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Abstract

We show that one can construct a Cartan connection on the Cartan principal bundle
over a contact Riemannian manifold by using Cartan-Chern-Moser-Le’s construction
and it is normal in the sense of Tanaka if and only if the manifold is integrable. This
has been known to hold true in the case the dimension of the manifold is three.

1 Introduction

Let (M, 0) be a (2n + 1)-dimensional contact manifold with a contact form 6. There
is a unique vector field ¢ such that £]6 = 1 and £]df = 0. Equipping M with a Rie-
mannian metric g and a (1, 1)-tensor field J which satisfy ¢g(&, X) = 6(X), g(X,JY) =
—dO(X,Y) := —=X(0(Y)) + Y(0(X)) + 0([X,Y]) and J?°X = —X + §(X)¢ for any vec-
tor fields X, Y, we have a contact Riemannian manifold M = (M, 0, : g,J). We set
kery ) = {X € C@kerd | JX = +iX}, ker*0 = {n e "M @ C | X|n =0 (X €
C¢Uker+0)}.

Let w” (1 < a < n) be local 1-forms on E := M x (R*,u) which are linear combina-
tions of the pullbacks to E of # and local cross-sections of ker™ § and satisfy

dw? = szf ANWE+wn¢f (WP :=ub, ¢F is real).

Gathering all of the families (wE ,wf ,@, oF ) at each point, then we have the Chern-
Moser principal bundle 71 : Y — E of the positive definite case (cf. [5, (4.14)]). In the
case where J is integrable (i.e., [['(kery 6),T'(kery 0)] C T'(kery 6)), Chern-Moser ([5])
found out a system of everywhere linearly independent local 1-forms on Y completely
determined by intrinsic conditions, whose total number equals the dimension of Y, and
accordingly constructed a Cartan connection on 71 : Y — E. This is a generalization of
Cartan’s construction in the case n =1 (cf. [4], [6], [3]).

In the case n = 1, from the connection Le ([8]) constructed a Cartan connection
(cf. (4.10)) on the Cartan principal bundle 7 := pom; : Y - M (p: E — M is
the canonical projection), which we want to call the Chern-Moser connection (unlike
in [8]), and showed that it is normal in the sense of Tanaka ([12]). His paper [8] is a
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good guide for understanding the Chern-Moser connection and led the author to the
simple questions: Can one construct the Chern-Moser connection following Cartan-
Chern-Moser-Le’s construction in the case n > 1 and J may not be integrable? If
possible, is it normal ? This paper is a report on the questions and the answers are: In
the genreal case there exists certainly such a system of local 1-forms on Y and one may
construct the Chern-Moser connection (Theorems 2.2 and 4.3). It is then normal if and
only if J is integrable (Theorem 4.4). Quoting Jacobowitz’s remark ([6]), Le ([8, p.246])
indicates that in the case J is integrable the Chern-Moser connection is presumably
normal but there has been no rigorous proof, and in [8, §5] he gives a rigorous one in
the case n = 1. We want to emphasize that a part of the proof of Theorem 4.4 in §5 is
a rigorous one in the case of general n.

While our interest is centered upon Cartan-Chern-Moser’s construction, there is an-
other profound work by Tanaka ([12]) on Cartan connection. Both of them aim at
generalizing Cartan’s work, that is, solving the pseudo-conformal equivalence problem
for non-degenerate real analytic hypersurfaces in C"*!. In particular, Tanaka clarified
a one-to-one correspondence between CR-manifolds and normal Cartan connections (on
the Cartan principal bundles) and it seems that the study upon his theory is a ma-
jor trend nowadays. There is no precise correspondence along Cartan-Chern-Moser’s
construction, but fortunately now we know that, for integrable contact Riemannian
manifolds, certainly one can construct normal Cartan connections by using Cartan-
Chern-Moser-Le’s construction (cf. the comment by Le [8, p.246]). The outcomes theirs
yields are so concrete that we hope it to be employed extensively in the study of CR-
manifold. The author has an interest particularly in a field of study with key words such
as Fefferman spin space for general J, Dirac operator, twistor operator or holonomy of
Cartan connection (cf. [10], [2]), and in the near future he is going to apply the results
in this paper to the study of such a field.

It is a pleasure to thank Hajime Sato for many valuable suggestions. We rely on his
deep knowledge of Cartan connection.

2 The structure equations: the first main theorem

The structure group G, of the principal bundle 71 : Y — FE consists of matrices

1 v, Vo S
0 wugs O 1 UBa Vo
A((uga); (va),s) == 0 0 T it € GL(2n +2,C)
0 0 0 1

((uga) € U(n), (va) = (v1,...,v,) €C", s €R).

(As for the matrix, let us assign the numbers 0, 1, ..., n, 1, ..., 1, 2n+2 to the columns
(and rows) consecutively. Then the (0,0)-entry, the (0,1)-entry, ... are 1, vq, ..., and
the (3,2n + 2)-entry i ugyUa means iy, ugaUq actually. The matrix corresponds to [5,
(4.12)]. We follow the notation in [8, p.252|, however.) We have dim F = 2(n + 1),
dim G1 = dimU(n)+2n+1 and dimY = (n+2)?—1, and, as local (complex) coordinates
of Y, we may take some local coordinates of F together with ug,, v, U5 and s.

