On the curvature of the Fefferman metric
of contact Riemannian manifolds

Masayoshi NAGASE

Abstract

It is known that a contact Riemannian manifold carries a generalized Fefferman
metric on a circle bundle over the manifold. We compute the curvature of the metric
explicitly in terms of a modified Tanno connection on the underlying manifold. In
particular, the scalar curvature descends to the pseudohermitian scalar curvature
multiplied by a certain constant. This is an answer to a problem considered by
Blair-Dragomir.

1 Introduction

Let (M, 8) be a (2n + 1)-dimensional contact manifold with a contact form #. There
is a unique vector field £ such that £|6 = 1 and £|df = 0. Let us equip M with a Rie-
mannian metric g and a (1, 1)-tensor field J which satisfy g(&, X) = 6(X), g(X,JY) =
—df(X,Y) and J?X = —X + 0(X)¢ for any vector fields X, Y. We set H = ker6,
Hy = {X € H®C | JX = +iX}. In this paper we adopt such a notation as
(Wi A Awg)(Xa, ..., Xg) = det (wi(X;)) for 1-forms w; and vectors X, and, hence,
dI(X,Y) = X(0()) —Y(0(X)) —0([X,Y]). To study the contact Riemannian mani-
fold (M, 8,g,J), Tanno ([10]) introduced a generalized Tanaka-Webster connection *V,
called the Tanno connection in this paper, given by

VY = VLY — %H(X)JY _OY)VILE + (VLO)(Y)E

(VY is the Levi-Civita connection of g), whose action does not commute with that of
the almost complex structure J in general, however. In fact, he showed

(VxJ)Y = Q(Y, X) := (VL)Y + (V40)(JY) € + (V) TVE.

The author ([7]) considered a modified Tanno connection V, called the hermitian Tanno
connection, defined by

"Vx(f§) Y =f¢ (f € C%(M)),

1
VXy:*VXy—*JQ(Y,X): 1
2 §<*VXY7J*VXJY> LY e D(H),

2010 Mathematical Subject Classification. Primary 53B30; Secondary 53D15.
Keywords and phrases: Fefferman metric; scalar curvature; contact Riemannian structure; hermitian
Tanno connection.
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so that VJ = 0. This has been profitably employed by the author et al. in investigating
the subjects relating to the Kohn-Rossi Laplacian, the CR conformal Laplacian and
Bochner type tensors, etc., on contact Riemannian manifolds ([7], [5] (with Imai), [8],
[9] (with Sasaki)).

In this paper, our study by means of the connection focuses on a generalized Fefferman
metric G = Gy (cf. (2.4)) of the contact Riemannian manifold M, i.e., a Lorentz metric
on the total space of a canonical U(1)-bundle 7 : F(M) — M, introduced by Barletta-
Dragomir in [1, §6]: recall that the ordinary one ([4], [6]) is restricted to the case where J
is integrable, i.e., [['(H;),['(H4 )] C T'(Hy). After preliminaries in §2 through §4, we will
present an explicit description of the curvature (V%) of the Levi-Civita connection V&
of G in §5. In particular, the following formula for the scalar curvature will be confirmed
in the last paragraph.

Theorem 1.1 We have

2(2 1
S(VG) _ ( n+ )W*Sv,
n+1
where sV is the pseudohermitian scalar curvature of V.

If J is integrable, in other words, if the Tanno tensor Q vanishes (cf. [10, Proposition
2.1]), then the connections *V, V and the Tanaka-Webster connection coincide (cf. [10,
Proposition 3.1], [7, Lemma 1.1], [3, §1.2]), and accordingly the generalized Fefferman
metric also coincides with the ordinary one (cf. the comment following (2.4)). The the-
orem is thus a generalization of Lee’s result [6, Theorem 6.2] and is an answer to the
problem remaining in Blair-Dragomir’s paper [2, Remark 5]. The author is uncertain
whether the Chern-Moser normal form theory employed by the easier proof of [6, Theo-
rem 6.2] has improved enough to be applicable to the non-integrable case. In this paper
we intend to calculate the curvature directly as Lee did for the proof of [6, Theorem
6.6]. It is rather simplified by considering the concept of hermitian Tanno connection,
the formulas (2.7) and a derived connection 7,V (cf. §3).

