On the curvature of the Fefferman metric of contact Riemannian manifolds

Masayoshi NAGASE

Abstract

It is known that a contact Riemannian manifold carries a generalized Fefferman metric on a circle bundle over the manifold. We compute the curvature of the metric explicitly in terms of a modified Tanno connection on the underlying manifold. In particular, the scalar curvature descends to the pseudohermitian scalar curvature multiplied by a certain constant. This is an answer to a problem considered by Blair-Dragomir.

1 Introduction

Let (M, θ) be a (2n + 1)-dimensional contact manifold with a contact form θ . There is a unique vector field ξ such that $\xi \mid \theta = 1$ and $\xi \mid d\theta = 0$. Let us equip M with a Riemannian metric g and a (1, 1)-tensor field J which satisfy $g(\xi, X) = \theta(X)$, $g(X, JY) = -d\theta(X, Y)$ and $J^2X = -X + \theta(X)\xi$ for any vector fields X, Y. We set $H = \ker \theta$, $H_{\pm} = \{X \in H \otimes \mathbb{C} \mid JX = \pm iX\}$. In this paper we adopt such a notation as $(\omega_1 \wedge \cdots \wedge \omega_k)(X_1, \ldots, X_k) = \det(\omega_i(X_j))$ for 1-forms ω_i and vectors X_j , and, hence, $d\theta(X,Y) = X(\theta(Y)) - Y(\theta(X)) - \theta([X,Y])$. To study the contact Riemannian manifold (M, θ, g, J) , Tanno ([10]) introduced a generalized Tanaka-Webster connection ${}^*\nabla$, called the Tanno connection in this paper, given by

$$^*\nabla_X Y = \nabla_X^g Y - \frac{1}{2}\theta(X)JY - \theta(Y)\nabla_X^g \xi + (\nabla_X^g \theta)(Y)\xi$$

 (∇^g) is the Levi-Civita connection of g), whose action does not commute with that of the almost complex structure J in general, however. In fact, he showed

$$({}^*\nabla_X J)Y = \mathcal{Q}(Y,X) := (\nabla_X^g J)Y + (\nabla_X^g \theta)(JY)\,\xi + \theta(Y)J\nabla_X^g \xi.$$

The author ([7]) considered a modified Tanno connection ∇ , called the hermitian Tanno connection, defined by

$$\nabla_X Y = {}^*\nabla_X Y - \frac{1}{2}J\mathcal{Q}(Y,X) = \left\{ \begin{array}{l} {}^*\nabla_X (f\xi) & : Y = f\xi \ (f \in C^\infty(M)), \\ \\ \frac{1}{2} \Big({}^*\nabla_X Y - J {}^*\nabla_X JY \Big) & : Y \in \Gamma(H), \end{array} \right.$$

²⁰¹⁰ Mathematical Subject Classification. Primary 53B30; Secondary 53D15.

Keywords and phrases: Fefferman metric; scalar curvature; contact Riemannian structure; hermitian Tanno connection.

so that $\nabla J = 0$. This has been profitably employed by the author et al. in investigating the subjects relating to the Kohn-Rossi Laplacian, the CR conformal Laplacian and Bochner type tensors, etc., on contact Riemannian manifolds ([7], [5] (with Imai), [8], [9] (with Sasaki)).

In this paper, our study by means of the connection focuses on a generalized Fefferman metric $G = G_{\theta}$ (cf. (2.4)) of the contact Riemannian manifold M, i.e., a Lorentz metric on the total space of a canonical U(1)-bundle $\pi : F(M) \to M$, introduced by Barletta-Dragomir in [1, §6]: recall that the ordinary one ([4], [6]) is restricted to the case where J is integrable, i.e., $[\Gamma(H_+), \Gamma(H_+)] \subset \Gamma(H_+)$. After preliminaries in §2 through §4, we will present an explicit description of the curvature $F(\nabla^G)$ of the Levi-Civita connection ∇^G of G in §5. In particular, the following formula for the scalar curvature will be confirmed in the last paragraph.

Theorem 1.1 We have

$$s(\nabla^G) = \frac{2(2n+1)}{n+1} \pi^* s^{\nabla},$$

where s^{∇} is the pseudohermitian scalar curvature of ∇ .

If J is integrable, in other words, if the Tanno tensor \mathcal{Q} vanishes (cf. [10, Proposition 2.1]), then the connections ${}^*\nabla$, ∇ and the Tanaka-Webster connection coincide (cf. [10, Proposition 3.1], [7, Lemma 1.1], [3, §1.2]), and accordingly the generalized Fefferman metric also coincides with the ordinary one (cf. the comment following (2.4)). The theorem is thus a generalization of Lee's result [6, Theorem 6.2] and is an answer to the problem remaining in Blair-Dragomir's paper [2, Remark 5]. The author is uncertain whether the Chern-Moser normal form theory employed by the easier proof of [6, Theorem 6.2] has improved enough to be applicable to the non-integrable case. In this paper we intend to calculate the curvature directly as Lee did for the proof of [6, Theorem 6.6]. It is rather simplified by considering the concept of hermitian Tanno connection, the formulas (2.7) and a derived connection $\pi_*\nabla^G$ (cf. §3).

It is a pleasure to thank Hajime Sato and Kunio Sakamoto for several valuable suggestions.

2 The connections ${}^*\nabla$ and ∇ , and the (generalized) Fefferman metric of contact Riemannian manifolds

First, let us collect some properties of the connections for quick reference. Refer to [10], [7], [9] for more detailed explanation. We have ${}^*\nabla\theta = \nabla\theta = 0$, ${}^*\nabla g = \nabla g = 0$, $T({}^*\nabla)(Z,W) = 0$, $T({}^*\nabla)(Z,\overline{W}) = ig(Z,\overline{W})\xi$, $T(\nabla)(Z,W) = [J,J](Z,W)/4 := (-[Z,W]+[JZ,JW]-J[JZ,W]-J[Z,JW])/4$, $T(\nabla)(Z,\overline{W}) = ig(Z,\overline{W})\xi$ ($Z,W \in \Gamma(H_+)$), where $T({}^*\nabla)$, etc., are the torsion tensors. If we set ${}^*\tau X = T({}^*\nabla)(\xi,X)$, etc., then ${}^*\tau = \tau$ and $\tau \circ J + J \circ \tau = 0$. In this paper, a local frame $\xi_{\bullet} = (\xi_0 = \xi,\xi_1,\ldots,\xi_n,\xi_{\bar{1}},\ldots,\xi_{\bar{n}})$ ($\xi_{\bar{\alpha}} := \overline{\xi_{\alpha}} \in H_-$) of the bundle $TM \otimes \mathbb{C} = \mathbb{C}\xi \oplus H_+ \oplus H_-$ is always assumed to be unitary, i.e., $g(\xi_{\alpha},\xi_{\beta}) = 0$, $g(\xi_{\alpha},\xi_{\bar{\beta}}) = \delta_{\alpha\beta}$ ($1 \le \alpha,\beta \le n$), and its dual frame is denoted by $\theta^{\bullet} = (\theta^0 = \theta,\theta^1,\ldots,\theta^n,\theta^{\bar{1}},\ldots,\theta^{\bar{n}})$. As usual the Greek indices α,β,\ldots vary from 1 to n, the block Latin indices A,B,\ldots vary in $\{0,1,\ldots,n,\bar{1},\ldots,\bar{n}\}$,

and the summation symbol \sum will be omitted in an unusual manner. We have

$$\begin{split} \tau &= \xi_{\alpha} \otimes \theta^{\bar{\gamma}} \cdot \tau^{\alpha}_{\bar{\gamma}} + \xi_{\bar{\alpha}} \otimes \theta^{\gamma} \cdot \tau^{\bar{\alpha}}_{\gamma} \quad (\tau^{\bar{\alpha}}_{\gamma} = \tau^{\bar{\gamma}}_{\alpha}), \\ \mathcal{Q} &= \xi_{\alpha} \otimes \theta^{\bar{\beta}} \otimes \theta^{\bar{\gamma}} \cdot \mathcal{Q}^{\alpha}_{\bar{\beta}\bar{\gamma}} + \xi_{\bar{\alpha}} \otimes \theta^{\beta} \otimes \theta^{\gamma} \cdot \mathcal{Q}^{\bar{\alpha}}_{\beta\gamma} \quad (\mathcal{Q}^{\bar{\alpha}}_{\beta\gamma} = -\mathcal{Q}^{\bar{\beta}}_{\alpha\gamma} = -\mathcal{Q}^{\bar{\beta}}_{\gamma\alpha} - \mathcal{Q}^{\bar{\gamma}}_{\alpha\beta}). \end{split}$$