In this paper, a local frame 6* = (6,6',...,0") of CO @ ker™ 6 on Upe is always
assumed to be unitary, i.e., g =0®60+ >, <, (09 ® 0%+ 0 @ 0%). Then (even if J is
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not integrable) we have
(2.1) do =i 0°A0%, do™ = 0P AQV)G+ D P AQV)G+OAT,

where V is a generalized Tanaka-Webster connection on 7'M introduced by Tanno ([13]),
defined by

ViV = VLY - %Q(X)JY Y )VLE + (V90)(Y)E

(V9 is the Levi-Civita connection of g). Note that the generalized one coincides with
the Tanaka-Webster connection if J is integrable. Let us collect some properties of the
connection and explain the symbols used above. Refer to [13], [1], [9], [11], etc., for
more detailed explanation: We have V6 = 0, Vg = 0, T(V)(Z,W) =0, T(V)(Z,W) =
ig(Z,W)&, (Z,W € T(kery 0)). Here T(V) is the torsion tensor and, if we set 7X =
T(V)(&, X), then 7o J + Jo7 =0. In general V does not commute with the action of
the almost complex structure J. In fact, Tanno indicated

(VxJ)Y = Q(Y, X) := (VL J)Y + (V40)(JY) & + 0(Y)TVE

and showed that J is integrable if and only if the Tanno tensor Q vanishes. Let us
denote by (£,€1,...,6n,€1,...,&,) the dual frame of (0,6',...,0",60%,...,0™). Then we
have

T:ZT§‘§Q®97+ZT$‘§Z®97 (8 =17),
Q=05 L0l ei+Y 0 Lot v (QF =-0l, =-07, -],

(hence, 7% = Y~ 7267), and Vg = > QUV)Géa + ZQ(V)%&’Z, etc. In particular, we
have

a i a a i a Oy
S S WA
On Ups x (RT,u) (C E), let us set

(2.2) (", w2 OF, 6) = (0, ub®, b, - )
Then, (2.1) implies
dw? =i wE AwE +wF AP,
duog = 3 Wf N o+ D wh A0, +w AGT
O + 055 = 050 0", 0%, + 0k =0,

where

0F = AVG + 505007, ¢F =Q(V)5 =Y
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On 717 1(Upe x RT), we consider the family of 1-forms
(2.3) (@, wa, W 9) = (WP, w8, wE, 67) (2, u) - A(uga), (va), 5)
= (wE, vawE+Zu5aw5, Vo W +Z%@,
sw? +i2ummwg —iZWw@—l—(bE).

Lemma 2.1 We have

(2.4) dw:iZwa/\@+w/\¢,
(2.5) dwo =Y Ws A Gha+ Y WEAGE, +wA P
with

2 6 ¢,3a : Zuuﬁ { Zuya Qbuy + ZUa du“a}
1
- Z { Z Up Upa Uy it \)f(&) i §5ﬁa Uytwy

1
+Z{Zuuﬂuva“>\v (\)/E(f,\) ii%&”’ﬁ'”vﬁ”ﬁm

(V) L Qv)(e
Y T e (i“()—szuugumum (\)/%( )
QY)Y (Ex
—Zvkuuaumw—%a;—ivaw}w

1 -
+ 75504(? - Z Upp duuom
(27) ¢, =D Uuptua by,
- Z{Zuuﬁuvaum ﬁ}wv‘i’z{ - ZUquﬁuuauM ﬁ}w,
(2.8) QZ)Z = Vo QZ)E + Zu'ya ¢5 — dvg — Z'Uﬂ QZ)%/Q - Z@Q%fa

T
= iva Ty + > {ivavy + 3 s 2}y

I
T=
+{—svq —Zmumum ;'B}w—Zvﬁqb};a —Z%¢§a+va¢—dva.

Proof. This is shown by straightforward calculations. Note that

(29) wf == vigw+) Ugws, ¢7=—sw—i» Tgws+iy vws+o.

Starting with adding some suitable w-, w,- or W,-terms to ¢}5fa, ¢Ea, ¢§, we will
obtain the first main theorem, which is a generalization of Chern-Moser’s theorem [5,
the first part of Theorem 4.6] (in the positive definite case) to the case of general J.
Refer to the concise review of their result in [5, Appendix (by Webster), p.269]. We are
interested only in the families (2.3) induced from unitary frames so that our result is
described rather clearly. (Note that w® (or wa), w® (or wa), ¢ (or dsa), P53 (or d5,),

9ap» €tc., in [5] correspond to wa, Wa, Pgas Ppa, Japs etc., in this paper.)
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Theorem 2.2 On 7y *(Uge x RY), for the family (w, wa, Ga, ¢) given at (2.3) there
exists a unique family of 1-forms

which satisfies

(2.20)

(2.21)
(2.22)

(2.23)

(2.24)

¢,Ba7 (Z)Bop ¢a7 w(: 77/))

dw =1 wo NTs+wAo,

dwo =Y wgAdga+ Y W5 APz, +wAda,

$pa + Pap = Ipa;

Pga + Pap =0,

dp=1) wsANdg+iY dgAT+wA,

dppa =Y _ by Nbra+ > 05, A bsa + W5 A o — i dg Awa
—iégaza/\wy—%%al/’AW*”‘I’Bw

Abga =D _ 05, N brat+ D _ Gy A b+ Lpan

Qo= 0 N bat 3 63 N bsa+ 3 53 A 950 — 50 N + T

dp = Ap+20) dghdg+ T

by, = Zsﬂuaﬂwu /\@+Zsﬁuaku A wy
+ D Sppar Wa ATy + Y (Vaauwu — Vasu @) Aw,
P5, = ZSBuaDwN /\@-{—ZSBHQVOJM A wy
D 85100 Ta ATy + Agg A w,
Co = Z(Vﬁaﬂwu —%@)AerZAga NWgG + Na N w,
U=—iY wgATg—iY mgAWs+oAw,
Mo =Y NopWu+ Y Noi @a + M) @+ > M) buv
+ D ate) D+ D @) P+ o) ¥
ZSBMBD = Zvﬁaa = Zﬁw =0 (T = Nap + Mpa)-
B a 1%

Let the forms Ag,,, to which one may add w-terms, have no w-terms. Then we have:
(1) The 1-forms

W, Wa, Fﬁa ¢7 ¢Ba7 ¢Om %7 1/)7

whose total number equals the dimension of Y, are everywhere linearly independent.
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(2) The coefficients Sg... and SB--- have the following relations:
S,Bual? - Sau/o’ﬁ = 07 Sﬁuw/ + Saﬂ/o’z? = 07
(2.25) Sppar = Susav + 25008 = Spuva + 2 Spvga;
1
SBuav = Q(Smﬂﬂ — Spapr),  Spuav + Suvap + Svpap = 0.

