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Constant coefficient differential operators of second order

v

Setd>3and 1< k <d.

Let Q be a non-degenerate real quadratic form on RY given as

QY =-E— —G+& 1+ +&.

v

v

Let P(D) be a second order differential operator defined by
P(D) = Q(D)+ a- D+ b,

where D = —iV = (—ig%, -, —iz%), acC?and be C.
P is elliptic if k =d (Q(D) = A).

P is non-elliptic otherwise (Q(D) = A« — Apa—«).

v

v



Uniform Sobolev inequality

> If there extists an absolute constant C = C(d, k, p, q), independent
of ac C? and b € C, such that

llull Lorey < CH'D(D)U”LP(Rd)a Vu e Wz’p(Rd),

we call this the Uniform Sobolev inequality.
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> If there extists an absolute constant C = C(d, k, p, q), independent
of ac C? and b € C, such that

Julliogaey < CIP(D)ulliorey,  Yu € W2P(RY),
we call this the Uniform Sobolev inequality.
» Hardy-Littlewood-Sobolev For 1 < p < g < o0,
]l orey < CllAullpgey,  Vu € S(R)

holds if and only if

(gap condition)

2
=

T
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» By homogeneity, the same gap condition is necessary for the uniform
Sobolev inequality.



Uniform Sobolev inequality: Elliptic case Q(D) = A

» When P(D) is elliptic Kenig, Ruiz, and Sogge characterized the
optimal range of p and gq.

Theorem (Kenig-Ruiz-Sogge, 87")
Let d >3 and Q(D) = A. Then e

lullLoray < CIIP(D)ull Lo (rey

holds uniformly in a € C? and b € C
if and only if

2 d+1 1 d+3

1 1
- —=—, < < . /
p g d 2d p 2d (Lo) Lo P

> In the figure the horizontal axis denotes the interval 1/2 <1/p <1
and the vertical axis denotes 0 < 1/q < 1/2.

» If A= (x,y) then A’ = (1 —y,1— x) denotes the "dual point" of A,
which is symmetric with A with respect to the dual line % + % =1.



Restriction-extension operator for the sphere

» We call the operator

Fo P (80— € () ~ / F©)e<do(¢)
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the restriction-extension operator defined by the sphere S~ 1.
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the restriction-extension operator defined by the sphere S~ 1.
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transform.



Restriction-extension operator for the sphere

» We call the operator

f = F7 (81— 1€PF(9) () = / f(e)e<do(e)

gd—1

the restriction-extension operator defined by the sphere S~ 1.

» Here §(1 — [£]?) is the composition of the J-distribution with the
smooth function 1 — |¢|?, and F~! denotes the inverse Fourier
transform.

» The operator is the composition of the Fourier restriction and the
extension operators associated with the sphere.
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Uniform Sobolev ineq. = restriction-extension estimate

The LP — L9 elliptic uniform Sobolev inequality implies the following
LP — L9 restriction-extension estimate for the sphere

T ix-& <
| [ F@e<do@]], . < Clfloo,
To show this,
1. Assume that the Sobolev inequality
lullLaray < CII(A + 1 £ ig)ul| e

holds uniformly in all € > 0.

2. By the Fourier transform we see that the above inequality is
equivalent to the multiplier estimates

|7 1(1_|;(|52)i,-5)

<
oy < s

where the constant C is independent of all € > 0.



Uniform Sobolev ineq. = restriction-extension estimate

3. Since %@ — 9§ as € — 0, we note that

1 - 1 o 2e
1-fgP+ie 1-lgP—ie  (1-[)+e

5 — —2mis(1 — |£)

as e — 0.
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Uniform Sobolev ineq. = restriction-extension estimate

3. Since 1 ;m — 9§ as € — 0, we note that

1 - 1 o 2e
1—[gP+is 1-JgP—ie  (1-[P) +e

— —2mid(1 — [£]?)

as e — 0.

