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Constant coe�cient di�erential operators of second order

I Set d Ø 3 and 1 Æ k Æ d .
I Let Q be a non-degenerate real quadratic form on Rd given as

Q(›) = ≠›2

1

≠ · · · ≠ ›2

k

+ ›2

k+1

+ · · · + ›2

d

.

I Let P(D) be a second order di�erential operator defined by

P(D) = Q(D) + a · D + b,

where D = ≠iÒ = (≠i ˆ
ˆx

1

, · · · , ≠i ˆ
ˆx

d

), a œ Cd and b œ C.
I P is elliptic if k = d (Q(D) = �).
I P is non-elliptic otherwise (Q(D) = �Rk ≠ �Rd≠k ).
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Uniform Sobolev inequality

I If there extists an absolute constant C = C(d , k, p, q), independent
of a œ Cd and b œ C, such that

ÎuÎ
L

q

(Rd

)

Æ CÎP(D)uÎ
L

p

(Rd

)

, ’u œ W 2,p(Rd),

we call this the Uniform Sobolev inequality.

I Hardy-Littlewood-Sobolev For 1 < p < q < Œ,

ÎuÎ
L

q

(Rd

)

Æ CÎ�uÎ
L

p

(Rd

)

, ’u œ S(Rd)

holds if and only if
1
p ≠ 1

q = 2
d . (gap condition)

I By homogeneity, the same gap condition is necessary for the uniform
Sobolev inequality.
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Uniform Sobolev inequality: Elliptic case Q(D) = �
I When P(D) is elliptic Kenig, Ruiz, and Sogge characterized the

optimal range of p and q.

Theorem (Kenig-Ruiz-Sogge, 87’)
Let d Ø 3 and Q(D) = �. Then

ÎuÎ
L

q

(Rd

)

Æ CÎP(D)uÎ
L

p

(Rd

)

holds uniformly in a œ Cd and b œ C
if and only if

1
p ≠ 1

q = 2
d ,

d + 1
2d <

1
p <

d + 3
2d .

I In the figure the horizontal axis denotes the interval 1/2 Æ 1/p Æ 1
and the vertical axis denotes 0 Æ 1/q Æ 1/2.

I If A = (x , y) then AÕ = (1 ≠ y , 1 ≠ x) denotes the "dual point" of A,
which is symmetric with A with respect to the dual line 1

p

+ 1

q

= 1.
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Restriction-extension operator for the sphere

I We call the operator

f æ F≠1

1
”(1 ≠ |›|2)‚f (›)

2
(x) ¥

⁄

Sd≠1

‚f (›)e ix ·›d‡(›)

the restriction-extension operator defined by the sphere Sd≠1.
I Here ”(1 ≠ |›|2) is the composition of the ”-distribution with the

smooth function 1 ≠ |›|2, and F≠1 denotes the inverse Fourier
transform.

I The operator is the composition of the Fourier restriction and the
extension operators associated with the sphere.
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Uniform Sobolev ineq. ∆ restriction-extension estimate
The Lp ≠ Lq elliptic uniform Sobolev inequality implies the following
Lp ≠ Lq restriction-extension estimate for the sphere

...
⁄

Sd≠1

‚f (›)e ix ·›d‡(›)
...

L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

.

To show this,
1. Assume that the Sobolev inequality

ÎuÎ
L

q

(Rd

)

Æ CÎ(� + 1 ± iÁ)uÎ
L

p

(Rd

)

holds uniformly in all Á > 0.
2. By the Fourier transform we see that the above inequality is

equivalent to the multiplier estimates

...F≠1

1 ‚f (›)
1 ≠ |›|2 ± iÁ

2...
L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

,

where the constant C is independent of all Á > 0.
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Uniform Sobolev ineq. ∆ restriction-extension estimate

3. Since 1

fi
Á

t

2

+Á2

æ ” as Á æ 0, we note that

1
1 ≠ |›|2 + iÁ ≠ 1

1 ≠ |›|2 ≠ iÁ = ≠2iÁ
(1 ≠ |›|2)2 + Á2

æ ≠2fii”(1 ≠ |›|2)

as Á æ 0.
4. So, the Lp ≠ Lq elliptic uniform Sobolev inequality implies the

following Lp ≠ Lq estimate for the restriction-extension operator
...F≠1

1
”(1 ≠ |›|2)‚f (›)

2...
L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

.

5. Therefore a necessary condition on p and q for the restriction-
extension estimate is also necessary for the uniform Sobolev
inequality.
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Bochner-Riesz operator of negative order
The Bochner-Riesz operator of order – > ≠1, is defined by

‰S–f (›) = (1 ≠ |›|2)–
+

�(– + 1)
‚f (›), f œ S(Rd).

By analytic continuation this definition makes sense when – Æ ≠1.

Conjecture (Lp ≠ Lq boundedness of S–, – < 0)
Let ≠ d+1

2

< – < 0. Then

ÎS–Î
L

p

(Rd

)æL

q

(Rd

)

< Œ

if and only if 1

p

≠ 1

q

Ø ≠2–
d+1

, 1

p

> d≠1≠2–
2d

, and 1

q

< d+1+2–
2d

.

