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Abstract

We study the heat kernel associated with the Kohn-Rossi Laplacian on a compact
contact Riemannian manifold. We prove its unique existence and show that its every
differential at each diagonal point can be asymptotically expanded for small time,
and, by applying the general adiabatic expansion theory, we present a new formula
for the asymptotic coefficients. All the coefficients are described as certain universal
polynomials built from the curvature and the torsion of hermitian Tanno connection,
and we emphasize that, by using only a basic knowledge of calculus added to the
formula, one can describe the polynomials explicitly up to an arbitrarily high order.
Explicit description of an asymptotic coefficient of the pointwise trace in the strictly

pseudoconvex CR case is offered as an example.

Keywords: contact Riemannian structure; Kohn-Rossi Laplacian; hermitian Tanno

connection; asymptotic expansion; adiabatic expansion

0 Introduction

Let us take a compact manifold M of dimension 2n + 1 equipped with a contact
1-form 0, i.e., @ A (dO)™ # 0. We have hence the Reeb vector field &, which satisfies
6(§) =1 and L0 = 0, where L¢ is the Lie differentiation by . Further let us equip
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M with a Riemannian metric g and a (1,1)-tensor field J called an almost complex
structure satisfying g(¢, X) = 0(X), g(X,JY) = —df(X,Y) and J?°X = —X + 0(X)¢
for any vector fields X, Y. (In the paper we will adopt such a notation as df(X,Y) =
XOY))-Y(0(X))—0([X,Y]).) On the manifold M = (M, 0,¢,g,J) called the contact
Riemannian manifold, let us consider the Kohn-Rossi Laplacian
Oy = 350 + Oudl

acting on (p,q)-forms. Namely, we decompose the complexified contact subbundle
CHM = kerf ® C into CHM = Hy oM & Ho1M with HigM = {X € CHM |
JX =iX}, etc., take the dual subbundle CH*M = H'OM @ H%'M and set HPYM =
(APHYOM) A (ANCHPIM), whose smooth cross-sections, called (p, g)-forms, gather to-
gether into the space QP9M. For a (p,q)-form o, Oy is defined to be the (p,q + 1)-
component of the exterior derivative dp. We denote by 5}‘{ the formal adjoint of Oz with
respect to the hermitian inner product given as follows: We take a local unitary frame
fo = (0:€15- -, 6n 105 6n) of CTM (& := &, &5 = &a € HoaM, g(£a,&5) = dap,
1 < a,8 < n) and its dual frame 6° = (00,91,...,9",01,...,9@ (6° := ). Thus we
have g =060+ > (0 ® 0%+ 0% 0% =0 @60 + 2> 0%0% and the hermitian inner
product (¢,v)q for (p, q)-forms ¢, 1 is defined by

(ol = [ oni= [ aVyloide (o0)y = S oK U,

where we put ¢ = Y. 07K . oK Jocally (I = (i1 < ip < -+ < ip) (11 > 0), etc., and
0K = @ A - A G AR Ao A GFa) and denote by dV, the volume element, i.e.,
dVy = %41 = 0 A (df)"/n!. From now on, the local frames &,, §° are always assumed to

be unitary.

Let us suppose 0 < ¢ < n and consider the initial value problem for the heat equation

(0.1) (2 +0n)o=0, lmo)=¢ (peM),

where the convergence is in the L?-norm. Its fundamental solution or heat kernel e~*7#

expressed locally as
(0.2) e (P, Py = 3K (PYR T (P - (e 0m) U (p pry,

is a smooth cross-section of HPIM X H?P M over M x M parameterized smoothly by

t € RT which solves (0.1). Namely, the (p, q)-form

(7 M) (P) = / e~ (P, P') N xp(P') = /M dVy(P") (7P (P, P'), (') )y

M
i _ IK)(I'K’ 2
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is the solution of (0.1). Note that the heat kernel is inevitably unique if it exists. The
operator [y is certainly not elliptic (see (1.15)). It is hypoelliptic when 0 < ¢ < n (see
Remark 2.2(1)), however.