It is a pleasure to thank Hajime Sato and Kunio Sakamoto for several valuable
suggestions.

2 The connections *V and V, and the (generalized) Feffer-
man metric of contact Riemannian manifolds

First, let us collect some properties of the connections for quick reference. Refer to
[10], [7], [9] for more detailed explanation. We have *V# = V6 = 0, *Vg = Vg =
0, T*V)(Z,W) = 0, TO*V)(Z, W) = ig(Z,W)¢, T(V)(Z,W) = [J,J|(Z,W)/4 :
(—[Z,W]) + [JZ, W] — J[JZ, W] — J[Z,JW])/4, T(V)(Z, W) = ig(Z,W)¢ (Z,
I'(Hy)), where T'(*V), etc., are the torsion tensors. If we set *7X = T(*V)(¢,
etc., then *7 = 7 and 7o J + J o7 = 0. In this paper, a local frame & = (&
61, &6, &) (€a = &, € H_) of the bundle TM @ C = C¢ @ Hy @ H_ is
always assumed to be unitary, i.e., g(§a,§s) = 0, 9(§a,&3) = dap (1 < a, B < n), and its
dual frame is denoted by 0* = (§° = 6,0',...,0™,6%,...,0™). As usual the Greek indices
a, B, ...vary from 1 to n, the block Latin indices A, B, ... vary in {0,1,...,n,1,...,7},

Lo
= m i
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and the summation symbol ) will be omitted in an unusual manner. We have

T—£a®0’7 7_— "‘Ea@e’y ,?
Q=6 007060705 +6w0P @605 (

If we set *Vép = €4 - w(*V)3, Vép = €4 - w(V)4, then

1

WV =w(V)§, w(V)E = w5 w(VIEE) = 205, wCV)3E) = 13,

and the others vanish. Let us mention briefly also the pseudohermitian Ricci curvature
RicV(X,Y) := S g(F(V)(X,Y)&,, &), the pseudohermitian scalar curvature sV :=
ST RicY (€a,&a) and the ordinary ones Ric(V)(X,Y) := trra(Z — F(V)(Z,Y)X) =
2 9(F(V)(&, Y)X, &) + 22 g(F(V)(&, Y) X, &), ete.

Proposition 2.1 (cf. [9, Propositions 1.1 and 1.2]) We have

] v V v 2 +1
RicY (€. 65) = F(V)",5 = F(V9)" 5~ { Qf, Q" + 77 ﬁ}+”Taaﬁ,
Ric¥ (60 85) = 5(Ve, Qs Ric¥ (60, 8) = (Ve r)ji + 577 Q0

Ric¥ (€0, €5) = Ric (£a, &5) + i%%,
¢ V(€a, &) = RicY (€a,€5),  Ric V(& &) = RicY (£, ),

1 o2
and RicY(X,Y) = —RicY (X,Y), etc. In addition, we have

RIc(V) (6a, €5) = Ric” (€0, ) — § Q5
Ric(V)(éa: €3) = 5 (Ve, Q) +i(n - U, Re(®) ) = (Ve
Ric(*V)(6as§5) = Ric(V)(€a, &5) + (Q,E‘agff- - 95,90);
Ric(" V) (€as &) = Ric(V) (€, 5) + (vgu Q)5

Ric(*V)(&a, &) = Ric(V) (&, &) — 57 5 ,Ofm
s(*V) = 5(V) = 25

and Ric(V)(£,Y) =0, Ric(V)(X,Y) = Ric(V)(X,Y), etc.

