : Let u be an a-dimensional measure. For A > 1, find optimal
rate x such that

||§||Lq(dy) SN gllee,

where g is supported in a O(1)-neighborhood of a hypersurface.
For example,

ASt
My ={(x,t): x| =t, A\ <t <2\} Cc R?*!
Sharp estimates for those cases were proved by Erdogan (2004).

In this talk, we will consider a generalization of them:

AStE — — = Ay(t) in R
:



Theorem (Erdogan, 2004)

> Leta€(1,2), and A > 1.
» g € L?(R?) is supported in

AST+0(1) ={xeR?: A —1<|x| < A+1}.
> ﬁ(a,q):max(%—%,%—%l;—q‘x,%—%).

For each q > 1 and for any € > 0, there exists a constant C > 0 such that

1
18]l a(ay < € GIAT® DT ]| 22



J(-1) L J(0)

Figure: d =2, 1 < a < 2.



Main results: space curves

Now we consider

t2 3

v(t) = (t, o0 ;) tel=10,1].
(Then det(~'(t),~"(t),7""(t)) =1 forall t € ].)

Suppose that p is supported in B(0,1) and satisfies the growth condition
w(B(x,r)) < Cur® forall x € RY and r > 0.
If suppg C Ay(t) + O(1), what is the optimal rate k such that

18 lleoan) < CuA"llglli ?



Let us define some quantities. For K =1,2,...,dand 0 < a < K, we
set
(K-1-[K—-a])(K-[K—a])

Bk(a) = ([K — o] + 1)a+ 5 .

Here [x] denotes the integer part of x.
For example,

14243, ifa=3,
B3(a)=142+a, if2<a<3,
Gila)=14+a+a, ifl<a<?2,
B3(a)=a+a+a, ifO0<a<l.

Note that Sk () generalizes the number 54(d) = d(d + 1)/2 which
appears in the studies on Fourier restriction estimates for space curves.



Using this, we define intervals:
if 2 < a <3, then

J(2) J(1) J(0) J(-1)

1 261 (a0 — 2) 20s(av — 1) 205 ()

Here, f1(a—2)=a -2, fo(a—1)=14+a—-1=aq, and
B3(a) =14+24+a=3+c

If 1 < a <2, then there are 3 intervals: J(¢), { = —1,0,1.

Necessary conditions for 2 < o < 3:

%_%, if geJ(-1),
S SRR e LA

-+l —3), if g€ JQ),

% a;Q + (51(2—2) _ %), if ge J(2)
k> (3—a«)/4, forany g>1.



Theorem (Choi-H-Lee)

Let 2 < a < 3. The necessary conditions above are also sufficient
conditions for

18lleoany < CuA™llgll -
(Except for the endpoint.)

In general, if d — 1 < a < di.e. [d—a] =0, then we obtain the sharp
estimate.

However, as « decreases, the estimate is sharp only for large g. (For
small g(> 2), the esitmate gets worse.)



Foreach £ =-1,0,1,...,d—1—[d — o] and g € J(¥¢), set

it it 0= —1,
1 at, 1 (Bedla=0) 1y

Ko, q,0) = 5‘7@*?{3@(#—5), if 0<t<d—3—[d—a

Y 1 a— 1 S e 1 - -

§*T+5(‘”q —5)s if t=d—2—[d—aq],
in (4= d- o
mln<Taa2([d,7;]é+l)), If(—d—l—[d—aL
—t=2 if [d — o] =

where J, = d ’ if [d —a] =0,

[J(d—2—[d—a])|/2 if[d—a] >1.
Here |J(£)| denotes the length of J(¢).



#(0.0.0)

o=

1 d—a
Ay (z(; 1) 20+ 1})

Ly
1 0 _ B tL
§*m ' (‘2<J+2) 2(]+2)) a=d-j—-1
\ = =

C (;4)
3G+1) 2G+1) a—d—j

a=d-1

1
2Ba—e(a=0) 2

For integer o, k(, q,¢) decreases.
Ifd—j—1<a<d—jandj=[d—a] >1, then k(a, q,£) may increase.



Main results (Choi-H-Lee)

Let v:/ =[0,1] — R? be of a CI*! curve satisfying
det(y/(t),~"(¢t), - ,v(d)(t)) 40 for tcl.