In particular, if J is integrable (i.e., [['(HyoM),T'(H10M)] C T'(H1,0M)), that is, if
M is a strictly pseudoconvex CR manifold, it is well-known (Folland-Stein [9], Stanton-
Tartakoff [18]) that a heat kernel exists and when ¢ — 0 its pointwise trace at each point

PY € M can be asymptotically expanded as

(0.3) tr e—tDH(PO’PO) N 75—(n+1)a0(Po) + t_(”+1)+1a1(P0) e
with
o0 —(n—2q)s n
4 0 — n n / n—2q n—2q = € S
(04) a0(P") (q) (p) o ds @ (s),  @TH(s) (2m)n+1 (sinhs)

(refer also to (5.12) in the case where J is not integrable). Note that ®"~24(s) is rapidly

decreasing.

In this paper, we will show that, with no restriction on J, the heat kernel exists and
its every differential at each diagonal point can be expanded asymptotically (Theorems
2.1 and 2.3)0and, furthermore, there exists a new formula for the asymptotic coefficients
(Theorem 5.3). We wish to emphasize that, by using only a basic knowledge of calculus
added to the formula, one can describe the coefficients explicitly up to an arbitrarily high
order. The idea of describing them by applying the invariance theory of Gilkey, etc.,
([10, §4.8], [11, §4.1]) will readily occur to us. Indeed one can find such researches (e.g.
Beals-Greiner-Stanton [3, §8], Biquard-Herzlich-Rumin [4]). Such an attempt, however,
will be tough because our knowledge about non-elliptic Laplacian is too limited. Our
method exhibits its ability particularly for studying such an abnormal Laplacian. Similar
formula for the metric Laplacian A exists as well and its asymptotic coefficients can be

calculated easily up to an arbitrarily high order (Nagase [15]).

We wish to present here, as an example, the explicit description of aj(P°) in the case

where J is integrable, whose calculation will be given in §7. Let us set

h
St.5) = "2 (1) € (0,1) < B),
Lo s8(1—t,8)S(t, s) s scoshs —sinhs
(05) ®1(s) = /0 dt S(1—t,s)+ S(t,s) sinhs 452 ’

! sS(1—t,5)S(t,s) \2 s \2 2scosh2s — 3sinh 2s + 4s
P — ) ) _ .
2(5) /0 dt(S(l—t, s)—l—S(t,s)) (sinhs) 6453



The functions ®;(s) are smooth and bounded on R. Each ®"~24(s)®,(s) is rapidly

decreasing.

Corollary of Theorem 5.3 Suppose J is integrable. Then, in (0.3) we have

(0.6) ar(P°) = i Raas(P") - {<Z . i) <n; 1)

a’ﬁzl

(G0 -GG [aemone)

[e.9]

()0 Lo -55)

where Rapcp denotes the curvature coefficient of the Tanaka-Webster connection V

(refer to §1), i.e., Rapcp = 9g(F(V)(&c,&p)EB,Ea). We put (Z:%) =0 when p = 0.

The expression (0.6) is obtained by written calculation. With the aid of Mathematica,

we get also its concrete description with no restriction on J (Imai-Nagase [13]).

Accordingly our main purpose is to offer the enlightening formula (5.14) for the
asymptotic coefficients on the basis of the adiabatic expansion theory ([14]) (refer also
to the comment following the proof of Proposition 5.2). Indeed, almost all the arguments
in this paper will be devoted to ascertaining the formula. In §1 we propose utilizing a
new connection called hermitian Tanno connection to conduct researches into the con-
tact Riemannian structure. With the use of it, the Kohn-Rossi Laplacian is expressed
in the style of classical Weitzenbock formula (Proposition 1.3). We expand its connec-
tion coefficients, etc., into Taylor series, which can be expressed explicitly as universal
polynomials built from the curvature and the torsion up to an arbitrarily high order
(Proposition 2.4). Consequently, in §5 the adiabatic expansion theory can be applied to
draw the formula. The two ideas of hermitian Tanno connection and adiabatic expansion

theory will afford the keys to an understanding of the abnormal Laplacian [Clyy.

