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Abstract
Based on Getzler’s rescaling transformation, we obtain a formula for the heat kernel
coefficients of the Dirac Laplacian on a spin manifold. One can compute them
explicitly up to an arbitrarily high order by using only a basic knowledge of calculus
added to the formula.

1 Introduction

Let (M, g) be an m-dimensional compact oriented Riemannian manifold equipped
with a spin structure p : Spin(T*M) — SO(T*M), where SO(T*M) is the princi-
pal SO(m)-bundle consisting of SO(m)-frames of T*M and Spin(7*M) is a principal
Spin(m)-bundle together with a 2-sheeted covering map p (e.g. [5], [2]). Then we have
the fundamental spinor bundle § = Spin(T*M) Xgpin(m) Sm (S2n = Sont1 = C?") and
the Dirac operator D given by

. . 1
D:Zej onj ::Ze]o{ej+12w(vg)]g(ej)eeoeko}

acting on the cross-sections of §, where e®* = (el,... e™) is a local SO(m)-frame of
T*M (around a point P in the following argument) and eo denotes the Clifford action
on Sy, of the element e/ of the Clifford bundle (CI(T*M), o), and eq = (€1, ...,en) is
the dual frame of e®. Further, V¢ is the Levi-Civita connection of g and w(V9)} denote
the connection forms defined by Ve, = 3" w(V9)5(X) ey.

It is known that the initial value problem associated with the Dirac Laplacian D?

0 .

(57 +D%)e) =0,  lmot) =50 (¢ €T(S))
t—0

has a unique fundamental solution or heat kernel e~*" Q(P, P’) and, when t — 0, there

is an asymptotic expansion

o0
P (PO, PO) ~ (amt) T2 3T #K(PY),  Ky(PP) € CU(Tpo M).
=0
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Here we regard End(8po) (5 K;(P?)) as a subalgebra of Cl(Th,M) := Cl(T}M) ® C
naturally, and consider the subspaces CI®) (Tho M) well-defined by

CIP(Tho M) = NPT3 M @ C
e (PY) o 0e(P%) < e (PYYA---Ae(PY) (i1 < - <ip).

Accordingly let us set

Ky(P°) = > Kio(P%) e® (P%) o -0 el (PY)

a=(a1<<a)q|)

=3 Kyy(P?) =) ) KpolPY) e (PY) o+ 0e¥al(PY).

la|=p

Then, employing a purely local rescaling transformation which we call Getzler’s one,
from which the A-genus form emerges in a natural way, Getzler [4] (cf. Berline-Getzler-
Vergne [2, Theorem 4.1], Getzler [3]) obtained the formulas

(L.1) Ko (P°) =0 (£<p/2),

R(P%)/2
(1.2) Ky, (P) = detm(smh((R(;t/))/m)[m

where R(P) is the Riemannian curvature at PY, that is, the antisymmetric m x m
matrix with (7, 4)-entries given by

R;i(P°) = Z g(F(V9)(eq, er)ei, e5)(P°) ef(P%) A eF(PY)

(F(VI)(X,)Y) := [V%,V{] — V[QX Y]) and the right hand side of (1.2) denotes the

ci@) (T0 M )-component of the A-genus form (e AT M C Cl(Th,M)). Notice that,
though restricted to the case m is even in [4], his argument holds true also for m odd.

Getzler’s purpose in [4] was to present a short proof of the famous local index theorem
for D (e.g. [1]), which is a straightforward consequence of the formulas, so that his study
on the heat kernel coefficients was restricted to the case enough for the purpose. In this
paper we will introduce a formula for the remaining ones K, (P°) (¢ > p/2) (Theorem
3.4). We want to emphasize that, together with the formulas for the Taylor expansions of
connection coefficients and transition functions due to Atiyah-Bott-Patodi ([1, Appendix
I1]), it induces their explicit expressions. The first author has derived such formulas for
some other Laplacians ([6], [7]) in a similar way, and this paper is part of studying heat
kernel coefficients under such an idea.