If we set ${}^*\nabla \xi_B = \xi_A \cdot \omega({}^*\nabla)_B^A$, $\nabla \xi_B = \xi_A \cdot \omega(\nabla)_B^A$, then

$$\omega(^*\nabla)^{\alpha}_{\beta} = \omega(\nabla)^{\alpha}_{\beta}, \quad \omega(^*\nabla)^{\bar{\alpha}}_{\bar{\beta}} = \omega(\nabla)^{\bar{\alpha}}_{\bar{\beta}}, \quad \omega(^*\nabla)^{\bar{\alpha}}_{\beta}(\xi_{\gamma}) = -\frac{i}{2}\mathcal{Q}^{\bar{\alpha}}_{\beta\gamma}, \quad \omega(^*\nabla)^{\alpha}_{\bar{\beta}}(\xi_{\bar{\gamma}}) = \frac{i}{2}\mathcal{Q}^{\alpha}_{\bar{\beta}\bar{\gamma}}$$

and the others vanish. Let us mention briefly also the pseudohermitian Ricci curvature $\mathrm{Ric}^{\nabla}(X,Y) := \sum g(F(\nabla)(X,Y)\xi_{\nu},\xi_{\bar{\nu}})$, the pseudohermitian scalar curvature $s^{\nabla} := \sum \mathrm{Ric}^{\nabla}(\xi_{\alpha},\xi_{\bar{\alpha}})$ and the ordinary ones $\mathrm{Ric}(\nabla)(X,Y) := \mathrm{tr}_{TM}(Z \mapsto F(\nabla)(Z,Y)X) = \sum g(F(\nabla)(\xi_{\nu},Y)X,\xi_{\bar{\nu}}) + \sum g(F(\nabla)(\xi_{\bar{\nu}},Y)X,\xi_{\nu})$, etc.

Proposition 2.1 (cf. [9, Propositions 1.1 and 1.2]) We have

$$\operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi_{\bar{\beta}}) = F(\nabla)^{\nu}_{\nu\alpha\bar{\beta}} = F(\nabla^{g})^{\nu}_{\nu\alpha\bar{\beta}} - \left\{ \frac{1}{4} \mathcal{Q}^{\bar{\mu}}_{\nu\alpha} \mathcal{Q}^{\mu}_{\bar{\nu}\bar{\beta}} + \tau^{\bar{\nu}}_{\alpha} \tau^{\nu}_{\bar{\beta}} \right\} + \frac{2n+1}{4} \delta_{\alpha\beta},$$

$$\operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi_{\beta}) = \frac{i}{2} (\nabla_{\xi_{\bar{\nu}}} \mathcal{Q})^{\bar{\beta}}_{\alpha\nu}, \quad \operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi) = (\nabla_{\xi_{\bar{\mu}}} \tau)^{\bar{\alpha}}_{\mu} + \frac{i}{2} \tau^{\nu}_{\bar{\mu}} \mathcal{Q}^{\bar{\alpha}}_{\nu\mu},$$

$$\operatorname{Ric}^{*\nabla}(\xi_{\alpha}, \xi_{\bar{\beta}}) = \operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi_{\bar{\beta}}) + \frac{1}{4} \mathcal{Q}^{\bar{\mu}}_{\nu\alpha} \mathcal{Q}^{\mu}_{\bar{\nu}\bar{\beta}},$$

$$\operatorname{Ric}^{*\nabla}(\xi_{\alpha}, \xi_{\beta}) = \operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi_{\beta}), \quad \operatorname{Ric}^{*\nabla}(\xi_{\alpha}, \xi) = \operatorname{Ric}^{\nabla}(\xi_{\alpha}, \xi),$$

$$s^{*\nabla} = s^{\nabla} + \frac{1}{4} \sum |\mathcal{Q}^{\bar{\mu}}_{\nu\alpha}|^{2}$$

and $\operatorname{Ric}^{\nabla}(\overline{X}, \overline{Y}) = -\overline{\operatorname{Ric}^{\nabla}(X, Y)}$, etc. In addition, we have

$$\operatorname{Ric}(\nabla)(\xi_{\alpha},\xi_{\bar{\beta}}) = \operatorname{Ric}^{\nabla}(\xi_{\alpha},\xi_{\bar{\beta}}) - \frac{1}{4}\mathcal{Q}_{\nu\mu}^{\bar{\alpha}}\mathcal{Q}_{\bar{\mu}\bar{\nu}}^{\beta},$$

$$\operatorname{Ric}(\nabla)(\xi_{\alpha},\xi_{\beta}) = \frac{i}{2}(\nabla_{\xi_{\bar{\nu}}}\mathcal{Q})_{\nu\alpha}^{\bar{\beta}} + i(n-1)\tau_{\beta}^{\bar{\alpha}}, \quad \operatorname{Ric}(\nabla)(\xi_{\alpha},\xi) = (\nabla_{\xi_{\bar{\mu}}}\tau)_{\mu}^{\bar{\alpha}},$$

$$\operatorname{Ric}(^{*}\nabla)(\xi_{\alpha},\xi_{\bar{\beta}}) = \operatorname{Ric}(\nabla)(\xi_{\alpha},\xi_{\bar{\beta}}) + \frac{1}{4}\left(\mathcal{Q}_{\nu\alpha}^{\bar{\mu}}\mathcal{Q}_{\bar{\nu}\bar{\beta}}^{\mu} - \mathcal{Q}_{\nu\mu}^{\bar{\alpha}}\mathcal{Q}_{\bar{\mu}\bar{\nu}}^{\beta}\right),$$

$$\operatorname{Ric}(^{*}\nabla)(\xi_{\alpha},\xi_{\beta}) = \operatorname{Ric}(\nabla)(\xi_{\alpha},\xi_{\beta}) + \frac{i}{2}(\nabla_{\xi_{\bar{\nu}}}\mathcal{Q})_{\nu\beta}^{\bar{\alpha}},$$

$$\operatorname{Ric}(^{*}\nabla)(\xi_{\alpha},\xi) = \operatorname{Ric}(\nabla)(\xi_{\alpha},\xi) - \frac{i}{2}\tau_{\bar{\nu}}^{\mu}\mathcal{Q}_{\mu\nu}^{\bar{\alpha}},$$

$$s(^{*}\nabla) = s(\nabla) = 2s^{\nabla}$$

and $\operatorname{Ric}(\nabla)(\xi, Y) = 0$, $\operatorname{Ric}(\nabla)(\overline{X}, \overline{Y}) = \overline{\operatorname{Ric}(\nabla)(X, Y)}$, etc.