4. So, the LP — L9 elliptic uniform Sobolev inequality implies the
following LP — L9 estimate for the restriction-extension operator

|77 (80 = 16F(©) [, g0y < ClFllire-

La(R9)

5. Therefore a necessary condition on p and g for the restriction-
extension estimate is also necessary for the uniform Sobolev
inequality.



Bochner-Riesz operator of negative order

The Bochner-Riesz operator of order a@ > —1, is defined by

1 jgP)2

SF(e) = (r(a+ RO, e s®)

By analytic continuation this definition makes sense when av < —1.
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1 jgP)2
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Bochner-Riesz operator of negative order

The Bochner-Riesz operator of order a@ > —1, is defined by

1-1eP)¢

Fla s 1) tF(E), feSRY).

Saf(€) =

By analytic continuation this definition makes sense when av < —1.

Conjecture (LP — L9 boundedness of S%, o < 0)
Let —F1 < a < 0. Then

||5a||LP(]Rd)—>Lq(Rd) <

1_1 —2a 1 d—1-2« d+14+2a
lfandon/y/f quH, > = ,and <

» Necessity of the conditions are well-known (Bérjeson, Carbery,
Soria).

» For sufficiency, partial progresses have been made by some
mathematicians (Tomas, Stein, Borjeson, Sogge, Carbery, Soria,
Bak, Gutierrez, Lee) but the full conjecture still remains open.



Boundedness of S~1 or (fdo)¥
» When oo = —1
S-IF(E) = 6(1 — |EP)F(6) ~

F(€)do(¢),

so S is the restriction-extension operator for S7~1.

Theorem (Tomas, Stein, Borjeson, (
Sogge)

)e™ S do( < C|If

H ~/Sd 1 7 g) Lq(Rd) - H ||LP(Rd)
d

if and only |f1 s> 4 > 9

andq<

22

11

)




Necessary conditions for the elliptic uniform Sobolev ineq.

» The gap condition

2
1

T =
Q|

» The pair (p, g) must also satisfy
the conditions for the LP — L9
boundedness of the Bochner-Riesz
operator S™1 or the restriction-
extension operator (fdo)Y, that is,

1 d+1 1 d-1 (%0>

p” 2d ' ¢~ 2d



Argument of Kenig-Ruiz-Sogge for proving elliptic uniform
Sobolev inequalities (1/2)

» The main part is establishing the uniform resolvent estimate

lulltorey < CII(A + 2)ul|p(rey, Yz € C.
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Argument of Kenig-Ruiz-Sogge for proving elliptic uniform
Sobolev inequalities (1/2)

» The main part is establishing the uniform resolvent estimate
lulltorey < CII(A + 2)ul|p(rey, Yz € C.

» The (elliptic) uniform resolvent estimate, combined with the
restriction-extension estimate (for the sphere), implies the (elliptic)
uniform Sobolev inequality.

» The uniform resolvent estimate is equivalent to

H'F_l( d |§|2)H < ClIfllp, VzeC\R.

» The kernel can be calculated explicitly as

K(x) = (i)#lc%(m),

X2

where K, (w) = [~ e"Whtcoshvt dt, w € C, Re(w) > 0.
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Argument of Kenig-Ruiz-Sogge (2/2)

» They computed the bound of the kernel by making use of

Theorem (Stein, 86')
Letd>3,1<p<2 andi s < Zﬁ(l — 7) Suppose that v is supported
away from the diagonal. Then we have

H/ AX=Yap(x, y)F( dyH < CATH | f]| -

» By using some quantitative properties of the special function K, and
this oscillatory integral theorem, they obtained

|71 L) = 1 fla < €l vz,

for all p and g such that % gl < < <3

1 _
E—dand



Uniform Sobolev inequality: Non-elliptic case Q(D) # A

P(D)=Q(D)+a-D+b ’ l)l/q L
Theorem (Kenig-Ruiz-Sogge, 87") 23 i*ﬁzl

Let d >3, Q(D) = Mgk — Dgos. o

Then .

Jull 20, < Cl[P(D)ul] 20
L3-2 (Rd) LT+ (R9)

holds uniformly in a € C4, b € C.