I Necessity of the conditions are well-known (Börjeson, Carbery,
Soria).

I For su�ciency, partial progresses have been made by some
mathematicians (Tomas, Stein, Börjeson, Sogge, Carbery, Soria,
Bak, Gutierrez, Lee) but the full conjecture still remains open.
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Boundedness of S≠1 or (‚f d‡)‚

I When – = ≠1

[S≠1f (›) = ”(1 ≠ |›|2)‚f (›) ¥ ‚f (›)d‡(›),

so S≠1 is the restriction-extension operator for Sd≠1.

Theorem (Tomas, Stein, Börjeson,
Sogge)
...

⁄

Sd≠1

‚f (›)e ix ·›d‡(›)
...

L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

if and only if 1

p

≠ 1

q

Ø 2

d+1

, 1

p

> d+1

2d

,
and 1

q

< d≠1

2d

.
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Necessary conditions for the elliptic uniform Sobolev ineq.

I The gap condition

1
p ≠ 1

q = 2
d .

I The pair (p, q) must also satisfy
the conditions for the Lp ≠ Lq

boundedness of the Bochner-Riesz
operator S≠1 or the restriction-
extension operator (‚f d‡)‚, that is,

1
p >

d + 1
2d ,

1
q <

d ≠ 1
2d .



12/41

Argument of Kenig-Ruiz-Sogge for proving elliptic uniform
Sobolev inequalities (1/2)

I The main part is establishing the uniform resolvent estimate

ÎuÎ
L

q

(Rd

)

Æ CÎ(� + z)uÎ
L

p

(Rd

)

, ’z œ C.

I The (elliptic) uniform resolvent estimate, combined with the
restriction-extension estimate (for the sphere), implies the (elliptic)
uniform Sobolev inequality.

I The uniform resolvent estimate is equivalent to
...F≠1

1 ‚f (›)
z ≠ |›|2

2...
q

Æ CÎf Î
p

, ’z œ C \ R.

I The kernel can be calculated explicitly as

K (x) =
1 z

|x |2
2 d≠2

4 K d≠2

2

(


z |x |2),

where K‹(w) =
s Œ

0

e≠w cosh t cosh ‹t dt, w œ C, Re(w) > 0.
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Argument of Kenig-Ruiz-Sogge (2/2)

I They computed the bound of the kernel by making use of

Theorem (Stein, 86’)
Let d Ø 3, 1 Æ p Æ 2, and 1

q

Æ d≠1

d+1

(1 ≠ 1

p

). Suppose that Â is supported
away from the diagonal. Then we have

...
⁄

e i⁄|x≠y |Â(x , y)f (y)dy
...

q

Æ C⁄≠ d

q Îf Î
p

.

I By using some quantitative properties of the special function K‹ and
this oscillatory integral theorem, they obtained

...F≠1

1 ‚f (›)
z ≠ |›|2

2...
q

= ÎK ú f Î
q

Æ CÎf Î
p

, ’z œ C \ R,

for all p and q such that 1

p

≠ 1

q

= 2

d

and d+1

2d

< 1

p

< d+3

2d

.
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Uniform Sobolev inequality: Non-elliptic case Q(D) ”= �

P(D) = Q(D) + a · D + b

Theorem (Kenig-Ruiz-Sogge, 87’)
Let d Ø 3, Q(D) = �Rk ≠ �Rd≠k .
Then

ÎuÎ
L

2d

d≠2

(Rd

)

Æ CÎP(D)uÎ
L

2d

d+2

(Rd

)

holds uniformly in a œ Cd , b œ C.
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Argument of Kenig-Ruiz-Sogge proving a non-elliptic
uniform Sobolev inequality (1/3)

I The main part is establishing the non-elliptic uniform resolvent
estimate

ÎuÎ 2d

d≠2

Æ CÎ(Q(D) + z)uÎ 2d

d+2

, ’z œ C,

because this estimate, combined with Strichartz’s restriction-
extension estimate for the quadratic surface {› œ R : Q(›) = ±1}

...
⁄

Rd

e ix ·›‚f (›)”(Q(›) û 1)d›
...

2d

d≠2

Æ CÎf Î 2d

d+2

,

implies the (non-elliptic) uniform Sobolev inequality.
I The uniform resolvent estimate is equivalent to

...F≠1

1 ‚f (›)
Q(›) + z

2...
2d

d≠2

Æ CÎf Î 2d

d+2

, ’z œ C \ R.
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Argument of Kenig-Ruiz-Sogge (2/3)

I However, for non-elliptic case, there is no such results as Stein’s
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.

I They imbedded the multiplier operator in the following analytic
family of operators {T⁄} in the strip ≠d/2 Æ Re(⁄) Æ 0, given by
the multipliers

m⁄(›) = e⁄2

�( d

2

+ ⁄)
(Q(›) + z)⁄,

so that
ÎT⁄f Î

2

Æ CÎf Î
2

, Re(⁄) = 0,

ÎT⁄f ÎŒ Æ CÎf Î
1

, Re(⁄) = ≠d/2.