Next, let us recall the definition of a generalized Fefferman metric introduced by Barletta-Dragomir [1, §6]. The canonical bundle $\pi_0: K(M) := \{\omega \in \wedge^{n+1}T^*M \otimes \mathbb{C} \mid X \rfloor \omega = 0 \ (X \in H_-)\} \to M$ carries a natural tautologous (n+1)-form Υ on K(M), whose value at $\omega \in K(M)$ is the lift to K(M) of ω itself. We set $K^0(M) = \{\omega \in K(M) \mid \omega \neq 0\}$ and consider the canonical U(1)-bundle $\pi: F(M) := K^0(M)/\mathbb{R}_+ \to M$. There is a natural embedding

$$\iota_{\theta}: F(M) \to K(M), \quad \iota_{\theta}([\omega]) = \frac{1}{\sqrt{\lambda}} \omega,$$

where $\lambda \in C^{\infty}(M, \mathbb{R}_+)$ is uniquely defined by $i^{n^2} n! \theta \wedge (\xi \rfloor \omega) \wedge (\xi \rfloor \overline{\omega}) = \lambda \theta \wedge (d\theta)^n$. This induces a differential form

$$\mathcal{Z} = \iota_{\theta}^* \Upsilon \in \Gamma(\wedge^{n+1} T^* F(M) \otimes \mathbb{C}).$$

Given a local unitary frame θ^{\bullet} of $T^*M \otimes \mathbb{C}$ over an open set U, there is a local trivialization

(2.1)
$$F(M)|U \cong U \times [0, 2\pi), \quad [\theta \wedge \theta^1 \wedge \cdots \wedge \theta^n](p) \cdot e^{i\varphi} \leftrightarrow (p, \varphi),$$

via which $\mathcal{Z}_{[\omega]} = e^{i\varphi([\omega])}\pi^*(\theta \wedge \theta^1 \wedge \cdots \wedge \theta^n)_{[\omega]}$ (cf. [1, Lemma 4]). The local forms $\rho_{[\omega]} := e^{i\varphi([\omega])}\pi^*(\theta^1 \wedge \cdots \wedge \theta^n)_{[\omega]}$ on F(M)|U determine all together a global n-form ρ on F(M), which satisfies $\mathcal{Z} = \pi^*\theta \wedge \rho$ and $V \mid \rho = 0$ for any lift V of ξ to F(M). [1, Lemma 5] indicates that a global n-form ρ satisfying the conditions is actually unique.

Proposition 2.2 (cf. Barletta-Dragomir [1, Proposition 3], Blair-Dragomir [2, §4.2])

(1) There is a unique real 1-form σ on F(M) such that

(2.2)
$$d\mathcal{Z} = i(n+2)\sigma \wedge \mathcal{Z} + e^{i\varphi} \pi^* \mathcal{W},$$

(2.3)
$$\sigma \wedge d\rho \wedge \overline{\rho} = \operatorname{tr}(d\sigma) i\sigma \wedge (\pi^*\theta) \wedge \rho \wedge \overline{\rho},$$

where W is the (n+2)-form on M given by

$$W = \frac{i}{2} \theta \wedge \sum (-1)^{\alpha} \theta^{1} \wedge \dots \wedge \left(\mathcal{Q}_{\bar{\beta}\bar{\gamma}}^{\alpha} \theta^{\bar{\beta}} \wedge \theta^{\bar{\gamma}} \right) \wedge \dots \wedge \theta^{n} \quad (on \ U)$$

and, for a 2-form $\Phi = i \Phi_{\alpha\bar{\beta}} \pi^* \theta^{\alpha} \wedge \pi^* \theta^{\bar{\beta}} + \cdots$ on F(M), we set $tr(\Phi) = \Phi_{\alpha\bar{\alpha}}$.

(2) On F(M)|U, the 1-form σ is expressed as

$$\sigma = \frac{1}{n+2} \Big\{ d\varphi + \pi^* \Big(i\omega(\nabla)^{\alpha}_{\alpha} - \frac{s^{\nabla}}{2(n+1)} \theta \Big) \Big\}.$$

Proof. Let us verify (2). We set $\Upsilon_0 = \theta \wedge \theta^1 \wedge \cdots \wedge \theta^n$. Since $d\theta = i\theta^{\alpha} \wedge \theta^{\bar{\alpha}}$ and $d\theta^{\alpha} = \theta^{\beta} \wedge \omega(^*\nabla)^{\alpha}_{\beta} + \theta^{\bar{\beta}} \wedge \omega(^*\nabla)^{\alpha}_{\bar{\beta}} + \theta \wedge \tau^{\alpha} = \omega(\nabla)^{\alpha}_{\beta}(\xi_{\bar{\gamma}}) \theta^{\beta} \wedge \theta^{\bar{\gamma}} + \frac{i}{2} \mathcal{Q}^{\alpha}_{\bar{\beta}\bar{\gamma}} \theta^{\bar{\beta}} \wedge \theta^{\bar{\gamma}} + \cdots$,

$$d\Upsilon_{0} = d\theta \wedge \theta^{1} \wedge \dots \wedge \theta^{n} + \theta \wedge \sum_{\alpha} (-1)^{\alpha} \theta^{1} \wedge \dots \wedge d\theta^{\alpha} \wedge \dots \wedge \theta^{n}$$

$$= \theta \wedge \sum_{\alpha} (-1)^{\alpha} \theta^{1} \wedge \dots \wedge \left\{ \omega(\nabla)_{\alpha}^{\alpha} (\xi_{\bar{\gamma}}) \theta^{\alpha} \wedge \theta^{\bar{\gamma}} + \frac{i}{2} \mathcal{Q}_{\bar{\beta}\bar{\gamma}}^{\alpha} \theta^{\bar{\beta}} \wedge \theta^{\bar{\gamma}} \right\} \wedge \dots \wedge \theta^{n}$$

$$= -\omega(\nabla)_{\alpha}^{\alpha} \wedge \Upsilon_{0} + \mathcal{W}.$$

Hence, for any $f \in C^{\infty}(M, \mathbb{R})$, the global real 1-form σ on F(M) defined by

$$\sigma = \frac{1}{n+2} \left\{ d\varphi + \pi^* i\omega(\nabla)^{\alpha}_{\alpha} \right\} + \pi^* (f\theta) \quad (\text{on } F(M)|U)$$

satisfies (2.2). In addition, we have

$$\sigma \wedge d\rho \wedge \overline{\rho} = \sigma \wedge \left(id\varphi \wedge \rho - \pi^* \omega(\nabla)^{\alpha}_{\alpha}(\xi) \pi^* \theta \wedge \rho \right) \wedge \overline{\rho}$$
$$= -i\pi^* f \cdot d\varphi \wedge (\pi^* \theta) \wedge \rho \wedge \overline{\rho}$$

and

$$\operatorname{tr}(d\sigma) = \pi^* \left\{ -i \left(\frac{i}{n+2} d\omega(\nabla)^{\alpha}_{\alpha} + df \wedge \theta + f d\theta \right) (\xi_{\gamma}, \xi_{\bar{\gamma}}) \right\}$$
$$= \pi^* \left(\frac{1}{n+2} d\omega(\nabla)^{\alpha}_{\alpha} (\xi_{\gamma}, \xi_{\bar{\gamma}}) + nf \right) = \pi^* \left(\frac{s^{\nabla}}{n+2} + nf \right),$$
$$\operatorname{tr}(d\sigma) i\sigma \wedge (\pi^* \theta) \wedge \rho \wedge \overline{\rho} = \frac{i}{n+2} \pi^* \left(\frac{s^{\nabla}}{n+2} + nf \right) \cdot d\varphi \wedge (\pi^* \theta) \wedge \rho \wedge \overline{\rho}.$$

Consequently, (2.3) also holds for σ with $f = -s^{\nabla}/2(n+1)(n+2)$.

Now, the (generalized) Fefferman metric of the contact Riemannian manifold (M, θ, g, J) is the Lorentz metric G_{θ} on F(M) (cf. [1, (60)]) given by

(2.4)
$$G_{\theta} = \frac{1}{2} (\pi^* \theta^{\alpha} \otimes \pi^* \theta^{\bar{\alpha}} + \pi^* \theta^{\bar{\alpha}} \otimes \pi^* \theta^{\alpha}) + (\pi^* \theta \otimes \sigma + \sigma \otimes \pi^* \theta),$$

which certainly coincides with the ordinary one (cf. [4], [6]) in the case J is integrable (i.e., Q = 0). One finds its systematic study in [1], [2]. For example, it is invariant of weight -2 under the CR conformal change $\theta \Rightarrow e^{2f}\theta$ (together with canonical changes of unitary frames ξ_{\bullet} and θ^{\bullet}), i.e., $G_{e^{2f}\theta} = e^{2f}G_{\theta}$ ([2, Theorem 11]), which is the contact Riemannian analogue of Lee's result [6, Theorem 3.8]. As stated in the introduction, Theorem 1.1 is that of his another result [6, Theorem 6.2].