Qv
(3) Setting bgos = D wup Upa Uny 12—\’2 (cf. (3.3)), we have the following more explicit
exTPTessions:

2 26 (Z)ﬁa Z bﬁau Wi
)\'Ba Z )\504# w'u’ Z bﬁau ¢M )\501/7 + )\O_‘HB + )\ﬁﬂ& — 0),
(228) Na = Zna’u w’u + Z 7704/1@

24 2
a4+ 1 Z(bﬁpa brpp — brap bppr) b — om+ 1 Z( brap)x ¢u7

(2.29) Q—ZQMWM+ZQMWM+ Z{dﬁw) dm(ﬂ +Zbﬁup77fc }¢M
+ - Z { dnn dnn ,u) kT Z bpr Nk p)} qu ! Z(TM(/@) + W) ¥,

where we put dbgap = Y (dbrap)ow + D (dbrap)gws + -, etc.
(4) There are the additional formulas:

(230) (20 +1))  Viga = ) (dSpasu — dSpusa)s + Y banp (Sspsn — Ssasp)
+ Z bosp (% - %> + Z%Sﬁam - Z%Sﬁupﬂ’
(231)  i(n+2) (Viwy — Vawp) = idy Z Visu — 10w Z Vs
+ (dSsypu — dSpusy)s + D byup (Sspse — Ssopp)
T Z bpsr (Sipn — Saapy) + Z%Sﬁwﬂ - Z%Sﬁupf/’
i(n+2)

(2.32) 5 (v = w) = > (@Vag)u— Y ([@Vigu)s
+ > (dSsupy — dSpupu)o + Y bos Vg,
(2.33) Z(n;z) (o = Tar) = D _(AVigu)o + > (dVsg)a

+ 2 b3r Mgy + D bysa Ay

Remark 2.3 If J is integrable (i.e., @ = 0), then all the forms ®5o vanish, and
consequently the theorem is reduced to that of Chern-Moser and, moreover, the formulas
(2.30)(2.33) are reduced to the additional ones 3 5 Vgpa =0, Viwy = Vowp, Mo = Ny
Ny = T appearing in [, Appendix (p.271)]. Indeed, if the forms Pgo vanish, then
obviously we find successively @5, = 0 (hence, Sz.. =0, Az, = 0), Sguor = Sppar =0
(cf. (2.25)), and also the other reductions.
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3 The proof of Theorem 2.2

Referring to the argument in [5, §4], we will prove Theorem 2.2. The equality (2.10)
has been shown in (2.4). For a family (¢ga, @5, ¢a) satisfying (2.11), we have

(31) O=ddw=1i» {—¢ap— dpa+ dapd} Awa AW5
i) P Nwa Awg—1i Y dap A Wa AWj
+{—dp+i> ¢gAwWg+i» wg gt Aw,

(3.2) 0=ddwo=> {—ddga+ Y dpyAdya+t Y Pz Absa+iWsAda} Awp
+Y A = dbga+ Y Dy Nbrat D G5y A dra} ATB
+{—dpa+SNbat > 5AGga+t > 5Ad5}Aw

(cf. [5, (4.19), (4.20)]). The following argument is divided into four steps.

The first step: First we wish to find out a family (¢ga, d5,, Pa) satisfying (2.11),
(2.12) and (2.13) by adding some suitable terms to (¢§a,¢ga,¢§) given at (2.6), (2.7)
and (2.8). By (2.5), the latter certainly satisfies the formula (3.1). Hence we know

~ b — g+ a® = Y Apaywy + ) Bpay @ + Cpaw,

O = 2 oy O+ D by 7 + o

with

Aﬁav = Avocﬁ’ Bgay = Bgya, Aﬁow = Bags, Cﬁa = Cag,

8oy =0, bgay = —bapy = —bg\p — bypa,  Cga = —Cap;
(3:3)  Agay =i(0ayTg + 0pay), Bpas = —i(0py Va + 0avy),  Cpa = 0pas,
19V
A __
by = DLt e Wy s G = = DT Vg
(cf. [5, (4.22)—(4.24)]), which obviously imply the following.
Proposition 3.1 (cf. [5, (4.25)]) The family (¢ga, Pgas Pa) defined by

Cﬁa __
QZ)ﬂa :¢§Q+ZABQ’YW’Y+TW7 ¢Ba :(ﬁga_cﬁaw:ZbBaWwV?
_ Cga
G =B% — Y 3o Wh +Z%%
satisfies (2.11), (2.12) and (2.13).

For the (¢ga; @54, Pa) given above, the first two lines in the third side of (3.1) vanish.
Indeed, the first line vanishes because of (2.12) and so does the second line because

Zqﬁiga/\wa/\wg :Zbéo@wv/\wa/\wﬁ =0.

Consequently, we have

{—dp+i) dgAwg+i» wsAdg}hw=0,

so that we may take a form ¢ (€ R) satisfying (2.14).
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Proposition 3.2 (cf. [5, (4.35), (4.36)]) Let ($3a: 93> Pas ¥) be the family given
above. Then, another family (¢, qb;}a, o) satisfies (2.11), (2.12), (2.13) and (2.14)
if and only if there exist relations
$pa = Opa + Doaw,  Ppa = $50r  ba=h+ > Dpaws+ Eaw,

(3.4) oo
=% +Gw+iY (Bawa—Ba®a), Dga+Dag=0, GER.

The second step: Let (¢pa, Pz, Pa, ) satisty (2.11), (2.12), (2.13), (2.14). Refer-
ring to the terms ) {---} Awg and ) {---} Awg of (3.2), we consider the forms

(3.5) Usp = ddg, — > 05, N bra— D Psy A Dra,
(3.6) Ugo = ddga = D 0y Abra— Y By A ba —iW5 A da
+1i¢ps Awy +i<5,3az¢77/\w7
(cf. [5, (4.31), (4.34)]).
Lemma 3.3 (cf. [5, Lemma 4.2]) As for V3, we have
37 Voo =D 00 @n AT+ Sapan W Awy + > Saaap @ A&y (mod w),
Sauar + Sausr =0, Szuan + Sapsy =0, Sppap + Sapss =0,

and the coefficients Sz... are uniquely determined (independently of the choice of the
family). As for Wg,, we have

(38) Vg, = &m—,wu ANwy, + Z%f“u Aw, + ZSE@A@ (mod w),
Sguar = Savpn =0, Spuav + Sasr =0, Sgpar + Sapsy = 0,
and there are relations
Spuar = Sppav + 255pap = Spwa + 2%a

(3.9) 1

SBuav = Q(Smﬂﬂ — Siapr)s  Spuav + Suwap + Svpap = 0.