In §2 we explain Getzler’s rescaling transformation and review quickly the proofs of
(1.1) and (1.2). By applying his method, which is effective also in investigating the
remaining ones, and by using the formulas given by Atiyah-Bott-Patodi, a formula for
Ky, (P%) (£ > p/2) will be derived in §3. From the formula, we will induce concrete
expressions of Ko(P?), K1(P°), K2(P") by written calculation in §4. We have a plan to
compute them up to a higher order with the aid of Mathematica.
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2 Getzler’s rescaling transformation and a review of the
proofs of (1.1) and (1.2): cf. [4] and [2, Chap. 4]

First, let us review the transformation. We will work on a neighborhood U around
the point P? with normal coordinates x = (21, ..., 2.,) satisfying (0/0x;)po = e;(PY).
The orthonormal frame e, is assumed to be parallel along the geodesics from P and,
hence, so is also e®. Via the trivialization of the spinor bundle by the parallel transport
map, the heat kernel e~*2° (P, PY) gives a localized one

K(t,z) € C*((R",t) x (U,z),Cl(THM)),

which has an asymptotic expansion

1 2
~ § ¢ e RV
(It t KZ Qt(x) . (47Tt)m/26 )
Ky(z) = E Kyo(z)dzg, 00 dzq,,

a:(a1<~--<a|a‘)

- ZKW(Q; Z Z Ky o(x)dzg, o odzg,

|a|=p

(dto; = (dza,)po = €*(P")) when t — 0 . We have thus an interest in K, (0) =
Ko (P°).

Now, let us take € > 0 and, for a form n(t,x) = 1a(t,2)dza, 0 -+ 0 dzg,, set
(Ten)(t, ) = 7101 2n, (et, eV /22) dag, 0 - -0 dzq,, - The rescaling transformation 7: then
induces Getzler’s one, that is, for an operator P acting on C*°(R* xU, CI(T;,M)), we set
G.(P) = T.-P-T.!: For example, let fx be the multiplication by a function f, and let
dz ;o be the Clifford action of dz; on CI(Th M) = N*TH, M®C, i.e., drjo = drjA—dx; V
etc. Here dz;V := (0/0z;)po] is the interior production of (0/0x;)po. Then we have

G(fx) = f(eY?x)x, Ge(dzjo) = e V2 dxjo. := e V2 (dxj A —e¥da; V),
a 71/2 8 G a 72/2 a

Ge (8:13]) oz’ (at) ¢ ot’

For the Dirac operator D acting on C*(R* x U,Cl(T},M)), i.e., D =" dx;o VSPO =
S dxjo {ej+3w(V9)f(ej) degodayo}, we set D) =£12G (D), Wthh is hence expressed
as follows:

D — Z € 1/2da;j 0. V ((2),
(2.1) eg.a) = g1/2 Ge(ej) ZVW 1/2 8/8% (ej := ZVZ] )0/0x;),

V(Z) =2 q. (VSPO) ge 4 Zw (V9)E(e;) (e %2) dyg o, day o, .

Let us set D) = (D©))? = £2/2(G.(D))?. Then the Lichnerowitz formula for D? yields
the rescaled one

£2/2
(22) Dy = = 32 (VYD =22 3wVl VD) ) + =ms(T) (o),
J
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where s(V7) is the scalar curvature, i.e., s(V9) := > g(F(VY)(e;, ei)e;, e;). Obviously
we have ]D)(g) = D0/2 + 0(61/2) with

Do == (g, + 3w Rin) ==2(5,) + (e[
where we set R = R(PY), etc., for short (cf. (4.4), [2, Proposition 4.19]).

Proposition 2.1 (cf. [2, Theorem 4.12]) For any ag € Ci(T}, M), there exists a
unique sequence {®g/o(x) € C°(U,Cl(Tro M))}32, satisfying formally

0
(815 + Do/z) qi(x Zt P2&ys(x) =0, Bgy2(0) = ag.

Further, it is determined by the formula

) 12, x)
/=0
" (drtym2 etl/z(smfli/;m)) eXp(_ £< @C"Wﬂ%)‘ >>a°'

It follows from the argument following [2, (4.4)] that the rescaled kernel
Kot z) = "(TK)(t, @)

satisfies

? .
(2.3) (5 + D)) Kota) =0, lim K(t,2) = 8(a)

and is asymptotically expanded into

Ko (t,z) ~ gz ZZ# PR K, () (= 0)

{=0 p

for every £1/2 > 0. Further, [2, Lemma 4.18] says that there is an asymptotic expansion

(2.4) K (t,z) ~ qi(z Z e’ 'yZ/Q (t,z) (¢Y? = 0)

i=—m
which is uniform for the variables (¢,7) € [0,1] x U in the sense: Each v;/(t,z) is
smooth on R x U, and, for every large integer N, there exists a constant C > 0 such
that ’K(E) (t,z) — q(x) Zf\i_m gi/2 Vit x)‘ < CeWN+D/2 on (0,1) x U. Every derivative
of K(.)(t, ) is also asymptotically expanded into the termwise derivative of the left hand