Last, let us introduce an assertion, which is obvious but plays an important role in the study of the curvature.

Proposition 2.3 The $\mathfrak{u}(1)$ -valued 1-form $i(n+2)\sigma \in \Gamma(\mathfrak{u}(1) \otimes T^*F(M))$ is an Ehresmann-type connection on the U(1)-bundle F(M) over M. That is, it satisfies the invariance conditions $i(n+2)\sigma\left(\frac{d(R_{e^{it\varphi}}([\omega])}{dt}\Big|_{t=0}\right)=i\varphi$ and $R^*_{e^{i\varphi}}\sigma=\sigma(=\mathrm{Ad}(e^{-i\varphi})\sigma)$, where $R_{e^{i\varphi}}$ is the right action of $e^{i\varphi} \in U(1)$ on F(M).

Via the trivialization (2.1), the horizontal lift of $X \in TM$ is written as

$$\pi_{\mathcal{H}}^* X = X - i \Big\{ \omega(\nabla)_{\alpha}^{\alpha}(X) + \frac{i s^{\nabla} \theta(X)}{2(n+1)} \Big\} \partial / \partial \varphi$$

and the dual frame of the local frame $(\pi^*\theta, \pi^*\theta^1, \dots, \pi^*\theta^n, \pi^*\theta^{\bar{1}}, \dots, \pi^*\theta^{\bar{n}}, \sigma)$ is

$$(2.5) (N := \pi_{\mathcal{H}}^* \xi, \pi_{\mathcal{H}}^* \xi_1, \dots, \pi_{\mathcal{H}}^* \xi_{\bar{n}}, \pi_{\mathcal{H}}^* \xi_{\bar{1}}, \dots, \pi_{\mathcal{H}}^* \xi_{\bar{n}}, \Sigma := (n+2)\partial/\partial\varphi).$$

The curvature 2-form $F(i(n+2)\sigma) \in \Gamma(\mathfrak{u}(1) \otimes \wedge^2 T^*F(M))$ is expressed as

(2.6)
$$F(i(n+2)\sigma) = d(i(n+2)\sigma) = i(n+2)\pi^*\mathcal{F}(\sigma),$$

$$\mathcal{F}(\sigma) := \frac{i}{n+2} \left(\operatorname{Ric}^{\nabla} + \frac{i d(s^{\nabla}\theta)}{2(n+1)} \right) = \overline{\mathcal{F}(\sigma)} \in \Gamma(\wedge^2 T^*M)$$

and it will be obvious that the horizontal and vertical components of the bracket $[\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Y]$ are expressed as

$$[\pi_{\mathcal{U}}^* X, \pi_{\mathcal{U}}^* Y]_{\mathcal{U}} = \pi_{\mathcal{U}}^* [X, Y], \quad [\pi_{\mathcal{U}}^* X, \pi_{\mathcal{U}}^* Y]_{\mathcal{V}} = -\mathcal{F}(\sigma)(X, Y) \Sigma.$$

3 The Levi-Civita connection ∇^G and a derived connection $\pi_* \nabla^G$

In this section, we will offer an explicit expression of the connection form of ∇^G . Since ∇^G is invariant under U(1)-action, it descends to a connection $\pi_*\nabla^G$ on M, which is well defined by $(\pi_*\nabla^G)_XY = \pi_*(\nabla^G_{\pi_*^U}X^*_{\mathcal{H}}Y)$.

Proposition 3.1 The torsion tensor of $\pi_* \nabla^G$ vanishes and we have

$$(3.1) \quad (\pi_* \nabla^G)_X Y = {}^*\nabla_X Y + \frac{1}{2} g(X, JY) \xi + \theta(Y) \tau X - \theta(X) \Big(\mathcal{F}^{\sigma}(Y) + \mathcal{F}(\sigma)(Y, \xi) \xi \Big) - \theta(Y) \Big(\mathcal{F}^{\sigma}(X) + \mathcal{F}(\sigma)(X, \xi) \xi \Big),$$

where $\mathcal{F}^{\sigma}(Y)$ is the vector defined by $g(Z, \mathcal{F}^{\sigma}(Y)) = \mathcal{F}(\sigma)(Z, Y)$ for any vector Z.

Proof. By definition,

$$\begin{split} g(^*\nabla_X Y,Z) &= g(\nabla_X^g Y,Z) - g(\theta(Y)\,\tau X,Z) + g(g(\tau X,Y)\xi,Z) \\ &\quad + \frac{1}{2}\Big\{ - g(\theta(X)JY,Z) - g(\theta(Y)JX,Z) - g(g(X,JY)\xi,Z) \Big\}, \end{split}$$

which, together with (2.7), produces the formula (3.1). Indeed, for a vector Z with $Z_0 := \theta(Z)\xi = 0$,

$$\begin{split} g((\pi_* \nabla^G)_X Y, Z) &= 2G(\nabla^G_{\pi_{\mathcal{H}} X} \pi_{\mathcal{H}}^* Y, \pi_{\mathcal{H}}^* Z) \\ &= \pi_{\mathcal{H}}^* X G(\pi_{\mathcal{H}}^* Y, \pi_{\mathcal{H}}^* Z) + \pi_{\mathcal{H}}^* Y G(\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Z) - \pi_{\mathcal{H}}^* Z G(\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Y) \\ &\quad + G([\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Y], \pi_{\mathcal{H}}^* Z) + G([\pi_{\mathcal{H}}^* Z, \pi_{\mathcal{H}}^* X], \pi_{\mathcal{H}}^* Y) - G(\pi_{\mathcal{H}}^* X, [\pi_{\mathcal{H}}^* Y, \pi_{\mathcal{H}}^* Z]) \\ &= g(\nabla^g_X Y, Z) + \frac{1}{2} \Big\{ Z g(X_0, Y_0) - g([Z, X], Y_0) - g(X_0, [Z, Y]) \Big\} \\ &\quad - \mathcal{F}(\sigma)(Z, X) \theta(Y) - \mathcal{F}(\sigma)(Z, Y) \theta(X) \\ &= g(\nabla^g_X Y, Z) + \frac{1}{2} \Big\{ - g(\theta(X)JY, Z) - g(\theta(Y)JX, Z) \Big\} \\ &\quad - \theta(X) \mathcal{F}(\sigma)(Z, Y) - \theta(Y) \mathcal{F}(\sigma)(Z, X) \\ &= g(^* \nabla_X Y, Z) + \theta(Y) g(\tau X, Z) - \theta(X) \mathcal{F}(\sigma)(Z, Y) - \theta(Y) \mathcal{F}(\sigma)(Z, X), \end{split}$$

and

$$(3.2) 2g((\pi_*\nabla^G)_XY,\xi) = 2G(\nabla^G_{\pi_*}X\pi_*^*Y,\Sigma)$$

$$= \pi_*^*XG(\pi_*^*Y,\Sigma) + \pi_*^*YG(\pi_*^*X,\Sigma) - \Sigma G(\pi_*^*X,\pi_*^*Y)$$

$$+ G([\pi_*^*X,\pi_*^*Y],\Sigma) + G([\Sigma,\pi_*^*X],\pi_*^*Y) - G(\pi_*^*X,[\pi_*^*Y,\Sigma])$$

$$= X\theta(Y) + Y\theta(X) + \theta([X,Y])$$

$$= 2g(^*\nabla_XY,\xi) - g(T(^*\nabla)(X - X_0,Y),\xi) = 2g(^*\nabla_XY,\xi) - g(JX,Y).$$

Thus we obtain (3.1). It is easy to show $T(\pi_*\nabla^G) = 0$.