Remark: One may calculate the coeflicients Sg... concretely from the family given
in the first step, and knows that they do not vanish in general.

Proof. As for Wg,: The equations (2.12) and (2.13) imply V3, + W5p = 0, which
yields (3.7). If (ga, dgas Pas ¥+ ¥5,) is changed into (¢, ,Boc’ ARV ‘I’fgo) by the
transformation (3.4), then

\ijga = d¢5a - Z ¢B"y A (Pya = Dyaw) — Z(Fﬁv - TMW) A Qbi‘/a
= U504+ Y Dyadp, Aw— Y Dgysa Aw.
Hence, the coefficients S 3. are uniquely determined. As for ¥g,: Obviously we have

(3.10) \I/ga + \I/ag = 5045 w AP,

(3.11) > Upa Aws+ > Vg, Awj
={—doatdNGa+ D SsNbpat > b5AOsa} Aw,
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which imply (3.8), (3.9). 1

Let us study the functions Dg, appearing in (3.4). We apply the transformation
(3.4) to (3.5), (3.6) to get

\I’Ba = \Illﬂ_a + Z {Dﬁv (b%a - D’ya Q%V} N w,
Vg = \I/:Ba +1 Z {Dﬁa Ouv + Dypa 6vg — Dy dpa — Dy, 55a}wﬂ N Wy
+{dDsa — ) Dra &3 + Y Dpy dha
—ifa@— i Egwa —iéﬁaZEuwy} Aw.
The second formula says
Stuar = Suap + 1(Dga duw + Dyua dup — Dy Sua — 0o Dyp),

which coincides with [5, (4.39)]. Accordingly, referring to the argument around [5,

(4.43)], we know that ) Sy, 45 vanishes if and only if

. . 6604
(n+2)Dgo = —i g Spspa + 272@ 1) g Sy
holds. Hence, we obtain the following.

Proposition 3.4 (cf. [5, Lemma 4.3]) In Proposition 3.2, if the family (¢}, ¢’Ba,
1) satisfies also

(o3}
(3.12) dbpa =D by N brat+ D b, A b+ i3 A ba
—iGs ANwa — 1050 Y by AWy + > Spparwu ATy
—l-ZSgua,,wu/\wy+ZSgﬁa9@A@+A5a Aw,

(3.13) dbga =) Sy Nbva+ Y Bay Adva+ Y Shuarwu ATy
> S0 W AWy + > S5ar T ATy + Mg Aw,
(3.14) dpo =GN Ga+ Y _ s Ndga+ > b3 A 054
+> Aga Awg+ DAz AWG + €a Aw,
(3.15) > Sapar =0,

then the Dg, are uniquely determined. Further, such a family exists.

Proof. Let us prove that such a family exists certainly. We take a family (¢g4, P
¢a, 1) which satisfies (2.11), (2.12), (2.13) and (2.14). It suffices to show that it has the
formulas (3.12)—(3.14). First, Lemma 3.3 says it has (3.12), (3.13). Then, since (3.11)
yields the equality

{=) Msahws = Ao AT

tdpo — SN ba— > b Aga— > Is N dga} Aw =0,
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(3.14) holds inevitably. 1

Next, let us study the functions Ag, appearing in Proposition 3.4. Together with
(3.8) and (3.10), the formula (3.12) implies (Agq + Aag) Aw = Vg + Yop = dgq w A 1.
Thus, we have

Ao + Aap + 0501 =0 (mod w)
(cf. [5, (4.46)]). Further, we have
d5a Z Ay + A0 — (n+ 1A =0 (mod w, w,, w,)

(cf. [5, (4.50)]), which is shown by investigating the terms > {---} A w, A @, appearing
in ) ddpgs (= 0). Hence, A\g, can be expressed as

— 1
Ao = Z VBau Wy — Z Vasu Wu — 3 d8a% (mod w)
(cf. [5, (4.51), (4.52)]). Consequently we obtain the corollary:

Corollary 3.5 (cf. [5, Lemma 4.3, (4.53), (4.54)]) In Proposition 3.2, if the
family (gbfga,d)’ga ') satisfies also (2.15) with (2.19), (2.16) with (2.20), (2.17) with

Y o

(2.21) and (3.15), then the Dg, are uniquely determined. Further, such a family exists.
Proposition 3.2 is then reduced to the proposition:

Proposition 3.6 Let (dga; Pgq, Pas ¥) satisfy (2.11), (2.12), (2.13), (2.14), (2.15)
with (2.19), (2.16) with (2.20), (2.17) with (2.21), and (3.15). Then, another family

(" %a, 1 W) satisfies those equations if and only if there exist relations

Cbﬁa = gb,ﬁav qua = @lgaa Qba = ¢:y +EUJ,

(3.16) Y= +Gw+iY  (Bawa— Eawa), GER.

The third step: First, we want to investigate the functions E, appearing in the
transformation (3.16). Let (dga; @54, Pa,?) be such a family as in Proposition 3.6. Then
we change (2.15) (with (2.19)) by (3.16) to get Vaay = Vi, — i(0uaEp + 5 6gaFy) and

za:vﬂaa:za:vﬁfm—i(m;mﬂ

(cf. [5, (4.57)]). (Since there are some extra terms in our case, the computations are much
complicated more than those for [5, (4.56), (4.57)].) Hence, we have the proposition:

Proposition 3.7 (cf. [5, Lemma 4.4, (4.66)])
(1) In Proposition 3.6, the family (¢/ﬂa’d)/5a’ ') satisfies also

(3.17) > Viaa =0,

then the E, are uniquely determined. Further, such a family exists.

(2)  Let (D bhas b ) satisfy (2.11), (2.12), (2.13), (2.14), (2.15) with (2.19),
(2.16) with (2.20), (2.17) with (2.21), (3.15) and (3.17). Then, another family (¢, /Ba’

/
%

(3.18) P80 = Par Do = Pgar Pa=0a, V=9 +Gw (GER).