(39) wo P



Argument of Kenig-Ruiz-Sogge proving a non-elliptic
uniform Sobolev inequality (1/3)

» The main part is establishing the non-elliptic uniform resolvent
estimate
ull 22 < CII(QID) + 2)uf 20, Vz €C,
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» The main part is establishing the non-elliptic uniform resolvent
estimate
ull 22 < CII(QID) + 2)uf 20, Vz €C,

because this estimate, combined with Strichartz's restriction-
extension estimate for the quadratic surface {{ € R: Q(§) = £1}

IXE
H/Rd AR T Ve, < Iz,

implies the (non-elliptic) uniform Sobolev inequality.

» The uniform resolvent estimate is equivalent to

|7 <Q(2()£) e

CHf” 2 VZGC\R
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» However, for non-elliptic case, there is no such results as Stein's
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.
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Argument of Kenig-Ruiz-Sogge (2/3)

» However, for non-elliptic case, there is no such results as Stein's
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.

» They imbedded the multiplier operator in the following analytic
family of operators { T)} in the strip —d/2 < Re(\) < 0, given by
the multipliers

2
e)\

z)\
7|_(%+/\)(Q(€)+ )"

mx(§) =
so that
[ Tafll2 < C|/f]l2, Re(X) =0,
ITaflloe < ClIflls,  Re(A) = —d/2.

» The L2 — [2 bound follows from the Plancherel’s theorem because
Imalloc < 00 when Re(A) = 0.



Argument of Kenig-Ruiz-Sogge (3/3)

» For the L' — L> bound they showed the kernel estimate
IMilloc < C, VzeC\R,

where Re(\) = —d/2 by calculating the kernel

_ eN' QAL g ik/2 z \3(§+N)
R FR G\ NCRSY (Q(x)) Kgi(V2AR).




Argument of Kenig-Ruiz-Sogge (3/3)

» For the L' — L> bound they showed the kernel estimate
IMilloc < C, VzeC\R,

where Re(\) = —d/2 by calculating the kernel

_ eN' QAL g ik/2 z \3(§+N)
R FR G\ NCRSY (Q(X)> Kgi(V2AR).

» By Stein’s analytic interpolation theorem they obtained

&) \V
|(oe+3)

with C independent of z € C\ R.

L~ IToafl g, < ClFlg,

d—2



Main result: non-elliptic uniform Sobolev inequatilies

P(D)=Q(D)+a-D+b

1/q

Theorem (Jeong-K.-Lee) (L)
2°2
Let d > 3, Q(D) = Agk — Aga—«. Then i s-s-1
[ulltarey < ClIP(D)ul| o (rey
holds uniformly in a € C? and b € C
if and only if 1/p—1/g=2/d and
1;‘;2(1,1)
q d P
L<1<d2+2d—4
2(d—-1) ~p = 2d(d-1) " (30) 1.0)

At the critical points B and B’ we have

. Figure: The optimal (%, 2)-
the restricted weak type bounds 1z

range for the uniform
Sobolev inequalities

[[ull .o ey < C[|P(D)ul|o1(ra)- when Q(D) # A.
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|dea of proof

» Our method proving the non-elliptic uniform Sobolev inequalities is
different from that of Kenig, Ruiz and Sogge.

» Their idea is based on interpolation along a complex analytic family
of distributions for which L? — L2 and L' — L> bounds are relatively
easier to obtain from computations of kernel.

> Instead, we directly analyze the associated multiplier operator in the
frequency domain, whose singularity lies on the surface given by the
quadratic form Q(§).

» We decompose the multiplier dyadically away from its singularity by
taking into account the distance to the surface.

» This approach is rather typical in the study of boundedness of
Bochner-Riesz type operators and of inhomogeneous Strichartz
estimates.

> In this manner, all the pairs of (p, q) for which the non-elliptic
uniform Sobolev inequalities are completely characterized.