Next, let us recall the definition of a generalized Fefferman metric introduced by
Barletta-Dragomir [1, §6]. The canonical bundle my : K(M) = {w € A""'T*M @ C |
X|w=0(X € H_)} — M carries a natural tautologous (n+1)-form Y on K (M), whose
value at w € K (M) is the lift to K (M) of w itself. We set K°(M) = {w € K(M) | w # 0}
and consider the canonical U(1)-bundle 7 : F(M) := K°(M)/Ry — M. There is a
natural embedding

tp: F(M)— K(M), p(w])=—uw,
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where A € C*°(M,R.) is uniquely defined by i"*n!§ A (£ |w) A (€]@) = A A (d)™. This
induces a differential form

Z=u;T € (A""'T*F(M)® C).

Given a local unitary frame 6°® of T*M & C over an open set U, there is a local trivial-
ization

(2.1) F(M)IU = U x[0,21), [IA0"A--AO"](p)- € & (p, ),
via which Zy, = e G N LN 0") (cf. [1, Lemma 4]). The local forms
Pl = Dt A A "), on F'(M)|U determine all together a global n-form p on

F(M), which satisfies Z = 7*0 A p and V| p = 0 for any lift V of £ to F'(M). [1, Lemma
5] indicates that a global n-form p satisfying the conditions is actually unique.

Proposition 2.2 (cf. Barletta-Dragomir [1, Proposition 3], Blair-Dragomir

2, 84.2])
(1) There is a unique real 1-form o on F(M) such that

dZ =i(n+2)o A Z + e 7*W,
o ANdp Np=tr(do)ioc A (7*0) A p A D,

where W is the (n + 2)-form on M given by
_ 1)L A - a 9B AOTY A A"
W—QHAZ( 1) A /\( 9.0 /\m)/\ AO™  (on U)

and, for a 2-form ® =i P,z 7O A 7608 4+ - on F(M), we set tr(®) = Dpg.
(2) On F(M)|U, the 1-form o is expressed as

sV

= L{d(p + 7" <zw(V)g — 76) }

T T2 2(n+1)

Proof. Let us verify (2). We set Yo =0 A0 A--- A O™, Since dff = i0* A 0% and
d0® =07 Nw(*V)g + 07 Aw(* V)G + 0 AT = w(V)§(&) 07 AT+ 5Q5 0F AT + -,

Ao =dONO A AO*+OAD (1) A= AdOV AN O
o [e% « o v o 3 o n
=0AY (-1) 91/\---A{w(V)a(§:,)6 /\97+5Qm9ﬂAm}/\-~-A9
= —w(V)2A Yo+ W.

Hence, for any f € C*°(M,R), the global real 1-form o on F'(M) defined by

1
o —

- — 2{d¢+7r* z’w(V)g} +7(f0) (on F(M)|U)

satisfies (2.2). In addition, we have

ocNdpANp =0 N (id(p/\p—ﬂ*w(V)g(é)w*Q/\p) A D
= —in*f-dp N(TO)NpAD
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and
SO . _
tr(do) = 7 { z(n+2 dw(V)a+df/\«9+fd0)(§7,§7)}
= (=5 dw(V)2(6,. &) +nf) = (2 4 nf),
tr(do)io A (7%0) A /\’*L *((SV—an)-d AT O)NpAp
o)io A (m pPAP= 5™ (s oA (7 pAD.
Consequently, (2.3) also holds for o with f = —sV/2(n 4+ 1)(n + 2). 1

Now, the (generalized) Fefferman metric of the contact Riemannian manifold
(M,0,qg,J) is the Lorentz metric Gy on F'(M) (cf. [1, (60)]) given by

(2.4) Gy = %(77*9“ @ 0% + 0% @ 10%) + (10 ® 0 + 0 @ T*0),
which certainly coincides with the ordinary one (cf. [4], [6]) in the case J is integrable
(i.e., @ = 0). One finds its systematic study in [1], [2]. For example, it is invariant of
weight —2 under the CR conformal change 6 = 2/ (together with canonical changes
of unitary frames &, and 6°), i.e., G.2ry = €2/Gy ([2, Theorem 11]), which is the contact
Riemannian analogue of Lee’s result [6, Theorem 3.8]. As stated in the introduction,
Theorem 1.1 is that of his another result [6, Theorem 6.2].

