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Abstract. Complete invariants of Hamiltonian surface flows, called partially
cyclically ordered rooted tree (COT) representations, are introduced. The in-
variants can uniquely assign a generic Hamiltonian surface flow to a word.
Moreover, all generic transition rules between generic Hamiltonian flows using
the COT representations are listed. As an application, all generic transitions
of the Reeb graphs of Morse functions on orientable closed surfaces are also
listed.

1. Introduction

The topological properties of Hamiltonian flows on compact surfaces have been
studied from the viewpoints of dynamical systems, integrable systems, and fluid
mechanics. For instance, Hamiltonian flows with finitely many singular points have
been topologically classified on a plane [2], sphere [8], and torus [11] from the view-
point of fluid mechanics. From the perspective of integrable systems, such flows
have also been topologically classified on closed surfaces [6]. Various fluid phenom-
ena have been modeled based on incompressible fluids, and incompressible flows on
spheres behave like Hamiltonian flows (cf. [9]). Structural stability is important in
terms of the dynamical systems because the set of structurally stable Hamiltonian
flows on compact surfaces or unbounded puctured planes is open dense [9, 16]. In
other words, any Hamiltonian surface flow can be approximated by such Hamilton-
ian surface flows, and the topological equivalence classes of these flows are preserved
under small perturbations. Structural stability is also crucial for applications be-
cause experimentally observed and numerically computed Hamiltonian flows are
structurally stable almost constantly. Structurally stable Hamiltonian flows on
compact surfaces and unbounded punctured planes have been classified topologi-
cally [9, 16], and there are some representations of their topologies [6, 12, 13, 16].
For instance, all topologies of generic embedded closed orientable surfaces in R3

can be bijectively represented by labelled graphs, called molecules; labels are called
atoms [6]. Moreover, all topologies of structurally stable Hamiltonian flows on
bounded/unbounded punctured disks can be represented by sequences of symbols,
called maximal words [16]. The topologies of such flows are in one-to-one correspon-
dence with labelled directed rooted trees [13]. It should be noted that molecules
are non-rooted, whereas tree and word representations are rooted and can be en-
coded as sequences of symbols. Theoretically, one can list all generic transitions
between the topologies of structurally stable Hamiltonian surface flows using tree
representations. In other words, the generic transitions between topological equiv-
alence classes of structurally stable Hamiltonian surface flows are numerable. On
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the other hand, word representations and the tree representations distinguish nei-
ther centers from boundaries nor circular arrangements from linear arrangements.
Moreover, word representations are many-to-one correspondences and the tree rep-
resentations are not intuitively related to the orbit structures. Contrarily, word
representations are directly related to the orbit structures and need to be gener-
alized to tree representations, called partially cyclically ordered rooted tree (COT )
representations, to allow listing all generic transitions. Moreover, unlike word and
tree representations (resp. circular and linear arrangements), COT representa-
tions distinguish centers from boundaries (resp. circular arrangements from linear
arrangements). In other words, COT representations of structurally stable Hamil-
tonian surface flows correspond to the topological equivalence classes of such flows.
In terms of computational efficiency, COT representations in topological data flow
analysis are as efficiently processed as word representations.

The present paper consists of seven sections. In the following section, we intro-
duce the notions of graph theory and dynamical systems. In §3, we introduce a
complete invariant of structurally stable Hamiltonian surface flows, called a COT
representation, using formal grammars. In §4, we describe the complete creation
rules of genus elements incremented by one a structurally stable Hamiltonian flow.
In §5, we detail the complete generic transition rules between structurally stable
Hamiltonian surface flows. In §6, we apply the transition results of structurally
stable Hamiltonian surface flows into Reeb graphs of Morse functions on a closed
surface. In particular, we list all generic transitions of the Reeb graphs of Morse
functions. In the final section, we remark the annihilations of boundaries, “higher
codimensional transitions”, and the point at infinity which is more degenerate than
a 1-source–sink point of Hamiltonian surface flows.

2. Preliminary

2.1. Notion of graphs. An ordered pair G := (V, D) is a directed graph if V is
a set and D ⊆ V × V . An ordered triplet G := (V, E, r) is an abstract directed
multi-graph if V and E are sets and r : E → {(x, y) | x, y ∈ V }. A graph is
a geometric realization of an abstract directed multi-graph (i.e., a cell complex
whose dimension is at most one). A directed graph is a graph with the directed
structure of the abstract directed multi-graph. Finite (directed) multi-graphs can
be embedded on some surface, that is, they can be drawn so that no edges cross
each other. Such a drawing is called a surface (directed) graph.

2.2. Notion of surfaces. In this paper, a surface is a two-dimensional manifold
with or without boundary. A disk is homeomorphic to either a closed unit disk
{(x, y) ∈ R2 | x2 + y2 ≤ 1} or an open unit disk {(x, y) ∈ R2 | x2 + y2 < 1}. A
point in a surface S is a boundary point if and only if it has a neighborhood in
S that is homeomorphic to a half disk {(x, y) ∈ R2 | x2 + y2 ≤ 1, y ≥ 0}. The
boundary ∂S of a compact surface S is the set of boundary points. It should be
noted that the boundary ∂S is the boundary of S as a manifold and not necessarily
as a subset of the surface; it is also a finite disjoint union of circles. Such circle
is called the boundary component of S. A punctured sphere is a connected surface
with or without boundary contained in a two-dimensional sphere S2. To recall these
basic concepts, the reader may refer to the books by S. Aranson, G. Belitsky, and
E. Zhuzhoma [1] and by T. Ma and S. Wang [9].
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2.3. Notion of flows. Roughly speaking, a flow is a continuous family {v(t, ·) |
t ∈ R} of homeomorphisms v(t, ·) : S → S on a compact surface S, and the point
v(t, x) is a position of a point x after time t. Precisely, a continuous mapping
v : R × S → S on a compact surface S is a flow if it satisfies the following two
conditions:

(1) v(0, ·) : S → S is an identity mapping on S, and
(2) v(t, v(s, x)) = v(t + s, x).

The second condition implies that v(t, ·) : S → S is a homeomorphism. For a point
x of S, the orbit of x can be defined as O(x) := {v(t, x) | t ∈ R}. A subset is
saturated if it is a union of orbits.

Hereafter, we assume that v is a flow on a compact surface S, unless otherwise
stated.

2.3.1. Topological equivalence. A flow v on a compact surface S is topologically
equivalent to a flow v′ on a compact surface S′ if there is a homeomorphism h : S →
S′ which maps orbits of v to orbits of v′ and preserves the direction of orbits. For
a flow v on on a compact surface S and a flow v′ on a compact surface S′, a point
x ∈ S is locally topologically equivalent to a point y ∈ S′ if there are neighborhoods
Ux and Uy of x and y respectively, and a homeomorphism h : Ux → Uy capable of
preserving the direction of the orbits such that the images of connected components
of the intersection of an orbit of v and Ux correspond to those of the intersection
of an orbit of v′ and Uy (i.e., h(Cp) = Ch(p) for any point p ∈ Ux, where Cp is
the connected component of Ov(p) ∩ Ux containing p and Ch(p) is the connected
component of Ov′(h(p)) ∩ Uy containing h(p)). Similarly, a vector field X on a
compact surface S is topologically equivalent to a vector field X ′ on a compact
surface S′ if there is a homeomorphism h : S → S′ that maps orbits of X to orbits
of X ′ and preserves the direction of orbits.

2.3.2. Types of points and orbits. A point x is singular if its orbit consists of one
point, i.e., x = v(t, x) for any t ∈ R. A point x is periodic if there is a positive
number T > 0 such that x = v(T, x) and x ̸= v(t, x) for any t ∈ (0, T ). Roughly
speaking, periodic points are points with circular orbits. Singular and periodic
points are closed points, but each point x cannot be both singular and periodic.
The set of singular (resp. periodic, closed) points is denoted by Sing(v) (resp.
Per(v), Cl(v)). An orbit is singular (resp. periodic, closed) if it contains a singular
(resp. periodic, closed) point. An orbit is proper if there is a neighborhood of
it where the orbit becomes a closed set. The union of non-closed proper orbits
is denoted by P(v). A point is wandering if there are its neighborhood U and a
positive number N such that vt(U) ∩ U = ∅ for any t > N ; then, U is called
a wandering domain. Contrarily, a point is non-wandering if it is not wandering
(i.e., for any its neighborhood U and for any positive number N , there is a number
t ∈ R with |t| > N such that vt(U) ∩ U ̸= ∅). Because each orbit of the flows on a
compact punctured sphere S ⊆ S2 is proper [10], the following decomposition can
be derived.

Lemma 1. Let v be a flow on a compact punctured sphere S ⊆ S2. Then S =
Sing(v) ⊔ Per(v) ⊔ P(v), where ⊔ denotes a disjoint union.

2.3.3. Non-degeneracy of singular points. A singular point is isolated if there is a
neighborhood that contains only one singular point. It should be noted that each
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Figure 1. Non-degenerate singular points.
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Figure 2. Examples of multi-saddles.

singular point of a flow with finitely many singular points is isolated. An isolated
singular point p of a flow generated by a C1-vector field X is non-degenerate if
its determinant of the Hesse matrix (∂Xi/∂xj(p))i,j is nonzero (i.e., ∂X1/∂x1(p) ·
∂X2/∂x2(p) − ∂X1/∂x2(p) · ∂X2/∂x1(p) ̸= 0) (see Figure 1). A non-degenerate
singular point is a center if the Hesse matrix eigenvalues are purely imaginary. A
non-degenerate singular point outside of the boundary is a sink or source if the
Hesse matrix eigenvalues have a positive or negative real part, respectively. A
non-degenerate singular point on the boundary is a ∂-sink or ∂-source if the Hesse
matrix eigenvalues are positive or negative, respectively. A non-degenerate singular
point outside of or on the boundary is a saddle or ∂-saddle, respectively, if the Hesse
matrix eigenvalues have both a positive and negative component. Therefore, a non-
degenerate singular point is a saddle if and only if it has exactly four separatrices,
whereas a non-degenerate singular point is a ∂-saddle if and only if it has exactly
three separatrices, counted with multiplicity. By definition of types of singular
points, a non-degenerate singular point is either a sink, a ∂-sink, a source, a ∂-
source, a saddle, a ∂-saddle, or a center.

2.3.4. Multi-saddle, (∂-)saddles, and (multi-)saddle connection diagram. A k-saddle
is an isolated singular point outside of the boundary of a compact surface with ex-
actly (2k + 2)-separatrices, counted with multiplicity for a non-negative integer
k ∈ Z≥0 as shown in Figure 2. A ∂-k/2-saddle is an isolated singular point on the
boundary of a compact surface with exactly (k +2)-separatrices, counted with mul-
tiplicity for a non-negative integer k ∈ Z≥0 as shown in Figure 2. A multi-saddle is
either a k-saddle or ∂-k/2-saddle for a non-negative integer k. A 0-saddle is called
a fake saddle; similarly, a ∂-0-saddle is called a fake ∂-saddle (see Figure 3). A fake
multi-saddle is either a fake saddle or a fake ∂-saddle. A non-singular orbit is a sep-
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fake saddle fake ∂-saddle

Figure 3. Fake saddle and fake ∂-saddle.

Figure 4. Homoclinic orbits (left) and self-connected heteroclinic
but non-homoclinic orbits (right).

Figure 5. Heteroclinic orbits. Both ends are either distinct sad-
dles in the uppermost diagram, a saddle and a ∂-saddle in the
middle diagram, or distinct ∂-saddles in the lowermost diagram.

aratrix if it begins from or ends to a singular point. A separatrix is a multi-saddle
separatrix if it begins from and ends to multi-saddles. It should be noted that a
saddle (resp. ∂-saddle) is a 1-saddle (resp. ∂-1/2-saddle). The saddle connection
diagram presents a union of saddles, ∂-saddles, and orbits beginning from or ending
to them. A saddle connection is a connected component of the saddle connection
diagram. Similarly, the multi-saddle connection diagram presents a union of multi-
saddles and multi-saddle separatrices. A multi-saddle connection is a connected
component of the multi-saddle connection diagram. It should be noted that the
saddle connection diagram in the unbounded case is called the ss-saddle connection
diagram in [16].

2.3.5. Self-connectedness of separatrices. A separatrix is self-connected if it con-
nects either the same saddle or two ∂-saddles on the same boundary component of
the compact surface. All possible scenarios for self-connected separatrices are shown
in Figure 4. A (multi-)saddle connection is self-connected if each non-singular orbit
in it is self-connected (upper case in Figure 4). A separatrix is homoclinic if it
connects the same multi-saddle (left case in Figure 4). All possible scenarios are
shown in the left case in Figure 4. A separatrix is heteroclinic if it connects distinct
multi-saddles. All possible combinations are shown in Figure 5. Because those
orbits in Figure 5 are heteroclinic, two singular points in the uppermost diagram
and two boundaries in the lowermost diagram are not identical.

2.3.6. Topological center, trivial flow box, and periodic annulus. A singular point
of a flow v is a topological center if there is a saturated open neighborhood U of
it such that the restriction v|U is topologically equivalent to the restriction of a
flow to an open neighborhood of a center. A disk is a center disk if it consists of a
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Figure 6. Center disks.

Figure 7. Trivial flow box (left) and periodic annuli (right).
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Figure 8. Vanishing of a fake saddle and a fake ∂-saddle.
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Figure 9. Creation of a center.

topological center and periodic orbits, as illustrated in Figure 6. A saturated disk is
a trivial flow box if it consists of non-closed proper orbits, and a saturated annulus
is a periodic annulus if it consists of periodic orbits, as shown in Figure 7.

2.3.7. Creations and annihilations of topological centers and multi-saddles. By the
Poincaré-Hopf theorem, fake saddles and fake ∂-saddles can emerge (creation pro-
cess) or vanish (annihilation process), as shown in Figure 8. Emerging is the inverse
operation of vanishing. On the other hand, a center is created via the splitting a
k-saddle (resp. ∂-k/2-saddle), and a (k + 1)-saddle (resp. ∂-(k + 3)/2-saddle), and
an annihilation of a center is the inverse operation of the creation (see Figure 9).

2.3.8. 1-source–sink point, ss-orbits and ss-separatrices. A degenerate singular point
is a 1-source–sink point if it is locally topologically equivalent to the point at infinity
by taking a one point compactification of R2 with a uniform flow. Intuitively, the
dashed boundary of the left flow box in Figure 7 collapses into a point in Figure 10
(see [16] for a detailed definition of a 1-source–sink point). Here a uniform flow on
a punctured sphere is a flow generated by a vector field (1, 0) on R2. It should be
noted that a 1-source–sink point is also known as a bipole and that a 1-source–sink
point can be obtained by merging a sink and a source or by merging two centers.
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Figure 10. 1-source–sink point obtained by the one-point com-
pactification of a uniform flow.

A separatrix is an ss-orbit if it connects from and to a 1-source–sink point. A sepa-
ratrix is an ss-separatrix if it connects between a multi-saddle and a 1-source–sink
point. The restriction of a flow with a 1-source–sink point ∞ on a compact surface
S to the complement S − {∞} is called a flow on a punctured surface S − {∞}.1 A
punctured surface is the complement S − {∞}; punctured surfaces are unbounded.
When the compact surface S is contained in a sphere, the punctured surface is also
called a punctured plane.

