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Introduction



Introduction: Lebesgue differentiation theorem

For f € L} (R™),

loc

1
lim ——— fly)dy = f(z) a.e zeR™
r—0 |B(.’L’,T‘)’ B(z,r) ( ) ( )

e Whenn =1, f € C(R),

.1 . F@+r)-Fx-r)
}%%/gc_r f(y)dy = lim 5 = f(z).

The Fundamental Theorem of Calculus.




Introduction: Hardy-Littlewood maximal function

It is often proved by using the following Hardy-Littlewood maximal
operator:

e B, = B(0,r): n-dim ball centered at origin, radius 7.

o Mf(x): = sup e Br\f(rc—y)!dy

Hardy-Littlewood maximal operator

(1) [{z €R™: Mf(z) > \}| < %/R ()| dx
@ [ Mf )Pdg;<cnp/ 2)Pde  (1<p<oo)
Rn

In this talk, it is called “maximal theorem”.



Covering Lemma

“Covering lemma" plays important role to prove the maximal
theorems:

V{B(xj,75)})_, balls, 3{B(xp, i)}ty C {B(zj,rj)}L, such
that
(a) {B(zk,rr) 2L, : mutually disjoint.

N M
(b) | Bl@s,ri)| <3 1Bk, i)l
j=1 k=1



Proof of the maximal theorem

K Cc{zeR": Mf(x) > A}: compact

There exists {B(xj,rj)}éyzl such that

1

N
K c | ) B(zj,rj), ——
U . ’B(wjvrj)’ B(zj,rj)

j=1

|f(y) dy > A



Proof of LDT

For f € LP(R™), (1 < p < 00). Let

1

fe(z) == 1B(z,t)] Jp(ar

fly)dy, (t>0).

Then
lim If = fellLp@ny = 0.

We see that there exists ¢; — 0 such that
lim f; (z) = f(z) ae zeR"
k—oo

It suffices to show that Jlim; ¢ fi(x).



Proof of LDT

For f € LY(R™), we define its oscillation:

Qf(z) := limsup fi(x) — liminf fi(x)
t—0 t=0

e We want to see [{x € R" : Qf(z) > A}| =0 for all A > 0.
e g Cp(R") = Qg(z) =0.
o Qg(z) < 2Mg(x).



Proof of LDT

For f € LY(R™), there exists g € Co(R™) such that

If =gl <e

Let h:= f —g. Then
Qf(x) < Qg(x) + Qh(x) = Qh(x).
By the maximal theorem,
7 > A} < 1108 > A} < [{2Mh > X} < Sl

It is not difficult to consider the cubes instead of balls.
Next, we will try to consider the same problem for rectangles.
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Why not rectangles?

Can we get the following theorem?

Theorem (77)

For f € L} _(R™),

loc

limﬁ/RE fly)dy = f(z) a.e zeR™

e—0

where R, is any rectangle of length and width less than e.
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Why not rectangles?

Can we get the following theorem?

Theorem (77)

For f € L} _(R™),

loc

limﬁ/RE fly)dy = f(z) a.e zeR™

e—0

where R, is any rectangle of length and width less than e.

e The answer is negative.

e If we had demanded that R have bounded eccentricity the
answer would be positive.
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Maximal operators
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The strong maximal operator

e R is the set of all rectangles in R™ with sides parallel to the
coordinate axes.

e The strong maximal operator:

M f(e) = sup ul%, /R F)|dy Lr(a).

Problem.

Does the analogue hold for Mz 7
C
(1) [z €R": Mrf(@) > M| <5 [ 17(@)]da

@ [ Mrf@Pds<Cn, / f@Pdz  (1<p<oo)
R R”
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Elementary properties

o MR flloo < [Iflloo-
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Elementary properties

o Mz flloo < [Iflloo-
Proof.

1
‘R,/er@)rdy, ReR
1
<HfHoo'|m/Rldy=HfHom

we have
Mz flloo < I floo-



Elementary properties

* [1MRflloc < {1 oo
o Mrf(z) < MiMy--- My, f(z),
where M; is the 1-dim. HL maximal operator.
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Elementary properties

* [Mzflloo < I flloo-

o Mrf(x) < MiMs--- M, f(x),
where M; is the 1-dim. HL maximal operator.