Last, let us introduce an assertion, which is obvious but plays an important role in
the study of the curvature.

Proposition 2.3 The u(1l)-valued 1-form i(n + 2)o € T'(u(l) ® T*F(M)) is an
Ehresmann-type connection on the U(1)-bundle F(M) over M. That is, it satisfies the

d(R ; w . * —1
W t:O) = ip and R}, 0 = o (= Ad(e™"?)o),

where Ryip is the right action of €? € U(1) on F(M).

invariance conditions i(n + 2)0(

Via the trivialization (2.1), the horizontal lift of X € T'M is written as

isVO(X)
X =X—1i X))+ — s
T ifw(viax) + T Yajop
and the dual frame of the local frame (7*0, 70, ... ©*0", 77*91, c, O o) is
(2.5) (N = mp &, &, mybn, TR&LL - ks D= (n+ 2)0/0y).

The curvature 2-form F(i(n + 2)o) € I'(u(1) ® A2°T*F(M)) is expressed as

F(i(n+2)0) = d(i(n + 2)o) = i(n + 2) 7* F (o),
(2.6) i z‘d(sva)) -

Flo) = m(RicV oy ~ T € T(A2T* M)

and it will be obvious that the horizontal and vertical components of the bracket
(13, X, 75,Y] are expressed as

(2.7) [r, X, 75, Yy =y [X,Y], [ X, 7m,Y]y=—-F(o)(X,Y)X.
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3 The Levi-Civita connection V¢ and a derived connection
AVAS

In this section, we will offer an explicit expression of the connection form of V&.
Since V¢ is invariant under U (1)-action, it descends to a connection 7,V on M, which
is well defined by (m.V¥)xY = 7. (V& X’ZTHY)

Proposition 3.1 The torsion tensor of 7.VC vanishes and we have
(3.1) (mVYxY =*VxY + %g(X, JY)E+0(Y)TX
— 000 (F7 (V) + F(o) (v, €) €) = 6(Y) (F7(X) + F(0)(X,€)€),

where F°(Y') is the vector defined by g(Z,F°(Y)) = F(o)(Z,Y) for any vector Z.

Proof. By definition,
9("VxY,Z) = g(V4Y, Z) — g(0(Y) 7X, Z) + g(9(7X,Y )¢, Z)

+ %{ —9(0(X)JY, Z) = g(0(Y)J X, Z) = g(9(X, JY)E, Z)},

which, together with (2.7), produces the formula (3.1). Indeed, for a vector Z with
Zo = 0(Z)¢ = 0,
9(mV9)xY, Z) = 2G(VE x75Y, 73, 7)
=y XG(my Y, n3,2) + m3,Y G(my X, 73, Z) — 7, ZG (13, X, 73,Y)
+ G([TF;{X Y], 1, 7Z) + G([my Z, w3, X, m3,Y ) — G(m, X, [m3,Y, 73, Z])
= (VY. 2) + 5 { Z9(X0, Yo) — (12, X], Yo) — 9(Xo, 12,Y])}
= F(o)(Z, X)0(Y) = F(0)(Z,Y)0(X)
= (VY 2) + 5 { — 90(X)TY. 2) ~ 4(60)TX, 2)}
—0(X)F(0)(2,Y) = 6(Y)F(0)(Z, X)
=9(VxY,2) +0(Y)g(7X, Z) = 0(X)F(0)(Z,Y) — 0(Y)F(0)(Z, X),
and
(3.2) 29((mV9)xY,€) = 2G(V5: x73,Y, )
=1, XG(m,Y, ) + Y G (3, X, ¥) — G (mp X, m3,Y)
+ G([r, X, m5,Y], %) + G([Z, 73, X],m3,Y) — G(m3, X, [73,Y, X])
=X0(Y)+Y0(X)+6(]X,Y])
=29("VxY,§) = g(T("V)(X = Xo,Y), &) =29("VxY,{) — g(JX,Y).
Thus we obtain (3.1). It is easy to show T'(m. V%) = 0. 1