Proposition 3.2

(1) Set
$$(\pi_* \nabla^G) \xi_B = \xi_A \cdot \omega (\pi_* \nabla^G)_B^A$$
. Then $\omega (\pi_* \nabla^G)_{\bar{B}}^{\bar{A}} = \overline{\omega (\pi_* \nabla^G)_B^A}$ and $\omega (\pi_* \nabla^G)_{\beta}^{\alpha} = \omega (^* \nabla)_{\beta}^{\alpha} + \mathcal{F}(\sigma)(\xi_{\beta}, \xi_{\bar{\alpha}})\theta$, $\omega (\pi_* \nabla^G)_{\beta}^{\bar{\alpha}} = \omega (^* \nabla)_{\beta}^{\bar{\alpha}} + \mathcal{F}(\sigma)(\xi_{\beta}, \xi_{\alpha})\theta$, $\omega (\pi_* \nabla^G)_{\beta}^0 = \frac{i}{2} \theta^{\bar{\beta}}$, $\omega (\pi_* \nabla^G)_0^{\alpha} = -\mathcal{F}(\sigma)(\xi_{\bar{\alpha}}, \xi_{\gamma})\theta^{\gamma} - \left(\mathcal{F}(\sigma)(\xi_{\bar{\alpha}}, \xi_{\bar{\gamma}}) - \tau_{\bar{\gamma}}^{\alpha}\right)\theta^{\bar{\gamma}} - 2\mathcal{F}(\sigma)(\xi_{\bar{\alpha}}, \xi)\theta$, $\omega (\pi_* \nabla^G)_0^0 = 0$.

(2) Denote (2.5) by $(W_0, W_1, \dots, W_{\bar{1}}, \dots, W_{2n+1})$ and set $\nabla^G W_B = W_A \cdot \omega(\nabla^G)_B^A$. Then $\omega(\nabla^G)_{\bar{B}}^{\bar{A}} = \overline{\omega(\nabla^G)_B^A}$ ($\bar{0} := 0$, $\bar{2n+1} := 2n+1$) and

$$\omega(\nabla^G)^{\alpha}_{\beta} = \pi^* \omega(\pi_* \nabla^G)^{\alpha}_{\beta} + i \, \delta_{\alpha\beta} \, \sigma, \qquad \omega(\nabla^G)^{\bar{\alpha}}_{\beta} = \pi^* \omega(\pi_* \nabla^G)^{\bar{\alpha}}_{\beta},$$

$$\omega(\nabla^G)^{(N)}_{\beta} = \pi^* \omega(\pi_* \nabla^G)^0_{\beta}, \qquad \omega(\nabla^G)^{\alpha}_{(N)} = \pi^* \omega(\pi_* \nabla^G)^{\alpha}_{0},$$

$$\omega(\nabla^G)^{(\Sigma)}_{\beta} = -\frac{1}{2} \overline{\pi^* \omega(\pi_* \nabla^G)^{\beta}_{0}}, \qquad \omega(\nabla^G)^{\alpha}_{(\Sigma)} = -2 \overline{\pi^* \omega(\pi_* \nabla^G)^{\alpha}_{0}},$$

$$\omega(\nabla^G)^{(N)}_{(N)} = \omega(\nabla^G)^{(\Sigma)}_{(N)} = \omega(\nabla^G)^{(N)}_{(\Sigma)} = \omega(\nabla^G)^{(\Sigma)}_{(\Sigma)} = 0,$$

where we put $\omega(\nabla^G)_B^{(N)} = \omega(\nabla^G)_B^0$, $\omega(\nabla^G)_B^{(\Sigma)} = \omega(\nabla^G)_B^{2n+1}$, etc.

Remark: The formulas in (2) agree with those of [6, Proposition 6.5] in the case J is integrable.

Proof. (1) follows from Proposition 3.1. As for (2): We have

$$\begin{split} \omega(\nabla^G)^{\alpha}_{\beta}(\pi^*_{\mathcal{H}}\xi_C) &= 2G(\nabla^G_{\pi^*_{\mathcal{H}}\xi_C}\pi^*_{\mathcal{H}}\xi_\beta, \pi^*_{\mathcal{H}}\xi_{\bar{\alpha}}) \\ &= \pi^*g((\pi_*\nabla^G)_{\xi_C}\xi_\beta, \xi_{\bar{\alpha}}) = \pi^*\omega(\pi_*\nabla^G)^{\alpha}_{\beta}(\xi_C), \\ \omega(\nabla^G)^{\alpha}_{\beta}(\Sigma) &= 2G(\nabla^G_{\Sigma}\pi^*_{\mathcal{H}}\xi_\beta, \pi^*_{\mathcal{H}}\xi_{\bar{\alpha}}) = 2G(\nabla^G_{\pi^*_{\mathcal{H}}\xi_\beta}\Sigma, \pi^*_{\mathcal{H}}\xi_{\bar{\alpha}}) \\ &= -2G(\nabla^G_{\pi^*_{\mathcal{H}}\xi_\beta}\pi^*_{\mathcal{H}}\xi_{\bar{\alpha}}, \Sigma) = g(J\xi_\beta, \xi_{\bar{\alpha}}) = i\delta_{\alpha\beta}. \end{split}$$

In the last line, (3.2) was applied. These yield the formula for $\omega(\nabla^G)^{\alpha}_{\beta}$. The others can be shown similarly.

4 The curvature $F(\pi_*\nabla^G)$

A straightforward computation based on Proposition 3.1 leads to the following formula.

Proposition 4.1 We have

$$\begin{split} F(\pi_*\nabla^G)(X,Y)Z &= F(^*\nabla)(X,Y)Z \\ &+ g(X,JZ) \Big\{ \frac{1}{2} \mathcal{F}^\sigma(Y) + \frac{1}{2} \theta(Y) \mathcal{F}^\sigma(\xi) + \frac{1}{2} \mathcal{F}(\sigma)(Y,\xi) \, \xi - \frac{1}{2} \tau Y \Big\} \\ &- g(Y,JZ) \Big\{ \frac{1}{2} \mathcal{F}^\sigma(X) + \frac{1}{2} \theta(X) \mathcal{F}^\sigma(\xi) + \frac{1}{2} \mathcal{F}(\sigma)(X,\xi) \, \xi - \frac{1}{2} \tau X \Big\} \\ &- \theta(T(^*\nabla)(X,Y)) \Big\{ \mathcal{F}^\sigma(Z) + \mathcal{F}(\sigma)(Z,\xi) \, \xi \Big\} \end{split}$$

$$-\frac{1}{2}g(X,\mathcal{Q}(Z,Y))\xi + \frac{1}{2}g(Y,\mathcal{Q}(Z,X))\xi - \frac{1}{2}g(Z,JT(^*\nabla)(X,Y))\xi$$

$$+\theta(X)\Big\{(^*\nabla_Y\mathcal{F}^\sigma)(Z) + (^*\nabla_Y\mathcal{F}(\sigma))(Z,\xi)\xi - \frac{1}{2}\mathcal{F}(\sigma)(JY,Z)\xi\Big\}$$

$$-\theta(Y)\Big\{(^*\nabla_X\mathcal{F}^\sigma)(Z) + (^*\nabla_X\mathcal{F}(\sigma))(Z,\xi)\xi - \frac{1}{2}\mathcal{F}(\sigma)(JX,Z)\xi\Big\}$$

$$+\theta(Z)\Big\{(^*\nabla_Y\mathcal{F}^\sigma)(X) + (^*\nabla_Y\mathcal{F}(\sigma))(X,\xi)\xi - \frac{1}{2}\mathcal{F}(\sigma)(JY,X)\xi$$

$$- (^*\nabla_X\mathcal{F}^\sigma)(Y) - (^*\nabla_X\mathcal{F}(\sigma))(Y,\xi)\xi + \frac{1}{2}\mathcal{F}(\sigma)(JX,Y)\xi$$