Uniform Sobolev = Restriction-extension estimate

Similarly as in the elliptic case, the non-elliptic Sobolev inequality implies
the restriction-extension estimate for the quadratic surface
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Uniform Sobolev = Restriction-extension estimate

Similarly as in the elliptic case, the non-elliptic Sobolev inequality implies
the restriction-extension estimate for the quadratic surface

L. = {£eR: Q€)= £1}

| /]R e FONQE) F 1) < ClFlie (%)

L3(R9)

1. Assume the non-elliptic uniform Sobolev (or resolvent) inequality

[ullLoqey < CI(Q(D) — 1 + ie)ullo(re).-

2. As before in the elliptic case, the multiplier estimates

< C[[f |l p(re

H( - 1—/5 Q(g)ffgi—i—ig)

La(R9)

must also be true uniformly in € > 0. So, taking limit ¢ — 0 we
have the restriction-extension estimate (x).



The cone multiplier operator of negative order

The cone multiplier operator of order y1 > —1, is defined by

_9(&a)

Crf(€) = Fla+1)
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where £ = (£,&4) € R xR and ¢ € C§°(1,2). This definition makes
sense when p < —1 by analytic continuation.
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The cone multiplier operator of negative order

The cone multiplier operator of order y1 > —1, is defined by

CH(E) = s RO, f e SE)

where £ = (£,&4) € R xR and ¢ € C§°(1,2). This definition makes
sense when p < —1 by analytic continuation.

Conjecture (LP — L9 boundedness of C*, 11 < 0)
Let = < pu<0. Then

HC”HLP(Rd)ﬁLq(Rd) < 00

2a 1 d—2—2« 1 d+2a
> = > Sa=1) and = < A1)

if and only if% —

> Necessity of the conditions are known (Lee).

> The sufficiency is known to be true (Lee) when —9 < ;i < —3, but
the full conjecture is open.



Boundedness of C1

When p = -1

CLF(E) m 0(a)d(&5 — KEPIF(E), €= (€.&a) eRITT xR,

so C~1 is the restriction-extension operator for the conic surface

{€eR?&o =€ € [1,2]}.

Theorem (Lee, 2003)

Ifd >3, /ﬁ.‘.‘.‘.z:z:z;z:. b
1€ Flleoqmey < NIFllo(rey (

>

if and only if% —
d—2

2(d—1)°

1 2 1
g = d b~ 2Ad-0)

1
andq<

(1,0) g E F —(1,0)



Necessary conditions for non-elliptic uniform Sobolev ineq.

1. The non-elliptic uniform Sobolev inequality fails unless the
restriction-extension estimate holds:
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Necessary conditions for non-elliptic uniform Sobolev ineq.

1. The non-elliptic uniform Sobolev inequality fails unless the
restriction-extension estimate holds:

H/R e F()(QE) ¥ 1)de]|

S .
oy S 1Fle

2. By scaling € — |p|7Y/2¢, p € R\ {0}, this is equivalent to

EFE)S(Q H < |pl2Gmam D) f .

| [ e<Fenee -ne, ., < ¥l

3. But the uniform Sobolev inequality holds only when 1 — 2 = 3.
So, if Q€)=—-& —---—& ,+&, |p| <1, and fis supported

away from the zero, then the above restriction-extension operator
looks like the cone multiplier operator of order —1.



Necessary conditions for non-elliptic uniform Sobolev ineq.

4. Indeed, a similar argument as in the cone multiplier operator shows
that the condition

d - 1 - d®+2d —4
2(d—-1) p 2d(d —1)
is necessary for the restriction-extension operators for the quadratic

surface Q(§) = £1. In fact, this can be shown by calculating the
asymptotic behavior of the kernel.



Necessary conditions for non-elliptic uniform Sobolev ineq.

4. Indeed, a similar argument as in the cone multiplier operator shows
that the condition

d__1_d+2-4
20d—1) " p ~ 2d(d—1)

is necessary for the restriction-extension operators for the quadratic
surface Q(§) = £1. In fact, this can be shown by calculating the
asymptotic behavior of the kernel.