I The L2 ≠ L2 bound follows from the Plancherel’s theorem because
Îm⁄ÎŒ < Œ when Re(⁄) = 0.



16/41

Argument of Kenig-Ruiz-Sogge (2/3)

I However, for non-elliptic case, there is no such results as Stein’s
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.

I They imbedded the multiplier operator in the following analytic
family of operators {T⁄} in the strip ≠d/2 Æ Re(⁄) Æ 0, given by
the multipliers

m⁄(›) = e⁄2

�( d

2

+ ⁄)
(Q(›) + z)⁄,

so that
ÎT⁄f Î

2

Æ CÎf Î
2

, Re(⁄) = 0,

ÎT⁄f ÎŒ Æ CÎf Î
1

, Re(⁄) = ≠d/2.

I The L2 ≠ L2 bound follows from the Plancherel’s theorem because
Îm⁄ÎŒ < Œ when Re(⁄) = 0.



16/41

Argument of Kenig-Ruiz-Sogge (2/3)

I However, for non-elliptic case, there is no such results as Stein’s
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.

I They imbedded the multiplier operator in the following analytic
family of operators {T⁄} in the strip ≠d/2 Æ Re(⁄) Æ 0, given by
the multipliers

m⁄(›) = e⁄2

�( d

2

+ ⁄)
(Q(›) + z)⁄,

so that
ÎT⁄f Î

2

Æ CÎf Î
2

, Re(⁄) = 0,

ÎT⁄f ÎŒ Æ CÎf Î
1

, Re(⁄) = ≠d/2.

I The L2 ≠ L2 bound follows from the Plancherel’s theorem because
Îm⁄ÎŒ < Œ when Re(⁄) = 0.



16/41

Argument of Kenig-Ruiz-Sogge (2/3)

I However, for non-elliptic case, there is no such results as Stein’s
oscillatory integral theorem. Hence, they had to use interpolation
along a complex analytic family of distributions. This method is less
flexible and restrictive.

I They imbedded the multiplier operator in the following analytic
family of operators {T⁄} in the strip ≠d/2 Æ Re(⁄) Æ 0, given by
the multipliers

m⁄(›) = e⁄2

�( d

2

+ ⁄)
(Q(›) + z)⁄,

so that
ÎT⁄f Î

2

Æ CÎf Î
2

, Re(⁄) = 0,

ÎT⁄f ÎŒ Æ CÎf Î
1

, Re(⁄) = ≠d/2.

I The L2 ≠ L2 bound follows from the Plancherel’s theorem because
Îm⁄ÎŒ < Œ when Re(⁄) = 0.



17/41

Argument of Kenig-Ruiz-Sogge (3/3)

I For the L1 ≠ LŒ bound they showed the kernel estimate

Î „m⁄ÎŒ Æ C , ’z œ C \ R,

where Re(⁄) = ≠d/2 by calculating the kernel

„m⁄(x) = e⁄22⁄+1e≠fiik/2

(2fi)d�(≠⁄)�( d

2

+ ⁄)

1 z
Q(x)

2 1

2

(

d

2

+⁄)

K d

2

+⁄

1
zQ(x)

2
.

I By Stein’s analytic interpolation theorem they obtained

...
1 ‚f (›)

Q(›) + z

2‚...
2d

d≠2

¥ ÎT≠1

f Î 2d

d≠2

Æ CÎf Î 2d

d+2

,

with C independent of z œ C \ R.
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Main result: non-elliptic uniform Sobolev inequatilies
P(D) = Q(D) + a · D + b

Theorem (Jeong-K.-Lee)
Let d Ø 3, Q(D) = �Rk ≠ �Rd≠k . Then

ÎuÎ
L

q

(Rd

)

Æ CÎP(D)uÎ
L

p

(Rd

)

holds uniformly in a œ Cd and b œ C
if and only if 1/p ≠ 1/q = 2/d and

d
2(d ≠ 1) <

1
p <

d2 + 2d ≠ 4
2d(d ≠ 1) .

At the critical points B and BÕ we have
the restricted weak type bounds

ÎuÎ
L

q,Œ
(Rd

)

Æ CÎP(D)uÎ
L

p,1

(Rd

)

.

Figure: The optimal (

1

p

, 1

q

)-

range for the uniform

Sobolev inequalities

when Q(D) ”= �.
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Idea of proof

I Our method proving the non-elliptic uniform Sobolev inequalities is
di�erent from that of Kenig, Ruiz and Sogge.

I Their idea is based on interpolation along a complex analytic family
of distributions for which L2 ≠ L2 and L1 ≠ LŒ bounds are relatively
easier to obtain from computations of kernel.

I Instead, we directly analyze the associated multiplier operator in the
frequency domain, whose singularity lies on the surface given by the
quadratic form Q(›).

I We decompose the multiplier dyadically away from its singularity by
taking into account the distance to the surface.