$$+ (^*\nabla_X\tau)Y - (^*\nabla_Y\tau)X + \tau T(^*\nabla)(X,Y)$$

$$- \mathcal{F}^\sigma(T(^*\nabla)(X,Y)) - \mathcal{F}(\sigma)(T(^*\nabla)(X,Y),\xi)\xi\Big\}$$

$$+\theta(X)\theta(Z)\Big\{\mathcal{F}^\sigma(\mathcal{F}^\sigma(Y)) + \mathcal{F}(\sigma)(\mathcal{F}^\sigma(Y),\xi)\xi + \mathcal{F}(\sigma)(Y,\xi)\mathcal{F}^\sigma(\xi)$$

$$- \mathcal{F}^\sigma(\tau Y) - \mathcal{F}(\sigma)(\tau Y,\xi)\xi\Big\}$$

$$-\theta(Y)\theta(Z)\Big\{\mathcal{F}^\sigma(\mathcal{F}^\sigma(X)) + \mathcal{F}(\sigma)(\mathcal{F}^\sigma(X),\xi)\xi + \mathcal{F}(\sigma)(X,\xi)\mathcal{F}^\sigma(\xi)$$

$$- \mathcal{F}^\sigma(\tau X) - \mathcal{F}(\sigma)(\tau X,\xi)\xi\Big\}.$$

Corollary 4.2 We have

$$\operatorname{Ric}(\pi_* \nabla^G)(\xi_{\alpha}, \xi_{\bar{\beta}}) = \operatorname{Ric}(^* \nabla)(\xi_{\alpha}, \xi_{\bar{\beta}}) + i\mathcal{F}(\sigma)(\xi_{\alpha}, \xi_{\bar{\beta}}),$$

$$\operatorname{Ric}(\pi_* \nabla^G)(\xi_{\alpha}, \xi_{\beta}) = \operatorname{Ric}(^* \nabla)(\xi_{\alpha}, \xi_{\beta}),$$

$$\operatorname{Ric}(\pi_* \nabla^G)(\xi_{\alpha}, \xi) = \operatorname{Ric}(^* \nabla)(\xi_{\alpha}, \xi) - (^* \nabla_{\xi_{\nu}} \mathcal{F}(\sigma))(\xi_{\bar{\nu}}, \xi_{\alpha}) - (^* \nabla_{\xi_{\bar{\nu}}} \mathcal{F}(\sigma))(\xi_{\nu}, \xi_{\alpha}) + i\mathcal{F}(\sigma)(\xi_{\alpha}, \xi),$$

$$\operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi_{\beta}) = \operatorname{Ric}(^* \nabla)(\xi, \xi_{\beta}) + i\mathcal{F}(\sigma)(\xi_{\beta}, \xi) - (^* \nabla_{\xi_{\nu}} \mathcal{F}(\sigma))(\xi_{\bar{\nu}}, \xi_{\beta}) - (^* \nabla_{\xi_{\bar{\nu}}} \mathcal{F}(\sigma))(\xi_{\nu}, \xi_{\beta}) + (^* \nabla_{\xi_{\nu}} \mathcal{F})_{\beta}^{\bar{\nu}} - 2(^* \nabla_{\xi_{\beta}} \mathcal{F})_{\nu}^{\nu},$$

$$\operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi) = \operatorname{Ric}(^* \nabla)(\xi, \xi) - 2(^* \nabla_{\xi_{\nu}} \mathcal{F}(\sigma))(\xi_{\bar{\nu}}, \xi) - 2(^* \nabla_{\xi_{\bar{\nu}}} \mathcal{F}(\sigma))(\xi_{\nu}, \xi) - 2\mathcal{F}(\sigma)(\xi_{\nu}, \xi_{\bar{\mu}}) \mathcal{F}(\sigma)(\xi_{\mu}, \xi_{\bar{\nu}}) + 2\mathcal{F}(\sigma)(\xi_{\bar{\nu}}, \tau_{\nu}) + 2\mathcal{F}(\sigma)(\xi_{\nu}, \tau_{\bar{\nu}}) - 2g(\tau \xi_{\nu}, \tau \xi_{\bar{\nu}})$$

and $\operatorname{Ric}(\pi_*\nabla^G)(\overline{X}, \overline{Y}) = \overline{\operatorname{Ric}(\pi_*\nabla^G)(X, Y)}$. (Note that $\operatorname{Ric}(^*\nabla)(\xi, \xi_\beta) = \operatorname{Ric}(^*\nabla)(\xi, \xi) = 0$.) The scalar curvature of $\pi_*\nabla^G$ is

$$(4.1) s(\pi_* \nabla^G) = \frac{2n+1}{n+1} s^{\nabla} + \operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi).$$

Proof. The formulas for the Ricci curvatures follow from Proposition 4.1 (or Proposition 3.2(1)). As for (4.1): Referring also to Proposition 2.1 and (2.6), we have

$$s(\pi_* \nabla^G) = \operatorname{Ric}(\pi_* \nabla^G)(\xi_{\alpha}, \xi_{\bar{\alpha}}) + \operatorname{Ric}(\pi_* \nabla^G)(\xi_{\bar{\alpha}}, \xi_{\alpha}) + \operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi)$$
$$= s(^* \nabla) + 2i\mathcal{F}(\sigma)(\xi_{\alpha}, \xi_{\bar{\alpha}}) + \operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi)$$
$$= 2s^{\nabla} - \frac{s^{\nabla}}{n+1} + \operatorname{Ric}(\pi_* \nabla^G)(\xi, \xi).$$

5 The curvature $F(\nabla^G)$ and the proof of Theorem 1.1

Since $F(\nabla^G)$ is also invariant under U(1)-action, it descends to a tensor $\pi_*F(\nabla^G) \in \Gamma(TM \otimes T^*M \otimes T^*M \otimes T^*M)$, which is well defined by $(\pi_*F(\nabla^G))(X,Y)Z = \pi_*(F(\nabla^G))(\pi_{\mathcal{H}}^*X, \pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z)$.

Theorem 5.1 We have

$$F(\nabla^{G})(\pi_{\mathcal{H}}^{*}X, \pi_{\mathcal{H}}^{*}Y)\pi_{\mathcal{H}}^{*}Z$$

$$= \pi_{\mathcal{H}}^{*}\Big((\pi_{*}F(\nabla^{G}))(X, Y)Z\Big) + \Big(F(\nabla^{G})(\pi_{\mathcal{H}}^{*}X, \pi_{\mathcal{H}}^{*}Y)\pi_{\mathcal{H}}^{*}Z\Big)_{\mathcal{V}},$$

$$(5.1)(\pi_{*}F(\nabla^{G}))(X, Y)Z = F(\pi_{*}\nabla^{G})(X, Y)Z + \mathcal{F}(\sigma)(X, Y)JZ$$

$$+ \frac{1}{2}\Big\{\mathcal{F}(\sigma)(Z, Y) - g(\tau Z, Y)\Big\}JX - \frac{1}{2}\Big\{\mathcal{F}(\sigma)(Z, X) - g(\tau Z, X)\Big\}JY$$

$$+ \frac{1}{2}\mathcal{F}(\sigma)(Z, \xi)\Big\{\theta(Y)JX - \theta(X)JY\Big\}$$

$$+ \frac{1}{2}\theta(Z)\Big\{\mathcal{F}(\sigma)(Y, \xi)JX - \mathcal{F}(\sigma)(X, \xi)JY\Big\},$$

$$(5.2)\Big(F(\nabla^{G})(\pi_{\mathcal{H}}^{*}X, \pi_{\mathcal{H}}^{*}Y)\pi_{\mathcal{H}}^{*}Z\Big)_{\mathcal{V}} = \frac{1}{2}\Big\{((\pi_{*}\nabla^{G})_{X}\mathcal{F}(\sigma))(Z, Y) - ((\pi_{*}\nabla^{G})_{Y}\mathcal{F}(\sigma))(Z, X)$$

$$+ ((\pi_{*}\nabla^{G})_{X}\mathcal{F}(\sigma))(Z, Y_{0}) - ((\pi_{*}\nabla^{G})_{X}\mathcal{F}(\sigma))(Z_{0}, Y)$$