2.3.9. Divergence-free vector fields. A Cr (r ∈ Z>0) vector field X on a surface
S is divergence-free if divX = 0, where divX is the divergence of X.2 In other
words, the divergence-free vector field X is locally defined by divX := ∂H/∂x1 +
∂H/∂x2 = 0 in any local coordinate system (x1, x2) of a point p ∈ S. It is known
that the flow generated by a divergence-free vector field on a compact surface is
non-wandering. Indeed, Liouville’s theorem states that the flow generated by a
divergence-free vector field is volume-preserving. As the volume of any compact
surface is finite, any volume-preserving vector field on a compact surface has no
wandering domains and so is non-wandering. Herein, a non-wandering vector field
possesses no non-wandering domains. This means that any divergence-free vector
field on a compact surface is non-wandering.

2.4. Hamiltonian dynamics.

2.4.1. Hamiltonian vector fields. A vector field X on a compact surface S is a Cr-
Hamiltonian vector field with a Cr+1-Hamiltonian H : S → R (r ≥ 1) if the Hamil-
tonian vector field X is locally defined by X = (∂H/∂x2, −∂H/∂x1) in any local co-
ordinate system (x1, x2) of a point p ∈ S.3 It should be noted that any Hamiltonian
vector field is divergence-free. Indeed, it stands that divX := ∂H/∂x1 + ∂H/∂x1 =
∂2H/∂x1∂x3 + ∂2H/∂x2∂x1 = 0. A Cr Hamiltonian vector field X (r ≥ 1) is
structurally stable if the resulting vector field by any C1 small perturbation in the
set of Cr Hamiltonian vector fields is topologically equivalent to X. Let χHam,bd be
the set of Cr Hamiltonian vector fields (r ∈ Z≥1) with finitely many singular points
on connected compact surfaces. Equip χHam,bd with the C1 topology. Denote by
χHam,bd,str the set of Hamiltonian flows in χHam,bd which are structurally stable in
χHam,bd.

1The set difference is denoted as X\Y . Especially, when Y ⊆ X, the set difference is denoted
as X − Y .

2More precisely, divX := ∗ d ∗ g(X, ·), where ∗ is the Hodge star operator, d is the exterior
derivative, and g is a Riemannian metric.

3Generally, the Hamiltonian vector field X is defined by dH = ω(X, ·) as a one-form, where
ω is a volume form of S. It should be noted that a volume form on an orientable surface is a
symplectic form.
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2.4.2. Hamiltonian vector fields with a 1-source–sink point. A vector field with a
1-source–sink point ∞ on a connected compact surface S is a Hamiltonian vector
field with a 1-source–sink point if the restriction of the vector field on S − {∞} is
a Hamiltonian vector field.4 In this paper, we call the restriction of a Hamiltonian
vector field with a 1-source–sink point ∞ to the complement S−{∞} a Hamiltonian
vector field on an unbounded punctured surface. In other words, a Hamiltonian
vector field on a punctured surface is a vector field whose resulting vector field
by a one-point compactification is a Hamiltonian vector field with a 1-source–sink
point on a compact surface. Let χHam,ubd be the set of Cr Hamiltonian vector
fields (r ∈ Z≥1) with a 1-source–sink point and with finitely many singular points
on connected compact surfaces. Equip χHam,ubd with the C1 topology. Denote by
χHam,ubd,str the set of Hamiltonian flows in χHam,ubd which are structurally stable
in χHam,ubd.

2.4.3. Hamiltonian flows. We call that a flow on a surface S is a Hamiltonian flow
if it is a flow generated by a Hamiltonian C1-vector field. Moreover, we have a
following properties.

Lemma 2. The following statements hold for a Hamiltonian flow v on a compact
surface S:
(1) The flow v is non-wandering.
(2) S = Sing(v) ⊔ Per(v) ⊔ P(v).
(3) A connected component of the union Sing(v) ⊔ P(v) is a periodic annulus.
(4) O − O ⊆ Sing(v) for any orbit O.
Moreover, if v has at most finitely many singular points, then the following state-
ments hold:
(5) Each singular point is either a topological center or a multi-saddle.
(6) The multi-saddle connection diagram D(v) is the union of multi-saddles and
P(v) such that the complement S − D(v) is the union of topological centers and
Per(v).

Proof. Let H be the Hamiltonian generating v. By definition, each orbit are con-
tained in the inverse image H−1(c) for some c ∈ R. We claim that any orbit is
proper. Indeed, let x be a non-singular point. The flow box theorem (cf. [1, The-
orem 1.1, p.45]) implies that there is an open flow box Ux containing x. Then
an open flow box consists of open orbit arcs. Here an open orbit arc is an arc
contained in an orbit. By definition of Hamiltonian flow, the orbit arcs have pair-
wise different values of the Hamiltonian H. This means that the intersection of
Ux ∩ O(x) is an open orbit arc, and, subsequently, the orbit O(x) is proper. Thus
S = Sing(v) ⊔ Per(v) ⊔ P(v). As mentioned above, any Hamiltonian vector field is
divergence-free, and the flow generated on a compact surface is non-wandering. This
implies that all Hamiltonian flows are non-wandering. [14, Theorem 2.5] implies
that the union Per(v) is open, and thus the complement S −Per(v) = Sing(v)⊔P(v)
is closed. Following [14, Proposition 2.6], O − O ⊆ Sing(v) for any orbit O.

4More precisely, the definition of “Hamiltonian vector field with a 1-source–sink point” requires
that the 1-source–sink point ∞ has a neighborhood U of ∞ and a bounded disk D in R2 such
that the restriction to the intersection U ∩ (S − {∞}) of the symplectic form on S − {∞} is a pull
back of the restriction to the complement R2 − D of the standard volume form dx ∧ dy on the
plane R2.



COT REPRESENTATIONS 9

Suppose that v has at most finitely many singular points. By [4, Theorem 3],
each singular point of a Hamiltonian flow with finitely many singular points on a
compact surface is either a multi-saddle or a topological center. This implies that
the difference O−O ⊆ Sing(v) for any orbit O consists of multi-saddles. Let Singc(v)
be the set of topological centers and D(v) the multi-saddle connection diagram.
Then D(v) = (Sing(v) − Singc(v)) ⊔ P(v) and S − D(v) = Singc(v) ⊔ Per(v). □

A Hamiltonian flow with a 1-source–sink point is the flow generated by a Hamil-
tonian vector fields with a 1-source–sink point. In this paper, we call the restriction
of a Hamiltonian flow with a 1-source–sink point ∞ to the complement S − {∞}
a Hamiltonian flow on an unbounded punctured surface. Moreover, a Hamiltonian
flow on an unbounded punctured surface is called a Hamiltonian flow on a punc-
tured plane if the compact surface S is a compact punctured sphere. In other words,
a Hamiltonian flow on a punctured plane results in Hamiltonian flow on a compact
punctured sphere with a 1-source–sink point via one-point compactification.

2.4.4. Classes of Hamiltonian flows. A genus element is either a topological center
or a boundary component. The set of Hamiltonian flows on compact punctured
spheres (resp. connected compact surfaces of genus g) is denote by Hbd (resp.
Hg,bd), and the set of Hamiltonian flows on the punctured planes (resp. unbounded
punctured surfaces of genus g) is denoted by Hubd (resp. Hg,ubd). It should be
noted that Hbd = H0,bd and Hubd = H0,ubd. We denote by Hbd(n) (reps. Hg,bd(n))
the set of Hamiltonian flow with finitely many singular points in Hbd (resp. Hg,bd)
such that the number of genus elements (i.e., the sum of numbers of centers and
boundary components) is n. Finally, we denote by Hubd(n) (resp. Hg,ubd(n)) the
set of Hamiltonian flows with finitely many singular points in Hubd (resp. Hg,ubd)
such that the number of genus elements is n. We have the following observations.
Lemma 3. For a Hamiltonian flow v on an unbounded punctured surface S, there
are a Hamiltonian flow w on a compact surface T , and a closed interval I in T and
a homeomorphism h : S → T − I such that for any orbit O of v there is a unique
orbit O′ of w such that h−1(O′ \ I) = O, and that h preserves the direction of the
orbits.
Proof. Let v be a Hamiltonian flow with a 1-source–sink point on an unbounded
punctured surface S∞ := S ⊔ {∞}, Dr := {(x, y) ∈ R2 | x2 + y2 ≤ r} the closed
disk centered at the origin with radius r > 0, and u a uniform flow on R2 by
u(t, (x, y)) := (x+t, y). The existence of a 1-source–sink point implies that there are
a compact surface D in S, a closed disk Dr for some r > 0, and a homeomorphism
h′ : S − D → R2 − Dr such that the restriction v|S−D corresponds to u|R2−Dr

(i.e.
the image of any connected component of the intersection Ov ∩ (S − D) of S − D
and an orbit Ov of v is a connected component of the intersection Ou ∩(R2 −Dr) of
R2 − Dr and an orbit Ou of u). Let u1 be a flow on an open annulus A := R/Z×R
by u(t, [x, y]) := [x+t, y] and k : R2 → A an embedding with k(R, y) = [(0, 1)]×{y}.
Then, S − D can be identified with a subset of [(0, 1)] × R ⊂ A. Replacing D with
Dr, we can construct a flow v1 on the resulting surface S1 such that the flow v1
corresponds to v on D and to u1 on S1 \ D. Precisely, any connected component
of the intersection (S1 \ D) ∩ Ou1 of (S1 \ D) and an orbit Ou1 of u1 is a connected
component of the intersection (S1 \ D) ∩ Ov1 for an orbit Ov1 of v1. Further, any
connected component of the intersection D ∩ Ov of D and an orbit Ov of v is a
connected component of the intersection D ∩ Ov1 for an orbit Ov1 of v1. Then for
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any orbit O of v there is a unique orbit O1 of v1 such that O = O1 \ ([0] × R).
Consequently, the two-point compactification S2 of S1 is a punctured sphere T , the
resulting flow w from v1 is desired, and the closed interval I is T − S. □

Lemma 4. Each singular point of a Hamiltonian flow with finitely many singular
points on either a compact surface or an unbounded punctured surface is either a
multi-saddle or a topological center.

Proof. Let v be a Hamiltonian flow with finitely many singular points on either a
compact surface or an unbounded punctured surface S. If S is compact surface,
then Lemma 2 implies that each singular point of v is either a multi-saddle or
a topological center. Thus we may assume that S is an unbounded punctured
surface. Lemma 3 implies that each singular point of v is either a multi-saddle or
a topological center. □

It should be noted that the multi-saddle connection diagram D(v) for a Hamil-
tonian flow with non-degenerate singular points on a surface corresponds to the
saddle connection diagram. Moreover, Hamiltonian flows on a sphere correspond
to incompressible flows (cf. [9]).

2.4.5. Structurally stability of Hamiltonian flows. A Hamiltonian flow is struc-
turally stable if the generating Hamiltonian vector field is structurally stable. A
flow is unstable if it is not structurally stable. The structural stability of Hamil-
tonian flows is generic and is topologically characterized as follows (see [9, 16] for
details).

Lemma 5 (cf. [9, p. 74 Theorem 2.3.8] and [16, Theorem 3.2]). Let H denote
either Hg,bd or Hubd. The set of structurally stable Hamiltonian flows in H is open
dense in H. Moreover, the following statements are equivalent:
(1) A Hamiltonian flow in H is structurally stable in H.
(2) Each singular point is non-degenerate and each saddle connection is self-connected
(i.e., each separatrix either is self-connected or is an ss-separatrix).

Proof. If H = Hg,bd, then the above assertion holds from [9, p. 74 Theorem 2.3.8].
Therefore we may assume that H = Hg,ubd. If H = Hubd, then the above assertion
holds from [16, Theorem 3.2]. Replacing a punctured plane with an unbounded
punctured surface, the same proof of [16, Theorem 3.2] implies the above assertion
for Hg,ubd. □

2.4.6. Complete invariance of the saddle connection diagrams of Hamiltonian flows.
Essentially, Morse theory states that any Hamiltonian flow with non-degenerate
singular points is determined by the saddle connection diagram, up to topological
equivalence. More precisely, the following statements hold.

Lemma 6 (cf. [9, p. 42 Theorem 1.4.6]). Any Hamiltonian flow in Hg,bd(n) for any
non-negative integer n is determined by the multi-saddle connection diagram as a
surface graph up to topological equivalence. Moreover, any connected component of
the complement of the union of the saddle connection diagram and periodic orbits
on the boundary of the compact surface is an open periodic annulus (see Figure 7).

Proof. Let v ∈ Hg,bd(n) be a Hamiltonian flow on a compact surface S for some
non-negative integer n. Lemma 2 implies that the complement of the multi-saddle
connection diagram is the union of topological centers and periodic annuli Per(v).
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Therefore any connected component of the complement of the union D(v) ∪ (∂S ∩
Per(v)) of the saddle connection diagram and periodic orbits on the boundary ∂S is
either an open periodic annulus or an open center disk. Since the saddle connection
diagram D(v) as a surface graph has the information of the boundary implicitly, it
is a complete invariant of Hamiltonian flows in Hbd(n). □
Lemma 7 (cf. [16, p. 10 Remark after Theorem 3.2]). Any Hamiltonian flow in
Hg,ubd(n) for any non-negative integer n is determined by the multi-saddle con-
nection diagram as a surface graph up to topological equivalence. Moreover, any
connected component of the union of the complement of the union of the saddle
connection diagram and periodic orbits on the boundary of the punctured surface is
either an open flow fox or open periodic annulus (see Figure 7).

Proof. Let v ∈ Hg,ubd(n) be a Hamiltonian flow on an unbounded punctured suface
S for some non-negative integer n. Lemma 3 implies that there are a Hamiltonian
flow w on a connected compact surface T , and a closed interval I in T and a
homeomorphism h : S → T −I capable of preserving the direction of the orbits such
that for any orbit O of v there is a unique orbit O′ of w such that h−1(O′ \ I) = O.
Lemma 6 implies that any connected component of the complement of the union
D(w) ∪ (∂T ∩ Per(w)) of the saddle connection diagram and periodic orbits on
the boundary ∂T is an open periodic annulus. This suggests that any connected
component of the complement of the union D(v) ∪ (∂S ∩ Per(v)) of the saddle
connection diagram and periodic orbits on the boundary ∂S corresponds to either
an open center disk or the difference A \ I, where A is an open periodic annulus.
Because the difference A\ I is either an open flow fox or open periodic annulus, the
above assertion holds. □

It should be noted that a ∂-saddle is a non-degenerate ∂-1/2-saddle, and a pinch-
ing point, i.e., ∂-1-saddle, is degenerate and not included in structurally stable
Hamiltonian flows.

2.4.7. Typical transitions between Hamiltonian flows. In real-world applications,
the following four kinds of transitions between Hamiltonian flows with finitely many
singular points are observed.

(i) Creations and annihilations of centers (see Figure 11)
e.g., Creations and annihilations of vortices

(ii) Creations and annihilations of boundaries (see Figure 12)
e.g., Appearances and disappearances of stones on the surface of
a river

(iii) Non-self-connected separatrices
e.g., Separatrices between saddles and ∂-saddles (see Figure 13)

(iv) Merging and splitting of multi-saddles
e.g., Merging and splitting of ∂-saddles (see Figure 14)

In this paper, we deal with exactly four these transitions. It should be noted that the
“creations and annihilations of boundaries” changes the whole compact surfaces,
and that we fix a number of genus elements if we deal with transition without
creations and annihilations of centers or creations and annihilations of boundaries.