Proof. Letn=2and R=1; x I3. Then

|}i| /R F()| dyLi(x)

1
= | f(y1, y2)| dylp, (1)1, (22)
|I1| : |IQ| 11><12

1 1
:m 7 <|12| |f(y1 ?/2)| dy2 1[2(x2)) dyl . 111 (ﬁl)
1

’111| M f(y1,m2) dyr - 11, (z1) < Mi(Maf) (w1, 72)
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Elementary properties

* [[MR flloo < [[flloo-

o Mpf(x) < MiMs--- Myf(x),
where M; is the 1-dim. HL maximal function.

e For 1 < p < oo, the boundedness of My : LP(R™) — LP(R")
follows from that of M;.
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Elementary properties

* [1MRflloc < {1 oo
o Mrf(z) < MiMy--- My, f(z),
where M; is the 1-dim. HL maximal function.

e For 1 < p < oo, the boundedness of My : LP(R™) — LP(R")
follows from that of M;.

Proof. By using the boundedness of HL: ||A; f, < C||fll»
repeatedly

My (Maf)llp < ClMafllp < C' flp-
We obtain the LP boundedness of My for 1 < p < oc:

MR fllze < C(p,n) || f| Lo
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Elementary properties

o [Mrflloo < [Iflloo-
o Mpf(z) < MiMs--- M,f(z),
where M; is the 1-dim. HL maximal function.

e For 1 < p < 00, the boundedness of Mp : LP(R™) — LP(R")
follows from that of M;.

e This iteration argument fails when p = 1!
Because we know only the weak type inequality

My fllpree < CllfllLe,
and M> need not preserve L', we cannot deduce
[My(Maf)[ 100 < ClIMaf] 1.

e It is known M; : Llog L — Lt
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Geometrical proof of My : LP — LP, (1 < p < o0)

To get the Llog L type inequality, we try to consider the
geometrical proof. To do this, we introduce the covering lemma
corresponding to the strong maximal operator.

Theorem
p>1. V{R;}jes CR, H{Ri} C {R;}jes such that

(a) ||J Rj| < elm) || J Bw
k

jeJ

PR
k

(b) <) |J R

Lr(R™) jed
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Geometrical proof of My : LP — LP, (1 < p < o0)

Ey = {xGR”:MRf(x)>)\}
1
HR;}: E :||R-, — d A

<>/ !f(y)!dy=§/w (;1§k> ()l dy
Zle

IIpr < £l

<c
>\
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Geometrical proof of My : LP — LP, (1 < p < o0)

Ey = {JZ eR™: MRf(x) > )\}
1
C C 1
Bl < S \UR| 1l =SB £],
J
Thus, we get the weak type inequality
n 1 C
{o € R": Mrf(x) > AHP < [ fllLr

Remark. For p = 1, we have an another covering lemma due to
Cordoba and R. Fefferman.
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Kakeya maximal operator

N>1 a>0.

Bnq: is all rectangles whose size a x a x --- x alN in R".

° BN :Ua>OBN7a
Kakeya(Nikodym) maximal operators

Kif (@) = sup m 7 [l dy ()

ENa

Kf@) = swp o [ 110)]dy1(e)

ReBN
Knf(z) <CN" 'Mf(z) M: H-L maximal operator
o |KNfllor@ny < CN" 7 fllLomn)-

But it is conjectured more sharp estimate...
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Kakeya maximal operator

Conjecture
[ | KN fllpn@ny < C(log N)* || £l L @ny- ]

e Cérdoba (1977) proved for n =2, as = 2.
Stromberg (1978) reproved for n =2 ag = 1.
Open! n > 2.

There have been partial results (explained Monday and
Tuesday!).
Product functions and radial functions (lgari, Tanaka, etc)
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Related topics

(1) Bochner-Riesz implies Kakeya conjecture (T.Tao, 1999).

(2) Restriction conjecture implies Kakeya (J. Bourgain, 1991).

(3) LP-estimate for Kakeya maximal implies Kakeya conjecture (J.
Bourgain, 1991).

27 /63



Directional maximal operator

We consider the directional maximal operator in n = 2.
e S!: a unit circle on the plane. Let  C S*

e Bq: rectangles R C R? with longer side forming an angle 6
with the z-axis, for some 0 € Q2.

e Directional maximal operator

Maf(@) = sup ul%| /R £ dy 1r(2)

e If Q is equidistributed and |Q)| = N, then

Knf(z) < CMof().
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Directional maximal operator

o (Stromberg (1978)) 2: equidistributed. |Q2] = N,

(%) [[Maflr2me) < Clog N||fllr2(r2)

o (Katz(1999)) () is true whenever [Q] = N.

¢ (Alfonseca, Soria and Vargas(2003)) Reproved (x) by using
an almost orthogonality principle in L?(R?), when |Q| = N.
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General maximal operator

Basis: B, collection of open and bounded sets B C R™.