$$- ((\pi_{*}\nabla^{G})_{Y}\mathcal{F}(\sigma))(Z, X_{0}) + ((\pi_{*}\nabla^{G})_{Y}\mathcal{F}(\sigma))(Z_{0}, X)$$

$$+ \mathcal{F}(\sigma)(\xi, X)((\pi_{*}\nabla^{G})_{Y}\theta)(Z) - \mathcal{F}(\sigma)(\xi, Y)((\pi_{*}\nabla^{G})_{X}\theta)(Z)$$

$$+ \mathcal{F}(\sigma)(Z, \xi)\Big\{((\pi_{*}\nabla^{G})_{X}\theta)(Y) - ((\pi_{*}\nabla^{G})_{Y}\theta)(X)\Big\}$$

$$- \theta(X)\mathcal{F}(\sigma)(Z, (\pi_{*}\nabla^{G})_{Y}\xi) + \theta(Y)\mathcal{F}(\sigma)(Z, (\pi_{*}\nabla^{G})_{Y}\xi)$$

$$- \theta(Z)\Big\{\mathcal{F}(\sigma)((\pi_{*}\nabla^{G})_{X}\xi, Y) - \mathcal{F}(\sigma)((\pi_{*}\nabla^{G})_{Y}\xi, X)\Big\}$$

$$- g(((\pi_{*}\nabla^{G})_{X}\tau)Z, Y) + g(((\pi_{*}\nabla^{G})_{Y}\tau)Z, X)\Big\}\Sigma$$

and

$$\begin{split} F(\nabla^G)(\pi_{\mathcal{H}}^*X,\pi_{\mathcal{H}}^*Y)\Sigma &= \pi_{\mathcal{H}}^*\Big\{((\pi_*\nabla^G)_XJ)Y - ((\pi_*\nabla^G)_YJ)X\Big\} \\ &\quad + \frac{1}{2}\Big\{\mathcal{F}(\sigma)(JY,X) - \mathcal{F}(\sigma)(JX,Y) \\ &\quad + \theta(X)\,\mathcal{F}(\sigma)(JY,\xi) - \theta(Y)\,\mathcal{F}(\sigma)(JX,\xi)\Big\}\Sigma, \\ F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z &= \pi_{\mathcal{H}}^*\Big\{ - ((\pi_*\nabla^G)_YJ)Z\Big\} \\ &\quad + \frac{1}{2}\Big\{\mathcal{F}(\sigma)(Y,JZ) + \mathcal{F}(\sigma)(Y_0,JZ) + g(\tau Y,JZ)\Big\}\Sigma, \\ F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*Y)\Sigma &= \pi_{\mathcal{H}}^*\Big\{ - Y + \theta(Y)\xi\Big\}, \end{split}$$

where we set $Y_0 = \theta(Y)\xi$ as before.

Proof. By Proposition 3.2,

$$\nabla^G_{\pi_{\mathcal{U}}Y}\pi_{\mathcal{H}}^*Z = \pi_{\mathcal{H}}^*\Big((\pi_*\nabla^G)_YZ\Big) + \sigma\Big(\nabla^G_{\pi_{\mathcal{U}}Y}\pi_{\mathcal{H}}^*Z\Big)\Sigma,$$

$$(5.3) \quad \sigma\left(\nabla_{\pi_{\mathcal{H}}^{*}Y}^{G}\pi_{\mathcal{H}}^{*}Z\right) = G(\nabla_{\pi_{\mathcal{H}}^{*}Y}^{G}\pi_{\mathcal{H}}^{*}Z, N) = -G(\pi_{\mathcal{H}}^{*}Z, \nabla_{\pi_{\mathcal{H}}^{*}Y}^{G}N)$$

$$= -\frac{1}{2}\theta^{\alpha}(Z)\,\omega(\nabla^{G})_{(N)}^{\bar{\alpha}}(\pi_{\mathcal{H}}^{*}Y) - \frac{1}{2}\theta^{\bar{\alpha}}(Z)\,\omega(\nabla^{G})_{(N)}^{\alpha}(\pi_{\mathcal{H}}^{*}Y)$$

$$= \frac{1}{2}\mathcal{F}(\sigma)(Z,Y) + \frac{1}{2}\left\{\mathcal{F}(\sigma)(Z,Y_{0}) - \mathcal{F}(\sigma)(Z_{0},Y)\right\} - \frac{1}{2}g(\tau Z,Y)$$

and

$$\begin{split} \nabla^G_{\pi_{\mathcal{H}}^X X} \nabla^G_{\pi_{\mathcal{H}}^X Y} \pi_{\mathcal{H}}^* Z &= \nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_Y Z \Big) + \nabla^G_{\pi_{\mathcal{H}}^* X} \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^* Y} \pi_{\mathcal{H}}^* Z \Big) \Sigma \\ &= \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_X (\pi_* \nabla^G)_Y Z \Big) + \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^* Y} \pi_{\mathcal{H}}^* Z \Big) \pi_{\mathcal{H}}^* J X \\ &\quad + \Big\{ \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_Y Z \Big) \Big) + (\pi_{\mathcal{H}}^* X) \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^* Y} \pi_{\mathcal{H}}^* Z \Big) \Big\} \Sigma, \\ \nabla^G_{[\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Y]} \pi_{\mathcal{H}}^* Z &= \nabla^G_{\pi_{\mathcal{H}}^* [X, Y]} \pi_{\mathcal{H}}^* Z - \mathcal{F}(\sigma)(X, Y) \nabla^G_\Sigma \pi_{\mathcal{H}}^* Z \\ &= \pi_{\mathcal{H}}^* \Big\{ (\pi_* \nabla^G)_{[X, Y]} Z - \mathcal{F}(\sigma)(X, Y) J Z \Big\} + \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^* [X, Y]} \pi_{\mathcal{H}}^* Z \Big) \Sigma. \end{split}$$

Hence, we have

$$(\pi_* F(\nabla^G))(X, Y)Z = F(\pi_* \nabla^G)(X, Y)Z + \mathcal{F}(\sigma)(X, Y)JZ + \sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* Z\right)JX - \sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* Z\right)JY,$$

$$\left(F(\nabla^G)(\pi_{\mathcal{H}}^* X, \pi_{\mathcal{H}}^* Y)\pi_{\mathcal{H}}^* Z\right)_{\mathcal{V}}$$

$$= \left\{\sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* \left((\pi_* \nabla^G)_Y Z\right)\right) - \sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* Y} \pi_{\mathcal{H}}^* \left((\pi_* \nabla^G)_X Z\right)\right) + (\pi_{\mathcal{H}}^* X)\sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* Y} \pi_{\mathcal{H}}^* Z\right) - (\pi_{\mathcal{H}}^* Y)\sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* Z\right) - \sigma\left(\nabla^G_{\pi_{\mathcal{H}}^* X} \pi_{\mathcal{H}}^* Z\right)\right\}\Sigma,$$