2.4.8. Transitions between structurally stable Hamiltonian flows. A Hamiltonian
flow with self-connected saddle connections is f-unstable if it has just one fake multi-
saddle and all singular points excluding the fake multi-saddle are non-degenerate.
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⇦

Figure 11. Creations of centers with counter-clockwise and clock-
wise flow directions.

⇦⇦
⇦

⇦

Figure 12. Creations of boundaries.

⇦

⇦
⇦

⇦

⇦

⇦

Figure 13. Separatrices between saddles and ∂-saddles.

⇦ ⇦

Figure 14. Merging of two ∂-saddles.

The “f” in “f-unstable” stands for “fake.” A fake multi-saddle can be vanished un-
der fixing the same number of genus elements (see Figure 8). Subsequently, any
small perturbation of an f-unstable Hamiltonian flow on a compact surface or an
unbounded punctured surface implies the emergence of the same structurally stable
Hamiltonian flow up to topological equivalence. In other words, a transition whose
intermediate flow is f-unstable is trivial under fixing of the same number of genus
elements. In addition, a Hamiltonian flow with self-connected saddle connections is
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t-unstable if it has just one topological center, and all singular points excluding the
topological center are non-degenerate. The “t” in “t-unstable” stands for “topolog-
ical center”. With the same fixed number of genus elements, any perturbation of
a t-unstable Hamiltonian flow on a compact surface or an unbounded punctured
surface implies the same structurally stable Hamiltonian flow up to topological
equivalence. In other words, a transition whose intermediate flow is t-unstable is
trivial under fixing of the same number of genus elements. Therefore, we consider
the following condition for the non-existence of fake multi-saddles and topological
centers to omit trivial transitions:

(A1) Neither fake multi-saddles nor topological centers exist.
This condition means that any singular point of a Hamiltonian flow with finitely
many singular points is either a center or non-fake multi-saddle under the above
assumptions. A Hamiltonian flow with non-degenerate singular points is h-unstable
if it has exactly one non-self-connected orbit in the saddle connection diagram.
A Hamiltonian flow with self-connected saddle connections is p-unstable if it has
just one pinching point and all singular points excluding the pinching point are
non-degenerate. The “h” in “h-unstable” and the “p” in “p-unstable” stand for
“heteroclinic” and “pinching”, respectively. A generic transition between struc-
turally stable Hamiltonian flows with the same number of genus elements is either
p-unstable or h-unstable. More precisely, denote by χHam the subset of vector
fields without topological centers or fake multi-saddles in χHam,bd (resp. χHam,ubd)
and by χHam,str the set of structurally stable Hamiltonian vector fields without
topological centers or fake multi-saddles in χHam,bd (resp. χHam,ubd). Then the
characterization of generic transitions of Hamiltonian flows is described as follows
(see [12] for details).

Lemma 8 (cf. [12, Proposition 3.1]). The set of p-unstable or h-unstable Hamilton-
ian vector fields in χHam is an open dense subset of the difference χHam − χHam,str.

Proof. Recall that the above assertion for g = 0 is [12, Proposition 3.1]. Fix a vector
field X ∈ χHam on a compact surface S. It should be noted that any small pertur-
bations of Hamiltonian vector fields can be correspond to adding the Hamiltonian
vector fields generated by Hamiltonian functions whose values and derivatives are
small. We claim that any small perturbations imply no merges of distinct multi-
saddle connections. Indeed, the finite existence of multi-saddles implies that there
is the maximal distance dM of the distances of pairs of multi-saddles. Lemma 6
implies that the complement of the multi-saddle connection diagram D(X) consists
of open flow foxes and open periodic annuli. This implies that, for any multi-saddle
connection C, there is an open neighborhood U of C with U ∩ D(X) = C such
that the difference U − C consists of open flow foxes and open periodic annuli and
the boundary ∂U is contained in the multi-saddle connection diagram. In other
words, any pairs of adjacent multi-saddle connections have different values of the
Hamiltonian. Let V be the minimal value of differences of pairs of the values of
distinct multi-saddle connections with respect to the Hamiltonian. Then the quo-
tient V/dM is a positive number. Fix the resulting vector field X̃ from X by adding
any Hamiltonian vector field whose max norm is less than V/dM . The Hamiltonian
HY which generates the adding Hamiltonian vector field Y , any pairs p and q of
multi-saddles which belong to adjacent multi-saddle connections of X has still dif-
ferent values of the resulting Hamiltonian after the adding operation because the
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difference |HY (p) − HY (q)| is more than V −
∫

γ
|Y |dt > V −

∫
γ

V/dM dt = 0, where
γ is a shortest arc-length curve from p to q. Therefore no merges of multi-saddle
connections occur by any small perturbations. The claim means that any small
perturbations deform multi-saddle connections individually. Therefore the proof of
[12, Proposition 3.1] can be applied to the general case. □

It should be noted that the difference χHam − χHam,str in this lemma is the
set of non-structurally–stable Hamiltonian vector fields, which are intermediate
flows of non-trivial transitions. Thus a generic transition between structurally sta-
ble Hamiltonian vector fields in χHam is either p-unstable or h-unstable. Let H
be either the set of flow in Hg,bd satisfying condition (A1) or the set of flows in
Hg,ubd satisfying condition (A1). Since a Hamiltonian flow is a flow generated by a
Hamiltonian C1-vector field, a generic transition between structurally stable Hamil-
tonian flows in H is either p-unstable or h-unstable. Consequently, the transition
graphs of structurally stable Hamiltonian flows comprise vertices that are topolog-
ically equivalence classes of structurally stable Hamiltonian flows and edges that
are topologically equivalence classes of p-unstable or h-unstable Hamiltonian flows.
Then, the distance between structurally stable Hamiltonian flows can be defined
as the path distance on the transition graph. The condition fixing a number of
genus elements means that there occurs neither creation nor annihilation of genus
elements.

2.4.9. Elements of Hamiltonian Flows on compact surfaces and unbounded punc-
tured surfaces. From now on, we assume that each flow has at most finitely many
singular points.

Our pictorially representation of a structurally stable Hamiltonian flow on either
a compact surface or an unbounded punctured surface S is D(v) which consists of
saddles, ∂-saddle, and separatrices originating or ending to the saddles. Orbits
and their directions are represented by curved lines and arrowheads, respectively .
In fact, the orbits are classified so that the multi-saddle connection diagram D(v)
of a structurally stable Hamiltonian flow on a compact surface or an unbounded
punctured surface consists of the orbits in (iii)–(iv) and (vi)–(vii):

(i) orbit in a periodic annulus on S − ∂S
• periodic orbit outside of the boundary ∂S

(ii) non-singular orbit on ∂S \ D(v)
• periodic orbit on the boundary ∂S

(iii) singular orbit on D(v) \ ∂S
• structurally stable: saddle
• unstable: k-saddle

(iv) singular orbit on D(v) ∩ ∂S
• structurally stable: ∂-saddle
• unstable: ∂-k/2-saddle

(v) singular orbit outside of an unbounded punctured surface and compact
surface

• 1-source–sink
(vi) orbit in a trivial flow box in an unbounded punctured surface and outside

of the multi-saddle connection diagram D(v)
• ss-orbit

(vii) non-singular orbit on D(v)
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• structurally stable: self-connected separatrix, ss-separatrix
• unstable: non-self-connected multi-saddle separatrix

(viii) singular orbit on S − D(v)
• topological center

We will show that analysis of Hamiltonian flows can be reduced into a symbolic
processing.

Although this study does not deal with fake saddles and fake ∂-saddles, they are
intermediate states in the creation and annihilation of topological centers. Indeed,
the creation and annihilation of topological centers via a fake saddle and fake ∂-
saddle can be analyzed via approximations of polynomial vector fields, like those
illustrated in Figure 15 (cf. [3]).

 ⇔
∗1

 ⇔
∗1

 ⇔
∗2  ⇔

∗2

Figure 15. Creations and annihilations of self-connected orbits.

2.4.10. Primitive local transformation rules. The index of a topological center (resp.
k-saddle, ∂-k/2-saddle) is one (resp. −k, −k/2). In this section, we demonstrate the
absence of creation and annihilation of topological centers in Hbd(n) or Hubd(n).
In other words, there is no merge of non-fake multi-saddles and a positive number
of topological centers into a multi-saddle in H(n).

Lemma 9. Let H(n) be either Hg,bd(n) or Hg,ubd(n). The following statements
hold:
(1) Neither creation nor annihilation of topological centers occurs in H(n).
(2) If a continuous path p : (0, 1) → H(n) does not contain creation and annihilation
of fake multi-saddles, splitting and merging of multi-saddles, or merging and split-
ting of separatrices, then the Hamiltonian flows in the image of p are topologically
equivalent to each other.

Proof. Flows in H(n) have exactly n genus elements and finitely many singular
points. Lemma 4 implies that any degenerate singular point is a multi-saddle or
topological center, and that there are at most finitely many multi-saddles; there-
fore, the multi-saddle connection diagram is a finite union of orbits. Lemma 6 and
Lemma 7 suggest that a Hamiltonian flow in H(n) can be determined by the multi-
saddle connection diagram; hence any changes of topological equivalence classes
of flows in H(n) owing to the creation or annihilation of topological centers and
non-fake multi-saddles, splitting or merging of multi-saddles, and splitting or merg-
ing of separatrices. Because the Poincaré-Hopf theorem for continuous flows with
finitely many singular points on compact surfaces holds using Gutierrez’s smooth-
ing theorem [7], annihilations of topological centers occur by merges of topological
centers and multi-saddles. Since any topological centers are isolated, the existence
of topological centers is an open condition. Finite existence of centers implies that
any small perturbations implies no annihilations of topological centers in H(n).
Hence each change of topological equivalence classes of flows in H(n) by a small
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 ⇔

Figure 16. Primitive local transformation †1, which is not con-
sidered in this study. This changes the number of singular points
but preserves the number of genus elements.

 ⇔
†2

 ⇔
†2

Figure 17. Primitive local transformation †2, which is not con-
sidered in this study. This changes the number of singular points
but preserves the number of genus elements.

perturbation occurred by splitting or merging of separatrices, by splitting or merg-
ing of multi-saddles, by creating or annihilating a fake multi-saddle, or by splitting
or merging of a non-fake multi-saddle and a topological center. Since any small
perturbation of a non-fake multi-saddle moves the multi-saddle in a small open
neighborhood, the above assertion holds. □

All local structures of transitions can be described by merging pairs of orbits.

Corollary 10. Let H(n) be either the set of flow in Hg,bd(n) satisfying condition
(A1) or the set of flows in Hg,ubd(n) satisfying condition (A1). Then any changes
of topological equivalence classes of flows in H(n) occurred by splitting or merging
of separatrices or by splitting or merging of multi-saddles.

We describe all local structures of transitions by merging a pair of orbits.

Lemma 11. Let H(n) be either Hg,bd(n) or Hg,ubd(n). All possible combinations
of merging pairs of orbits and their inverse operations are listed in Table 1. Such
operations are described as primitive local transformations in H(n), as shown in
Figures 16–18.

Proof. Flows in H(n) have exactly n genus elements, and degenerate singular points
are multi-saddles or topological centers. There are finitely many multi-saddles;
therefore, the saddle connection diagram is a finite union of orbits. Let v be a
Hamiltonian flow in H(n). By Lemma 9, any small perturbation preserves the
genus elements. It suffices to show that the inverse operations of orbit merging,
as summarized in Table 1, reduce v into a structurally stable Hamiltonian flow in
Hg,bd or Hg,ubd Lemma 6 and Lemma 7 imply that any connected component of
the complement of the union D(v) ⊔ (∂S ∩ Per(v)) ⊔ Singc(v) is either an open
periodic annulus or a trivial flow box, where Singc(v) is the set of topological
centers. Therefore v consists of one of the following orbits: (i) periodic orbits in an
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i ii iii iv v vi vii viii
i (orbit in int Per(v)) 1⃝ 3⃝ 2⃝ 4⃝ — — 1⃝ 9⃝
ii (orbit in ∂ Per(v)) — 6⃝ — — — 3⃝ —
iii (k-saddle) †1 †2 — 2⃝ 2⃝ *1
iv (∂-k/2-saddle) 7⃝ — 4⃝ 4⃝ *2
v (1-source–sink point) — 5⃝ — —
vi (ss-orbit) 8⃝ 1⃝ —
vii (separatrix) 1⃝ —
viii (topological center) —

Table 1. Primitive local transformations by merging orbits of
flows. Circled numbers correspond to primitive local transforma-
tions in Figure 18. “—” represents physically impossible combina-
tions. †1 changes the number of singular points in the whitehead
operation shown in Figure 16. ∂-3/2-saddles in †2 are non-generic
unstable, as shown in Figure 17, because small perturbations can
separate ∂-3/2-saddles into ∂-1/2-saddles and 1-saddles.

open periodic annulus; (ii) periodic orbits on the boundary; (iii) k-saddles; (iv) ∂-
k/2-saddles; (v) the point at infinity (i.e., 1-source–sink point); (vi) ss-orbits; (vii)
separatrices; (viii) topological centers. Because bounded and unbounded orbits
cannot be merged, the pairs (i)-(vi), (ii)-(vi), and (vii)-(vi) cannot be realized.
Since the point at infinity cannot be merged with bounded and unbounded orbits,
the pairs (i)-(v), (ii)-(iii) and (v)-(vii) cannot be realized. Because the boundary
components cannot be merged, the pairs (ii)-(ii) and (ii)-(iv) cannot be realized.
Since a topological center and ∂S (resp. unbounded orbit, sepratrix, and topological
center) cannot be merged in H(n), the pair (ii)-(viii) (resp. (vi)-(viii), (vii)-(viii),
and (viii)-(viii)) cannot be realized. The point at infinity and another singular
point cannot be merged in H(n), and so the pairs (iii)-(v), (iv)-(v), and (v)-(viii)
cannot be realized. The uniqueness of the point at infinity implies the unfeasibility
of the pair (v)-(v). All possible inverse operations of orbit merging are shown in
Figures 16–18. □

Because p-unstable or h-unstable Hamiltonian flows can be obtained from struc-
turally stable Hamiltonian flows through orbit merging, they can be described as
primitive local transformations in H(n), as shown in Figure 18.

Corollary 12. Let H(n) be either Hg,bd(n) or Hg,ubd(n). If v ∈ H(n) is either
p-unstable or h-unstable, then there is a small open neighborhood U of v such that
v can be obtained from a structurally stable Hamiltonian flow in U through orbit
merging operations, which can be described as primitive local transformations in
H(n), as shown in Figure 18.

The global transformations of flows simultaneously replace the continuous tiles
by the primitive local transformations as follows. When the local transformations
are applied from left to right, unstable structures may appear on the merged orbits
in which two saddle points are connected by two heteroclinic orbits. For example,
the (global) transformation presented in Figure 19, which consists of three primitive
local transformations, transforms a structurally stable Hamiltonian flow in H(n)
to an unstable flow in H(n). Conversely, when the primitive local transformations
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are applied from right to left, structurally stable Hamiltonian flows are preserved
and unstable structures may disappear. For example, the inverse transformation
of Figure 19 transforms an unstable flow to a structurally stable Hamiltonian flow.
Here, the primitive local transformation rules 1⃝ are 2⃝ are applied. An example
global transformation from one structurally stable Hamiltonian flow to another via
an unstable flow is shown in Figure 20. The thick and dashed lines on the left
and right, respectively, are merged in the middle via the coupling of primitive local
transformations shown in Figure 18. All the primitive local transformations in
Figure 18 are applied from the left to the middle or from the right to the middle.
Complete global transformations (hereafter, transformations, for simplicity) will be
studied in later sections.