5. Therefore, the non-elliptic uniform Sobolev inequality holds only if

2 d 1 d*’4+2d—4

Tg d 2d-1) " p S 2d(d-1)

T =
Q|



Proof of non-elliptic uniform Sobolev inequality

By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

» Estimate for the restriction-extension operator
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By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

» Estimate for the restriction-extension operator

S 1l eowa)s

| [ e<ernae 7 vae]|,

La(R9)

» Uniform resolvent estimate
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estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.



Proof of non-elliptic uniform Sobolev inequality

By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

» Estimate for the restriction-extension operator

| [ e<ernae 7 v

S| ooy,
oy < Il

» Uniform resolvent estimate

[ull ooy < CII(Q(D) + 2)ul|1o(re), V2 € C.

e When Q(D) =02 — 93 —--- — 95 =0, and z = 1, the resolvent
estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.

e Proofs of the two estimates are quite similar, but showing the
restriction-extension estimate is technically somewhat more simple than
proving the uniform resolvent estimate.



Estimate for the restriction-extension operator

» d>3
_ d d—2)? _(d d—1)?
> B= (2(d71)’ 2(d(dj1)) C= (%dl’ 2(d(d+)1))
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Estimate for the restriction-extension

» d>3
_ d d—2)? _(d d—1)?
> B= (2(d71)’ 2(d(djl)> C= (%dl’ 2(d(d+)1))
» T : the closed trapezoid with B, B, C’, C
from which B, B’, C, C’ are removed

Theorem (Jeong-K.-Lee)
(i) If(1/p,1/q) € T then

H/ e CF()5(QE) F 1) dgH <|Ifll,, e SERY).

(i) 1f(1/p,1/q) is one of B,B’, C, C’, then we have LP' — [9:°°

estimate.
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Estimate for the restriction-extension operator

G3)
» d>3
_ d d—2)° _{(d d—1)°
> B= (2(d71)’ 2(d(djl)) = (%dl’ %)
» T : the closed trapezoid with B, B, C’, C 11
from which B, B’, C, C’ are removed Gd
0 ‘ \[Eo)

Theorem (Jeong-K.-Lee)
(i) If(1/p,1/q) € T then

H/ e CF()5(QE) F 1) dgH <|Ifll,, e SERY).

(i) 1f(1/p,1/q) is one of B,B', C, C', then we have LP1 — [9:>°
estimate.

e When (1/p,1/q) € ¥ and 1/p+ 1/qg = 1, this estimate was proved by
Strichartz (77').
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» By duality and real interpolation, it is enough to prove the
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» By duality and real interpolation, it is enough to prove the
LP-1 — [9:°° estimate when (1/p,1/q) = B or C.

» By the Lorentz space analogue of the Littlewood-Paley inequality
and Minkowski inequality (1 < p < 2 < g < 00) it is enough to show

1F71((Q £ 1)PiF) oo S IPiFlIpa

for all j € Z. Here P; is the standard Littlewood-Paley projection
operator defined by

Pif(€) = B77IENF(E),
with § € C°[1/2,2], and -, ; B(277t) = 1, Vt > 0.



Proof of restriction-extention estimates: reduction

» By duality and real interpolation, it is enough to prove the
LP-1 — [9:°° estimate when (1/p,1/q) = B or C.

» By the Lorentz space analogue of the Littlewood-Paley inequality
and Minkowski inequality (1 < p < 2 < g < 00) it is enough to show

1F71((Q £ 1)PiF) oo S IPiFlIpa

for all j € Z. Here P; is the standard Littlewood-Paley projection
operator defined by

Pif(€) = B77IENF(E),
with § € C°[1/2,2], and -, ; B(277t) = 1, Vt > 0.

» By scaling this is equivalent to

1_1

IFTH(Q = ) F)lqoo S 11267570 |lp1,  suppf C A,

where p=F27% and A = {¢ e RY:1/2 < [¢] < 2}.
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Proof of rest.-ext. estimates: expression of Q(£) = p as a
local graph

» By finite decomposition of A, we may assume that the support of f
is in a small ball which intersect with A.