I This approach is rather typical in the study of boundedness of
Bochner-Riesz type operators and of inhomogeneous Strichartz
estimates.

I In this manner, all the pairs of (p, q) for which the non-elliptic
uniform Sobolev inequalities are completely characterized.
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Uniform Sobolev ∆ Restriction-extension estimate
Similarly as in the elliptic case, the non-elliptic Sobolev inequality implies
the restriction-extension estimate for the quadratic surface
�± = {› œ Rd : Q(›) = ±1}

...
⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

. (ú)

1. Assume the non-elliptic uniform Sobolev (or resolvent) inequality

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) ≠ 1 ± iÁ)uÎ
L

p

(Rd

)

.

2. As before in the elliptic case, the multiplier estimates

...
1 ‚f (›)

Q(›) ≠ 1 ≠ iÁ ≠
‚f (›)

Q(›) ≠ 1 + iÁ

2‚...
L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

must also be true uniformly in Á > 0. So, taking limit Á æ 0 we
have the restriction-extension estimate (ú).



20/41

Uniform Sobolev ∆ Restriction-extension estimate
Similarly as in the elliptic case, the non-elliptic Sobolev inequality implies
the restriction-extension estimate for the quadratic surface
�± = {› œ Rd : Q(›) = ±1}

...
⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

. (ú)

1. Assume the non-elliptic uniform Sobolev (or resolvent) inequality

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) ≠ 1 ± iÁ)uÎ
L

p

(Rd

)

.

2. As before in the elliptic case, the multiplier estimates

...
1 ‚f (›)

Q(›) ≠ 1 ≠ iÁ ≠
‚f (›)

Q(›) ≠ 1 + iÁ

2‚...
L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

must also be true uniformly in Á > 0. So, taking limit Á æ 0 we
have the restriction-extension estimate (ú).



20/41

Uniform Sobolev ∆ Restriction-extension estimate
Similarly as in the elliptic case, the non-elliptic Sobolev inequality implies
the restriction-extension estimate for the quadratic surface
�± = {› œ Rd : Q(›) = ±1}

...
⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

. (ú)

1. Assume the non-elliptic uniform Sobolev (or resolvent) inequality

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) ≠ 1 ± iÁ)uÎ
L

p

(Rd

)

.

2. As before in the elliptic case, the multiplier estimates

...
1 ‚f (›)

Q(›) ≠ 1 ≠ iÁ ≠
‚f (›)

Q(›) ≠ 1 + iÁ

2‚...
L

q

(Rd

)

Æ CÎf Î
L

p

(Rd

)

must also be true uniformly in Á > 0. So, taking limit Á æ 0 we
have the restriction-extension estimate (ú).



21/41

The cone multiplier operator of negative order
The cone multiplier operator of order µ > ≠1, is defined by

‰Cµf (›) = „(›
d

)
�(– + 1) (1 ≠ |›̃|2/›2

d

)µ
+

‚f (›), f œ S(Rd),

where › = (›̃, ›
d

) œ Rd≠1 ◊ R and „ œ CŒ
0

(1, 2). This definition makes
sense when µ Æ ≠1 by analytic continuation.

Conjecture (Lp ≠ Lq boundedness of Cµ, µ < 0)
Let ≠ d

2

< µ < 0. Then

ÎCµÎ
L

p

(Rd

)æL

q

(Rd

)

< Œ

if and only if 1

p

≠ 1

q

Ø ≠2–
d

, 1

p

> d≠2≠2–
2(d≠1)

, and 1

q

< d+2–
2(d≠1)

.

I Necessity of the conditions are known (Lee).
I The su�ciency is known to be true (Lee) when ≠ d

2

< µ < ≠ 1

2

, but
the full conjecture is open.
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Boundedness of C≠1

When µ = ≠1

[C≠1f (›) ¥ „(›
d

)”(›2

d

≠ |›̃|2)‚f (›), › = (›̃, ›
d

) œ Rd≠1 ◊ R,

so C≠1 is the restriction-extension operator for the conic surface
{› œ Rd : ›

d

= |›̃| œ [1, 2]}.

Theorem (Lee, 2003)
If d Ø 3,

ÎC≠1f Î
L

q

(Rd

)

. Îf Î
L

p

(Rd

)

if and only if 1

p

≠ 1

q

Ø 2

d

, 1

p

> d

2(d≠1)

and 1

q

< d≠2

2(d≠1)

.
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Necessary conditions for non-elliptic uniform Sobolev ineq.

1. The non-elliptic uniform Sobolev inequality fails unless the
restriction-extension estimate holds:

...
⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

. Îf Î
L

p

(Rd

)

.

2. By scaling › æ |fl|≠1/2›, fl œ R \ {0}, this is equivalent to
...

⁄

Rd

e ix ·› ‚f (›)”(Q(›) ≠ fl)d›
...

L

q

(Rd

)

. |fl|
d

2

(

1

p

≠ 1

q

≠ 2

d

)Îf Î
L

p

(Rd

)

.