3. COT representations of Hamiltonian flows

To describe the topologies of Hamiltonian flows on punctured surfaces and global
transformations among structurally stable Hamiltonian flows in a computable way,
we refer to formal language theory.

3.1. Notion of formal grammar. We follow the notations and terminologyies of
[5].

3.1.1. Regular tree grammar. The set of positive integers is denoted by N. A ranked
alphabet is the pair (F , Arity) of a finite set F and a function Arity : F → N. The
arity of a symbol f ∈ F is Arity(f), and the set of symbols of arity p is denoted by
Fp. Elements of arity 0, 1, . . . , p are called constants, unary, binary, . . . , and p-ary
symbols, respectively. Herein, an abbreviated declaration of symbols with arity is
employed. For example, f(, ) is a declaration for the binary symbol f . Let X be a
set of constants called variables that is disjoint to F0. The set T (F , X ) of terms
over the ranked alphabet F , and the set of variables X is the smallest set defined
by:

• F0 ⊆ T (F , X ),
• X ⊆ T (F , X ),
• if p ≥ 1, f ∈ Fp, and t1, . . . , tp ∈ T (F , X ), then f(t1, . . . , tp) ∈ T (F , X ).

If X = ∅, T (F , X ) is also written as T (F).
A regular tree grammar G = (S, N, F , R) consists of

• a distinguished symbol S, which is called axiom,
• a finite set N of non-terminal symbols with S ∈ N ,
• a finite set F of terminal symbols, and
• a finite set R of production rules in the form of A → β, where A is a

non-terminal of N , and β is a tree of T (F ∪ N ∪ X ).

3.1.2. Regular tree grammar with cyclic order. A ranked alphabet with cyclic order
is a triplet (F , Arity, Cyclic) of a finite set F , function Arity : F → N, and function
Cyclic : F → {0, 1}. The alphabet f is called cyclic if Cyclic(f) = 1 and acyclic if
Cyclic(f) = 0. Herein, an abbreviated declaration of ranked alphabets with cyclic
order is employed. For example, f(, ) (resp. f{, }) is the declaration of a binary
acyclic (resp. cyclic) symbol f . In a regular tree grammar with cyclic order (COT)
G = (S, N, F , R), F is a finite set of a ranked alphabet with cyclic order.
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Figure 18. Primitive local transformations.
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⇦

Figure 19. An example (global) transformation of a structurally
stable Hamiltonian flow to an unstable flow.
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Figure 20. An example global transformation of a structurally
stable Hamiltonian flow to another structurally stable Hamiltonian
flow via an unstable flow.

Figure 21. Heteroclinic orbits that induce the unstable flow
structure in this study: heteroclinic saddle connection evolution.
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Figure 22. Basic patterns: left a∅, right b∅.

3.2. Letters of COT representations of Hamiltonian surface flows. From
now on, we assume that each flow has neither fake saddles nor fake ∂-saddles.

Recall that the saddle connection diagram with the boundary information is a
complete invariant of structurally stable Hamiltonian flows on compact punctured
surfaces and unbounded punctured surfaces. To construct the saddle connection
diagram inductively, we introduce replacements and insertions to the saddle connec-
tion diagram and identify them with the resulting orbit structures. Lemma 6 implies
that any structurally stable Hamiltonian flows on a compact punctured sphere can
be generated from a periodic annulus (see Figure 22) by iteratively applying ten
operations, each of which replaces a saddle connection diagram: b±±, b±∓, β±, c±,
or σ± (see Figure 23). It should be noted that, in this paper, the double plus-minus
sign corresponds to double plus and double minus, e.g., b±± means b++ and b−−.
Similarly, Lemma 6 implies that any structurally stable Hamiltonian flows on a
punctured plane can be generated from a uniform flow (see Figure 22) (i.e., a flow
that is topologically equivalent to the flow generated by a vector field (1, 0)) on
the plane R2 by iteratively applying thirteen operations, each of which replaces a
saddle connection diagram: a±, a2, b±±, b±∓, β±, c±, or σ± (see Figure 23) [16].5

These suggest that the saddle connection diagram of any structurally stable
Hamiltonian flows on a compact punctured sphere can be constructed from the
saddle connection diagram of a uniform flow with two insertable places represented
by 2b− and 2b+ as shown in Figure 22. Additionally, the saddle connection di-
agram of any structurally stable Hamiltonian flows on a punctured plane can be
constructed from the saddle connection diagram of a uniform flow with finitely many
replaceable places represented by 2i

a as shown in Figure 22. A replaceable place
in an unbounded region is represented by 2a, and that replaceable place with a
counter-clockwise (resp. clockwise) flow direction near the boundary is represented
by 2c+ (resp. 2c−). An insertable place bounded by a saddle connection with
a counter-clockwise (resp. clockwise) flow direction is represented by 2b+ (resp.
2b−). Insertable places need to be inserted into suitable orbit structures, whereas
replaceable places need not. The thirteen operations a±, a2, b±±, b±∓, β±, c±, and
σ± are illustrated in Figure 23:

5Following the conventions of formal language theory, symbols are written in lower case. More-
over, for simplicity, I (resp. II) is replaced by a2 (resp. a±) because I and a2 (resp. II and a±)
are equivalent as local structures.
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Figure 23. The thirteen fundamental operations a±, a2, b±±,
b±∓, β±, c±, and σ±.

(a±) Operation a± replaces an ss-orbit with a saddle that consists of two ss-
separatrices and one self-connected separatrix, which has one insertable
region 2b±.

(a2) Operation a2 replaces an ss-orbit with a boundary component that consists
of two ∂-saddles and two separatrices, which have finitely many replaceable
regions 2c− and 2c−.

(b−±) Operation b−± inserts a saddle with two self-connected separatrices into
a region with a counter-clockwise flow direction, which has two insertable
regions 2b− and 2b±.

(b+∓) Operation b+± inserts a saddle with two self-connected separatrices into
a region with a counter-clockwise flow direction, which has two insertable
regions 2b+ and 2b±.

(σ±) Operation σ+ (resp. σ−) inserts a center whose neighborhood rotates in
the counter-clockwise (resp. clockwise) flow direction, which has neither
insertable nor replaceable regions.

(β±) Operation β+ (resp. β−) inserts a periodic orbit with a counter-clockwise
(resp. clockwise) flow direction (boundary component), which has finitely
many replaceable regions 2c±.

(c±) Operation c replaces a separatrix contained in the boundary by two ∂-
saddles with four self-connected separatrices, which has one insertable re-
gion 2b± and finitely many replaceable regions 2c∓.

Each operation except for β± and σ± increments the number of genus elements by
one. For example, a2 adds a boundary component on the ss-orbit, and c adds a
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self-connected separatrix on the boundary component. Notice that operations are
not always feasible; for instance, operation c+ is not feasible if a2 or β+ have not
been applied beforehand.

3.3. Tree grammar for TFDA. A regular tree grammar with cyclic order is
defined as G = (S, N, F , R), where

• N = {S, A, A∗, B+, B−, C+, C−, C∗
+, C∗

−};
• F = Fε ∪ FA ∪ FB ∪ FC ∪ Fσ ∪ Flist , where the set of non-terminal

symbols F are divided into a set Fε = {a∅(), b∅(, )} of the root sym-
bols of flow, a set FA = {a+(), a−(), a2(, )} of A-type flow, a set FB =
{b++{, }, b+−(, ), b−−{, }, b−+(, ), β+{}, β−{}} of B-type flow, a set FC =
{c+(, ), c−(, )} of C-type flow, a set Fσ = {σ+, σ−} of singular points, and a
set Flist = {λa, λ+, λ−, consa(, ), cons+(, ), cons−(, )} of alphabets for con-
structing lists;

• R is a set of production rules:
S → a∅(A∗) | b∅(B−, B+)
A → a+(B+) | a−(B−) | a2(C∗

+, C∗
−)

A∗ → λa | consa(A, A∗)
B+ → σ+ | b++{B+, B+} | b+−(B+, B−) | β+{C ∗

+}
B− → σ− | b−−{B−, B−} | b−+(B−, B+) | β−{C ∗

−}
C+ → c+(B+, C∗

−)
C− → c−(B−, C∗

+)
C∗

+ → λ+ | cons+(C+, C∗
+)

C∗
− → λ− | cons−(C−, C∗

−)
X∗ represents a list of zero or more elements of X. An empty list is represented by

λa, λ+, and λ−, otherwise a list also includes cons, cons+, and cons−, respectively.
A catenation · is used to represent two lists, and the terms are identified by the
following rules.

λa · z ≈ z

λ+ · z ≈ z

λ− · z ≈ z

cons(x, y) · z ≈ cons(x, y · z)
cons+(x, y) · z ≈ cons+(x, y · z)
cons−(x, y) · z ≈ cons−(x, y · z)

for any regular tree x, y, z with cyclic order. For simplicity, a singleton list and its
elements are identified when they appear in operands of catenation ·, and subscripts
and arguments with parenthesis such as (σ), (σ, σ), (λ, λ), and (σ, λ) are omitted
when clearly implied by the context. For example, a+ · a2 is a shorthand nota-
tion for cons(a+(σ+), cons(a2(λ+, λ−), λa)), and the term a∅(a+(b+−(β+{c+(σ, c−)·
c+}, σ))) is derived from the grammar G.

For simplicity, the orbit structure of a term whose root is x is called the orbit
structure of x. Each derived term of T (F) represents an orbit topology. Given
each derived term, the flow structure can be constructed recursively and uniquely.
The flow structure of Fϵ is presented in Figure 22. Here, 2L

T is a hole for the term
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generated by the non-terminal symbol T , where label L is used for distinguishing
holes. If 2x± is a hole for the term generated by the non-terminal symbol X±,
then 2xs± represents a hole for the term generated by the non-terminal symbol X∗

±
for any x± and X±. For example, 2b+ and 2cs+ are holes for terms generated by
the non-terminal symbols B+ and and C∗

+, respectively. Hamiltonian flows in a
punctured sphere are classified into either of the basic orbital patterns, i.e., a∅ or
b∅. The orbit structure of a∅ represents a uniform flow, and can be regarded as a
point dipole of flow, where the point is a 1-source–sink represented by S⃝. It has n
orbit structures that are represented by 21

a,22
a, . . . ,2n

a . The orbit structure of b∅ is
pictorially represented in two different ways. On the left, two holes of opposite flow
directions are placed at the upper and lower hemispheres of a sphere, respectively.
On the right, two holes of opposite flow directions are placed side-by-side. The
two orbit structures of b∅ are represented by 2b+ and 2b−; because they can be
distinguished by the type of structures B+ and B−, the labels are omitted.

The orbit structures of all elements in FA, FB , and FC are shown in Figure 23.
The orbit structures of the A family are unbounded, and the flow moves from right
to left. The orbit structure of a2 has a boundary represented by a shaded circle. The
centers of the counter-clockwise flow σ+ and clockwise flow σ− are represented by
dots. The orbit structures of the two arguments of b++ cannot be distinguishable.
If we rotate the pictorial representation by π, the identical pictorial representation
is obtained; the same applies to b−−. The orbit structures of the n arguments of β+
and β− are placed in a cyclic order and are indistinguishable. Brace brackets, “{”
and “}”, are used to represent that the structure does not change if its order changes
cyclically. In other words, the trees iteratively transformed by the transformation
rules

β±{21
cs± · 22

cs±} ≈cyc β±{22
cs± · 21

cs±}(1)
b±±{21

b±,22
b±} ≈cyc b±±{22

b±,21
b±}(2)

correspond to identical orbit structures.
Replacing holes with orbit structures with holes pictorially corresponds to re-

placing non-terminal symbols with trees of T (F ∪ N) by productions. Iterative re-
placements eventually reconstruct the orbit, which is represented by a ground term
of T (F). An example of an orbit is shown in Figure 24. Generally, any topologies
of Hamiltonian flows are generated by iteratively applying the operations shown in
Figure 23 to the two basic patterns, a∅ and b∅, shown in Figure 22.

The tree of root b∅ changes its representation depending on the area that corre-
sponds to the root (Figure 25). Concretely, the tree of root b∅ changes its repre-
sentation based on the transformation rules presented in Figure 26.

Each tree derived from the tree grammar G modulo equivalence ≈cyc corresponds
to a unique orbit structure in a punctured sphere.

Proposition 13. There is a bijection f : L(G)/ ≈cyc → Hstr/ ≈top, where Hstr is
the union of the set of structurally stable Hamiltonian flows in Hbd and the set of
those in Hubd; the relation ≈top is a topological equivalence; and the relation ≈cyc
behaves as mentioned above.

Proof. The proof is based upon the structural induction on trees derived by the
tree grammar G. □
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Figure 24. Orbit of tree representation
a∅(a+(b+−(β+{c+(σ+, c−) · c+}, σ−))).

Figure 25. A family of transpositions of the root of COT trees.

The flip function is defined to flip all orbital directions:

flip(a∅(xa)) = a∅(flip(xa))
flip(b∅(x1

b , x2
b)) = b∅(flip(x2

b), flip(x1
b))

flip(x1
a · x2

a) = flip(x1
a) · flip(x2

a)
flip(λa) = λa

flip(b∅(xb−, xb+)) = b∅(flip(xb+), flip(xb−))
flip(a±(xb±)) = a∓(flip(xb±))

flip(a2(xcs+, xcs−)) = a2(flip(xcs−), flip(xcs+))
flip(b±±{x1

b±, x2
b±}) = b∓∓{flip(x1

b∓), flip(x2
b∓)}

flip(b±∓(x1
b±, x2

b∓)) = b∓±(flip(x1
b±), flip(x2

b∓))
flip(x1

cs± · x2
cs±) = flip(x1

cs±) · flip(x2
cs±)

flip(λ±) = λ∓

flip(c±(xb±, xcs∓)) = c∓(flip(xb±), flip(xcs∓))
flip(σ±) = σ∓

The flip function basically flips the signature of the potential functions and preserves
the cyclic order without changing the order of sequence of the A and C families.

Lemma 14. The domain of the flip function over holes can be extended as follows:

flip(2i
a) = 2i

a

flip(2i
b+) = 2i

b−

flip(2i
b−) = 2i

b+
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~~b-
b+ b-

b+

11
2

2

b∅(21
b+, b−+(2b−,22

b+)) ≈cyc b∅(b++{21
b+,22

b+)},2b−)

~~
b b
+ -b+ b-

2

2

1
1

b∅(b+−(2b+,22
b−),21

b−) ≈cyc b∅(2b+, b−−{21
b−,22

b−)})

b-
b+b+

b-
~~

b∅(2b+, β−{c−(2b−,2cs+) · 2cs−}) ≈cyc b∅(β+{c+(2b+,2cs−) · 2cs+},2b−)

Figure 26. Instances of transposition of the root of the COT
trees shown in Figure 25 by χ− for the inner box and by χ2 for the
outer box.

flip(2i
cs+) = 2i

cs−

flip(2i
cs−) = 2i

cs+

Let the flipname function replace + and − with − and +, respectively. For any
rule name : context1 → context2, we have flipname(name) : flip(context1) →
flip(context2).