Proposition 3.2
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(1) Set (m.V9)ép = €a - w(mV )]‘3 Then w(Tr*VG)é, = m and
W VN = W'V + F(0)(E5,Ea)d, w(m TN = w( V) + F(o)(€s, )0
w(m V)% = 67,
(T VO = ~F(0)(Ea 607 — (F(0) (€ &) = 75 )67 = 2F(0) (€, 9.
w(mVHI =0

(2) Denote (2.5) by (Wo, W1,..., Wi,..., Wanq1) and set VEWE = Wy - w(V9)4.
Then w(VG)g =w(VE)43 (0:=0,2n+1:=2n+1) and

w(VY)§ = mw(m V)G +idaso,  w(VY)§=r"w(m VY5,
WV =@V, (V)i = wm V9,
WVOP) =~ Ta(m VO, w(VO)y, = —2mw(m VO,
(V) = (V)0 = (V) ) =w(V9)5) =0,

where we put w(VG)SBN) = w(V9Y, w(VG)SBE) = w(VHTHL ete.

Remark: The formulas in (2) agree with those of [6, Proposition 6.5] in the case J
is integrable.

Proof. (1) follows from Proposition 3.1. As for (2): We have
w(VO§(mice) = 2G(VE; e m3és, Thka)
= 7 g((m.V)eofp a) = Tw(m V)5 (E0),
W(VO)B(B) = 2G(VEmls, mhéa) = 2G(Vs ¢, B, mhka)
= —QG(V%gBW;lfa, ¥) = g(J&s, €a) = i0ap-

In the last line, (3.2) was applied. These yield the formula for w(VG)g. The others can
be shown similarly. 1

4 The curvature F(r,V%)

A straightforward computation based on Proposition 3.1 leads to the following for-
mula.

Proposition 4.1 We have
F(mV)(X,Y)Z = F(*V)(X,Y)Z

2
—9(¥, JZ){%F"(X) + %G(X)F"(f) + %]:(a)(X,ﬁ)f - %Tx}

— 0TV F(2) + F0)(2.) ¢}
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— 9 QZY )€+ 5 9Y,QZ X)) €~ 5 g(Z,IT(V)(X, V)€

F OV FONZEE~ L Fo)IY, 2)€}
FCVXFONZEE~ 5 Flo)(IX, 2)¢)
(

Ty F())(X,€) € - %f( (Y X) €

“VyFo)(Z

X
+0(X){( (2)
—00){ (VX F)(2)
+0(2){ (T F)(X) +
~ (VXF)Y) ~ (VxFO)VEE+ 5 Flo)(JX,Y)E
+ (*Vx7)Y = (*Vyn)X +7T(*V)(X, )

- FUT(V)(X,Y)) = F@)(T(V)(X,Y), )¢}
F0)(Fo(Y).0) &+ F(0)(¥.6) F7(&)

— FO(rY) = F(o)(Y,€) ¢}
(X),€)

)¢

+0(X)0(Z){ F7(F7(V)) +
(

) £+
( f

)
TY,

—9(Y)9(Z){f“(f"(X) + F (o) (F7(X), F(o)(X,8) F7(£)

— Fo(rX) - F(o)(1X,
Corollary 4.2 We have
Ric(m. V) (€ar £5) = Ric(*V) (€as €5) + i (0) (€ar £5),
Ric(m. V) (€a, £3) = Ric(* V) (£, £p),
Ric(m. V) (€a, €) = Ric(*V)(€a, €) — (*Ve, F(0)) (€5 €a)
— ("Ve, F(0)) (60, a) + zf(o)(ﬁa,@,
Ric(m, V) (&, €5) = Ric("V)(&, &) + iF () (€, €) = ("Ve, F(0)) (&9, €5)
— ("Ve, F(0)) (60, 68) + Ve, )5 + ("Ve, )5 — 2("Ve, 7)Y,
Ric(m.VF)(€,€) = Ric(*V)(£,€) = 2("Ve, F(0)) (&, €) — 2(*Ve, F(0)) (€0, €)
— 2F(0)(&0 &) F(0) (& &) — 2F(0) (&0, &) F(0) (€ &)
+2F(0)(&5, 1) + 2F (o) &0y T5) — 29(780, TED)

and Ric(m.VY)(X,Y) = Ric(m. V) (X,Y). (Note that Ric(*V)(£, £5) = Ric(*V)(£,€) =
0.) The scalar curvature of mVC is

(4.1) s(m, V) = anll sV 4 Rie(m.VE) (£, €).