3. But the uniform Sobolev inequality holds only when 1

p

≠ 1

q

= 2

d

.
So, if Q(›) = ≠›2

1

≠ · · · ≠ ›2

d≠1

+ ›2

d

, |fl| π 1, and ‚f is supported
away from the zero, then the above restriction-extension operator
looks like the cone multiplier operator of order ≠1.
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Necessary conditions for non-elliptic uniform Sobolev ineq.

4. Indeed, a similar argument as in the cone multiplier operator shows
that the condition

d
2(d ≠ 1) <

1
p <

d2 + 2d ≠ 4
2d(d ≠ 1)

is necessary for the restriction-extension operators for the quadratic
surface Q(›) = ±1. In fact, this can be shown by calculating the
asymptotic behavior of the kernel.

5. Therefore, the non-elliptic uniform Sobolev inequality holds only if

1
p ≠ 1

q = 2
d ,

d
2(d ≠ 1) <

1
p <

d2 + 2d ≠ 4
2d(d ≠ 1) .
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Proof of non-elliptic uniform Sobolev inequality
By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

I Estimate for the restriction-extension operator
...

⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

. Îf Î
L

p

(Rd

)

,

I Uniform resolvent estimate

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) + z)uÎ
L

p

(Rd

)

, ’z œ C.

• When Q(D) = ˆ2

1

≠ ˆ2

2

≠ · · · ≠ ˆ2

d

= ⇤, and z = 1, the resolvent
estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.
• Proofs of the two estimates are quite similar, but showing the
restriction-extension estimate is technically somewhat more simple than
proving the uniform resolvent estimate.



25/41

Proof of non-elliptic uniform Sobolev inequality
By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

I Estimate for the restriction-extension operator
...

⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

. Îf Î
L

p

(Rd

)

,

I Uniform resolvent estimate

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) + z)uÎ
L

p

(Rd

)

, ’z œ C.

• When Q(D) = ˆ2

1

≠ ˆ2

2

≠ · · · ≠ ˆ2

d

= ⇤, and z = 1, the resolvent
estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.
• Proofs of the two estimates are quite similar, but showing the
restriction-extension estimate is technically somewhat more simple than
proving the uniform resolvent estimate.



25/41

Proof of non-elliptic uniform Sobolev inequality
By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

I Estimate for the restriction-extension operator
...

⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

. Îf Î
L

p

(Rd

)

,

I Uniform resolvent estimate

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) + z)uÎ
L

p

(Rd

)

, ’z œ C.

• When Q(D) = ˆ2

1

≠ ˆ2

2

≠ · · · ≠ ˆ2

d

= ⇤, and z = 1, the resolvent
estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.
• Proofs of the two estimates are quite similar, but showing the
restriction-extension estimate is technically somewhat more simple than
proving the uniform resolvent estimate.



25/41

Proof of non-elliptic uniform Sobolev inequality
By a standard reduction argument, the proof of non-elliptic uniform
Sobolev inequality follows from the two steps:

I Estimate for the restriction-extension operator
...

⁄

Rd

e ix ·› ‚f (›)”(Q(›) û 1)d›
...

L

q

(Rd

)

. Îf Î
L

p

(Rd

)

,

I Uniform resolvent estimate

ÎuÎ
L

q

(Rd

)

Æ CÎ(Q(D) + z)uÎ
L

p

(Rd

)

, ’z œ C.

• When Q(D) = ˆ2

1

≠ ˆ2

2

≠ · · · ≠ ˆ2

d

= ⇤, and z = 1, the resolvent
estimate is the inhomogeneous Strichartz estimate for the Klein-Gordon
equation.
• Proofs of the two estimates are quite similar, but showing the
restriction-extension estimate is technically somewhat more simple than
proving the uniform resolvent estimate.



26/41

Estimate for the restriction-extension operator

I d Ø 3
I B =

1
d

2(d≠1)

, (d≠2)

2

2d(d≠1)

2
C =

1
d+1

2d

, (d≠1)

2

2d(d+1)

2

I T : the closed trapezoid with B, BÕ, C Õ, C
from which B, BÕ, C , C Õ are removed

Theorem (Jeong-K.-Lee)
(i) If (1/p, 1/q) œ T then

...
⁄

Rd

e ix ·›‚f (›)”(Q(›) û 1)d›
...

q

. Îf Î
p

, f œ S(Rd).

(ii) If (1/p, 1/q) is one of B, BÕ, C , C Õ, then we have Lp,1 ≠ Lq,Œ

estimate.