Maf(e) = swp o | (f@)ldyip(e). ve | B

BeB

B=Q = Mp = M. (Hardy-Littlewood maximal operator)

B =R = Mp = Mpg. (strong maximal operator)

B =Bn = Mp = Ky. (Kakeya maximal operator)

B =Bo, = Mp = Mgq. (directional maximal operator)
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Weight theory
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Weight theory

e w: weight < non-negative locally integrable function on R".
o w(E):= [pw(x)dx.

) 1/p
e L Or D
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Weight theory

e w: weight < non-negative locally integrable function on R".
o w(E):= [pw(x)dx.

1/p
e L Or D

e Weighted inequalities arise naturally in Fourier analysis.

e For example, the theory of weights plays an important role in
the study of boundary value problems for Laplace's equation
on Lipschitz domains.

e Other applications of weighted inequalities include
extrapolation theory, vector-valued inequalities, and estimates
for certain classes of nonlinear PDEs.
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A, o condition

We consider the condition for M : LP(w) — LP(w).

w e AP,Q g
w(Q) < 1 / =y )”1
® |wla, o =sup —=— | —; wr—1(x)dz <oo,1<p<oo,
e =51 700 \jg] Jo 7 )
w(Q) 1
® |wla, , = Sup . - < 00,
Wiae =300 e v ()

o Aoo,Q = Up>1 Ap.

weApg, 1<p<oo<= M:LP(w)— LP(w).

ie.,

Mf(z)Pu() dz < C / (@) Pu() da



Problem

Can we get the following estimates?

e w({z €R": Maf(z) > A\}) < f/R 1 (2)w(z) da

o | Mpf(x)Pw(z)dz <C | |f(z)[fw(z)de
Rn Rn
Why not,

¢ My f(@) = sup s [ 17wl dy 15(a)
Can we get the foIIowmg estlmates7
o [ Mufa)Pw( )dx<C/ )P Mg (z) da

Rn
This type inequality is called Fefferman-Stein type inequality.
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Fefferman-Stein type inequality

e Given a suitable operator 7, p > 1.
e We consider the inequalities typically take the form

/ITf(x)lpw(x)da:SC F@)PMrw()de. (1)
Rn Rn

e M some maximal operator. w: weight.

Determine some maximal operator My capturing certain
geometric characteristics of 7.
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Duality argument

Under such circumstances a simple duality argument generally
allows the previous inequality to transfer bounds on M to bounds
on 7. For q,q > p,

1/p
1T s = s ([ i7100)

llwll(g/pyr=1
1/p
< s ([ irmra)
lwll(q/py=1 "
<  sup |(Mgw| q/p)erH?Iv
llwll(q/pyr=1
and so || T [gq < ||MT|| (a/p) —(@/p)""
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Example

We got many successful results for several important operators 7
such as

e maximal averaging operators,

e fractional integral operators,

e square functions,

e Calderén-Zygmund singular integral operators.

Cérdoba and C. Fefferman (1976)
Let p,r > 1. If T: CZ, then

/ TfPw < Cpr / P Mw,
R™ R™

where M,w := (Mw")'/" and M is the Hardy-Littlewood maximal
operator.
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Results: Weighted maximal operators
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Previous works (General maximal operator)

For general basis B and associated weights w, we do not know so
much concerning the boundedness of My and Mg, on LP(w).

Theorem (Jawerth (1986))

1<p<oo,o=w/® Then

w e Ap,B
<— Mg, :LP(c) = LP(o)
Mg, : L (w) — L¥ (w)

Mp : LP(w) — LP(w)
Mg : LP (0) — LP (0)

This theorem was reproved by Lerner with better understanding of
dependency of the constant.

e A. K. Lerner, An elementary approach to several results on
the Hardy-Littlewood maximal operator, Proc. Amer. Math.
Soc., 136 (2008), no. 8, 2829-2833.
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Previous works (General maximal operator)

The following abstract theorem gives a necessary and sufficient
condition for the boundedness of Mp,, in terms of Mp in the
special case w € Ay 3.