Theorem
For any e > 0 and for g € J(£),{ = —-1,0,...,d —1—[d — a],

18| Lo(dy < CuA™ @ 90F€|| gl 2.
Theorem

Suppose 0 < o < d and I, (1) = 1, then for A > 1 there exists a constant
C > 0 such that

1
/ m()\,}/(t)ﬂzdt < C )\~ (1=2x(a,q,6))+2¢
0



Sketch of proof

Using the bilinear argument due to Erdogan (or Wolff), we obtain

Theorem
Suppose that d > 2 and d — 1 < o < d. Let~, u, and g be given as
above. Then, for A > 1, g > 2 and € > 0, there exists a constant C > 0
such that

181 Laapy < CuAllgllee
for k = max(} + dfzc;*l, 14 dii;*z).
This gives sharp result ; + d%‘;’l for g € [2,2(v — d + 3)] = J(d — 2), while
T+ % for ¢ > 2(a — d + 3) is not sharp.

To obtain a better result for large g, we make use of induction on scale
argument with multilinear estimates.



Oscillatory integral operators
For A > 1 let us consider an oscillatory integral operator defined by

E£7F(x) = a(x) / MO (1) d,
]

where a is a bounded function supported in B(0,1) and ||a]|e < 1.

» This is an adjoint form of the Fourier restriction to the curve \y.

> Ay(l) 4+ O(1) can be foliated into a set of O(1)-translations of the
curve \v.

1EY Fll Laqamy S A IFllezqry

|

18]l caqay < CA2 7 llgllizqee




Theorem (Lee-H, 2014)
Let 0 < a<dand\>1. Letye€ CI* and yu be given as above. Then

IEYFll Loy SA9

fHLP(I)
holds for 1 < p,q < oo satisfying d/qg <1—1/p, g > 2d and

Ba(a)
q

1
+;<1, q > Ba(a) + 1.

Immediately it follows that

~ 1 _ a
Hg”Lq(dp) < CA27q

8l 2 (ra)
for ¢ > max(254(«), 2d).



Lemma

Let v : I — R? be a smooth curve. Let Ag,As,...,Aq_1, and {Z'},
i=1,...,d—1 be defined as in the above. Then, for any x € RY, there
is a constant C, independent of v, x, Ao, A1, ...,Ad—1, such that

d—1
—2(i—1
E3F(0] < € Y ALY max|€] ()|
i=1
—2(d—1) 1
+ CA, 7S L Im?x . \Hc‘,’;\’le_dfl(xﬂd.
AT LT > A

Here T denotes the element in {Z'} and
AT LT = minigjems<a dist(Z7 T Z97Y).



The induction quantity
ForA>1,1<p,qg<o0, and € >0, we define Qx = Qx(p, g, €) by
setting

@ = sup{ [[EX fllia(ap) : b € M(a, 1), v € T(€), [[fllogy < 1, 2 € A},

where 2 is a set of measurable functions supported in B(0,1) and
llalloc < 1. Itis clear that Qy is finite for any A > 0.

We want: Qy < A—/9,

We have the following two estimates

Bglx
maxz: |E] | < A 1"*diQka||p
La(dp)

> For Zi_;, 1 < i < d such that A(Z)_;, T, |) > Ag_1,

d
[ITLEts 0ol
i=1

—C\—2
oy S AN F



Hence, we get

d—1

Bg(a) [

Q< CY ATGAT T Qut CAZG AT
i=1

As long as 1 — % — @ > 0, we can choose Aj,...,Ag_1, successively,
Bg(a)

so that CA; S AR < 5 fori=1,...,d — 1. Therefore, we
obtain @) < C\" 7.

However this is not enough in order to obtain the estimate for
q < 2f4(a).



The nondegenerate curves in R? are also nondegenerate in R¥ when they
are projected into R¥ x {0}. For example, considering v(t) = (t,..., t9),
we see that 74 (t) = (t,...,t%,0,...,0) is nondegenerate in R* x {0}.

Theorem
For each integer ¢ = 0,1,...,d — 1 — [d — ], there exists a constant C;
such that o

1EX FllLaqany < Cue A 7 Iflloqy

holds for f € LP(I) and A\ > 1 whenever (d —¢)/q+1/p <1,
q>2(d—¥) and

(=1 1
M+*<1, q > Ba—e(a—0)+ 1.
q p
Recall that ¢ = 0 case was already obtained.
The induction on scale argument due to Bourgain—Guth works well in
each k-linear step.



Main results: cone in R9+1

Let g € L?(R3?) be supported in
My +0(1) ={(x,t) ER? xR : |[x| = t, A < t < 2)\}.