» By a rotation R @@ R, € SO(R¥) @@ SO(RY¥), we can assume that
f is supported in a small neighborhood (in R9) of

{eA:62>0,8620, &L= =&-1=0}

> Now we write the surface Q(§) = p as
p=(Ca+&)(&—&)- &~ &+ &+ &,
and observe that f is supported on the set

{eR) :G+a~1, |-Gl S, gl <1, 2<j<d—1}
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Proof of rest.-ext. estimates: expression of Q(£) = p as a
local graph
» We apply another rotation & — 7, where
m = §d+€1’ 1 = §d—§1’
V2 V2
and gy =¢for2<j<d—-1.

» For notational convenience let us write
n=(f,n4) = (m,n',n",na) € R x RET x RITFTT 5 R = RY.

> In the n-coordinate Q(§) = p is written as
p=2mng = 'l + " P,
and represented as a graph
/2 112
— " +
B/ el e

2,'71 P(ﬁ)

Nd

on the small set

D:={feR¥" | <1, |y <1, ;m €[1/2,2]}.



Proof of rest.-ext. estimates: dyadic decomposition of the
delta distribution

> Now the restriction-extension estimate is reduced to showing

| [ 5t~ Go@Fememesan| < 1 ¥4 D)e

where x is a smooth cutoff function.
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Proof of rest.-ext. estimates: dyadic decomposition of the
delta distribution

> Now the restriction-extension estimate is reduced to showing

1_

| [ sna = GuanFenmemenan| < 1ol

where x is a smooth cutoff function.

|p,1a
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Proof of rest.-ext. estimates: dyadic decomposition of the
delta distribution

> Now the restriction-extension estimate is reduced to showing

| [ 5t~ Go@Fememesan| < 1 ¥4 D)e

where x is a smooth cutoff function.

|p71a

Lemma (Dyadic decomposition)
3¢ € S(R) with 1 supported in [~2,—1/2] U[1/2,2] s.t.

=> 2" / P2~ x)g(x)dx, Vg € S(R).

LEL

» Therefore the restriction-extension operator is decomposed as

F 1 (8(na — Go()) => T,

LeZ

where

Tef () =27 /¢ “(na — Go(@))x()f ()™ dn.



Proof of rest.-ext. estimates: key estimates for T,

» [2 — |9 estimates:

1
I Teflagen S ol D272 fll2, || Tef || 2 S 272 |ll2

> [1 — [ estimates:

_1 )
I Teflloo S Il [ Teflloo S flla
Proposition
11 <
(i) For1<p<2andi=973(1-1), G2
(the green line in the figure) T
1_1y_pd_ds1)
I Tefllg S ol 2602 G| £, e
(i) Forl<p<2andl=192(1-1), Ga| 4’
(the blue line in the figure) ‘
1

ITefllg < 25 D) f|| . o o



Proof of rest.-ext. estimates: summation over ¢

Lemma (Summation in Lorentz space)

Let €g,e1 >0, and let {T, : £ € Z} be a sequence of linear operators
satisfying

||T5f||qo < l\/l02_€0£\|f||p07
”Tff“Ch < Ml2eler”P1'

Then for § = €1 /(€0 + €1),

|| < MmO
Lez, &ee

where
1 0 1-6 1 0 1-06

)

9 9o @ P P p



1 1
> Choose 5 < -~ < 2(d-1)

=  —€= 5"




NI
NI

T0)

(3.0
1
> Choose2<—< 3(d— 1)<E<1
= —eo_%—g<0< Cl_d=q
» Hence, for (1/p,1/q)
IF=2(8(ng = Go()F(mx(m) g0 < ClIFllp1-




NI
NI

(3.0
1 1 d 1
> Choosezgp0 <5@-1) < m <1
___d-1_d d—1 _d _
= €= "5 5> <0< o 5 =€

» Hence, for (1/p,1/q) = B,
IF=2(8(ng = Go()F(mx(m) g0 < ClIFllp1-

» Similarly, we have LP'} — [9°° estimates for (1/p,1/q) = C.
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(— —) - e
00 qo ¥
Po m: B )

v
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v

v

1 1 d
ChOOSQ§§%<m<

= —e=%Xl-9d<0<
Hence, for (1/p,1/q) = B,

IF72(5(na = Gp(i)Fmx(m)lla.00 < ClIFllp1-

Similarly, we have LP'! — [9°° estimates for (1/p,1/q) = C.