Applying flip twice reduces itself.

Lemma 15. For any x ∈ T (F), we deduce

flip(flip(x)) →∗ x

The relation ≈cyc shown in Figure 26 can be implemented for reducing the given
terms to a normal form.

nf r(b∅(σ−, xb−)) = b∅(σ−, xb−)
nf r(b∅(x1

b+, b−+(xb−, x2
b+))) = nf r(b∅(b++{x1

b+, x2
b+)}, xb−))

nf r(b∅(b+−(xb+, x2
b−), x1

b−)) = nf r(b∅(xb+, b−−{x1
b−, x2

b−)}))
nf r(b∅(xb+, β−{c−(xb−, xcs+) · xcs−})) = nf r(b∅(β+{c+(xb+, xcs−) · xcs+}, xb−))
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b + b - b + b - 

σ∅−( b+) = b∅+( b+) β∅−( b+, { cs−})σ∅+( b−) = b∅−( b−) β∅+( b−, { cs+})

Figure 27. COT representations with outermost elements of
Hamiltonian flows on punctured spheres.

For any b∅(b1, b2) ∈ T (F), there exists b3 such that nf r(b∅(b1, b2)) = b∅(σ−, b3)).
We can regard b∅(σ−, b3)) as a right normal form of b∅(b1, b2). Similarly, we can
define the function nf l by adopting a left normal form.

3.4. COT representations with outermost elements of Hamiltonian flows
on punctured spheres. We can consider a COT representation with an outer-
most element of a Hamiltonian flow on a punctured sphere. In fact, define b∅±(2b±),
b∅±(2b±, {2cs∓}) as follows:
σ∅−(2b+) = b+(2b+) := b∅(2b+, σ−)
β∅−(2b+, {2cs−}) := b∅(2b+, β−{2cs−})
σ∅+(2b−) = b−(2b−) := b∅(σ+,2b−)
β∅+(2b−, {2cs+}) := b∅(β+{2cs+},2b−)
Then the representation b∅+(2b+) (resp. b∅−(2b−)) corresponds to a Hamilton-
ian flow on a punctured sphere whose root is a center with the clockwise (resp.
counter-clockwise) flow direction, and the representation β∅−(2b+, {2cs−}) (resp.
β∅+(2b−, {2cs+})) corresponds to a Hamiltonian flow on a punctured sphere whose
root is a boundary component with the clockwise (resp. counter-clockwise) flow di-
rection. This means that the outermost elements of the representations b∅∓(2b±)
(resp. β∅±(2b±, {2cs∓})) are centers (resp. boundary components) as shown in
Figure 27. When COT representations clear from their context, we sometimes
omit labels a∅, b∅, b∅±, σ±, λa, and λ±.

3.5. Correspondence between COT representations of Hamiltonian flows
and Reeb graphs of the Hamiltonians. When we equip symbols with the crit-
ical values of the Hamiltonian at the corresponding singular points, COT represen-
tations become equivalent to labeled Reeb graphs. The labels correspond to saddle
connections. Moreover, we can define a pseudo-distance between structurally stable
Hamiltonian flows as an edit distance between the Reeb graphs using the values of
the Hamiltonians.

Table 2. Correspondence between COT and molecule.

Terminal symbols of COT Codes of molecule [6]
σ+, σ− A

b++, b−− B
b±±± C (C2)

b(+−+), b(−+−) D (D1)
b±±(∓), b±{∓∓}, b±(∓(±)), b±(∓(∓)) D (D2)
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b+−( 1
b+,

2
b )

b++{ 1
b+,

2
b+}

b−+(
1
b−,

2
b+)

b−−{ 1
b−,

2
b−}

1
b+

2
b+

1
b+

1 2 b+b+

−
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b−

1
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b+

1
b−

2
b 2 b−

1
b−

2
b+

1 b−

b−

−

1 b−

2

b+

1

a+(
1
b+)

a−( 1
b−)

β+{ cs+}

b+

1
b− 1

1

c+ c+

β−{ cs−}
c− c−

σ+

σ−

Figure 28. Correspondence between COT representations of
Hamiltonian flows, and Reeb graphs and the graphs of the Hamil-
tonians.

Table 2 indicates that the correspondence between COT representations and
molecules [6]. Because edges in molecules are not oriented, multiple COT represen-
tations correspond to a single molecule. Because we only consider 2D Hamiltonian
flows, no COT representations correspond to the 3D structures such as molecule
C1.

Roughly speaking, the set of Hamiltonian flows with finitely many singular points
can be naturally stratified in terms of stability. For instance, the structurally
stable flows have “codimension” zero, generation transition has “codimension” one,
and more unstable flows have hither “codimension”. It should be noted that the
codimension is not equal to the complexity; the complexity is the number of saddle
points contained in saddle connection diagrams. In fact, the “codimension” is equal
to the sum of Σi(ci − 1) + n0 + Σk≥12(k − 1)nk + m0 + Σl≥1(l − 1)ml, where ci are
the complexities of atoms, nk is the number of k-saddles, and ml is the number of
∂-(l/2)-saddles. The COT representations of the flows of the higher codimension
correspond to molecules E3, F2, G1, G2, G3, H1, H2, etc.

3.6. COT representations of Hamiltonian flows on compact surfaces and
unbounded punctured surfaces. Identifying the box 2, we can construct COT
representations of Hamiltonian flows on compact surfaces and unbounded punc-
tured surfaces. For instance, we can assign such Hamiltonian flows to COT repre-
sentations by identifying boxes 2 using the breadth-first search as shown in Fig-
ure 29. A pair of filled boxes ■i

b+ and ■i
b− corresponds to the operation identifying

an open periodic annulus. Precisely, we define a regular tree grammar with cyclic
order G0 = (S, N, F , R) where

• N = {S, A, A∗, B+, B−, C+, C−, C∗
+, C∗

−},
• F = Fε ∪ FA ∪ FB ∪ FC ∪ Fσ ∪ Flist where the set of non-terminal

symbols F are divided into the set Fε = {a∅(), b∅(, )} of the root sym-
bols of flow, the set FA = {a+(), a−(), a2(, )} of A-type flow, the set
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Figure 29. COT representations of Hamiltonian flows on com-
pact surfaces.

FB = {b++{, }, b+−(, ), b−−{, }, b−+(, ), β+{}, β−{}} of B-type flow, the set
FC = {c+(, ), c−(, )} of C-type flow, the set Fσ = {σ+, σ−, b+,δ, b−,δ} of sin-
gular points, and the set Flist = {λa, λ+, λ−, consa(, ), cons+(, ), cons−(, )}
of alphabets for constructing lists, and

• R is a set of production rules:

S → a∅(A∗) | b∅(B−, B+)
A → a+(B+) | a−(B−) | a2(C∗

+, C∗
−)

A∗ → λa | consa(A, A∗)
B+ → σ+ | b+,δ | b++{B+, B+} | b+−(B+, B−) | β+{C ∗

+}
B− → σ− | b−,δ | b−−{B−, B−} | b−+(B−, B+) | β−{C ∗

−}
C+ → c+(B+, C∗

−)
C− → c−(B−, C∗

+)
C∗

+ → λ+ | cons+(C+, C∗
+)

C∗
− → λ− | cons−(C−, C∗

−)

The symbols bL
±,δ are also denoted by ■L

±, where label L is used for distinguishing
symbols. Each tree derived from the tree grammar G0 modulo the equivalence ≈cyc
corresponds to a unique orbit structure in punctured surfaces.

Proposition 16. There is an injection f : Hstr/ ≈top→ L(G0)/ ≈cyc, where Hstr
is the union of the set of structurally stable Hamiltonian flows in

⊔
g∈Z≥0

Hg,bd and
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b+−

b++

b−+

b−−⇨
⇨

⇨
⇨

c+

⇨
c

⇨
−

⇨
a+

⇨
a−

Figure 30. Creations of centers incremented by one of struc-
turally stable Hamiltonian flows.

the set of those in
⊔

g∈Z≥0
Hg,ubd, the relation ≈top is a topological equivalence,

and the relation ≈cyc is above-mentioned. Moreover, each acceptable word can be
characterized as a word such that symbols b+,δ and b−,δ must appear in pairs.

4. Complete creation rules of genus elements incremented by one of
structurally stable Hamiltonian flows

In this section, we list all creations of genus elements incremented by one of
structurally stable Hamiltonian flows. Each subsection below is dedicated to a cre-
ation rule of genus elements incremented by one in structurally stable Hamiltonian
flows.

4.1. Creations of centers incremented by one for structurally stable Hamil-
tonian flows. The rules of creation of centers incremented by one for structurally
stable Hamiltonian flows shown in Figure 30 are as follows:
(b±∓) 2b± → b±∓(2b±, σ∓)
(b±±) 2b± → b±±{2b±, σ±}

(c±) 2·k
c± · 2·l

c± → 2·k
c± · c± · 2·l

c±
(a±) a∅(2·k

a · 2·l
a) → a∅(2·k

a · a± · 2·l
a)

Here, given an integer k, 2·k
x represents a sequence of k 2x:

2x · · · · · 2x︸ ︷︷ ︸
k times

.

We have the following statements for generic creations of centers.
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⇨
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⇨ ⇨

⇨
⇨

β+

β+{c+}

β−

β−{c−}

Figure 31. Creations of boundaries incremented by one of struc-
turally stable Hamiltonian flows.

Lemma 17. The complete generic creations of centers for structurally stable Hamil-
tonian flows on compact punctured spheres are described by the rules (b±∓), (b±±),
and (c±), as shown in Figure 30.

Proof. Since all creations of centers for structurally stable Hamiltonian flows on
punctured planes occur on either periodic annuli or the boundary, Figure 30 implies
the above assertion. □

Lemma 18. The complete generic creations of centers for structurally stable Hamil-
tonian flows on punctured planes are described by the rules (b±∓), (b±±), (c±), and
(a±), as shown in Figure 30.

Proof. Since all creations of centers for structurally stable Hamiltonian flows on
punctured planes occur on either flow boxes, periodic annuli, or the boundary,
Figure 30 implies the above assertion. □

4.2. Creations of boundaries incremented by one of structurally stable
Hamiltonian flows. The rules of creations of boundaries incremented by one of
structurally stable Hamiltonian flows on compact punctured spheres and punctured
planes shown in Figure 31 are as follows: for any k, l ∈ Z≥0

(a2) a∅(2·k
a · 2·l

a) → a∅(2·k
a · a2 · 2·l

a)
(β±) σ± → β±

(β±{c±}) 2b± → β±{c∓(2b±, λ∓)}
It should be noted that creations of boundaries incremented by one for struc-

turally stable Hamiltonian flows change the whole surfaces into the resulting sur-
faces by removing open disks. We have the following statements for generic cre-
ations of boundary components.

Lemma 19. The complete generic creations of boundary components for struc-
turally stable Hamiltonian flows on compact punctured spheres are described by the
rules (β±), and (β±{c±}), as shown in Figure 31.

Proof. Because the creations of boundary components for structurally stable Hamil-
tonian flows on punctured planes occur on either periodic annuli or centers, Fig-
ure 31 implies the above assertion. □
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Lemma 20. The complete generic creations of boundary components for struc-
turally stable Hamiltonian flows on punctured plane are described by the rules (a2),
(β±), and (β±{c±}), as shown in Figure 31.

Proof. Since all creations of boundary components for structurally stable Hamil-
tonian flows on punctured planes occur on either flow boxes, periodic annuli, or
centers, Figure 31 implies the above assertion. □

We can define a transition graph with creations incremented by one of struc-
turally stable Hamiltonian flows as the graph whose vertices are topological equiva-
lence classes of structurally stable Hamiltonian flows and whose edges are creations
incremented by one genus element (i.e (a2), (β±), and (β±{c±})) and topological
equivalence classes of p-unstable or h-unstable Hamiltonian flows.

5. Complete generic transition rules

We state a complete generic transition rules of Hamiltonian flows.

Theorem 21. The complete generic transition rules of Hamiltonian flows on com-
pact punctured spheres and punctured planes are shown as follows:

a±±, a±∓, a22, a±2, a2± :21
a · 22

a → 22
a · 21

a

a(+−), a(−+) :a−(21
b−) · a+(22

b+) → a−(21
b−) · a+(22

b+)
a2(∓±) :a∓(21

b∓) · a2(22
cs± · c±(23

b±,26
cs∓) · 25

cs±,24
cs∓) →

a2(22
cs±,26

cs∓ · c∓(21
b∓,25

cs±)) · 24
cs∓) · a±(23

b±)
a±(±) :a±(21

a±) · a±(22
b±) → a±(b±±{21

b±,22
b±})

a−(+) :a−(21
b−) · a+(22

b+) → a−(b−+(21
b−,22

b+))
a+(−) :a−(21

b−) · a+(22
b+) → a+(b+−(22

b+,21
b−))

a+(2) :a2(21
cs+,22

cs−) · a+(23
b+) → a+(β+{21

cs+ · c+(23
b+,22

cs−)})
a−(2) :a−(21

b−) · a2(22
cs+,23

cs−) → a−(β−{c−(21
b−,22

cs+) · 23
cs−})

a2(c+(+)) :a+(21
b+) · a2(25

cs+ · c+(22
b+,23

cs−) · 24
cs+,26

cs−) →
a2(25

cs+ · c+(b++{21
b+,22

b+},23
cs−) · 24

cs+,26
cs−)

a2(c−(−)) :a2(21
cs+,22

cs− · c−(25
b−,24

cs+) · 23
cs−) · a−(26

b−) →
a2(21

cs+,22
cs− · c−(b−−{25

b−,26
b−},24

cs+) · 23
cs−)

a2(c+(−)) :a−(21
b−) · a2(25

cs+ · c+(22
b+,23

cs−) · 24
cs+,26

cs−) →
a2(25

cs+ · c+(b+−(22
b+,21

b−),23
cs−) · 24

cs+,26
cs−)

a2(c−(+)) :a2(21
cs+,22

cs− · c−(25
b−,24

cs+) · 23
cs−) · a+(26

b+) →
a2(21

cs+,22
cs− · c−(b−+(25

b−,26
b+),24

cs+) · 23
cs−)

a2(c+(2)) :a2(21
cs+,22

cs−) · a2(26
cs+ · c+(23

b+,24
cs−) · 25

cs+,27
cs−) →

a2(26
cs+ · c+(β+{21

cs+ · c+(23
b+,22

cs−)},24
cs−) · 25

cs−,27
cs+)

a2(c−(2)) :a2(21
cs+,22

cs− · c−(25
b−,24

cs+) · 23
cs−) · a2(26

cs+,27
cs−) →

a2(21
cs+,22

cs− · c−(β−{c−(25
b−,26

cs+) · 27
cs−},24

cs+) · 23
cs−)
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b±±± :b±±{21
b±, b±±{22

b±,23
b±}} → b±±{b±±{21

b±,22
b±},23

b±}
b±±(∓) :b±±{21

b±, b±∓(22
b±,23

b∓)} → b±∓(b±±{21
b±,22

b±},23
b∓)

b±{∓∓} :b±∓(b±∓(22
b±,23

b∓),21
b∓) → b±∓(b±∓(22

b±,21
b∓),23

b∓)
b±(∓(∓)) :b±∓(b±∓(23

b±,22
b∓),21

b∓) → b±∓(23
b±, b∓∓{21

b∓,22
b∓})