KK

side in the same sense. Indeed, let us denote by K [p}( x) the sum of the terms of order k

of the Taylor expansion of Ky, () (i.e., Kyp(z) = SV K(k ( )+ O(|z|¥+1)). Then
the sequence {v;/2(t, ) }72, defined by

_ k (i—k)
(2.5) i (ta) = Y (PR (@)

—p<k<:



A formula for the heat kernel coefficients of the Dirac Laplacians 5

certainly induces the expansion. Further, by definition it will be obvious that

(2.6) Y0/2(0,0) =1, 7;/2(0,0) =0 (i # 0),
(2.7) Ko p)(0) = Yo—p/2,(1,0).
Proposition 2.2 (cf. [2, p.163 and Theorem 4.20]) We have

(2.9) qu(@)roya(t, z) = W detl/Q(mfft/;/z)) exp ( ~ %<x ? coth(%)‘x>>.

Proof. The first term vy_,, 5(, ¥) in the expansion (2.4) is a polynomial with respect
to t'/2 (cf. (2.5)) and satisfies
0
(57 + Dos2) @ mpalt:2) = 0, 7-j2(0,0) = 0
because of (2.3) and (2.6). Hence the uniqueness assertion in Proposition 2.1 implies
Y—m/2(t,x) = 0. Next, the term v_,,/9,1/2(t, ) is also a polynomial and consequently
satisfies

0
(a + D0/2)Qt($)7—m/2+1/2(t, z) =0, Y_m/2+1/2(0,0) =0.

Hence, similarly we have v_,,/241/2(t,7) = 0. Inductively we obtain (2.8). Last, since

0
<8t +D0/2)Qt(90)70/2(t7$) =0, 72(0,0)=1

we obtain the formula (2.9). 1
Proposition 2.2 and the identity (2.7) yield certainly the formulas (1.1) and (1.2).

3 On the coefficients K, ,(P") (¢ > p/2)

Here, our study focuses on the remaining terms v;/5(¢, z), i > 0. The operator Dy,
is expanded formally into

1/2
Dy = > Dija.
=0

It will be obvious that we may develop the proof of Proposition 2.2 to get the following.

Proposition 3.1 There exists a unique sequence of formal sums W, 5(t, z) = Yoo
te/Q\IJi/z’Z/2(:L‘) with Wi /9 € C*(U,Cl(THoM)) (i =0,1,...) satisfying formally

) >, .
(a + D(e))Qt 25 200 =0, Wop02(0) =1, W;0/5(0)=0 (i>0),
=0

that 1is,
0
<a + DO/Q) @#Vo2 =0, Vgs20/2(0) =1,
5 in<i
(3.1) (a + ]D)O/Q) @V + Z Di, 2(qeViy2) = 0, Wijg0/2(0) =0 (i >0).
iy Hig=i

Further, the sequence {7;/2(t,x)}$2 satisfies the conditions.
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Let us review the formulas for the Taylor expansions of connection coefficients and
transition functions due to Atiyah-Bott-Patodi [1, Appendix II] (cf. Nagase [7, (1.3)—
(1.7)]). We will find that the sequence {DD;/;}5°, can be computed explicitly by using
only a basic knowledge of calculus added to the formulas.

First, [1, Proposition 3.7 and Appendix II] says that the connection coefficients
w(Vg)g(a/&vj) = g(Vg/axj ei,, €i, ) are formally expanded into

o IR (V9)(9)dx4,0/0x;,)
gy E E s 2 ’
(v ) (8/6$] g 4 1 | ]1 4 axp . ax]/ (0>7

=1

where we put F(Vg)g (0/0x4,0/0x4,) = g(F(V9)(0/0x;,0/0x;, )eiy, €i, ). Second, set

= Vii(x)0/0x; (cf. (21)), € =) VI(x)da;.