Duality gives the same estimates for (1/p,1/q) = B', for
(1/p,1/q) = C’ and real interpolation between these estimates gives

the strong type estimates for all (1/p,1/q) € <.
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Proof of rest.-ext. estimates: proof of the [> — L9 estimate

» Consider the evolution operator U,(t) given by

Ue() = [ T, < (D),

Lemma (Stationary phase estimates)
There is a constant C, independent of p, such that

‘/e,-(;.ﬁﬂdgp(ﬁ))){(ﬁ)dﬁ‘ < C(L+Jtllol) 3L+ [t) 7

» The standard TT*-method and the above lemma imply
10D 2z < Clpl T |lg agnomsy
L7 (R9)

d—2 d—1
for - S g S > -



» The operator T; is essentially the multiplier operator 7, A > 0,
defined by
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where ‘Fd_—ll is the d — 1 dimensional inverse Fourier transform.



» The operator T; is essentially the multiplier operator 7, A > 0,
defined by

TLF(n) = %) (A (na — Go(i7))) F(m)-

» Making the change of variable 7y — 174 + G,(7}), we have
TEF0) = [ @m0 ) Uytoa) 73y (FCma + G,(1) ] (K) e

where .7-"d_11 is the d — 1 dimensional inverse Fourier transform.

For 4=2 <<7<d1

73
||TA Al e oy

< [ 100 o) Unto) [ 24 (s + 6,0) | 8

2(o+1) d’f]d
L;‘XZ (R9)

S lp|mm =) / [T 0 ma + Go( D 2oy dna

S 1ol T N ] 2o



Proof of rest.-ext. estimates: proof of the L} — [
estimate

Lemma (Estimate for the kernel of 7))
For every p # 0 and 0 < A\ < 1, let K be defined by

K500 = [ 0\ 1o = G, ) K)e e,

where ¥ is a smooth function supported on D. Suppose QA) is supported
on {t:1/2 <|t| <2}. Then K% is supported in the set
{x € RY: |x4| ~ A71} and

5| < CA% min(1,A%[p|~2).



Proof of rest.-ext. estimates: proof of the L} — [
estimate

Lemma (Estimate for the kernel of 7))
For every p # 0 and 0 < A\ < 1, let K be defined by

K500 = [ 0\ 1o = G, ) K)e e,

where ¥ is a smooth function supported on D. Suppose 17 is supported
on {t:1/2 <|t| <2}. Then K% is supported in the set
{x € RY: |x4| ~ A71} and

5| < CA% min(1,A%[p|~2).

» Without cancellation property the best possible bound is

K5 (x) = O(N).



Proof of the Lemma.

> Making the change of variables 1y — 14 + G,(7]) and integrating in
74, we have

K500 = [ e pxta)dn [ SETED (i
Rd—1

= /\TZ(/\Xd) /Rd—l ef(*'ﬁ-ﬁ-ngp(ﬁ));((ﬁ)dﬁ



Proof of the Lemma.

> Making the change of variables 1y — 14 + G,(7]) and integrating in
74, we have

KR (x) = /eixd"dw()\_lnd)dnd /Rdil ei(?'ﬁ"’_xdgp(ﬁ)))z(ﬁ)dﬁ
— /\TZ(/\Xd)/ ef(i-ﬁ+xdgp(ﬁ))>~<(ﬁ)dﬁ

Rd-1

> Since 1) is supported in {|t] ~ 1}, we see that K% (x) # 0 only when
|)\Xd‘ ~ 1.