b±(∓(±)) :b±∓(23
b±, b∓±(22

b∓,21
b±)) → b±∓(b±±{21

b±,23
b±},22

b∓)
b±±(2) :b±±{β±{21

cs± · c±(23
b±,22

cs∓)},24
b±} →

β±{21
cs± · c±(b±±{23

b±,24
b±},22

cs∓)}
b±{∓,2} :b±∓(β±{c±(22

b±,23
cs∓) · 24

cs±},21
b−+

) →
β±{c±(b±∓(22

b±,21
b−+

),23
cs∓) · 24

cs±}
b±(∓(2)) :b±∓(24

b±, β∓{c∓(21
b∓,22

cs±) · 23
cs∓}) →

b±∓(β±{c±(24
b±,23

cs∓) · 22
cs±},21

b∓)
b±{22} :β±{21

cs± · c±(β±{23
cs± · c±(25

b±,24
cs∓)},22

cs∓)} →
β±{23

cs± · c±(β±{21
cs± · c±(25

b±,22
cs∓)},24

cs∓)}
c±(c∓(∓)) :c±(b±∓(21

b±,22
b∓),26

cs∓ · c∓(24
b∓,25

cs±) · 23
cs∓) →

c+(21
b±,26

cs∓ · c∓(b∓∓{22
b∓,24

b∓},25
cs±) · 23

cs∓)
c±(c∓(±)) :c±(b±±{21

b±,22
b±},26

cs∓ · c∓(24
b∓,25

cs±) · 23
cs∓) →

c±(21
b±,26

cs∓ · c∓(b∓±(24
b∓,22

b±),25
cs±) · 23

cs∓)
c±(c∓(2)) :c±(21

b±,27
cs∓ · c∓(β∓{22

cs∓ · c∓(25
b∓,23

cs±)},26
cs±) · 24

cs∓) →
c±(β±{c±(21

b±,22
cs∓) · 23

cs±},27
cs∓ · c∓(25

b∓,26
cs±) · 24

cs∓)
b(±∓±) :b±∓(b±±{21

±,23
±},22

∓) → b±∓(b±±{21
±,23

±},22
∓)

a2(c(+−+)) :a−(21
b−) · a2(28

cs+ · c+(25
b+,26

cs−) · 22
cs+ · c+(23

b+,24
cs−) · 27

cs+,29
cs−) →

a2(28
cs+ · c+(b++{23

b+,25
b+},26

cs− · c−(21
b−,22

cs+) · 24
cs−) · 27

cs+,29
cs−)

a2(c(−+−)) :a2(29
cs+,27

cs− · c−(23
b−,24

cs+) · 22
cs− · c−(25

b−,26
cs+) · 28

cs−) · a+(21
b+) →

a2(29
cs+,27

cs− · c−(b−−{23
b−,25

b−}, 24
cs+ · c+(21

b+,22
cs−) · 26

cs+) · 28
cs−)

β±(c(±∓±)) :b±∓(β±{c±(21
b±,22

cs∓) · 23
cs∓ · c±(24

b±,25
cs∓) · 26

cs±},27
b∓) →

β±{c±(b±±{21
b±,24

b±},22
cs∓ · c∓(27

b∓,23
cs±) · 25

cs∓) · 26
cs±}

c∓(c(∓±∓)) :c±(b±±{21
b±,22

b±},29
cs∓ · c∓(27

b∓,28
cs±) · 26

cs∓ · c∓(24
b∓,25

cs±) · 23
cs∓) →

c+(21
b±,29

cs∓ · c∓(b∓∓{24
b∓,27

b∓},28
cs∓ · c±(22

b±,26
cs∓) · 25

cs±) · 23
cs∓)

a2n2 :a2(20
cs+,22n+1

cs− · c−(22n′

b− ,22n
cs+) · · · · · c−(24′

b−,24
cs+) · 23

cs−

· c−(22′

b−,22
cs+) · 21

cs−) · a2(20′

cs+ · c+(21′

b+,21′′

cs−) · 22′′

cs+

· c+(23′

b+,23′′

cs−) · · · · · c+(22n−1′

b+ ,22n−1′′

cs− ) · 22n′′

cs+ ,22n+1′′

cs− ) →

a2(20′

cs+,21′′

cs− · c−(22′

b−,22′′

cs+) · 23′′

cs− · c−(24′

b−,24′′

cs+) · · · ·



34 TETSUO YOKOYAMA AND TOMOO YOKOYAMA

· c−(22n′

b− ,22n′′

cs+) · 22n+1′′

cs− ) · a2(22n
cs+ · c+(22n−1′

b+ ,22n−1
cs− )·

· · · · c+(23′

b+,23
cs−) · 22

cs+ · c+(21′

b+,21
cs−) · 20

cs+,22n+1
cs− )

β±(c±(2n)) :β±{20
cs± · c±(β±{20′

cs± · c±(21′

b±,21′′

cs−) · 22
cs± · c±(23′

b±,23′′

cs−)·

· · · · c±(22n−1′

b± ,22n−1′′

cs− )},22n−1
cs− · c∓(22n−2′

b∓ ,22
cs±) · · · · · 23

cs−

· c∓(22′

b∓,22
cs±) · 21

cs−)} →

β∓{22n−1′

cs− · c∓(β∓{20
cs− · c∓(22n−2′

b∓ ,22n−2
cs± ) · · · · · c∓(23′

b∓,23
cs±)

· 22
cs− · c∓(21′

b∓,21
cs±)},21′′

cs± · c±(22′

b±,22′′

cs−) · 23′′

cs± · · · ·

· c±(22n−2′

b± ,22n−2′′

cs− ) · 22n−1′′

cs± )}

c±(c∓(2n)) :c±(20′

b±,20
cs∓ · c∓(β∓{c∓(22n−1′

b∓ ,22n−1′′

cs± ) · 22n−2′′

cs∓ · · · · · 22′′

cs∓·

c∓(21′

b∓,21′′

cs±) · 20′′

cs∓},21
cs± · c±(22′

b±,22
cs∓) · · · ·

· c±(22n−2′

b± ,22n−2
cs∓ ) · 22n−1

cs± ) · 22n
cs∓) →

c±(β±{c±(20′
b±,20′′

cs∓) · 22n−1′′

cs± · c±(22n−2′

b± ,22n−2′′

cs∓ ) · · · ·

· c±(22′

b±,22′′

cs∓) · 21′′

cs±},20
cs∓ · c∓(21′

b∓,21
cs±) · 22

cs∓ · · · ·

· 22n−2
cs∓ · c∓(22n−1′

b∓ ,22n−1
cs± ) · 22n

cs∓)

a2(c−(2n)) :a2(22n+1
cs+ ,22n

cs− · c−(β−{20′

cs− · c−(21′

b−,21′′

cs+) · 22′′

cs−

· c−(23′

b−,23′′

cs+) · · · · · c−(22n−1′

b− ,22n−1′′

cs+ )},22n−1
cs+

· c+(22n−2′

b+ ,22n−2
cs− ) · · · · · c+(22′

b+,22
cs−) · 21

cs+) · 20
cs−) →

a2(22n+1
cs+ ,22n

cs− · c−(22n−1′

b− ,22n−1
cs+ ) · · · · · c−(23′

b−,23
cs+)

· 22
cs− · c−(21′

b−,21
cs+) · 20

cs−) · a2(21′′

cs+ · c+(22′

b+,22′′

cs−)

· 23′′

cs+ · · · · · c+(22n−2′

b+ ,22n−2′′

cs− ) · 22n−1′′

cs+ ,20′

cs−)

a2(c+(2n)) :a2(20
cs+ · c+(β+{22n+1

cs+ · c+(22n−1′

b+ ,22n−1
cs− ) · · · ·

· c+(23′

b+,23
cs−) · 22

cs+ · c+(21′

b+,21
cs−)},21′′

cs− · c−(22′

b−,22′′

cs+)·

· · · · c−(22n−2′

b− ,22n−2′′

cs+ ) · 22n−1′′

cs− ) · 22n
cs+,20′

cs−) →

a2(22n+1
cs+ ,22n−1

cs− · c−(22n−2′

b− ,22n−2
cs+ ) · · · · · 23

cs−

· c−(22′

b−,22
cs+) · 21

cs−) · a2(20
cs+ · c+(21′

b+,21′′

cs−) · 22′′

cs+

· c+(23′

b+,23′′

cs−) · · · · · 22n−2′′

cs+ · c+(22n−1′

b+ ,22n−1′′

cs− ) · 22n′′

cs+ ,20′

cs−)
a∅(Λ±) :a2(21

cs±, λ) → a±(β+{21
cs±})

a2(Λ+) :a2(23
cs+ · c+(21

b+, λ) · 22
cs+,24

cs−) → a+(21
b+) · a2(23

cs+ · 22
cs+,24

cs−)
a2(Λ−) :a2(21

cs+,22
cs− · c−(24

b−, λ) · 23
cs−) → a2(21

cs+,22
cs− · 23

cs−) · a−(24
b−)

β±(Λ±) :β±{21
cs+ · c±(22

b±, λ)} → b±±{β±{21
cs±},22

b±}
β±(Λ∓) : β±{c±(22

b±,21
cs∓)} → b±∓(22

b±,21
cs∓)

c±(Λ±) :c±(21
b±,24

cs∓ · c∓(22
b∓, λ) · 23

cs∓) → c±(b±∓(21
b±,22

b∓),24
cs∓ · 23

cs∓)
c±± :c±(b±±{22

b±,21
b±},24

cs∓ · 23
cs∓) → c±(22

b±,24
cs∓) · c±(21

b±,23
cs∓)



COT REPRESENTATIONS 35

a2(c+(cR
−)) :a2(26

cs+ · c+(21
b+, c−(22

b−,23
cs+) · 24

cs−) · 25
cs+,27

cs−) →
a−(22

b−) · a2(26
cs+ · 23

cs+ · c+(21
b+,24

cs−) · 25
cs+,27

cs−)
a2(c+(cL

−)) :a2(25
cs+ · c+(21

b+,24
cs− · c−(22

b−,23
cs+)) · 26

cs+,27
cs−) →

a−(22
b−) · a2(25

cs+ · c+(21
b+,24

cs−) · 23
cs+ · 26

cs+,27
cs−)

a2(c−(cR
+)) :a2(27

cs+,26
cs− · c−(22

b−,25
cs+ · c+(23

b+,24
cs−)) · 21

cs−) →
a2(27

cs+,26
cs− · c−(22

b−,25
cs+) · 24

cs− · 21
cs−) · a+(23

b+)
a2(c−(cL

+)) :a2(21
cs+,22

cs− · c−(27
b−, c+(26

b+,25
cs−) · 24

cs+) · 23
cs−) →

a2(21
cs+,22

cs− · 25
cs− · c−(27

b−,24
cs+) · 23

cs−) · a+(26
b+)

β±(c±(cL
∓)) :β±{21

cs± · c±(25
b±,22

cs∓ · c∓(24
b∓,23

cs±))} →
b±∓(β±{21

cs± · c±(25
b±,22

cs∓) · 23
cs±},24

b∓)
β±(c±(cR

∓)) :β±{21
cs± · c±(25

b±, c∓(24
b∓,23

cs±) · 22
cs∓)} →

b±∓(β±{21
cs± · 23

cs± · c±(25
b±,22

cs∓)},24
b∓)

c±(c∓(cR
±)) :c±(21

b±,27
cs∓ · c∓(23

cs∓, c±(24
b±,25

cs∓) · 26
cs±) · 22

cs∓) →
c±(b±±{21

b±,24
b±},27

cs∓ · 25
cs∓ · c∓(23

b∓,26
cs±) · 22

cs∓)
c±(c∓(cL

±)) :c±(21
b±,27

cs∓ · c∓(23
cs∓,26

cs± · c±(24
b±,25

cs∓)) · 22
cs∓) →

c±(b±±{24
b±,21

b±},27
cs∓ · c∓(23

b∓,26
cs±) · 25

cs∓ · 22
cs∓)

a2(cL
+) :a2(23

cs+ · c+(21
b+,22

cs−),24
cs−) → a2(23

cs+,22
cs− · 24

cs−) · a+(21
b+)

a2(cR
+) :a2(c+(21

b+,22
cs−) · 23

cs+,24
cs−) → a2(23

cs+,24
cs− · 22

cs−) · a+(21
b+)

a2(cR
−) :a2(21

cs+, c−(24
b−,23

cs+) · 22
cs−) → a−(24

b−) · a2(21
cs+ · 23

cs+,22
cs−)

a2(cL
−) :a2(21

cs+,22
cs− · c−(24

b−,23
cs+)) → a−(24

b−) · a2(23
cs+ · 21

cs+,22
cs−)

It should be noted that rules b(+−+), b(−+−), and a(+−) = a(−+) are identical.
We will prove the previous theorem by cases in this section.

5.1. H-unstable transitions on an open disk.

5.1.1. Tree grammar G1. We impose restrictions on tree grammar G to obtain
tree grammar G1 on open disks (i.e., one punctured spheres), which is defined as
G1 = (S, N1, F1, R1). Here, S is an axiom, N1 = {S, B+, B−} is a set of non-
terminal symbols, F1 = {b∅(, ), b++{, }, b+−(, ), b−−{, }, b−+(, ), σ+, σ−} is a set of
terminal symbols, and R1 is a set of production rules:

S → b∅(B−, B+)
B+ → σ+ | b++{B+, B+} | b+−(B+, B−)
B− → σ− | b−−{B−, B−} | b−+(B−, B+)

For example, the orbit structure of the term b∅(σ−, b++{b+−(b++, σ−), σ+}),
derived by G1, is shown in Figure 32.

Because of the construction of G1, we have that L(G1) is a subset of L(G) and
L(G1)/ ≈cyc is a subset of L(G)/ ≈cyc. Here, the language L(X)/ ≈cyc is a set of
terms which are derived by a grammar X. There is a one-to-one correspondence
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Figure 32. Streamline of the tree representation:
b∅(σ−, b++{b+−(b++, σ−), σ+}) or b++{b+−(b++)}.

⇦

⇦
⇦

⇦

⇦

⇦1

2

2

2

1
2

⇦

⇦
2

⇦

⇦

Figure 33. Complete list of five structurally unstable structures
with heteroclinic counter-clockwise orbits on a bounded open disk.

between L(G1)/ ≈cyc and the set of topological equivalence classes of structurally
stable Hamiltonian flows on an open disk. We specify the complete transformation
rules via a non-self-connected saddle connection for flows on an open disk.

Lemma 22. The complete generic transitions of structurally stable Hamiltonian
flows with non-degenerate singular points on an open disk are described by the rules
(b±±±), (b±±(∓)), (b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), and (b(±∓±)), as shown in
Figures 35–37.