') satisfies those equations if and only if there exist relations
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Next, we will investigate the function G appearing in the transformation (3.18). Let
(Bas Pgas Pa>¥) be such a family as in Proposition 3.7(2). We differentiate (2.14) to
get

(319)  O0=wA{—dp+oAPp+2i> ¢gAdg—i» wsgATz—i» 1 @5}
+20  pa Awp A dag+20 Y oA NTp
—i > wgAXyg Awy +i > Ay ATy AW

We have thus the formulas (2.18) and (2.22). Substituting (2.23) into (2.18) and then
applying the transformation (3.18) to it, we have

dT[),:‘ZS/\T/},wLQiZ?Z)B/\%*iZ(‘SuuGﬁLﬁw)wu/\@
_iZWWu/\WV—iZUup@A@—iZ%w5A¢
— i) Mp) O ATE =Y M) w5 A buw — i Y Na(uv) Bv A TB
— 1) MGy ws Adu =i Y NG bu ATE— 1) TG we A du
_iznﬁ(ﬂ)@/\@_izwwﬁ/\w—iZnﬁ(*)w'A@
+(0—-dG+2G¢—iY Gmagws+iy Gy ws) Aw.

Hence, we get 7, = 0 G + 7y, that is,

D T =G+ Y i

(cf. [5, (4.69)] around). This means: In Proposition 3.7(2), if the family (¢f,,, /Ba’ L)
satisfies also

Zﬁ/m =0,

then the G is uniquely determined (cf. [5, Lemma 4.5]). Further, such a family exists
certainly. Namely, the part of unique existence in Theorem 2.2 was proved.

The fourth step: Here we will prove the remaining assertions. Some of them are
already obvious and the others are proved by straightforward computations.
On Theorem 2.2(1): Referring to Proposition 3.1, (2.6), (2.8) and (2.9), we have,
modulo w, w,, Wy,
Ppa = = Y Wpp dttye, + L 500
Ba = U AU + 5 0pa®,
1
o = —dvg + Zvﬂmduua + ) Vo B,
P =—ds+ Z'Z@%Wduua — iZ%fua Upg AUy

_iZ%dva"Fizvam_S(ﬁ’

which imply Theorem 2.2(1).
On Theorem 2.2(2): It has been proved in Lemma 3.3.
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On the formula (2.26) for ¢3,: Proposition 3.2 implies that the ¢z, satisfying
the conditions in Theorem 2.2 are identifed as the ones given in Proposition 3.1.

On the formula (2.27) for \5,: Refer to (3.19). We notice that the right hand
side with the term w A {-- -} removed vanishes, that is,

2Z¢0Aw5 /\@+2Z%/\¢&B/\w—ﬁ
_Zwﬁ/\)‘iﬁﬂ/\wv‘kz)\w/\@/\@:o,
The left hand side is equal to
> Qs+ bjsada) Nwg Awy = 3 (sp+ D bsga da) TR AT

Hence, we obtain the formula.

On the formula (2.28) for 7, (cf. [5, (4.61) and (4.62)]): We differentiate the
left hand side of (2.17) and focus only on the sum ) {---} Aw, Aw, (= 0). By ignoring
the difference of w-, w,- and @,-terms in the {---}, it is equal to

3 20 Z { ,uo//y { 5#1/7704 + Aa,uz/ + dVa,uzx + Z Vﬁ/,uzz Qb'ya - Va,u,u )
- Z Voyry $uy — Z Voryw Guy — Z Sypaw Py — Z Sspar Oy} A wy Ay,
where we put
Aa,uf/ = Z(bﬂp& bﬁpﬁ - bz?af) bﬁpﬁ) ¢ﬁ + (dbﬁaﬁ)u %
Setting p = v in the terms {---} of (3.20) and summing them up, we have

2n+1
3
2

which gives the formula (2.28).

On the formula (2.29) for o (cf. [5, (4.64) and (4.72)]): Let us differentiate
the left hand side of (2.18) and focus only on the sum ) {---} Aw, Aw, (=0). Then,
in a way similar to the above, modulo w, w,, w,, we have

z'a,wgz2¢Z%@+2¢ZVM¢B—MM—¢WW
t3 771/#)11’+ Mu(v) @b“Zbupﬂ%p)%Hwa% )57/3
+ZZ77V5¢M[3+ZZ77M5¢V5
=i ) baonuip) 88— 1) b3 Tuia) 96
+z’num+z’m¢+i2n5u@+i2%w
—HZ dnys) ¢5—|—ZZ (dnz))v 08
+i > (dnyz)uds+1 Y (dnus)w bp-

The sum of the right hand side with p = v is equal to

% Z(nu(u) () ¥ + 1 Z {(dnu(ﬁ)) (dnu(ﬁ + Z busp Mu(p) } 08
+i Y A + (dnu@)n + D buss Tai) t b5-

No = ZAauﬂ (mod w, wp, W),
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Thus, we obtain (2.29).
On Theorem 2.2(4) (cf. [5, Appendix: Bianchi identities]): In a way similar
to the computations for [5, (A.4")], we find

0=dPpo+ Y PogyAdra— > Gpy APya —iW5 A By — iy Awa
_%5604{2@7/\“’774'2‘1)7’7/\“’7}
+ {85, —iWs A Sy +ids AT} A ra
—Zqﬁig,y/\{i)ﬁa—iwv/\gba—l-iqby/\wa}
—%{%ZTMA%A%—%ZAMA@AW}
"‘i‘sﬁaZQZ’w/\EPA‘W_MﬁaZ%/\%/\¢7-

Let us substitute (2.19)-(2.21) to it and sort out the terms. Then, referring to the
sum Y {---} wy Aw, AWy, we obtain (2.30) and (2.31). Similarly, referring to the sums
YA twp Awy Awand Yo {- -} wy AW, Aw, we obtain (2.32) and (2.33) respectively.