Then, [1, Proposition 2.11 and Appendix II] says that the transition functions V7 are
formally expanded into

00 ot 2F(Vg) (6/8xj,8/81‘32)

! % 0+1) ‘Z i g Oxjy -+ - Oxj,

Hence, the coefficients of the Taylor expansions of w(Vg)g (0/0x;), VI', Vj; are all
expressed as universal polynomials made of

44444 8Z_4g(F(Vg)(a/8$j3, 8/8:cj4)8/6xj2, 8/a‘rh) 0

. _ )
J1725354d5 e * O ’
Oxjs - - 0xj,

which can be concretely computed easily. For example, we have

V7 () = dji + Z thjz Z]Up + Z xh%z%s {12””3 +O(|z|"),

(3.2) Vji(z) =05 + Z%%M + ijlﬁjzxjg% +0(|z["),

g 11 1112331 z1l2]]1j2
w(V9);; (9/0x;)(x E :% E :xn%z

+ 3 g, <_Ri1i§jj1j2j3 N > kagf Ryiyjj, N - Rkj;ijg R )

+ O(|z|h).

By referring to (2.1) and (2.2), it will be now obvious that {ID;/»}$%, can be computed
concretely.

For suitable forms k;(t, z,y) € C®°(RT xR xR™, CI(T},M)) (i = 1,2), let us define
the convolution ki# ko by (ki1# k2)(t, z,y) = fg ds [gm dV (2) ki(t — s, 2z,2") ko (s, 2, y),
where dV is the standard volume element. (Recall that CI(T}, M) means A*Tj,M @ C
and the product ki(t — s, z,2") ka(s,2’, y) is their exterior product.) Then, setting

(gev0/2) (L, 2, y) = qe(z — y)v0/2(t, @ — y),

we want to show that the sequence {v;/s(t,7)}2,, which is the only one satisfying
the conditions in Proposition 3.1, has the following formula. For the idea, refer to [7,
(1.14)—(1.20)].
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Theorem 3.2 In the case i > 0, there is a well-defined formula

(3.3) at(2)i/2(t, @)
01 yeeeyige >0
= Z (_1)k(q°70/2#Di1/2<q070/2)#"’#Dik/Q(q070/2))(tax7O)v
S ij=i

and the sequence {v;2(t, ) }52q can be computed explicitly up to an arbitrarily high order
by using only a basic knowledge of calculus.

We will ascertain the theorem after proving a preparatory lemma.

Lemma 3.3 There are finite sum expressions
(34)  @(@hoplte) =Y t(0/0x) ¢ (@) - Pup)(R),
£2|B|

(35)  Diplal@hopta) = Y t19/02)q(x) - Pup)(R) (i>0),
£>max{|B|—-1,0}

where we put (0/0z)8 = 9/0xp, -+-0/0xp, (B = (Bi,...,Bjp|) and each Py p)(R),
which is used in different senses in the two ones (and also in the following), is a poly-
nomial made of Rj jojsjar Rji, dxg N Ry, dxy V Ry, ete.

Proof. As for (3.4): By definition,

@t () v0/2(t, ) Zt% qt(z .0y (R),
>0

where we put ¢ = z¢, - x| - Together with w;qi(x) = —2t9/0zi(g:(z)), it yields
(3.4). As for (3.5): By definition, we have

(3.6) Dja(qe(x)yo/2(t, ) Zt 2% (x) - P1o)(R +Zt€$ qt(z) - Pyoy(R).

|C|>2 £20
Indeed, we have
=) Vi(e2w) Vi (1) 00w, 0/ iy (41 ()
0y Tiy Ty
= Vig(€2) Vigy (M%) { Sz — S22 (),

which is formally expanded into -, gk/? >oiCl=k t7 2% (x) - ¢(k,C). Namely, the
coefficient of £¥/2 has no terms with ¢t =2 because the function Y V;;(¢'/2x)z; is expanded
into 3" Vij(e!/2x)x; = x; formally (that is, all the coefficients of €%/2 (k > 1) vanish).

Accordingly we obtain (3.6) and, hence, also (3.5). 1
Proof of Theorem 3.2. First, obviously we have a finite sum expression
(3.7) Toa(t, ) :=Yosa(t, ) = > 2 Pyuey(R), Tgp(0,2) = 1.
>0

The right hand side of (3.3), denoted by q;(z)¥;/5(t, x), is expressed as

(3.8) w(@)iplte)= Y t90/0x)q(x) - Py p)(R)

¢>max{| B|,1}
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because of Lemma 3.3 and
/0 ds [[av@) (0= 5 (0100 a-s(o ) 5" 0/02)" (a(+")
_ / ds (t — 5)'s” (9/0x) BB’ / AV (') grs(z — o))
0
1
(9 )02)BUB (g, () / do (1—o)o".
0