Theorem (Pérez (1989))

l<p<oo,weAps l<p<oo,w€ Axp
Mpg : LP(w) — LP(w) Mg,y : LP(0) = LP(o)

For the Kakeya maximal conjecture, the main interest is to
determine the factor N appearing in its operator norms. This
theorem is quite abstract and thus cannot apply to the Kakeya
maximal operator.
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Weight classes: RH

w e RHS’B<d:e,)S

B —1 1 1/s
(W] rH, z = sup (w_)) (—/ w(z)® da:) < oo, 1 <s< oo,
' BeB |B] |B| /B

B!
(W] RH ., 5 = SUP <M> - esssup w(z) < 00.
z€B

e l<s<r<oo 1<[wrh,y < [wrH,; < 0.
e 1<s<r<oo, RHy;D RH, 5
e RH 1,B ‘= Us>1 RH 5,B-
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Weight classes: RH

Cruz-Uribe and Neugebauer investigated carefully the relationship
between A, o and RH; ¢o. Due to Cruz-Uribe and Neugebauer, we see
some properties of RH ., 5 weights.

e D. Cruz-Uribe and C. J. Neugebauer, The structure of the Reverse
Hélder classes, Trans. Amer. Math. Soc., 347 (1995), no. 8,
2941-2960.

Theorem (A)

(1) we RHoo g = w" € RHo g forr > 1.
(2) we AowsN RH 3= w" € RHyp for 0 <r < 1.

Theorem (B)
u, v € Ao 3N RH oo s = uv € RH o 5.
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Weight classes: RH

Theorem (C)
Letp > 1.

(1) we A g = wl™P ¢ Ap,B N RH 5.
(2) we AppN RHpp = w!™ € A1 5.

e Suppose that Mp is bounded on LP(R™) for some p > 1.

e Then using the well-known Rubio de Francia algorithm we can

> MEu
obtain many A; 5 weights Ru := —— B
’ 2 Falls

e Theorem (C) asserts that, if w € A; g then
wle Aoo,B N RH 0073.)

So, we have many weights belonging to A 3N RH o 5.
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Previous results

e S. and Tanaka (2013) If w(z) = |z|*, A > 0, then

HMQ,waLQ(RQ,w) < CIOgN“f”LZ(Rz,w)'

e S. and Sawano (2015) If w is radial (w(z) = wo(|z|)) and
wo € RH « 5, then

KN wf 22wy < CV1og N fll12r2 )

We introduce a theorem concerning general maximal operators
which implies those two estimates as a corollary.
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Weighted area formula

Lemma (S. and Tanaka (2013))
If w is radial and wy € RHy. Let R C R? be a rectangle. Then

_ IRl

)~ Tad @] a0

Remark. It is useful to see

w(R) _ woll)
|R| 1]’

I := rad (R).
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Figure of Lemma

w(z) = wo|z]) ry(R)

D

N

r| rad(R) .
T

Figure: r1(R) = infzep |x|, 72(R) = sup,cg ||
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Results

Theorem (1)

e 1<ps<x

e w e RH, 5 with [w]ru, s = C1

* [|[MgllLirny = Co witht=p—(p—1)/s>1
e 4C3 > 0 s.t.

) (wg))_owwwm AN @)

J J

for {B;} C B and p.w. disjoint E(B;) C B;.

||MB,w||LP(w) < 2011/1)’021/(1)’5)/0;/:0'
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Results

When s = o0, i.e.,, w € RH  , the condition (2) can be checked

easily. Let [w]ru_ 5 = C1.
> (5] L1601 (5) e v

RHNBZ\E ) <Ci|lUB;

J
Corollary (2)

l<p<oo. Letwe RHup with C1 = [W]RH ., 4-
Let Cy = HMBHLp(Rn). Then

| MB.wllLr(wy < 2C1Cs5.
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Results

Now we can obtain the estimate for the Kakeya maximal operators.
o n =2 B:BN OI’:BN’G.
w(z) = wo(|z|) and wy € RH .

1
w(R) ~ wo(1) 2 supwo(r) = sup w(z), I = rad(R).
R 1l ™ rer v€R

® So we find w € RH o 5y or w € RH oo 5y,
[KNL2r2) = O(log N), | K522y = O(v1og N)

Corollary (3)

| KNwll L2 ®2 w) < 2C[W]RH o 5, 108 N.
1R ol 22 (R2 ) < 2C [w] RH o 5y, V108 N.
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1 <s <o

As | have shown when s = oo, the sufficient condition (2) can be checked
quite easily. But, when 1 < s < 0o, we cannot say any more. The next
theorem characterize the boundedness of Mg, on LP(w) in terms of
so-called Tauberian condition.

Definition
w satisfies Tauberian condition (A)
g() <3IN<1,0< 3Je=c¢(N) < oo s.t. for all m'ble E

w{z e R": Mg(1g)(z) > A\}) < cw(E). (A)

Theorem (4)

e we RH;5 1<s<o0

e w satisfy the condition (A)

o Mg : LP(R") — LP(R™) for all p > 1.
Then Mg ,, : LP(w) — LP(w) for all p > 1.
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Volume formula

We introduced the formula

R /
w(R) rad (R) rad (R) wodr

for any rectangle R in R?. We can prove this formula for any
rectangle R in R".

e R: rectangles in R™ with sides parallel to the coordinate axes.
e By: rectangles in R™ with eccentricity N.