• When (1/p, 1/q) œ T and 1/p + 1/q = 1, this estimate was proved by
Strichartz (77’).
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Proof of restriction-extention estimates: reduction
I By duality and real interpolation, it is enough to prove the

Lp,1 ≠ Lq,Œ estimate when (1/p, 1/q) = B or C .
I By the Lorentz space analogue of the Littlewood-Paley inequality

and Minkowski inequality (1 < p < 2 < q < Œ) it is enough to show

ÎF≠1

!
”(Q ± 1)‰P

j

f
"
Î

q,Œ . ÎP
j

f Î
p,1

for all j œ Z. Here P
j

is the standard Littlewood-Paley projection
operator defined by

‰P
j

f (›) = —(2≠j |›|)‚f (›),

with — œ CŒ
c

[1/2, 2], and
q

jœZ —(2≠jt) = 1, ’t > 0.
I By scaling this is equivalent to

ÎF≠1

!
”(Q ≠ fl) ‚f

"
Î

q,Œ . |fl|
d

2

(

1

p

≠ 1

q

≠ 2

d

)Îf Î
p,1, supp‚f µ A,

where fl = û2≠2j , and A = {› œ Rd : 1/2 Æ |›| Æ 2}.
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Proof of rest.-ext. estimates: expression of Q(›) = fl as a
local graph

I By finite decomposition of A, we may assume that the support of ‚f
is in a small ball which intersect with A.

I By a rotation R
1

m
R

2

œ SO(Rk)
m

SO(Rd≠k), we can assume that
‚f is supported in a small neighborhood (in Rd) of

{› œ A : ›
1

Ø 0, ›
d

Ø 0, ›
2

= · · · = ›
d≠1

= 0}.

I Now we write the surface Q(›) = fl as

fl = (›
d

+ ›
1

)(›
d

≠ ›
1

) ≠ ›2

2

≠ · · · ≠ ›2

k

+ ›2

k+1

+ · · · + ›2

d≠1

,

and observe that ‚f is supported on the set

{› œ Rd : ›
d

+ ›
1

≥ 1, |›
d

≠ ›
1

| . 1, |›
j

| π 1, 2 Æ j Æ d ≠ 1}.
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Proof of rest.-ext. estimates: expression of Q(›) = fl as a
local graph

I We apply another rotation › æ ÷, where

÷
1

= ›
d

+ ›
1Ô

2
, ÷

d

= ›
d

≠ ›
1Ô

2
,

and ÷
j

= ›
j

for 2 Æ j Æ d ≠ 1.
I For notational convenience let us write

÷ = (÷̃, ÷
d

) = (÷
1

, ÷Õ, ÷ÕÕ, ÷
d

) œ R ◊ Rk≠1 ◊ Rd≠k≠1 ◊ R = Rd .

I In the ÷-coordinate Q(›) = fl is written as

fl = 2÷
1

÷
d

≠ |÷Õ|2 + |÷ÕÕ|2,

and represented as a graph

÷
d

= |÷Õ|2 ≠ |÷ÕÕ|2 + fl

2÷
1

=: Gfl(÷̃)

on the small set

D :=
)

÷̃ œ Rd≠1 : |÷Õ| Æ 1, |÷ÕÕ| Æ 1, ÷
1

œ [1/2, 2]
*

.
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Proof of rest.-ext. estimates: dyadic decomposition of the
delta distribution

I Now the restriction-extension estimate is reduced to showing
...

⁄
”(÷

d

≠ Gfl(÷̃))‚f (÷)‰(÷)e ix ·÷d÷
...

q,Œ
. |fl|

d

2

(

1

p

≠ 1

q

≠ 2

d

)Îf Î
p,1,

where ‰ is a smooth cuto� function.

Lemma (Dyadic decomposition)
÷ Â œ S(R) with ‚Â supported in [≠2, ≠1/2] fi [1/2, 2] s.t.

”(g) = g(0) =
ÿ

¸œZ
2≠¸

⁄ Œ

≠Œ
Â(2≠¸x)g(x)dx , ’g œ S(R).

I Therefore the restriction-extension operator is decomposed as

F≠1

!
”(÷

d

≠ Gfl(÷̃))‚f (÷)‰(÷)
"

=
ÿ

¸œZ
T¸f ,

where

T¸f (x) = 2≠¸

⁄

Rd

Â(2≠¸(÷
d

≠ Gfl(÷̃)))‰(÷)‚f (÷)e ix ·÷d÷.
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Proof of rest.-ext. estimates: key estimates for T¸

I L2 ≠ Lq estimates:

ÎT¸f Î
2(d+1)

d≠1

. |fl|≠
1

2(d+1) 2≠ ¸
2 Îf Î

2

, ÎT¸f Î 2d

d≠2

. 2≠ ¸
2 Îf Î

2

I L1 ≠ LŒ estimates:

ÎT¸f ÎŒ . |fl|≠ 1

2 2
¸(d≠1)

2 Îf Î
1

, ÎT¸f ÎŒ . 2
¸(d≠2)

2 Îf Î
1

Proposition
(i) For 1 Æ p Æ 2 and 1

q

= d≠1

d+1

(1 ≠ 1

p

),
(the green line in the figure)

ÎT¸f Î
q

. |fl|≠
1

2

(

1

p

≠ 1

q

)2¸(

d

p

≠ d+1

2

)Îf Î
p

.