Proof. The formulas for the Ricci curvatures follow from Proposition 4.1 (or Propo-
sition 3.2(1)). As for (4.1): Referring also to Proposition 2.1 and (2.6), we have

5(m V) = Ric(m, V) (€n, Ea) + Ric(m V) (€a, €a) + Ric(mVE) (€, €)

= 5(*V) + 2iF(0)(&a, &a) + Ric(m, V) (£, €)
v

= 25V — 5
n—+1

+ Ric(m, V) (¢, §).
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5 The curvature F (V%) and the proof of Theorem 1.1

Since F(VY) is also invariant under U(1)-action, it descends to a tensor m,F (V%)
€ I(TM ® T*M ® T*M ® T*M), which is well defined by (m.F(V))(X,Y)Z =
T (F(VO) (5, X, 73,Y )73, Z).

Theorem 5.1 We have
F(VO) (5, X, 73, w5, Z
= m (. F(V) (X, Y)Z) + (F(VO)(ri X, w3 )3, 2)
(5.1)(mF(VONX,Y)Z = F(m,.V)(X,Y)Z + F(o)(X,Y)J Z
+AF@)2Y)~g(r2 ) }IX - %{]—"(a)(Z,X) —g(r2,X)}IY
+ S F(@)(Z.9){00)IX —6(X) Y }

_l’_

NN~ N =

02 {F(0)(Y.IX = F(o)(X.§)JY |,

FoNZ,Y) = (mV)yF(0))(Z,X)

(652) (V) (X, w3 7) = 2 (m¥9)x
D(Z,Yo) - (m. V%) x F(0)) (Zo,Y)
(

+ ((mV9) x F(o

— (M V)Y F(0))(Z, Xo) + (mV)y F(0))(Zo, X)
+ F(0) (&, X)(mV9)y0)(Z) — F(o)(£,Y)((m.V) x0)(Z)
+ F(0)(Z,){((mV)x0)(Y) = (m.V)y0)(X)}

V) x€)

&)1
—9( ) F(0)(Z, (mV9)y &) + 0(Y) Fo)(Z
a)(( vE X))
}2

0)
, (
2 F(0)(mV9)xE,Y) = F(o)(mV)yé
(((W*VG)XT)Z, Y) + g((mV9)y7)Z, X)
and
F(VO) (3, X, 75, Y )8 = W;{{((W*VG)XJ)Y - ((W*VG)yJ)X}
+ 3 {F )Y, %)~ Fo) (X, V)
+0(X) F(0)(JY,€) = 6(Y) F(0)(JX, ) } =,
FVO) (D, m5,Y) 15,2 = w;;{ - ((W*VG)yJ)Z}
- %{F(J)(Y, JZ)+ F(o)(Yo, JZ) + g(TY, JZ)}E,
F(VE) (2, 7,Y)S = 77;;{ —Y + e(Y)g},
where we set Yy = 0(Y)E as before.