which, together with (5.3), imply (5.1) and (5.2). Since

$$\begin{split} &\nabla^G_{\pi_{\mathcal{H}}^*X} \nabla^G_{\pi_{\mathcal{H}}^*Y} \Sigma = \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_X JY \Big) + \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^*X} \pi_{\mathcal{H}}^* JY \Big) \Sigma, \\ &\nabla^G_{[\pi_{\mathcal{H}}^*X, \pi_{\mathcal{H}}^*Y]} \Sigma = \nabla^G_{\pi_{\mathcal{H}}^*[X,Y]} \Sigma - \mathcal{F}(\sigma)(X,Y) \nabla^G_{\Sigma} \Sigma = \pi_{\mathcal{H}}^* (J[X,Y]), \\ &\nabla^G_{\Sigma} \nabla^G_{\pi_{\mathcal{H}}^*Y} \pi_{\mathcal{H}}^* Z = \nabla^G_{\Sigma} \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_Y Z \Big) + \nabla^G_{\Sigma} \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^*Y} \pi_{\mathcal{H}}^* Z \Big) \Sigma = \pi_{\mathcal{H}}^* \Big(J(\pi_* \nabla^G)_Y Z \Big), \\ &\nabla^G_{\pi_{\mathcal{H}}^*Y} \nabla^G_{\Sigma} \pi_{\mathcal{H}}^* Z = \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_Y JZ \Big) + \sigma \Big(\nabla^G_{\pi_{\mathcal{H}}^*Y} \pi_{\mathcal{H}}^* JZ \Big) \Sigma \\ &= \pi_{\mathcal{H}}^* \Big((\pi_* \nabla^G)_Y JZ \Big) + \frac{1}{2} \Big\{ \mathcal{F}(\sigma)(JZ,Y) + \mathcal{F}(\sigma)(JZ,Y_0) - g(\tau JZ,Y) \Big\} \Sigma, \\ &\nabla^G_{[\Sigma,\pi_{\mathcal{H}}^*Y]} \pi_{\mathcal{H}}^* Z = 0, \\ &\nabla^G_{\Sigma} \nabla^G_{\pi_{\mathcal{H}}^*Y} \Sigma = \nabla^G_{\Sigma} \pi_{\mathcal{H}}^* JY = \pi_{\mathcal{H}}^* J^2 Y = -\pi_{\mathcal{H}}^* Y + \pi_{\mathcal{H}}^* \theta(Y) \xi, \\ &\nabla^G_{\pi_{\mathcal{H}}^*Y} \nabla^G_{\Sigma} \Sigma = \nabla^G_{[\Sigma,\pi_{\mathcal{H}}^*Y]} \Sigma = 0, \end{split}$$

the others can be shown similarly.

Corollary 5.2 We have

$$\operatorname{Ric}(\nabla^G)(\pi_{\mathcal{H}}^*Z, \pi_{\mathcal{H}}^*Y) = \pi^* \left\{ \operatorname{Ric}(\pi_* \nabla^G)(Z, Y) + \frac{1}{2} \left(g(\tau Z, JY) + g(\tau Y, JZ) \right) \right\}$$

$$+\frac{1}{2}\Big(\mathcal{F}(\sigma)(JZ,Y)+\mathcal{F}(\sigma)(JY,Z)+\mathcal{F}(\sigma)(Z_0,JY)+\mathcal{F}(\sigma)(Y_0,JZ)\Big)\Big\},$$

$$\operatorname{Ric}(\nabla^G)(\pi_{\mathcal{H}}^*Z,\Sigma)=\pi^*\Big\{-2i\,\theta(Z)\mathcal{F}(\sigma)(\xi_\alpha,\xi_{\bar{\alpha}})\Big\},$$

$$\operatorname{Ric}(\nabla^G)(\Sigma,\Sigma)=2n.$$

Proof. We have

$$\begin{split} \operatorname{Ric}(\nabla^G)(\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*Y) &= 2G(F(\nabla^G)(\pi_{\mathcal{H}}^*\xi_\alpha,\pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}}) \\ &\quad + 2G(F(\nabla^G)(\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}},\pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*\xi_\alpha) + G(F(\nabla^G)(\pi_{\mathcal{H}}^*\xi,\pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z,\Sigma) \\ &\quad + G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*Y)\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*\xi), \\ \operatorname{Ric}(\nabla^G)(\pi_{\mathcal{H}}^*Z,\Sigma) &= -2G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*\xi_\alpha)\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}}) \\ &\quad - 2G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}})\pi_{\mathcal{H}}^*Z,\pi_{\mathcal{H}}^*\xi_\alpha) - G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*\xi,\Sigma)\pi_{\mathcal{H}}^*Z), \\ \operatorname{Ric}(\nabla^G)(\Sigma,\Sigma) &= -2G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*\xi_\alpha)\Sigma,\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}}) - 2G(F(\nabla^G)(\Sigma,\pi_{\mathcal{H}}^*\xi_{\bar{\alpha}})\Sigma,\pi_{\mathcal{H}}^*\xi_\alpha). \end{split}$$

Hence, by Theorem 5.1, we obtain the formulas.

Last, Corollary 5.2 implies Theorem 1.1 as follows.

Proof of Theorem 1.1. We have

$$\operatorname{Ric}(\nabla^{G})(\pi_{\mathcal{H}}^{*}\xi_{\alpha}, \pi_{\mathcal{H}}^{*}\xi_{\bar{\alpha}}) = \pi^{*} \left\{ \operatorname{Ric}(\pi_{*}\nabla^{G})(\xi_{\alpha}, \xi_{\bar{\alpha}}) + i \mathcal{F}(\sigma)(\xi_{\alpha}, \xi_{\bar{\alpha}}) \right\},$$

$$\operatorname{Ric}(\nabla^{G})(\pi_{\mathcal{H}}^{*}\xi_{\bar{\alpha}}, \pi_{\mathcal{H}}^{*}\xi_{\alpha}) = \pi^{*} \left\{ \operatorname{Ric}(\pi_{*}\nabla^{G})(\xi_{\bar{\alpha}}, \xi_{\alpha}) + i \mathcal{F}(\sigma)(\xi_{\alpha}, \xi_{\bar{\alpha}}) \right\},$$

$$\operatorname{Ric}(\nabla^{G})(\Sigma, N) = \operatorname{Ric}(\nabla^{G})(N, \Sigma) = \pi^{*} \left\{ -2i \mathcal{F}(\sigma)(\xi_{\alpha}, \xi_{\bar{\alpha}}) \right\}.$$

Referring also to (4.1), we know

$$s(\nabla^{G}) = 2\operatorname{Ric}(\nabla^{G})(\pi_{\mathcal{H}}^{*}\xi_{\alpha}, \pi_{\mathcal{H}}^{*}\xi_{\bar{\alpha}}) + 2\operatorname{Ric}(\nabla^{G})(\pi_{\mathcal{H}}^{*}\xi_{\bar{\alpha}}, \pi_{\mathcal{H}}^{*}\xi_{\alpha})$$

$$+ \operatorname{Ric}(\nabla^{G})(N, \Sigma) + \operatorname{Ric}(\nabla^{G})(\Sigma, N)$$

$$= 2\pi^{*}\left\{s(\pi_{*}\nabla^{G}) - \operatorname{Ric}(\pi_{*}\nabla^{G})(\xi, \xi)\right\} = \frac{2(2n+1)}{n+1}\pi^{*}s^{\nabla}.$$

References

- [1] E. Barletta and S. Dragomir, Differential equations on contact Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4) **30**(1) (2001), 63–95.
- [2] D. E. Blair and S. Dragomir, Pseudohermitian geometry on contact Riemannian manifolds, Rend. Mat. Appl. (7) **22** (2002), 275–341.
- [3] S. Dragomir and G. Tomassini, Differential geometry and analysis on CR manifolds, Progress in Math. **246**, Birkhäuser, Boston-Basel-Berlin, 2006.
- [4] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. **103** (1976), 395–416; **104** (1976), 393–394.
- [5] R. Imai and M. Nagase, The second term in the asymptotics of Kohn-Rossi heat kernel on contact Riemannian manifolds, preprint.

- [6] J. M. Lee, The Fefferman metric and pseudohermitian invariants, Trans. Amer. Math. Soc. **296**(1) (1986), 411–429.
- [7] M. Nagase, The heat equation for the Kohn-Rossi Laplacian on contact Riemannian manifolds, preprint.
- [8] M. Nagase, CR conformal Laplacian and some invariants on contact Riemannian manifolds, preprint.
- [9] M. Nagase and D. Sasaki, Hermitian Tanno connection and Bochner type curvature invariants of contact Riemannian manifolds, preprint.
- [10] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc. **314**(1) (1989), 349–379.

Department of Mathematics, Graduate School of Science and Engineering, Saitama University, Saitama-City, Saitama 338-8570, Japan *E-mail address*: mnagase@rimath.saitama-u.ac.jp