(ii) For 1 Æ p Æ 2 and 1

q

= d≠2

d

(1 ≠ 1

p

),
(the blue line in the figure)

ÎT¸f Î
q

. 2¸(

d≠1

p

≠ d

2

)Îf Î
p

.
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Proof of rest.-ext. estimates: summation over ¸

Lemma (Summation in Lorentz space)
Let ‘

0

, ‘
1

> 0, and let {T¸ : ¸ œ Z} be a sequence of linear operators
satisfying

ÎT¸f Î
q

0

Æ M
0

2≠‘
0

¸Îf Î
p

0

,

ÎT¸f Î
q

1

Æ M
1

2‘
1

¸Îf Î
p

1

.

Then for ◊ = ‘
1

/(‘
0

+ ‘
1

),
...

ÿ

¸œZ
T¸f

...
q,Œ

Æ CM◊
0

M1≠◊
1

Îf Î
p,1,

where
1
q = ◊

q
0

+ 1 ≠ ◊

q
1

,
1
p = ◊

p
0

+ 1 ≠ ◊

p
1

.
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I Choose 1

2

Æ 1

p

0

< d

2(d≠1)

< 1

p

1

< 1.
∆ ≠‘

0

= d≠1

p

0

≠ d

2

< 0 < d≠1

p

1

≠ d

2

= ‘
1

.

I Hence, for (1/p, 1/q) = B,

ÎF≠1(”(÷
d

≠ Gfl(÷̃))‚f (÷)‰(÷))Î
q,Œ Æ CÎf Î

p,1.

I Similarly, we have Lp,1 ≠ Lq,Œ estimates for (1/p, 1/q) = C .
I Duality gives the same estimates for (1/p, 1/q) = BÕ, for

(1/p, 1/q) = C Õ and real interpolation between these estimates gives
the strong type estimates for all (1/p, 1/q) œ T.
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Proof of rest.-ext. estimates: proof of the L2 ≠ Lq estimate

I Consider the evolution operator Ufl(t) given by

Ufl(t)g(x̃) =
⁄

Rd≠1

e i(x̃ ·÷̃+tGfl(÷̃))‰̃(÷̃) ‚g(÷̃)d ÷̃, ‰̃ œ CŒ
c

(D).

Lemma (Stationary phase estimates)
There is a constant C, independent of fl, such that

---
⁄

e i(x̃ ·÷̃+x

d

Gfl(÷̃))‰(÷̃)d ÷̃
--- Æ C(1 + |t||fl|)≠ 1

2 (1 + |t|)≠ d≠2

2 .

I The standard TT ú-method and the above lemma imply

ÎUfl(t)g(x̃)Î
L

2(‡+1)

‡
t,x̃

(Rd

)

Æ C |fl|
1

2(‡+1)

(

d≠2

2

≠‡)ÎgÎ
L

2

(Rd≠1

)

for d≠2

2

Æ ‡ Æ d≠1

2

.
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I The operator T¸ is essentially the multiplier operator T fl
⁄ , ⁄ > 0,

defined by

‰T fl
⁄ f (÷) = ‰̃(÷̃)Â

!
⁄≠1(÷

d

≠ Gfl(÷̃))
"‚f (÷).

I Making the change of variable ÷
d

æ ÷
d

+ Gfl(÷̃), we have

T fl
⁄ f (x) =

⁄
e ix

d

÷
d Â(⁄≠1÷

d

)Ufl(x
d

)
Ë
F≠1

d≠1

!‚f (·, ÷
d

+ Gfl(·))
"È

(x̃)d÷
d

,

where F≠1

d≠1

is the d ≠ 1 dimensional inverse Fourier transform.
For d≠2

2

Æ ‡ Æ d≠1

2

,

ÎT fl
⁄ f Î

L

2(‡+1)

‡
(Rd

)

Æ
⁄

|Â(⁄≠1÷
d

)|
...Ufl(x

d

)
Ë
F≠1

d≠1

!‚f (·, ÷
d

+ Gfl(·))
"È

(x̃)
...

L

2(‡+1)

‡
x̃,x

d

(Rd

)

d÷
d

. |fl|
1

2(‡+1)

(

d≠2

2

≠‡)

⁄
|Â(⁄≠1÷

d

)|Î‚f (·, ÷
d

+ Gfl(·))Î
L

2

(Rd≠1

)

d÷
d

. |fl|
1

2(‡+1)

(

d≠2

2

≠‡)⁄
1

2 Îf Î
L

2

(Rd

)

.
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Proof of rest.-ext. estimates: proof of the L1 ≠ LŒ

estimate

Lemma (Estimate for the kernel of T fl
⁄ )

For every fl ”= 0 and 0 < ⁄ . 1, let Kfl
⁄ be defined by

Kfl
⁄(x) =

⁄

Rd

Â
!
⁄≠1(÷

d

≠ Gfl(÷̃))
"
‰̃(÷̃)e ix ·÷d÷,

where ‰̃ is a smooth function supported on D. Suppose ‚Â is supported
on {t : 1/2 Æ |t| Æ 2}. Then Kfl

⁄ is supported in the set
{x œ Rd : |x

d

| ≥ ⁄≠1} and

|Kfl
⁄(x)| Æ C⁄

d

2 min(1, ⁄
1

2 |fl|≠ 1

2 ).