Proof. By Proposition 3.2,

Ve, yWHZ = WH(( «V )yZ) —I—J(VG Y’/THZ>Z
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(5.3) a<v$§%yw;‘{z) = G(VE, ym3 2, N) = ~G(m3, 2, V%, N)
@ a * 1 (o7 o *
= —59 (Z)w (VG)( )( 1Y) — 59 (Z)W<VG)(N)(7THY)

_ %J—"(U)(Z,Y) [Flo)(2.¥0) - Fo) (Zo.1)} - %g(vZ, v)

l\')\)—t

and
V * Xvﬂ.* Yﬂ'HZ Vw Xﬂ-'H (( VG)YZ> + V%{X0<V%{Yw;lZ>E
= 1, ((W*VG)X(TF*VG))/Z) n o(v%yw;[z w JX
{ (V . Ty (( VG)yZ>> + (ﬂ%X)O’(V,Gr’%y’]T;[Z)}E,
G;{[X,Y]W;{Z F(o)(X,Y)VEny 2
_ w;{(m 9 xy)Z — F(o)(X, Y)JZ} " 0<V§%[X,Y]W;{Z)E.
Hence, we have
(mF (V) X, Y)Z = F(r.V9)(X,Y)Z + F(0)(X,Y)J] Z
+ U(Vf;{yﬂ%Z) JX — a(vf%xw;qz) JY,
(F(VG)(W;QX W;QY)W;;z)V
{0 (v i XWH< VG)yZ>> - a(vf* S ((va)XZ»
* G *

which, together with (5.3), imply (5.1) and (5.2). Since

Ve (VC % =k ((7r vE) JY) + (VG £ JY )3

X Vs Y CARYE X O\ Vo xTH

v[f;’r* X3 v)E = vf;l xyE — F(0)(X,Y)VES = 73, (J[X, Y)),

VEVE v = Vm (V) 2) + VEo (VS v 2 )T = mi(J(mV )y 2),

V%{YVZW;*{Z =73 ((W*VG)Y'JZ> + a(V%{Yﬂ;‘_{JZ>Z

1
= mi (VO IZ) + S{F@)I2,Y) + F(0)(I2,Y0) - 9(rIZ,Y) |5,

v%,W;Y]F;{Z — 0,

VEVE v 5 = VEmJY = m3, %Y = —mY + m3,0(Y)E,

V%{yvz V[E T Y]Z == 0,
the others can be shown similarly. 1

Corollary 5.2 We have

Ric(VO) (5,2, 15, = Tr*{RiC(W*VG)(Z, Y)+ %(g(TZ, JY) + g(r, JZ))
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+ %(f(d)(JZ, Y)+ F(o)(JY, Z) + F(o)(Zy, JY) jL]-‘(O—)(yO’JZ»}7

Ric(V)(m4,2, %) = 71'*{ - 2@9(2);(0)@&,5@)},
Ric(VY)(Z, %) = 2n.
Proof. We have

Ric(VY) (15,2, 75, Y) = 2G(F(VO) (380, 75, Y )75 Z, Thi6a)
+ 2G(F (V) (75ar T3V )75 Z, 3ika) + G(F (V) (15,6, 73,V )75 Z, %)
+ G(F(VO)(E, 75 Y )5 2, 7548),
Ric(V9) (3,2, %) = —2G(F(VE)(S, m5éa) 3 Z, 75éa)
— 2G(F (V) (S, m38a) 7512, m5i6a) — G(F(VO)(E, m5€, B)3Z),
Ric(VE)(E, %) = —2G(F(V)(E, m3,£0) %, m5éa) — 2G(F (V) (S, m56a) S, Thka)-
Hence, by Theorem 5.1, we obtain the formulas. 1

Last, Corollary 5.2 implies Theorem 1.1 as follows.
Proof of Theorem 1.1. We have

Ric(V) (jy6as Théa) = 7" { Ric(m. V%) (€0 €a) +1 F(0) (Eas Ga) }.
Ric(VE) (h6as Th6a) = 7" { Ric(m. V%) (€6, &) +1 F(0) (Ear &a) }-
Ric(VE)(S, N) = Ric(VE)(N, 3) = 7['*{ — 2 F(0)(€a, 5@)}.
Referring also to (4.1), we know
s(VY) = 2Ric(V9)(m3€a, m3i€a) + 2 Ric(VE) (T5a, Théa)
+ Ric(VY)(N, ) + Ric(VE)(Z, N)

- 27r*{s(7T*VG) _ Ric(va)(g,g)} _2@2n+1) Ly

n+ 1 m™Ss .
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