1 Hermitian Tanno connection and Weitzenbock-type for-

mula for the Kohn-Rossi Laplacian

If J is integrable, the Laplacian (g possesses the Weitzenbock-type formula (acting
on (0, g)-forms) with the use of the Tanaka-Webster connection (Dragomir-Tomassini
[7, Theorem 1.19]). In this section we show that it still holds with the use of hermitian

Tanno connection introduced below even if J is not integrable.



Let V9 be the Levi-Civita connection associated with the metric g. Tanno ([19])

introduced a generalized Tanaka-Webster connection *V defined by
1
(1.1) *VxY =V%Y — 59()()JY —0(Y)V%E + (V) (Y)E,

which we will call the Tanno connection. By denoting its torsion tensor by 7'(*V)
and setting *7(X) = T(*V)(§, X), the connection is characterized axiomatically ([19,

Proposition 3.1]) as a unique linear connection satisfying
Vo =0, *Vg=0,
(Vy)(X) = QX,Y) i= (V4J)(X) + (V40)(JX) € + 6(X) TV,
T(V)(Z,W)=0, T(V)Z,W)=ig(ZW)§ (ZW € HigM),
*roJ+Jo*r=0.

(1.2)

Since the Tanno tensor field Q vanishes if and only if J is integrable ([19, Proposition
2.1], (1.12)), the Tanno connection coincides with the Tanaka-Webster connection when
J is integrable. Omne could describe Uy in the type of Weitzenbock formula by using
the Tanno connection, which will be, however, rather complicated. It is caused by the
fact that *VJ # 0 when J is not integrable. To amend the situation, we consider the
connection V defined by
(13)  VxY =*VyY — EJQ(Y,X) _ ’;Vx(ff) (Y = f¢,

2 5 (VXY = J*VxJY) 1Y €T(HM),
which we will call the hermitian Tanno connection. This obviously satisfies VJ = 0,
and the two connections V, *V and the Tanaka-Webster connection coincide when J
is integrable. The author found the connection V to have already been referred to by

Seshadri [16, the proof of Lemma 4.2]. It seems, however, that its usefulness is not yet

become fully aware of.

We want to point out here that the concise characterization of the hermitian Tanno
connection stated at Lemma 1.1(1) coincides with that of the Tanaka-Webster connection

(refer to the remark at the final page of [7, §1.2]).

Lemma 1.1

(1) The connection V is a unique linear connection satisfying the following:

(1.4) V=0, Vg=0, VJ=0,
(1.5) . T(V)(Z,W)=0 (Ze H oM, WeCTM),



where w4 1s the natural projection to the Hy oM -part.

(2) Let us set 7(X) = T(V)(&,X) and consider the Nijenhuis tensor [J,J]|, which
is defined by [J,J)(X,Y) = —[X,Y] + [JX,JY]| — JJX,Y] — JX,JY]. Under the
assumption that (1.4) holds, (1.5) is equivalent to the gathering of conditions

(1.6) T(V)(Z,W) = % (L, J(Z, W), T(N)Z,W)=1ig(Z,W)¢ (Z,W € H1oM),

(1.7) 7oJ4+JoT=0.