4 The Chern-Moser connection

With reference to the arguments in [5, §5] and [8, §4], in this section we will construct
a Cartan connection on the Cartan principal bundle 7 : Y — M for general J.
First, let us set

—mz(X 6 +¢) ~3%a —1¥
(41) Qe = ~2iw5 — Do+ (S by + O) ~i g
2w W %H(Z gb’Y'Y + gb)

e T(su(n+1,1) @ T* (1 (Upe x RT)))
(cf. [5, (5.30)], [8, (4.9)]). Then, Theorem 2.2 implies
(42) F(Qg-) = ngo —|— ng /\ ng

3 L P —3 ®a —17
- 0 —®pa + 3 2 P —i®g
0 0 #QZ@W
— 2 Py A D —5 &7 A $ra 0
+ —23 Wey A F"yﬂ —Qﬁiﬁ‘»,y/\ ¢K/a % iy A vau —1 ¢’y A (biﬁﬂ
0 FWA(ZSva %HFM/\QSWM

(cf. [5, (5.33)~(5.35)], [8, (4.10)]), where the summation symbols >°_, > are omitted
in the matrix of the last line.
Now, we will take another unitary frame 6’® defined by

0 =0, UMN6,....)Y UMNoT), UM eC™®(Up NUps,U(n)).

We want to clarify the relations between Qgre, F(Qge) and the ones given above. The two

families (W, W wE, ¢¥) and (W'F, WF WE #'F) (ie., (2.2) for §’*) have the transition
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function A(UM,0,0) € C>®(Uge N Ugrs, G1), which cannot be the one between e and
Qgre obviously but provides it as follows: We will refer mainly to the argument by Le
([8], in the case n = 1), which is well-prepared for our discussion. Let us consider the
grading of the Lie algebra su = su(n + 1, 1)

su = Zsup, su, == {A €su| [E, Al =pA}, [su,,suy| C su,q,,
PEZL

where E is the matrix with Eyg = —Epy1n+1 = 1 and E;; = 0 (otherwise). Notice
that su, = {0} if |p| > 2. The Lie subgroup H corresponding to the Lie subalgebra
H =) ,>05Up consists of matrices

t ttgUsa t(r+id.|mal?)
{t7 (U,B()é>7 (Ta)v 7’} = 0 U,BO[ 21@
0 0 1/t

(teC*, (1a) €C", r €R, (Usa) € U(n), det(Usa) = t/t),
and its subgroup Hj := {{t, (Uga), (1a), 7} | |t| = 1} has a surjective homomorphism
C:Hy = Gr, {t,(Usa): (ra),r} = AE(Usa), (2t Y 75 Usa), 47),
ker ¢ = {{e,eE,,0,0} € H | "> =1, £ € C} = {{e,eE,,0,0} € Hy}.
Via the identification
¢:Hy=H/ker¢ = Gy,

let us regard 7 : Y — F as a principal Hi-bundle. Accordingly, the function A(U™,0,0)
€ C*°(Ups N Ugre, G1) induces

Ageorsy := {1, UM, 0, 0} € C®(Uge N Upss, Hy).

Here we specify it by a representative. Note that the following result does not change
even if we adopt another representative.

Proposition 4.1 (cf. [8, (4.17)], [5, (5.40)]) On 7] (Uge N Upe x RT), we have
-1 -1
(4.3) Qgre = )\(9.9,.)99-)\(9.9/-) + A(Q'O")d)\(e'g")’ (Qg/o) = )\(9,0,.) (Qg-))\(gngl.),
where we regard Agegrey as a function on the neighborhood naturally.

Proof. The family (o', w,wl,¢’) (i.e., (2.3) for 6®) is certainly written as

(4.4) W' = => UMw., ¢ =¢

The corresponding family (qbﬁa, @ B !, is then given by

Sho = > UMUM ¢, — Z uM dU;,‘g :
=ZU,% ' Dprs :Z ! s w’zw,
c1>’5a S UMUM@, => UNUM s,
ZUM‘I’ =1, UaZZUmUm o =o.

(4.5)
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In order to show it, because of the uniqueness it suffices to ascertain that they satisfy
the conditions in Theorem 2.2. We will omit the calculations: In checking the condition
>ty = 0 (cf. (2.24)), recall that the form 7, has no ¢,,-term (cf. (2.28)). The
relations (4.4) and (4.5) imply certainly the formulas (4.3). 1

Notice that Hy = ﬁl/kgrc is a subgroup of G := SU(n + 1,1)/ker ¢ and consider
the bigger subgroup H := H/ker (. Via the identifications (cf. [8, p.251])

Rt xH, = H, RtxH = H, (u{tUrr})—{Vut,Urr},
let us regard the bundle 7 : Y — M as a principal H-bundle with the trivializations
(4.6) 7 (Upe) = 17 H(Upe x RT) = Upe x RT x Hy = Upe x H
(cf. [8, Theorem 4.1]). We have the cross-sections (via the trivializations)
Oge : Uge = Uge x H = 171 Upe), x> (2,€) & (WP, wF WE, ¢F)(2,1) €
(e is the unit element of H or G;) with the transition functions
Aogeage) = A(osars) € C°(Uge N Uprs, H).
Let us consider the (sub-) algebras G := su =) su,, H := H = szo su, corresponding

to G, H, and decompose G into

0 0 0 cr
G=H+M, M::Zgup:{ —2igz 0 0 ‘(Ca)e ,}'
0

seR
p<0 S Cq

Proposition 4.2 (cf. [8, (2.3)]) The family Qnr = {Q5pe = 05eQ9e € I'(G®
T*Upe) }ge satisfies

_ ~1

(4.7) Qope = Ad()\(ag.aeu)

projo Qg : TyM = G/H,

) Qo—e. + )\?0,9.0_9,.)9[] (On U90 ﬂ UQ/.),
where Qg is the Maurer-Cartan form of H.

Proof. The first equality of (4.3) implies (4.7). As for (4.8): For a vector X € T, M,
(proj o Q. )(X) is equal to

0 0 0
—2iwg(0ge. X) 0 0
2w(opesX) wa(ogesX) 0

as an element of M (cf. (4.1)). The map proj o ),,, is thus certainly isomorphic. 1

Hence, by a standard argument (e.g. [8, Proposition 2.1], [7, II.1]), we have the
theorem:
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Theorem 4.3 (cf. [8, Theorem 4.2]) The principal bundle connection Qy € I'(G®
TY) on the Cartan principal bundle 7 :Y — M induced from Qyy, i.e.,

(4.9) Qy (X, V) = Ad(h ™) Qe (X) + Qu (Vi)
= Ad(h ") Qpe (1 X) + Qu (Vi) (1 := 0ge)
(TywynY = TeM & ThH 5 (X, Vi) (via (4.6))) ,

is a Cartan connection of type G/H. Namely, it satisfies

Qy(A*)=A (AcH), RiQy=Adr ")y (heH),

4.10
(4.10) Oy :T,Y =G (yeY).