Theorem (5)

Let w(z) = wo(|z|) be the radial weight and wy € RH .
Then w € RH o r and also w € RH o 5, -

R I
w(k) ~ wo(7) 2 supwo(r) = sup w(z), I = rad(R).
|R| 1] rel ©€ER
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Higher dimension

e Mg is bounded on LP(R") for p > 1.
e Ky is bounded on LP(R") for 1 < p < (n+2)/2

1K N | o(eny < CN™P7Hlog N)*.
This is proved by H. Tanaka (2004).
Corollary (6)

If w(x) = wo(|z|) and wy € RH . Then
(1) 1<p< oo,
MR wfllze@nw) < CIFlle@®e w)-

(2) 1<p<(n+2)/2
1K N f | 2o (R o) < CN™P7E (log N)* || £l o e )
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Results: Fefferman-Stein type inequalities
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Previous works (Hardy-Littlewood maximal operator)

C. Fefferman-Stein (1971)

M: Hardy-Littlewood maximal operator. =
M f(x)Pw(x)dz < C |f(z)|PMw(x) dx
R” R"

for an arbitrary weight w and p > 1.

suptw({x € R" : M f(z) > t}) <C’/ x)| Mw(z) dx.
t>0
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Previous works (Nikodym maximal operator)

It is conjectured that for all € > 0,

n

Ky f(x)"w(z)de < C’Ns/ |f(x)|" Knyw(x) dx.
R

e (Miiller and Soria (1995)) It is true when n = 2.
¢ (H. Tanaka (2004))

Ky f(x)Pw(z)dx < CN%_l(logN)“/ |f(2)|°P Kyw(z) dx
R" Rn

- - +2
for an arbitrary weight w and 1 < p < *3=.
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Previous works (strong maximal operator)

1 p—1
o [w]yx = up@ L/wﬁ(ac)da: < oo, 1 <p< oo,
rer | R R

o (w4 = su w(R) 1
AT Re% |R|  ess ill%lf w(z)
zEe

o Af = Up>1 A;.

< 00,

e we A 1<p<oo <= Mg :LP(w) — LP(w).
e Kai-Ching Lin (1984), Pérez (1993) w € A}, —

/(MRf)prCwm/ |[fIPMrw, 1<p< oo.
n Rn
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Previous works (strong maximal operator)

The endpoint (p = 1) behavior of My was studied as follows:
|
e Bagby and Kurtz (1985) w € A} =
w(Mpf>X)<C @ (1 + (log™ @)”_1) w(z) dx.
RTL

o Mitsis (2006) n =2, w € A%, =

w(Mgrf >\ <C » @ (1 +log™ @) Mrw(z)dx.
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Previous works (strong maximal operator)

¢ R. Fefferman (1981) w € A}, —
1M fllzr @ w) < Conconll fllr@rw), 1<p< oo

Furthermore we have the asymptotic estimate
cpmn =On((p—1)""), as p—1T.

e Jawerth and Torchinsky (1984) w € A} —

w(Mswf > A) < Cyn /n w (1 + (log™ @)"‘Q w(z) d.
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Previous works (strong maximal operator)

Luque and Parissis (2014)
we Al =

w(Msf > ) < Cyn /n &;” (1 + (log™ i;‘)|)"_1) Msw(x) dzx.

e By interpolation, this implies the strong L? FS inequality
(Kai-Ching Lin, Pérez).

e Since every Aj-weight is an A} _-weight, this recover the
Jawerth and Torchinsky's result.
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Fefferman-Stein type inequality for the strong maximal
operator

Theorem (S. and Tanaka)
Let w be any weight on R?. Let W = Mz Mw. Then

w({z € R?: Mpf(z) >t}) <C [F@) (1 + log™ M) W (x)dx
et '
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Main results

Theorem (S. and Tanaka)

Let N > 10 and w be any weight on R?. Let W = MqMw. There
exists a constant C' > 0 such that for all f € L*(R?, W) we have

suptw({z € R?: Mo f(z) > t})/? < C(logN)1/2|\fHL2(R27W).

t>0

e By interpolation, we get
Mo flLr®2,w) < Cp(log N)l/p||f||Lp(R2,W) for 2 < p < oo.

e Here HfHIzP(]R”,W) = /Rn |f ()P MoMuw(x) dz
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Thank you for your attention!
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