Proof. For Z,W € I'(H, oM ) we have

(1'8) 9([Z’ W]) =0, 9([27 ]) = —ig(Z,W),

(1.9) [LJ(Z,W)==2(Z,W]|+iJ[Z,W]) € T'(Ho1 M),
and

(1.10) T(V)Z,W) = 7 T(V)(Z, W) + i (2, W)

for any V satisfying VJ = 0. (2) will be obvious because of (1.9) and (1.10). (1): The
uniqueness can be established in the same way as for the Tanaka-Webster one. The
equalities at (1.2), (1.9) (see also (1.11)) imply that the connection (1.3) satisfies (1.4),
(1.6) and (1.7). 1

Let us summarize here some properties of the connections V and *V. As usual
the Greek indices «, 3, ... vary from 1 to n, the block Latin indices A, B, ... vary
in {0,1,...,n,1,...,n} and the symbol Y  may be omitted (in an unusual manner).

Referring to [19, §6], [6, §2.1, §4], [16, §3], we obtain the following lemma.
Lemma 1.2 We have

V§:0, V&ﬂ :ga'wg’é, va :fa'wg, wg‘ = —wg,
Ve =8 w(*V)§(65) + Ve, &g Ve, s = Ve §p+ & w(*V)5(8),
*Veolp = Vel (otherwise), w(*V)é = —w(*V)ﬁ,

] EOTEE) = 59 wUVIRE) = —5 95,
QZ&Q@HG@H;"Qr%‘ﬁ-l-&a@@ﬂ@m-ng o7 - ngz_ggv
and

TET =@ T =600 el T, T =1,
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T =a®0? @07 [J,J]5 + & 007 @07 [J,J]5,
FE®ONODT 278 +Ea RO NG - 277, W: 17, 715,
T(V)=ER0ON0° i+ Ea@ONOT -7+ 6, @O NG - 15,
(V) =T(V)+ 3 {0 @0 1,015 + a0 007 1,13, }
(112) (LG, = ~20Q%, + 205, 4iQ% = 113 — [1.J)5 + 1]},

By setting F(V)(éc,ép)ép = ([Vee, Vep) = Viec.ep)én = €a - F(V)5(éc,€p) = €a -

F(V)gCD, etc., the curvature coefficients are related to each other as

a_ OP a P
F(V)5 = FOV)Ss+ B2 RV = POV — 221000,
a e\ _71’Q;SY,B,& . B . B
(1.13) F(V)5.5 = F("V)5.5 = — 4Ty 0as +iT5 Oany,
“1Q%s |
F(V)B'yS_F( V)B'yé_ 9 - +ZT§‘557—ZT3555,

where we set QF ;= 07(("Ve, Q)(&5,€a)) = 07((Ve, Q)(65:85)), ete.
Now, with the use of the hermitian connection we obtain

Proposition 1.3 (Weitzenb6ck-type formula) We have

(114) Oy =) 0°AVe, Og=-Y 6°VVg,
(115)  Op=-Y (vgavga ~Vy.. 5&) —V=1qVe
— ZF §a,§5 AOP N OO A OP v (acting on QPIM),
where 09N, 0%V (= 1, = &) denote their exterior, interior products, respectively.
We may assume that the pair of indices (C, D) above runs only over the set of pairs

(’y, ), (7,0) (1 < ~,6 < n). (Notice that the action of V on forms is expressed as
o = Ea+wB(E) 0P NOC V)

Proof. Since (1.6) and (1.9) imply
(116) T(V)(Z, W) S H071M (Z, W e HL()M),

the proposition is proved in the same way as in the strictly pseudoconvex CR case ([7,
§1.7.6]). (In their book the proof is based on the property T'(V)(Z, W) = 0 which the
integrable case has, but the property (1.16) is obviously enough for it.) Indeed, since
(1.16) and the second equality at (1.6) yield

vfﬁigﬁj - Vggj é—Bl =T— [531753]]’ vfgigaj = T+ [gajag,@i]?
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the first equality at (1.14) is certainly correct. Green’s formula and (1.16) imply the