Further, we have the following.

Theorem 4.4 The Chern-Moser connection Qy is normal in the sense of Tanaka
([12)) if and only if J is integrable.

The Maurer-Cartan connection Qg is flat and the curvature F(y) is expressed as

(4.11) F(Qy) (X, Vi), (X', V3)) = Ad(h™1) F(Q,0 ) (X, X')
= Ad(h ) F(Qge)(1: X, 1+ X7).

If the curvature satisfies the condition (5.1), we say that the connection is normal.

5 The proof of Theorem 4.4

With regard to the proof of Theorem 4.4, we refer to [8, §5] constantly. The sub-

spaces Silg; Su_; Suy; su_1; S of su = > o _,su, have bases ed; elos el .. e
ety et el eén), e egm), e((]ﬁa:R), eéﬁa:l) (8 > «) given by
0(0---0] 1 010---0]0
SO 0 O 0 S 0 O 0
> ont2)| S A .k
0 0 0 0
0{0---0]0 110---0]0
0|20---01]0 0(10---0
) 0 2 ) 0 21
- ol o |o| 2_ - ol o |o
DT 8mr2)] | T 8mr 2| A
0 0 0 0
0/00---01]0 0(00---0] O
0 00---010 0 |00---01]0
—21 0 -2 0
ey=| O o |[0], & =9 0 9],
0 0 0 0
0 10---01 0 0 [{20---00
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110---0] 0 —4|0---0] 0
0 0 0 0
el = 0] : : eéﬁﬁ) _ E(()Bﬂ) : :
0 0 0 0
0(0---0|—-1 0 ([0---0|—2
0} 0---0 10 010---01]0
0 0 0 0
Ba:R X Ba:R ; Ba:l Ba:l X
o | 2 [ ggem | O | g | ¢ pgmn | O
(B#a) 0 0 (B#a) 0 0
0| 0---0 |0 0]0---01]0

where E(()B'B), etc., are the n x n-matrices defined by (Eéﬂﬁ))m, = 2i (if (u,v) = (B,5)),
= 0 (otherwise); (E*™),, = 1 (if (n,v) = (B.a)), = —1 (if (1.v) = (0, 5)), = 0
(otherwise); (E(ﬁo“l)),w =i (if (p,v) = (B,a) or (o, B)), = 0 (otherwise). Gathering
them all, we obtain a basis {e}} of G = su which satisfies B(e’ Lo el) = dij, where B is

the Killing form.
We say the Chern-Moser connection Qy is normal ([12, §4.4]) if

(5.1) e, Qp' (L) IF(Qy)]+ D [ed, Qp' (€2 )) | F(Qy)] =

Since the normality of the connection does not depend on the choice of such a basis of
G, it suffices to check the condition at each point of ¢(Upe). Let us argue at a point of
t(Uge). Thus, we have

* * %
Qy(X,V) :QQ-(L*X)JrQH(V): 721.@ * 0k (X,V)
2w Wa *
QL 8(n+2)Qa mgi
= | =207, 9" Gy |[(KV)
Q—Q le —Qio
(5.2) FQy) (X, V), (X', V") = F(Qge ) (15X, 1:.X")

(TL(I)Y =T,M®T.H> (X,V), (X', V)

(cf. (4.9), (4.11)). Denoting by {n}} the dual frame of {Q;l(e{,)}, we have

Qy = Zej ® 77;
( 1= U%a ! +i77%aa 0y = 772CI ! +i7730{, Q= 77%7 Qo= 771—2) )
(5:3) F(Qy)=> Aen® i Anta+> Brn® i Anty+-- (A, B = —Bu € su).
By definition, we have the following.

Lemma 5.1 If Qy is normal, then

(5.4) > leh, Ar =0, [e5, A =2 e}, B =

for all L. Moreover, if there is no extra part +--- in the expansion (5.3), then the
converse is also true.
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We set
(55) Ak = ZAkp = Z Zakpej BM = Z Bkg;p = Z Zbliézp 6{,,
p P J

where, in the case p = 0, we assume that the superscript j runs all over in the set
R R :q R

{0.(11). ... (nn). (Ba: R). (Ba: D)} and a¢™™ = —a i, a5 = a0, i =

a](foﬁj) =0, etc., (and e((]ﬁﬁ R) = éﬁﬁ D= 0). Then we have the following.

Proposition 5.2 If Qy is normal, then we have

(5.6) a,lg. 2= blldzf2 =0,
28—1 2
Z%,@ -1= Z%g 117 a2§ -1= _a’2a 1 1 (B# a),

(5.7) o 251
Aoq—1:—1 = A20q:—1>
28—1 p28 281
(5.8) wae 1= ZbZB 1,61 2&,[:-1 = _b2a—1,z;_1 (B # a),

b26 1
20— 1[—1_ 2a,0:—17

a9, 10+2@2a0 Zazao 2 é@a?0+2z é%aol =

g — 2050~ Y a0V 23 fg"OR -2y aé@”ﬁﬁo =0,

2‘1@ -1~ b2a71 £:0 ngiae)o Z aeo + 22172%& ?eo - 22*}5@%»
2 2a11—b2aeo 2b22a)1£0 Zb2i5)160_2zbz,5862§ _szzgafzm
Z a26—1:1 = Z aggila

o= Sy 2o Wi aen — B350

Moreover, if there is no extra part + - - - in the expansion (5.3), then the converse is also

b2’

true.

Proof. Checking the su_j-component of (5.4), we obtain (5.6). Indeed, it comes

from
1 2
Z ef, Ag:—a] Z Ay—1:— 2ler’” ,61—2] + Z a%«,;—2 617, el y)]
—1 1
_ 1 2’y 1
P ) 8(n + 2) AEDIL IS o) 8(n+2) 1
le3, Ap.—3] —QZekaz o] _226173143[ o]
1 —1 211
= by 1, b o
2 Ve Iy dn+2) IEDILWE An+2) -
By checking the sug-component, ... successively, the proposition is proved. 1

Now, let us begin proving Theorem 4.4.