For each g > 1 and for any € > 0, A > 1, there exists a constant C > 0
such that

1
I8l Loy < C GIAS@9DTE g 2 ge), (5)

Theorem (Erdogan, 2004)
Ford =2,

(0.9.2) max(1 -2, 3 -%31-9), ifl<a<2,
Iia? ) = .
I max(1- 2,3 - 320 3 _a) jf2<a<s.



Theorem (Cho-H-Lee)
If d > 3, (5) holds for

Q
+
-

3d+1 «

max{gf%,T,Tff, if 0<le§].7
(e, g d) = max{g — 2, 9 4 10 e oy jf 1<a<d,
max{g—%i—&-d+1 di=2a il _ o} jf d<a<d+1
» Necessary condition:
max{§ — &, 1}, if 0<a<1,
k(a, gq,d) = max{%f%,dzl+%,#7%, if 1l<a<d,
max{%f%,djl+d“27;2a,%f%}, if d<a<d+1.

» When d = 3, sharp for all a.
» When d > 3, sharp only for d < a < d + 1 (or large g).

For bilienar estimate, we use induction on scale argument together with
wave packet decomposition.



Key estimate

For a function f which is supported away from the origin we define the
angular support Asuppf by

.Asuppf:{ §€suppf}

€l

The following may be regarded as a generalization of Wolff's bilinear
restriction estimate for the cone.

Theorem
Let R>> 1 and let y be an a-dimensional measure supported in B(0,1).
Suppose that f and g are supported in 'g(1) and

1
dist f > —
ist(Asupp f, Asuppg) 100"

For 2 < q < oo, there is a constant C = C(3, n) such that

2

([17atan)" < R uiiralele

for any 8 > B(c, q) := max{§ — 37 3n+1-2a



Suppose that f is supported in (1) and the diameter of Asuppf is
O(R~1/?). For q > 2, there exists a constant C > 0 such that

~ 1
1Fllzaany < C{u)d Ry,
where

(n+1)/4+(n+1-2a)/2q, ifn<a<n+l,
Bo(a,q) =< (n+1)/4+ (1 — «a)/2q, if 1 <a<n,
(n+1)/4, if0<a<l1.



Application: fractal Strichartz estimate

The wave equation defined in RY x R:

02u— Au=0,
u(x,0) =1f, Ou(x,0)=g.

» Strichartz estimate:

lullcor, ooy S IFllgs + 8 1o
fors>0,2<gq,r < oo,

1+n n 1+n—1<n—1
—+—-==—5, — .
g r 2 g 2r T 4

Here HS is the homogeneous L? Sobolev space of order s.



Theorem (Cho-H-Lee)

Let d > 3. Suppose that u is a solution to the wave equation above
Then

lullcoqapy S IFllme + gl

Hs—1,
holds with

H(Oé7qad)a If2§q§007
k(a,2,d), if 1<qg<2.

» Wolff: d =2, o € (1,3), s > max(3,1—2,1— 2).

» Erdogan: d =2, a €(1,3), s > x(a, q,2). (Sharp result.)
» Oberlin: d >3, ac(1,d+1),s>(n—1)/2and g < a.



The soulution u(x, t) is given by

HOP

e %

i) = [ e cos(eleDF(de + [ e <sinfele) S
R7 ey
Using Littlewood-Paley operator P;, we write

u(x,t) = P<o(u +ZP

j>1

» Use Cauchy-Schwarz inequality and Plancherel theorem,

[P<o(u(, 1)) < (112 + llgll2-
Use the fact that p is supported in B(0, 1),

[P<o(u(-, t))(X) oy S Ifll2 + llgll2-

» Use (5), support condition on u, Planchrel theorem,

1P (u, ) () eaapy S 2SN £l + 2000 D= g |,



To clarify this, it suffices to show that

1™ =2 Pihll aqayy < 279DVl

~

(h(€) = F(€) or h(&) = B(€)/I€].) Here, V™A := [ &7 (¢)de.

Use the smooth function 7 satisfying 7 ~ 1 on B(0,1) and supp7 C B(0, 1),
we have

€Y =2 Prhl|Lagay) ~ lIn €™~ Pihl|aan)-

The space time Fourier transform of ™Y ~2P;f(x) is supported in I,;(1).
Using (5) and Plancherel theorem, we get

€ 5Pyl S 27 W & EB s S 27
Hence

D 1P O)llesany S D272l + Y272V g2

jz1 jz1 jz1



Thank you for your attention.
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