second one. Accordingly we have
Oudy =3 05 N0V - {Vy, ¢, — Ve, Ve, ),
OO = = > (Ve Vea = Vve et + 905 N0V - {Ve, Ve, = Vy e},
Z 0% A 06 Ve {VV§@§B B vfavfﬁ + V£nga o VV§5£6¢}
=> 60"n6%v. (VT(V)(g&,gﬁ) — F(V,0%)(&a; 55))

which assert that the formula (1.15) holds. Note that the last line follows from (1.6)

and

(F(V,6%)(64:66)07)(60) 1= (VeaVent” = VenVeb” = Vi, 6,167 (&)
= 0P (F(V)(€a,€)¢c) = —F(V)E (€. €5) = F(V)§ (4, €B).

One can find some investigation into 0%, which does not vanish in general (e.g.
Barletta-Dragomir [2, §5.1]). Here we offer its formula with the use of the connection

V. We have
O =) 6" NO" N {Ve. Ve, — Vv, e}
1 a 3 .
=3 > 60“n0% A {=Vr@)agy + F(V,0°) (8. &)}
I 0 . 3 1m0« 05« aC o aF
= =5 D O NN Vggeagy) T 5 D200 AT AOT ATV F(V)5 (8 €g),
which, together with (1.13), implies the following formula.
Corollary 1.4 We have
_ 1 -
2 o
O = =5 20" N A Vieasy)

o -Q% - Q%=
+V=1) 67N 67N {4 NV + =NV + 77 07N 0 v}.
2 Unique existence of the heat kernel and its asymptotic

expansion

In this section we will prove the assertions about the existence of heat kernel and the

possibility of its asymptotic expansion.



Theorem 2.1 The initial value problem (0.1) has a unique heat kernel e="=# (P, P').
As to the initial condition, added to limy_yo [ e 51 (P, P') A xp(P') = ¢(P), we have
lim o [ @(P) Axe™ 51 (P, P') = g(P").

We will prove the theorem by constructing the kernel according to the iteration
method of E. E. Levi so as to turn the result to the study of its asymptotic behavior,

but, in fact, we can prove it also by functional analysis method as below.

Remark 2.2 Most of the researches on contact Riemannian manifolds are focused
on the case where J is integrable. Careful assessment of their validity when J is not
integrable will be needed. We will state two valid assertions (cf. Folland-Stein [9, The-
orem 2.4]) related to this paper. Assume 0 < q < m and J may not be integrable.
Then we have: (1) Op is hypoelliptic. (2) There exists a constant C > 0 such that
lellse1 < C{IIOe|ls + llello} (@ € QPIM), where || - ||s is the Sobolev norm of order
s. (These are easily ascertained by referring to Folland-Kohn [8, §5.4].) Hence, one can

show the unique existence of heat kernel certainly by functional analysis method.

Next, near a given point P°, let us take local unitary frames &,, 6® which are V-
parallel along the V-geodesics from P°. Further let zo = (20, 21, -+, Zn, 21, - -, Za) OF 2 =
(20,21, -, 2n) be the V-normal coordinates centered at P?, i.e., expV ((o(P) - ze(P)) =
P: to be precise, first we set eg = £, eq = (€a +&a)/V?2, enia = Jea = (€a — £2)/V -2,
which together provide a V-parallel orthonormal frame e, along the V-geodesics from
P next define the real V-normal coordinates = (xq, 1, -,22,) centered at P° by
expY (ee(PY)-z(P)) = P and then put 2y = z0, 2o = (Ta +iTnia)/V2, 26 = Za = (Ta —
iTnia)/V2. We define the frames (0/02) = (0/0z¢) = (0/020,0/0z21,---,0/021, ),
(dz) = (dze) = (dzp,dz1,- -+ ,dz1,--+) by
0/0xq —10/0%p1q dre + idxnia

V2 ’ V2o

From now on, the unitary frames &,, §° are always assumed to be V-parallel and the

0/0z9 = 0/0xp, 0/0zq = dzy = dxg, dze =

coordinates z are V-normal centered at P°. So are the frames in the expression (0.2) of

e (P P = e MH (2,2 (2 := 2(P), 2’ := z(P")).