Thus it is certainly well-defined, and (3.8) yields a finite sum expression

4+|C|>0
(3.9) Uypp(t,a)= > t'a Pycy(R) (i>0).
>0
Further, we have
19<1
@lt(x)‘l’m(t,fﬁ) = —(Q-Vo/z# Z Di1/2((1-‘1’i2/2))(ta9570) (i >0),
11+ia=1

and, in general, for a suitable form k(¢,x,y) we have

0
(a + ]D)o/z) (Qo’YQ/Q# k)(t,z,0)

=lim [ dV(2') gi—s(x — 2")y0/2(t — 5,2 — 2') k(s,2',0)

s—1
t 0
+ [ [ av) (5 + Bopsa)aumsle = alt s — 2 (s, /,0)
0 Bt :
—tim [ V(&) gl — et — 5,2 — 2') K(s,2',0)

= ’70/2(0, 0) k?(t,ﬂ?, O) = k(t, Z, 0)

Hence the first identity in (3.1) holds true for the sequence {¥; /5(t, z) }i>0. Together with
(3.7) and (3.9), it implies that the sequence {¥; /5(t, )} satisfies all the conditions in
Proposition 3.1. By the uniqueness, thus we obtain the formula (3.3). 1

Theorem 3.2 and (2.7) imply the main theorem:
Theorem 3.4 In the case £ > p/2, there is a well-defined formula

1140yt >0
(310)  Kppy(P%) = (m)™? Y (-1
> ij=20—p
X (qe0/27# Diy s2(qe0/2) 3 -+ # Dy y2(2070/2)) ) (1,0, 0),

which can be computed explicitly by using only a basic knowledge of calculus.

4 Some computations

It follows from (1.1), (1.2) and (3.10) that the coefficients K;(P°) can be computed
explicitly. For example, we have the following computations:
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Corollary 4.1 We have

(4.1) Ko(PY) =1,
(4.2) Kl(PO) _ _ZRjiji _ _S(Vg)(PO)

12 12 ’
R/2 5 Rjjikk > Rjijrir
4. Ko(P%) = det!/? _ jigikk i
(43) 2(P7) = de <sinh(R/2))[4] 24 3
N (X Rjiji)? n > RikinRjrrir N 2> Rjpin' (Rjrir + Rjrrir)
432 12 27 '

Proof. (4.1) is obvious (i,e., Ko(P°) = Kq g (P°) = 1). Let us prove (4.2). We have
Ki(PY) = KL[O](PO) + K1,[1](P0)7 and, by (3.2),

k
(4.4) V(fz) O/Q{am +) g, “1 dzy A day, /\}
R Riiii, O
+€1/2{ E T jy Ty ]31%]261 Adxk/\}+52/2{ E Tj1 T, ]]61 72 e
R
+§ : zj, lefk dag AdzpV + Zxﬁ%%( i1 kj2gs

32

% z lk R; EZRZ k
+Z Rjj, J2 L1040 MVijstk Z g1 5 j2 ]3>dx£ A dag A } +O(53/2).

Thus we have

i Rii s 9 k!
]D)l/Z = — Z _Z :Ujlij ]‘711206]2 dl‘e A dﬂ:k/\ a:p + Z ]1 ]]1 d.’Eg/ AN dwk/ j|+7

_ R thyj 1okl g
Pafz = _Z Z le:EjQ%dw A dzph, Z"Eai%é jjl 72 dxy N dxyy ]+
[ Ris o a R
B Z ijlxh%aix + ijl %dwz Adzi V
3
Riii Ris
+Zx31$32$]3< jjg;hh +Z%Wék

R.. E’LRZ ki 8 Rjj/f’k’
+Z %)d&?e A dxpA, 87% + iji 81 dxp A dxk//\} .

Rjijii ¢ 0 Rjj ok Rjiji

where we set [P,Q]+ = P-Q + Q - P. Consequently,

K1,[1](P0) = —(47T)m/2(Q-70/2# D1/2(ge70/2))p1y(1,0,0) = 0,
K1 0/(P°) = (A7) (qa0 /29 D1 j2(q00/2) # D1 /2(ge70/2)) 0)(1,0,0)
— (4m)™%(quy0 23 D3/5(de70/2)) ) (1, 0, 0)

—(4m) /2(%70/2# D /2(gev0/2)) oy (1,0,0) = _212”’

which imply (4.2). Similarly but by a rather lengthy computation, (4.3) is shown as
well. .
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