Proof. For structurally unstable structures with self-connected separatrices, we ex-
haustively check all possible orbit structures that can be obtained by applying the
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⇦

⇦⇦ ⇦

⇦

⇦

⇦

⇦

⇦

⇦

⇦

Figure 34. Complete list of one structurally unstable structure
without self-connected separatrices in a bounded open disk.

primitive local transformations, as shown in Figure 33. All possible transforma-
tions with self-connected separatrices are listed in Figure 35 and Figure 36. For
structurally unstable structures without self-connected separatrices, we exhaus-
tively check all possible orbit structures that can be obtained by applying the
primitive local transformations, as shown in Figure 34. All possible transforma-
tions without self-connected separatrices are listed in Figure 37. Under each pair of
clockwise and counter-clockwise transformations, the corresponding transformation
rules of terms are generated by grammar G1. □

5.2. H-unstable transitions on compact punctured spheres.

5.2.1. Tree grammar G2. We impose restrictions on tree grammar G to obtain tree
grammar G2 on punctured spheres, which is defined as G2 = (S, N2, F2, R2). Here,
S is an axiom, N2 = {S, B+, B−, C+, C−, C∗

+, C∗
−} is a set of non-terminal symbols,

F2 = {b∅(, )} ∪ FB ∪ FC ∪ Fσ is a set of terminal symbols, and R2 is a set of
production rules:

S → b∅(B−, B+)
B+ → σ+ | b++{B+, B+} | b+−(B+, B−) | β+{C ∗

+}
B− → σ− | b−−{B−, B−} | b−+(B−, B+) | β−{C ∗

−}
C+ → c+(B+, C∗

−)
C− → c−(B−, C∗

+)
C∗

+ → λ+ | cons+(C+, C∗
+)

C∗
− → λ− | cons−(C−, C∗

−)

5.2.2. Transformation rules. We specify the complete transformation rules via a
non-self-connected saddle connection for flows on a compact punctured sphere. Be-
cause all transitions discussed in Subsection 5.1 are unrelated to boundaries, all
generic transitions with two non-self-connected separatrices from/to boundaries
are described. There are exactly four structurally unstable orbit structures in the
center, as we counted above. Indeed, the picture shows this assertion. Three orbit
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１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

b±±(∓) : b±±{21
b±, b±∓(22

b±,23
b∓)} → b±∓(b±±{21

b±,22
b±},23

b∓)

１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

b±±± : b±±{21
b±, b±±{22

b±,23
b±}} → b±±{b±±{21

b±,22
b±},23

b±}

Figure 35. Transformation rules for the trees of the outermost
b±± structure.

structures are shown in each row in Figures 40–42; the left and right structurally
stable orbit structures are converted to each other via the central structurally un-
stable orbit structure. There are exactly 34 structurally unstable orbit structures
in the center, as we counted above.

Lemma 23. The complete generic transitions of structurally stable Hamiltonian
flows with non-degenerate singular points on compact punctured spheres are de-
scribed by the rules (b±±±), (b±±(∓)), (b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), (b(±∓±)),
(b±±(2)), (b±{∓,2}), (b±(∓(2))), (b±{22}), (c±(c∓(∓))), (c±(c∓(±))), (c±(c∓(2))),
(β±(c(±∓±))), (c±(c(∓±∓))), (β±(c±(2n))), and (c±(c∓(2n))) in Figures 35–37, Fig-
ures 40–43, and Figure 46.

Proof. Lemma 22 implies that the complete generic transitions without ∂-saddles
of structurally stable Hamiltonian flows with non-degenerate singular points on
an open disk are described by the rules (b±±±), (b±±(∓)), (b±{∓∓}), (b±(∓(∓))),
(b±(∓(±))), and (b(±∓±)), as shown in Figures 35–37. Figure 38 indicates that there
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２

３
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３
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1

２

３

1

２
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b±{∓∓} : b±∓(b±∓(22
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b∓) → b±∓(b±∓(22
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b∓)

１
２

３
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２

３

１

２

３

１

２

３

１

２

３

１

２

３

b±(∓(±)) : b±∓(23
b±, b∓±(22

b∓,21
b±)) → b±∓(b±±{21

b±,23
b±},22

b∓)

１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

１

２

３

b±(∓(∓)) : b±∓(b±∓(23
b±,22

b∓),21
b∓) → b±∓(23

b±, b∓∓{21
b∓,22

b∓})

Figure 36. Transformation rules for the trees of the outermost
b±∓ structure.

are precisely six structurally unstable local structures with self-connected sepa-
ratrices and heteroclinic counter-clockwise orbits. Figure 39 indicates that there
are precisely two structurally unstable local structures on bounded disks without
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１

２

3

２
１

3 ２
１

3

b(+−+) : b+−(b++{21
+,23

+},22
−) → b+−(b++{21

+,23
+},22

−)

２

3

２ ２

１
１

3

１

3

b(−+−) : b−+(b−−{21
−,23

−},22
+) → b−+(b−−{21

−,23
−},22

+)

Figure 37. Transformation rules for the trees of the bounded
structures without self-connected separatrices in planes.

⇦

⇦

1

⇦

Figure 38. Complete list of three structurally unstable structures
with heteroclinic counter-clockwise orbits on a boundary.

self-connected separatrices. Figure 44 indicates that there are precisely four struc-
turally unstable local structures with heteroclinic counter-clockwise orbits. These
local classifications imply that all possible transformations with ∂-saddles on com-
pact punctured spheres are listed in Figures 40–43 and Figure 46. □

5.3. H-unstable transitions on planes.

5.3.1. Tree grammar G3. We impose restrictions on tree grammar G to obtain
tree grammar G3 on planes, which is defined as G3 = (S, N3, F3, R3). Here, S
is an axiom, N3 = {S, A, A∗, B+, B−} is a set of non-terminal symbols, F3 =
FA ∪ Fσ ∪ {b++{, }, b+−(, ), b−−{, }, b−+(, ), λa, consa} is a set of terminal symbols,
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⇦

⇦

+

-

⇦

⇦

+ -

+

-

⇦ ⇦⇦
⇦⇦

⇦⇦

⇦

Figure 39. Complete list of four structurally unstable structures
with a separatrix connecting a saddle and ∂-saddle but without
self-connected separatrices in punctured spheres.

and R3 is a set of production rules:

S → a∅(A∗)
A → a+(B+) | a−(B−)

A∗ → λa | consa(A, A∗)
B+ → σ+ | b++{B+, B+} | b+−(B+, B−)
B− → σ− | b−−{B−, B−} | b−+(B−, B+)

5.3.2. Transformation rules. Here, all structurally unstable flows in planes are con-
sidered, except for those discussed in Subsections 5.1–5.2. All possible transforma-
tions with self-connected separatrices and with ss-separatrices in a plane are either
instantiations of two non-overlapped holes on the same orbit structure in Figure 47
or instantiations of two nested holes on the orbit structure in Figure 50. All possi-
ble transformations without self-connected separatrices but with ss-separatrices in
a plane are listed in Figure 48. Each hole is instantiated either into an upper or
lower homoclinic orbit. Hence, there are exactly 21 unstable flows.

Lemma 24. The complete generic transitions of structurally stable Hamilton-
ian flows with non-degenerate singular points on planes are described by the rules
(b±±±), (b±±(∓)), (b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), (b(±∓±)), (a±±), (a∓±), (a±(±)),
(a∓(±)), and (a(∓±)), as shown in Figures 35–37, Figure 49, and Figure 51.

Proof. Lemma 22 implis that there are twelve unstable structures in Figure 33 and
their inverses. Figure 47 indicates that there is precisely four unstable structures in
planes. Figure 48 indicates that there is precisely one structurally unstable struc-
tures with a separatrix connecting saddles but without self-connected separatrices
in punctured planes. Figure 50 indicates that there are precisely four structurally
unstable structures with nested separatrices, as shown in Figure 51. □
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cs+ · c+(23

b+,22
cs−)},24

b+} →
β+{21

cs+ · c+(b++{23
b+,24

b+},22
cs−)}

１

２
３

４

１

２

３

４

１

２

３

４

b−−(2) : b−−{β−{21
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b−}
→ β−{21

cs− · c−(b−−{23
b− · 24

b−},22
cs+)}

１

２
３

４

１

２
３

４

１

２

３

４
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b+,23

cs−) · 24
cs+},21
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→ β+{c+(b+−(22

b+,21
b−),23

cs−) · 24
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１
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４
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２
３

４

１

２
３
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b−{+,2} : b−+(β−{c−(22
b−,23

cs+) · 24
cs−},21

b+) →
β−{c−(b−+(22

b−,21
b+),23

cs+) · 24
cs−}

It should be noted that the nested hole in a uniform flow precisely represents
the flows shown in Figure 50. Box 2 represents one of the four flows (Figure 50(a),
upper side). For example, the uppermost nested hole in Figure 50(a) is isomorphic
to the lower right flow in Figure 50(b). Streamlines outside the boxes represent
uniform flows from left to right, and only orbit structures inside the boxes are
curved; as such, all orbit structures are continuous. The other three holes are
similarly instantiated.
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１
２

３

４

１

２

３

４

１

２

３
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b+(−(2)) : b+−(24
b+, β−{c−(21
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Figure 40. Transformation rules for the trees of the outermost
b±±/b±∓ structures containing a boundary component in punc-
tured unbounded spheres.

5.4. H-unstable transitions on punctured planes.

5.4.1. Tree grammar G. We have tree grammar G on punctured planes.

5.4.2. Transformation rules. We specify the complete transformation rules via a
non-self-connected saddle connection for flows on punctured planes. Because all
transitions that are unrelated to boundaries in punctured disks are detailed in Sub-
sections 5.2.1–5.3, we describe all generic transitions with ss-separatrices from/to
boundaries.

Three orbit structures are displayed in each row in Figures 53–55 and Figure 57;
the left and right structurally stable orbit structures are converted to each other via
the central structurally unstable orbit structure. There are exactly 38 structurally
unstable orbit structures in the center, as we counted above.

Lemma 25. The complete generic transitions of Hamiltonian flow with non-degenerate
singular points on punctured planes are described by the rules (b±±±), (b±±(∓)),
(b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), (b(±∓±)), (b±±(2)), (b±{∓,2}), (b±(∓(2))), (b±{22}),
(c±(c∓(∓))), (c±(c∓(±))), (c±(c∓(2))), (β±(c(±∓±))), (c±(c(∓±∓))), (β±(c±(2n))),
(c±(c∓(2n))), (a±±), (a±∓), (a(±∓)), (a±(±)), (a∓(±)), (a2(∓±)), (a22), (a±2), (a2±),
(a(∓±)), (a±(2)), (a2(c±(±))), (a2(c±(∓))), (a2(c±(2))), a2(c(±∓±)), a2(c±(2n)), and
(a2n2), as shown in Figures 35–37, Figures 40–43, Figures 45–46, Figure 49, Fig-
ure 51, Figures 53–55, and Figure 57.

Proof. Lemma 23 implies that the complete generic transitions of Hamiltonian flows
with non-degenerate singular points on closed disks in punctured planes are de-
scribed by the rules (b±±±), (b±±(∓)), (b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), (b(±∓±)),
(b±±(2)), (b±{∓,2}), (b±(∓(2))), (b±{22}), (c±(c∓(∓))), (c±(c∓(±))), (c±(c∓(2))),
(β±(c(±∓±))), (c±(c(∓±∓))), (β±(c±(2n))), and (c±(c∓(2n))) in Figures 35–37, Fig-
ures 40–43, and Figure 46. Lemma 24 implies that the complete generic transitions
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Figure 41. Transformation rules for the trees of the outermost
β± with a boundary component structure in bounded punctured
disks.

with ss-separatrices in planes are described by the rules (a±±), (a∓±), (a±(±)),
(a∓(±)), and (a(∓±)) as shown in Figure 49 and Figure 51. Figure 52 indicates
that there are precisely thirteen structurally unstable structures with heteroclinic
counter-clockwise orbits in punctured planes, as shown in Figure 53–55. Figure 39
indicates that there are precisely four structurally unstable local structures with a



COT REPRESENTATIONS 45

１
２

３
４
5 6

１

２

３

４

5 6

１

２

３
４
5 6

c+(c−(−)) :c+(b+−(21
b+,22

b−),26
cs− · c−(24

b−,25
cs+) · 23

cs−) →
c+(21

b+,26
cs− · c−(b−−{22

b−,24
b−},25

cs+) · 23
cs−)

１
２

３
４
5 6

１

２

３

４

5 6

１

２

３
４
5 6

c−(c+(+)) :c−(b−+(21
b−,22

b+),26
cs+ · c+(24

b+,25
cs−) · 23

cs+) →
c−(21

b−,26
cs+ · c−(b++{22

b+,24
b+},25

cs−) · 23
cs+)

１

２

３
４
5 6

１

２

３

４
5 6

１

２

３
４
5 6

c+ + (c−(+)) :c+(b++{21
b+,22

b+},26
cs− · c−(24

b−,25
cs+) · 23

cs−) →
c+(21

b+,26
cs− · c−(b−+(24

b−,22
b+),25

cs+) · 23
cs−)

１

２

３
４
5 6

１

２

３

４
5 6

１

２

３
４
5 6

c−(c+(−)) :c−(b−−{21
b−,22

b−},26
cs+ · c+(24

b+,25
cs−) · 23

cs+) →
c−(21

b−,26
cs+ · c+(b+−(24

b+,22
b−),25

cs−) · 23
cs+)

Figure 42. Transformation rules for the trees of the outermost
c± with a c∓ structure in bounded punctured disks.

separatrix connecting a saddle and ∂-saddle but without self-connected separatrices
in punctured planes, as shown in Figure 45 and Figure 54. Figure 56 indicates that
three kinds of structurally unstable structures with heteroclinic counter-clockwise
orbits in punctured planes, as shown in Figure 57. □

5.5. Pinching contained in a compact punctured sphere.
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Figure 43. Transformation rules for the trees of the bounded
structures without self-connected separatrices but with a sepa-
ratrix connecting a saddle and ∂-saddle in bounded punctured
spheres.

5.5.1. Tree grammar G2. We have the tree grammar G2 on punctured spheres.
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Figure 44. Complete list of two structurally unstable structures
with heteroclinic counter-clockwise orbits.
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a2(∓±) : a∓(21
b∓) · a2(22

cs± · c±(23
b±,26
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cs±,24

cs∓) →
a2(22

cs±,26
cs∓ · c∓(21

b∓,25
cs±)) · 24

cs∓) · a±(23
b±)

Figure 45. Transformation rules for the trees of the unbounded
structures without self-connected separatrices but with exactly
three separatrices each of which is between a saddle and ∂-saddle
in punctured planes.

5.5.2. Transformation rules. We specify the complete transformation rules via pinch-
ing for flows on a compact punctured sphere. We describe all generic transitions
via pinching on a compact punctured sphere. Three orbit structures are shown in
each row in Figure 59; the left and right structurally stable orbit structures are con-
verted to each other via the central structurally unstable orbit structure. There are
structurally unstable orbit structures in the center, as we counted above. Indeed,
the picture shows this assertion.

Lemma 26. The complete generic transitions of Hamiltonian flows obtained via
pinching on a compact punctured sphere are described by the rules (β±(Λ±)), (β±(Λ∓)),
(c±(Λ±)), (β±(c±(cL

∓))), (β±(c±(cR
∓))), (c±(c∓(cR

±))), (c±(c∓(cL
±))), (c±±) as shown

in Figure 59.
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Proof. Figure 58 indicates that there are precisely sixteen structurally unstable
structures with heteroclinic counter-clockwise orbits in a compact punctured sphere.
Therefore all possible generic transitions of Hamiltonian flows obtained via pinching
on a compact punctured sphere are listed in Figure 59. □

5.6. Pinching contained in punctured planes.

5.6.1. Tree grammar G. We have the tree grammar G on punctured planes.

5.6.2. Transformation rules. We specify complete transformation rules via pinching
for flows on punctured planes, and describe all corresponding generic transitions
with two non-self-connected separatrices from/to boundaries on punctured planes.