Theorem 2.3 There is an asymptotic expansion

(2.1) (0/02)" (902" )¥ (e~ D) UKD (po._poy
~ Z t—(n+l)+m/2 agi)(I/K,)(PO . A, A,)

m2—(|Alg+|A'm)



when t — 0, and the asymptotic coefficient agg)(]/K,)(PO

odd. Here, for a multi-index A = (Aq, ..., Ap)), we set (0/02)% = 0/0z4, - - 9/0za,,

: A, A) vanishes when m is

These two theorems are the generalizations of Stanton-Tartakoff [18, Theorems 1.1,
4.10 and 6.4].
Let us provide here an assertion, which will suggest that near P° the structure of M

is approximated by the standard contact Riemannian structure the Heisenberg group

has.

Proposition 2.4 (cf. Atiyah-Bott-Patodi [1, Appendix II|) There exists a

formal series expansion

> 34_1FV0‘38Z,8821
(22) w§(0/024)(2 Z £+1 T D (aij(../.a; 1024 )

=1

and, by setting
(2:3) a= Z Va0/0zp, 0% = Z VBAdzp,  hence V, =1(V*)7!

there exists a formal series expansion

o' =1T(V)4 (8/0zB)
BA BA . A
(2.4) 1% =07+ E 01 E ZA, ZA, Dony - Do, (0)

(-1 | OPF(9)4,(0/0242,0/025)
@HNZ/h ),

where we set T(V)(éc, X) =&a - T(V)A(X).

Proof. The proof is similar to that in [1, Appendix II]. Set R = Y z;0/0z; =
dSxie; =Y,240/024 = > z4€a. Then we have Lrdzg = dzu, which yields Lg w§ =
> R(w%‘(@/@zA))dxA + w§. Since wj(R) = 0, on the other hand we have

0wG(0/0z4) O0wG(0/0zar)
a _ a _ , B _ B
ERW@’ = R\/dwﬁ = g ZA { 02,4/ 921 }dzA
= E 24 F(V)5(0/0241,0/024) dza.

Thus we obtain the equality

Z R(w%(@/@z@)dam +wi = Z za F(V)5(0/0241,0/0z4) dza,

10



. . 0/0z
which says, by putting w§(9/0z4) = > w§(0/0za)[t] = >_ AL Aeﬁ%@),

> U+ 1) wi(0/0z)] = 2a F(V)5(0/0241,0/024).

We have w3 (9/024)[0] = 0, so that (2.2) can be ascertained by induction. Next, let
us prove (2.4). Consider the matrices w = (w@), T = (T(V)4), C = w+ T and set
C(0°) = w(6°) +T(6°) := —'C = —tw — 'T. Then, referring to Lemma 1.2, we have

(2.5) LRrO® = —z¢ - C(0°) + dze
and

LRC(6°) =RV Y~ OCENO/OD) .\ degs + d(T(6%)(R))

0zpr
—ZZB’{ F(V,0°)(0/0zp,0/0zB) + ﬁT(engl/azB)

which yields, by setting r* = |2[? (:= |2e|* = [20]* + X |2al* + 2 |2al* = Y25 = |2[?),

} dzp +T(0°),

(2.6) rLg (r‘1£R9°) = —z4 - LRC(6®)

— 2 T(0°) =Y zpr 7 { (V,0°)(8/9zpr,0/d2) +

AT (6°)(9/925)
aZB/ - }dZB

Further we have

£R9. = ﬁR((dzo) ' V.) = (dZ.) : (RV. + V.) 5
rLgr (r~'Lr0%) = rLr {(dze) - 77 (RV*+V*)} = (dz.) - (R*V* +RV*),

which, together with (2.5) and (2.6), yield

RVBA+VBA ZZA’CAA’(a/aZB)+5BA7
RPVPA L RVEA =N "2 T4(0/028)