Proof of the Lemma.

> Making the change of variables 1y — 14 + G,(7]) and integrating in
74, we have

Kﬁ(x)::j/e”““ﬂwA-ind)dndJ/ a0 M5 (1) d 7
Rd—1

— /\TZ(/\Xd)/ ef(i-ﬁ+xdgp(ﬁ))>~<(ﬁ)dﬁ

Rd-1

> Since 1) is supported in {|t] ~ 1}, we see that K% (x) # 0 only when
|)\Xd‘ ~ 1.

» Now we use the stationary phase lemma to get

. 42
‘/ i(%-F+x4Go (7} ()dn (1+|Xd|‘p‘) 5(1+|Xd|) 2

1

(AT ) EA AT
min(1, A¥[p| 7).

N



Application

Corollary (Carleman inequalities for non-elliptic operators)

Let p, q, and P(D) = Q(D) + a- D + b be as in the (eliptic or
non-elliptic) uniform Sobolev inequality. Then we have the Carleman
inequlity:

le” > ullarey < Clle™*P(D)ullp(ray,  VYu € CZ(RY).

Here, the constant C is independent of t € R, v € RY, a € C¢, and
beC.



Application

Corollary (Carleman inequalities for non-elliptic operators)

Let p, q, and P(D) = Q(D) + a- D + b be as in the (eliptic or
non-elliptic) uniform Sobolev inequality. Then we have the Carleman
inequlity:

le” > ullarey < Clle™*P(D)ullp(ray,  VYu € CZ(RY).

Here, the constant C is independent of t € R, v € RY, a € C¢, and
beC.

(*.") Replace u(x) by e~ ®*u(x). Then the above inequality is equivalent
to
|ullcomey < CIIP(D + iv)ulls(ge),  u € C(RY),

and this is deduced immediately from the uniform Sobolev inequality.



Application: Unique continuation
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> |P(D)u| < |Vul.

Then u = 0 on the whole space RY.
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Application: Unique continuation

Corollary (global unique continuation for non-elliptic operators)
Let 52‘1(;;3 <p< (d Y and let P(D) be as before. Suppose the three
conditions:

» Ve LI2(RY),

» uc W?P(RY) is supported in a half space,

> |P(D)u| < |Vul.
Then u = 0 on the whole space RY.

To see this,
e Let C be the constant of the Carleman inequality.
e Because V € L9/2(R9), we can find a § > 0 such that

[V Lar2(s) < 1/2C

whenever S is any "strip" in R which is congruent to R?~1 x [0, d].
e By translation, we may assume that u = 0 on the half space
N={xecR¥:x-7i<0}

for some unit vector .
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e By inductive argument, it is enough to show that u = 0 on the strip
ng{xeRd:ng-ﬁgé}.
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e By inductive argument, it is enough to show that u = 0 on the strip
ng{xeRd:ng-ﬁgé}.

o Let g besuch that 1/p—1/g=2/d and let t > 0.
le™ ™ ullrags;) < Clle™ > P(D)ull o(me)
< Clle ™ Vul|psy) + CHeftx'ﬁP(D)UHLp(Rd\sg)
< C||Vlparsyylle™ ™ Tullags,y + Ce™ || P(D)ull porers;)-
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e By inductive argument, it is enough to show that u = 0 on the strip
ng{xeRd:ng-ﬁgé}.

o Let g besuch that 1/p—1/g=2/d and let t > 0.
le™ ™ ullrags;) < Clle™ > P(D)ull o(me)
< Clle ™ Vul|psy) + CHeftx'ﬁP(D)UHLp(Rd\sg)
< C||Vlparsyylle™ ™ Tullags,y + Ce™ || P(D)ull porers;)-

e Hence we have |\et(5*X'ﬁ)u||Lq(55) < 2C||P(D)|lp(re\s,) uniformly in
t > 0. This is impossible unless u = 0 on S5.



Thank you for your attention!