The first half of the proof of Theorem 4.4. We assume that .J is non-integrable.
We want to show Qy is not normal. By (5.2), (4.2), we have

0 0 O
(5.9) S Apoan® i Ante 4+ Breoan®iAnty = —2igz 0 0,
0 co O
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_ i = o
(5.10) ca:ZwvAQZ)@a:ZZQQ&Qll/\Q’il,
and (5.9) says

deo =4 (@07 +ia® )Py Anly +4) (T +ibig )0t Aty

=2 Z(agﬁii_l +ia3d 1) (T, + Q7 ) A0

+2 Z(ag‘é‘f_ll +1 a%ﬁ:—l) Q7 — QY )AQ,
+ Z {(bgg:izpfl:q +ib3S 105 1im1) + (bgz:llzp:fl + b3S 1 0p1)

+ (5335;;71 +ib3S 0, 1) + (533,5;1;71;71 +ib5S 0, 1-1)} QA
+ Z {(bgs:ll,prlzfl +1 b%?/flﬂpfl:fl) - (bg?yé:ll,Zp:—l +1 b%g—mp:fl)

+ (bggéézfl +1 b%’ay{,Qp:—l) - (bg?ﬁ;fl:fl +1 b%g,zp—k—l)} QL AQ2,
+2 Z {(633:11,%—1:—1 +ib3S 105 1im1) — (bgg:igp:—l +ib3S 105 1)

2a—1 19 2a—1 9 o7
— (035 9pm1 T 1025 05 —1) + (035 0p 1.1 + 9035 95 1.21)} QL AQ7 .

Comparing this with (5.10), we find ((5.7) holds and)

(5.11) %7,2p:71 = b]2771,2p:71 = b%’y,prl:fl = bj2771,2p71:71a
200—1 . .
(512) 4(b22{,2p:—1 + bgg,Qp:fl) =1 Qg&‘

Let us assume that (5.8) holds. Then, together with (5.11), etc., it implies bgg;éz_l =
653‘/72 »—1 = 0. Hence, by (5.12), the tensor Q vanishes. This contradicts the assumption
that J is non-integrable. Thus we find (5.8) does not hold, that is, 2y is not normal. g

Let J be integrable from now on. The purpose is to show that Qy is normal. It
follows from Theorem 2.2 that the matrix in the last line of (4.2) vanishes and the
expansion (5.3) has no extra part + ---. In order to check the conditions of Proposition
5.2, let us calculate the coefficients of (5.5).

Proposition 5.3 We have
1 1 j j
Qg =gy =aj,_ =bp ;=0
and

0 _ 0 __
g0 = Do = 0,

(88)

1 >y Vo
Aop—1:0 = 9 Im(Vagy, — =

n-+2

Z'y Vou

n+2 )7

BB 1
)7 a’g,u:(; = _5 Re(VﬁBM -

a:R 1 a:R 1
af il = — 7 Re(Viay — Vag). afyst = 7 I (Vaoy = Vagy) (8 # o),

a:l 1 a:l 1
agﬁ—l:)o T Im(Vap + Vasp), agﬁ:o )= 4 Re(Vaau + Vagu) (B # a),

8 8 1 8 1
bgﬁ—)l,Qu—I:O = bgu@uzo = o Im(SﬂuBD)a bgﬁ—)l,QV:O = 9 Re(sﬁuﬁﬁ)v

a:R a:R 1
béﬁ—l,%u—l:O = béﬁ,zy% = 4 Re(ngﬂ - Sowﬁﬂ) (B # a),
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a:R 1
bgﬁ—l,%u:o = _Z Im(SﬁVOéﬁ - SOéVﬁﬂ) (ﬁ 7é Oé),

a:l a:l 1

bgﬁfl,)mjfl:(] = bgﬁ,Qu:)O = 4 Im(ng,; + Sowﬁﬁ) (B # a),
a:l 1

béﬁq,)m/:o = 4 Re(Sﬁuaﬁ + Sauﬂﬁ) (B # )

and

agzé:%:l - _2(n + 2) Im(nau + 77&/1)7 agfﬁl = _2(n + 2) Re(nau - 77&/1)7

asp 14 = 2(n+ 2) Re(ap + ag), 6301 = —2(n + 2) T (Nay — Tap),
b%zfl,m/fl:l =2(n+2)Re(Vapr — Varu + Voap — Viar),

Dot 2v—11 = 200+ 2) I (Vg — Vawy = Voay + Visaw),

b3t 21 = 2(n + 2) Re(Vayw = Vo — Voap + Viuaw)s

by a1 = 2(n 4+ 2) I (Vo — Vo + Voo — Viaw)

b%ff_l,zyzl = =2(n+ 2) Im(Vayw + Vawp + Voap — Viaw)s

bgzzizu:l =2(n + 2) Re(Vayw + Vawy = Vap + Viaw)-

Remark: One may delete the term V5., (cf. Remark 2.3) and could find further
symmetry relations on the coefficients.

Proof. We have
ZAk:p Uli1 A 77£2 + ZBkE:p 77]i1 A 7]£_1 =0 (p < 0)>

Z Aoty Anly+ Z Breon®s Aty

—irz 2 P 0
= 0 —(I)ﬁa—f—%_ézqmﬂ ) 0 )
0 0 3 2 Pun

TR

Yo Awnt Anty +) Branfianty =0 0 —ids |,
0 0 0
00 —10

> Aganti Anty +)  Brean®iAnti={0 0 0
0 0 0

In a way similar to the computation for (5.9) with (5.10), we carry out computations to
get the proposition. 1

We finish preparations and prove the rest.

The second half of the proof of Theorem 4.4. We want to show that, if J is
integrable, then 2y is normal. It suffices to ascertain that the conditions in Proposition
5.2 hold. By referring to Proposition 5.3 and the conditions in Theorem 2.2 (in the case
J is integrable), it is checked by straightforward computations. I
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