OT4(8/0zp) }

+ZZB’ZA’{ A/(a/aZB/ 8/823) 823/

Hence, we have
C+ 1) VPN =0pa+ > 24 Can(9/0zp)[0 — 1],
(P + 0 VB =" 24 TH(0/02) [ — 1]

4 z
+ 3 2z { F(V)4(0/025,0/025) + L 9T4(0/0z2p)

aZB/

}[z — 9.
By induction we obtain (2.4). 1

11



Proposition 2.4 says that the coefficients of the Taylor expansions of wj (0/0z4), VBA

and Vp4 at z = 0 are expressed as polynomials made of

_0"g(F(V)((0/0244,0/024,)0/024,,0/024,) , 10
RA AgAgAgAsA, = 5 (PY),
ZAg 8214@
" 3g(T(V)(0/0z4,,0/024,),0/024,)

0za, -+ 024,

(2.7)
(P%)

TAL Ay Az Ay Ay =

and their expressions can be described explicitly up to an arbitrarily high order. For

example, we have

Corollary 2.5 We have

0 = dzp + dzg - ZB; +dzz - 2[3% +0(]2)?),

—Ta0~ Ta03 Tan3
0% = dzq + dz - zﬁ% +dzg - {zo (;O’B + 25 0575} +0(|z),

£=0/0z0+ 0/0z - 2,77-&07 +0/0z5 - 277;207 + O(|z%),
i —Ta0 ~Ta
§ = 0/025 +0/020 - 255 + 0024 {# =2 ZVTw} +O(2).

The corollary asserts that the structure of M near P is roughly approximated by
that of the Heisenberg group H,, = R x C™ near the origin. Let us adjust the notation to
check it. H,, is the Lie group, whose element is denoted by z = (29, 21, - - -, 2n) = (20, 2a),
with the group action zz' = (20 + 2, + Im Y 2425, za + 2} ), and has a contact 1-form

and the Reeb vector field

—1 )
(2.8) On = dzo + dzg - 25 + dzg - 25, e = 9/02.
We set
(2.9) ¢ = 8)025+0/0) ZB%,

which satisfies HH(fg ) = 0. These vector fields canonically provide an almost complex
structure J. Note that the dual frame of ¢ is 0%, = (0u,dza,dzz). These equip-
ments, together with the Riemannian metric g” defined by ¢ (X,Y) = 05(X)0g(Y) +
o (X, JH Y), provide a contact Riemannian structure to H,, which, compared with

the results in Corollary 2.5, certainly approximates the structure of M near P°.

The structure J is integrable, hence Q@ = 0, so that the hermitian Tanno connection
V# coincides with the Tanaka-Webster connection. Further we have wg =0,7=0and

the Kohn-Rossi Laplacian is simplified to
L=— Z&fﬁg - \/_71ng (acting on QP9H,,).
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Note that the left action of 2’ on H,, preserves £ and also the Laplacian L. Now, on the
typical strictly pseudoconvex CR manifold H,, the problem (0.1) has the fundamental

solution, which can be described explicitly as follows.

Lemma 2.6 (Stanton [17]) We suppose —n < a < n and consider the smooth

function

1 o0 S n 0 ’ZAPS
0 g [ ) o (2 )
ri(z) (2mt)nt+L /_Oo *\sinhs/ P U T ttanhs |
n (0,00) x Hy, (3 (t,2)). Then we have:

(1) The smooth function (with parameter t)

2
Pils, ) = (27rt1)”+1 (shfhs)neXp ( t|tzz:r|1hs as)
is rapidly decreasing and r{(z) is its Fourier transform relative to the variable s, i.e.,
T8(2) = Fs:220/0)(PE(5,2a)) = f ds e="(220/0) &4 (s, 2,), which is also rapidly de-
creasing. (Note that we have <I>7f 20(5,0) = " 24(s): see (0.4).)