I Without cancellation property the best possible bound is

Kfl
⁄(x) = O(⁄).



36/41

Proof of rest.-ext. estimates: proof of the L1 ≠ LŒ

estimate

Lemma (Estimate for the kernel of T fl
⁄ )

For every fl ”= 0 and 0 < ⁄ . 1, let Kfl
⁄ be defined by

Kfl
⁄(x) =

⁄

Rd

Â
!
⁄≠1(÷

d

≠ Gfl(÷̃))
"
‰̃(÷̃)e ix ·÷d÷,

where ‰̃ is a smooth function supported on D. Suppose ‚Â is supported
on {t : 1/2 Æ |t| Æ 2}. Then Kfl

⁄ is supported in the set
{x œ Rd : |x

d

| ≥ ⁄≠1} and

|Kfl
⁄(x)| Æ C⁄

d

2 min(1, ⁄
1

2 |fl|≠ 1

2 ).

I Without cancellation property the best possible bound is

Kfl
⁄(x) = O(⁄).



37/41

Proof of the Lemma.
I Making the change of variables ÷

d

æ ÷
d

+ Gfl(÷̃) and integrating in
÷

d

, we have

Kfl
⁄(x) =

⁄
e ix

d

÷
d Â(⁄≠1÷

d

)d÷
d

⁄

Rd≠1

e i(x̃ ·÷̃+x

d

Gfl(÷̃))‰̃(÷̃)d ÷̃

= ⁄ ‚Â(⁄x
d

)
⁄

Rd≠1

e i(x̃ ·÷̃+x

d

Gfl(÷̃))‰̃(÷̃)d ÷̃

I Since ‚Â is supported in {|t| ≥ 1}, we see that Kfl
⁄(x) ”= 0 only when

|⁄x
d

| ≥ 1.
I Now we use the stationary phase lemma to get

---
⁄

e i(x̃ ·÷̃+x

d

Gfl(÷̃))‰(÷̃)d ÷̃
--- . (1 + |x

d

||fl|)≠ 1

2 (1 + |x
d

|)≠ d≠2

2

¥ (1 + ⁄≠1|fl|)≠ 1

2 (1 + ⁄≠1)≠ d≠2

2

. ⁄
d

2 min(1, ⁄
1

2 |fl|≠ 1

2 ).
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Application

Corollary (Carleman inequalities for non-elliptic operators)
Let p, q, and P(D) = Q(D) + a · D + b be as in the (eliptic or
non-elliptic) uniform Sobolev inequality. Then we have the Carleman
inequlity:

Îetv ·x uÎ
L

q

(Rd

)

Æ CÎetv ·x P(D)uÎ
L

p

(Rd

)

, ’u œ CŒ
c

(Rd).

Here, the constant C is independent of t œ R, v œ Rd , a œ Cd , and
b œ C.

(*) Replace u(x) by e≠tv ·x u(x). Then the above inequality is equivalent
to

ÎuÎ
L

q

(Rd

)

Æ CÎP(D + iv)uÎ
L

p

(Rd

)

, u œ CŒ
c

(Rd),

and this is deduced immediately from the uniform Sobolev inequality.
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Application: Unique continuation
Corollary (global unique continuation for non-elliptic operators)
Let 2d(d≠1)

d

2

+2d≠4

< p < 2(d≠1)

d

and let P(D) be as before. Suppose the three
conditions:

I V œ Ld/2(Rd),
I u œ W 2,p(Rd) is supported in a half space,
I |P(D)u| Æ |Vu|.

Then u = 0 on the whole space Rd .

To see this,
• Let C be the constant of the Carleman inequality.
• Because V œ Ld/2(Rd), we can find a ” > 0 such that

ÎV Î
L

d/2

(S)

Æ 1/2C

whenever S is any "strip" in Rd which is congruent to Rd≠1 ◊ [0, ”].
• By translation, we may assume that u = 0 on the half space

� = {x œ Rd : x · n̨ Æ 0}

for some unit vector n̨.
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• By inductive argument, it is enough to show that u = 0 on the strip
S” = {x œ Rd : 0 Æ x · n̨ Æ ”}.

• Let q be such that 1/p ≠ 1/q = 2/d and let t > 0.
Îe≠tx ·̨nuÎ

L

q

(S”)

Æ CÎe≠tx ·̨nP(D)uÎ
L

p

(Rd

)

Æ CÎe≠tx ·̨nVuÎ
L

p

(S”)

+ CÎe≠tx ·̨nP(D)uÎ
L

p

(Rd \S”)

Æ CÎV Î
L

d/2

(S”)

Îe≠tx ·̨nuÎ
L

q

(S”)

+ Ce≠t”ÎP(D)uÎ
L

p

(Rd \S”)

.

• Hence we have Îet(”≠x ·̨n)uÎ
L

q

(S”)

Æ 2CÎP(D)Î
L

p

(Rd \S”)

uniformly in
t > 0. This is impossible unless u = 0 on S”.
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Thank you for your attention!