Lemma 27. The complete generic transitions of Hamiltonian flows obtained via
pinching on punctured planes are described by the rules (β±(Λ±)), (β±(Λ∓)), (c±(Λ±)),
(c±±), (β±(c±(cL

∓))), (β±(c±(cR
∓))), (c±(c∓(cR

±))), (c±(c∓(cL
±))), (a∅(Λ±)), (a2(Λ±)),

(a2(c±(cR
∓))), (a2(c±(cL

∓))), and (a2(cL
±)), (a2(cR

±)), as shown in Figure 59 and Fig-
ure 61.

Proof. Lemma 26 implies that the complete generic transitions of Hamiltonian flow
obtained via pinching on a bounded disk in the punctured plane are described
by the rules (β±(Λ±)), (β±(Λ∓)), (c±(Λ±)), (c±±), (β±(c±(cL

∓))), (β±(c±(cR
∓))),

(c±(c∓(cR
±))), (c±(c∓(cL

±))). Figure 60 indicates that there are exactly twelve tran-
sitions as shown in Figure 61. □
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Figure 46. Transformation rules for the trees of the bounded
structures with non-self-connected separatrices between different
boundary components in punctured surfaces.

5.7. Correspondence between generic transitions of COT representations
of Hamiltonian flows and those of Reeb graphs of Hamiltonians. All
transition rules of Hamiltonian flows can be interpreted into transition rules be-
tween Reeb graphs of Morse functions on surfaces. For instance, the rule b±±(∓) :
b++{21

b+, b+−(22
b+,23

b−)} → b+−(b++{21
b+,22

b+},23
b−) is shown in Figure 62.

5.8. Complete generic transition rules between compact surfaces and un-
bounded punctured surfaces. As mentioned above, since small perturbations
are local operations, the existence of Hamiltonians implies that complete generic
transition rules for Hamiltonian flows on compact surfaces (resp. unbounded punc-
tured surface) are those on compact punctured spheres (resp. punctured planes).
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Figure 47. Complete list of eight unstable structures in a plane
in addition to the ten unstable structures shown in Figure 33 and
their inverses.
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Figure 48. Complete list of one structurally unstable structures
with a separatrix connecting saddles but without self-connected
separatrices in punctured planes.

Corollary 28. The complete generic transition rules of Hamiltonian flows on com-
pact surfaces are shown after the Theorem 21.

6. Applications to Reeb graphs of Morse functions on orientable
compact surfaces

In this section, we interpret results for Hamiltonian flows on orientable compact
surfaces to those for Morse functions.

6.1. Notion of Morse functions.
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a(+−), a(−+) : a−(21
b−) · a+(22

b+) → a−(21
b−) · a+(22
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Figure 49. Transformation rules for the trees of unbounded
structures without self-connected separatrices in planes.

1

2 = {
(a)

~~~~

(b)

Figure 50. (a) Nested holes; (b) an example of nested holes.

6.1.1. Reeb graph of a function. For a function f : X → R on a topological space
X, the Reeb graph of f is the quotient space X/ ∼f , where the equivalence relation
∼ is defined by x ∼f y if there are a point c ∈ R and connected component of
f−1(c) which contains x and y. The inverse image of f−1(c) is called the level set
of level c.

6.1.2. Hamiltonian flows on closed surfaces. For a Cr (r ≥ 2) function f : S → R
on a surface S, denote by vf the Hamiltonian flow defined by the Hamiltonian f .

6.1.3. Morse function on a surface. Recall that a Cr (r ≥ 2) function f : S → R on
a surface S is Morse if each critical point is non-degenerate (i.e., a saddle with index
0, 1, or 2). The union of connected components containing critical points of level
sets of the function f is called the saddle connection diagram of f and is denoted
by D(f). Similarly, a connected component of the saddle connection diagram is
called a saddle connection. An injective path in a saddle connection is separatrix
if it connects critical points and contains no critical point in the interior of the
path. The saddle connection diagram contains heteroclinic separatrices if there is
a separatrix, called a heteroclinic separatrix, between distinct critical points in the
diagram. For a Morse function f : S → R, we equip the Reeb graph X/ ∼f with the
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Figure 51. Transformation rules for the trees of the outermost
a± structures in planes.

directed graph structures induced by the direction of R. In other words, the Reeb
graph of a Morse function is a topological space and a directed graph. Reeb graphs
are isomorphic if there is a homeomorphism preserving directed graph structures.
A Morse function f : S → R is simple if the inverse image f−1(c) for any c ∈ R
contains at most one critical point. It should be noted that the Hamiltonian flow
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Figure 52. Complete list of fourteen structurally unstable struc-
tures with heteroclinic counter-clockwise orbits in punctured
planes.

generated by a simple Morse function on an orientable closed surface is structurally
stable in the set of Hamiltonian flow on the closed surface. Denote by Mg the set
of Cr (r ≥ 2) Morse functions on a connected orientble closed surface of genus g
equipped with the Whitney Cs topology for some integer s ∈ [0, r]. Denote by M
the disjoint union

⊔
g∈Z≥0

Mg. For any non-negative numbers s0, s1, s2 ∈ Z≥0 with
s0 −s1 +s2 = 2−2g, denote by M(s0, s1, s2) the connected component of M whose
elements have si saddles with index i for any i = 0, 1, 2. Then M =

⊔
M(s0, s1, s2).
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Figure 53. Transformation rules for the trees of the outermost
a2 structures in punctured planes (21

a · 22
a → 22

a · 21
a).

The Reeb graph of a function f is Cr (r ≥ 0) structurally stable if there is a Cr-
neighborhood U of f such that the Reeb graph of any function in U is isomorphic
to the Reeb graph of f .

6.2. Interpretations of 2D Hamiltonian flows into 2D Morse functions.
Non-degeneracy implies the following observation.

Lemma 29. For a connected component C of Mg, there are non-negative numbers
s0, s1, s2 ∈ Z≥0 with s0 −s1 +s2 = 2−2g such that any function in C has si saddles
with index i for any i = 0, 1, 2. Moreover, any connected component of M is open.

Proof. Let Σg be a closed surface of genus g. Since Euler characteristic of Σg

is 2 − 2g, the Morse theory states that s0, s1, s2 ∈ Z≥0. Non-degeneracy implies
that each critical point is non-degenerate and is, therefore, preserved by any small
perturbations. This means that the numbers of saddles with index i are constant
on C. Therefore any connected components of Mg are open and so are those of
M. □

Morse theory and Lemma 6 imply the following observation.
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Figure 54. Transformation rules for the trees of the outermost
a2 structures in punctured planes.
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Figure 55. Transformation rules for the trees of the unbounded
structures without self-connected separatrices but with exactly
four separatrices each of which is between a saddle and ∂-saddle
in punctured planes.

Lemma 30. If the Hamiltonian flows of Hamiltonians f and h on an orientable
compact surface S are topologically equivalent, then the Reeb graphs S/ ∼f and
S/ ∼h are isomorphic.
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Figure 56. Complete list of fourteen structurally unstable struc-
tures with heteroclinic counter-clockwise orbits in punctured
planes.

The converse does not hold because Reeb graphs entail no information on sad-
dle connections. Moreover, Morse theory and Lemma 6 and Lemma 5 imply the
following observation.

Lemma 31. The following statements are equivalent for any functions f, h ∈ Mg

whose Hamiltonian flows are structurally stable:
(1) The Reeb graphs Σg/ ∼f and Σg/ ∼h are isomorphic.
(2) The Hamiltonian flows vf and vh are topologically equivalent.

The previous lemma implies the following statement.

Corollary 32. The following statements are equivalent for any simple Morse func-
tions f, h on an orientable closed surface Σ:
(1) The Reeb graphs Σ/ ∼f and Σ/ ∼h are isomorphic.
(2) The Hamiltonian flows vf and vh are topologically equivalent.

Lemma 31 implies that following interpretation.

Lemma 33. The following statements are equivalent for any function f ∈ M:
(1) f ∈ M(s0, s1, s2).
(2) vf ∈ Hbd(s0+s2) has exactly s0 centers with counter-clockwise rotating direction
and s2 centers with clockwise rotating direction.

Morse theory implies an analogy of Lemma 5 as follows.

Lemma 34. The following statements are equivalent for any function f ∈ Mg:
(1) The Reeb graph Σg/ ∼f is C0 structurally stable.
(2) The saddle connection diagram D(f) contains no heteroclinic separatrices.
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Figure 57. Complete list of three kinds of structurally unstable
unbounded structures with heteroclinic orbits between different
boundary components in punctured planes.

Proof. If D(f) contains heteroclinic separatrices, then arbitrarily small perturba-
tions can break heteroclinic separatrices by changing the critical values into different
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Figure 58. Complete list of sixteen structurally unstable struc-
tures with heteroclinic counter-clockwise orbits in compact punc-
tured spheres.
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values. This means that the assertion (1) implies the assertion (2). Suppose that
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D(f) contains no heteroclinic separatrices. Because there are neither creations of
critical points nor annihilations of critical points, the isomorphic classes of Reeb
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graphs of Morse functions can be transformed by h-unstable transitions. The com-
plement of the union of connected components containing critical values of level sets
are the finite union of annuli Ai consisting of circles, each of which is a connected
component of a level set. Then consider circle γi in such annuli Ai whose values of
the Hamiltonian are the means Vi/2 = (max{H(x) | x ∈ ∂Ai} + min{H(x) | x ∈
∂Ai})/2 of the two values on the boundary ∂Ai. By construction, each connected
component of S −

⊔
γi contains exactly one critical point. The existence of min-

imal value mini Vi of differences of the values on the boundary components ∂Ai

implies that arbitrarily small perturbations cannot create heteroclinic separatrices.
This means that arbitrarily small perturbations do not transform the isomorphic
structure of the Reeb graph Σg/ ∼f . □

The set of functions in M(s0, s1, s2) which are C0 structurally stable is denote
by Mstr(s0, s1, s2). We describe the complete generic transition rules of Morse
functions on orientable compact surfaces. Precisely, Morse theory implies analogies
of Lemma 8 and Lemma 24 as follows.
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Figure 59. Complete list of sixteen bounded pinching structures
in punctured spheres.

⇦

⇦

⇦
⇦

⇦
⇦

⇦

⇦

Figure 60. Complete list of fourteen structurally unstable struc-
tures with heteroclinic counter-clockwise orbits in punctured
planes.

Proposition 35. The set of functions in M(s0, s1, s2) whose Hamiltonian flows
are h-unstable is open in M−Mstr(s0, s1, s2) and is a dense subset of the difference
M(s0, s1, s2) − Mstr(s0, s1, s2). Such functions are the intermediate states of tran-
sitions in Figure 63–64. Moreover, they correspond to the rules (b±±±), (b±±(∓)),
(b±{∓∓}), (b±(∓(∓))), (b±(∓(±))), and (b±∓±), as shown in Figures 35–37 for struc-
turally stable Hamiltonian flows on closed surfaces.

Proof. First, we fix a function f ∈ M(s0, s1, s2) − Mstr(s0, s1, s2). Then there is a
critical value c ∈ R such that there is a heteroclinic separatrix γ with critical value c
that connects two critical points x and y. By preserving a neighborhood of γ⊔{x, y}
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through arbitrarily small perturbation, we can obtain the resulting function g,
whose saddle connection diagram contains no heteroclinic separatrices (excluding
those connecting x and y), such that each level set excluding c contains at most one
critical point. This means that the Hamiltonian flow of g is h-unstable. Therefore
the set of functions in M(s0, s1, s2) whose Hamiltonian flows are h-unstable is dense
in M(s0, s1, s2) − Mstr(s0, s1, s2).
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Figure 61. Complete list of twelve unbounded pinching struc-
tures in punctured planes.

We fix a function f ∈ Mstr(s0, s1, s2), whose Hamiltonian flows are h-unstable.
Then, we determine a critical value c ∈ R, such that there exists a heteroclinic
separatrix γc with critical value c that connects two critical points x and y. If µc is
the saddle connection containing x, any saddle connection except for µc contains no
heteroclinic separatrices. The finiteness of separatrices of f implies that any saddle
connection µ has a neighborhood Uµ such that Uµ − µ is a finite disjoint union of
open annuli consisting of circles, which are connected components of a level set. Any
small perturbation in M on Uµ for any saddle connection µ except µc contains no
heteroclinic separatrices and preserves the non-existence of heteroclinic separatrices
on the saddle connection. Any small perturbation in M on Uµc

contains at most one
saddle connection with heteroclinic separatrices. Finally, any small perturbation
in M(s0, s1, s2) − Mstr(s0, s1, s2) on Uµc preserves µc. This means that the set
of functions in M(s0, s1, s2) whose Hamiltonian flows are h-unstable is open in
M(s0, s1, s2) − Mstr(s0, s1, s2) on Uµc

and so in M − Mstr(s0, s1, s2). □
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Figure 62. Transition rule b++(−).

6.3. Morse functions with horizontal boundary on compact surfaces. The
invariance of the boundary of a surface for a Hamiltonian flow corresponds to the
condition that each boundary component has a single value of the Hamiltonian.
Therefore we call that a function is a function with horizontal boundary if each
boundary component has a single value of it. As the closed surface case, notice
that one can interpret results for Hamiltonian flows on compact surfaces into those
for Morse functions with horizontal boundary on orientable compact surfaces.

7. Final remarks

In this paper, we explored the creations of genus elements. The annihilation of
a boundary component is not merely the inverse operation of creation incremented
by one but rather of creation incremented by positive integers. Therefore, the
annihilation of one genus element is more complicated than creation incremented
by one. Nevertheless, we intend to report on the complete rules of annihilation of
genus elements in future research.

Roughly speaking, a Hamiltonian flow without heteroclinic separatrices and de-
generate singular points, except for one k-saddle (resp. ∂-k/2-saddle), constitutes
a “codimension 2k” (resp. “codimension (k − 1)”) transition. In fact, k-saddles
(resp. ∂-k/2-saddles, non-self-connected separatrices) correspond to “codimension
2k” (resp. “codimension (k − 1)”, “codimension one”) structures; hence, the “codi-
mensions” of flows can be defined as the sum of “codimensions” of such elements.
Therefore a stratification of the set of Hamiltonian flows with finitely many singu-
lar points into the subset of “higher codimensional transitions” can be constructed.
This will also be undertaken as a future research direction. Each critical point of
a function Cr (r ≥ 2) function with finitely many critical points on an orientable
compact surface corresponds to either a topological center or a multi-saddle of its
Hamiltonian flow with Hamiltonian f because of the finite existence of singular
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Figure 63. The first half of complete generic transition rules of
Morse functions on orientable compact surfaces.

points. This means that a function on an orientable compact surface whose Hamil-
tonian flow without heteroclinic separatrices and without degenerate singular points
except for one 2-saddle, corresponds to a non-generic transition with “codimension



COT REPRESENTATIONS 67

two”. A stratification of the set of “higher codimensional transitions” will also be
investigated in a future work.

In this paper, we deal with only topological centers, multi-saddles, and a 1-
source–sink point. On the other hand, we can discuss other degenerate singular
points. In particular, since finitely sectored singular point (see details [15]) with
not only hyperbolic sectors and elliptic sectors but also parabolic sectors are ap-
pear as the points at infinities of in Hamiltonian flows on planes and punctured
surfaces, results for Hamiltonian flow with finitely sectored singular points also will
be reported in near future.
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Figure 64. The second half of the complete generic transition
rules of Morse functions on orientable compact surfaces.