(2) Assume 0 < g < n, i.e., —n < n — 2q < n. Then the initial value problem on H,

0
(2.10) (2+1)s=0. Emotr=v (vchimm)

has the unique fundamental solution

u(t,z,2") ZG TR (). pn24(57 1),

which we call the Heisenberg kernel. As to the initial condition, we have lim; g

J@(z) A*rp(t, z,2") = @(2') as well.
Proof. We wish to check the initial condition in (2.10). We have
/TH(t,z,z)/\* o) = 01K /quH(z) P20 (1) IR (1)
(.11) = Y0l (o). / AV () () (o0 (2),
[ e =1

where we set p = ZHU_{ oK and (20, 2za) = (tz0,t/224). The two coordinates 2/~ 1z,

z — 7' (near 2') are related by (2'712)e = E(2)(2 — 2')e = E(2')(z — 2'),

(2.12)

&
—
I
S~—
I
o O =
o =
()



and we have

_ U9l (o —u())
IK . / _ K 1/2 b t
) = @)+ 002 a2
B 1
:¢IK(2)—t1/2/ do
0

where E(—z)pp: denotes the (B, B')-entry of the matrix E(—z). Since z = t,24(2) +

890]K
0zp

———(2(=to24(Z) E(=2) g | B | (0?t) 11102,
E(ty2¢(2")(2(—ty24(2"))), for each k € N and multi-index B we can find a polynomial
P(---) such that

(1+ [2)5(0/02)° (™ ((~u(z)) - ()
1
= 1/2 g z C 1K Z(—ls2¢ Z/ g 1/2,2,,2 —Llg2¢ Z/ .
t Z/Od(@/a)so)((a())wt (~t24()))

Hence, [ru(t, z,2") Axgmo(2') = @(2) is rapidly decreasing Choosing a semi-norm sn(¢p)
(in general, sn(p) = sup,cp, ‘B‘QC‘ (1+|2))*(9/02)® ‘ » with some k,¢ € N and

a constant C' > 0), we have

(2.13) H [ruttz) e - et <)

LZH (Z)

where ||| L2, (2) denotes the L?-norm with respect to the metric g and the variable z.
g

In fact, the structure of H, approximates that of M ever closer as follows: Let us

take the V-normal coordinate system with respect to the V-parallel frame &,
(2.14) O:UxU— Hy,, expY((z) 04(2,2)) = 2,

where U is a small neighborhood of P. Following the argument by Greiner-Stein [12,
Proposition 4.3] (also Stanton-Tartakoff [18, (6.4)]), we know that Corollary 2.5 yields

k>0,>0
Oo(2,2) = (Z"2)o+ Y. O -],
k+¢=3
(2.15)  ©4(2,2) = (21 2)a + (2 12)0 - 2%7—72&01 + (2 2)5- {26 7;_20ﬂ + 2% d;yﬁ}
k>0, £>0
+ >0 O ek ).
k4+-4=3

We could provide more detailed descriptions obtained by using the results in [13]. Now,
even if J is not integrable, the argument by Folland-Stein [9, Theorem 14.1] is still valid

because of (1.8). Setting |2|g = {22 + |2a|* + |2a|*} /%, hence we have

14



Lemma 2.7 (cf. Folland-Stein [9, Theorem 14.1], Stanton-Tartakoff [18,
Theorem 1.2, Corollary 1.3]) The system © is admissible. Namely, setting O(0)%, =
O(|e(#, 2)|%), we have

(g = .
b i+i.@B%+Zo(@)li+O(@)2i (B =p5).

Further, we have

0
Oy = L@ + Z O( H + Z H
40, D40 3@,4 8@3 F 3@0 005
0
1 2 Y 1 v 0

where L® denotes L calculated in the coordinates © = O(7', z).

Thus the structure of H, approximates that of M closely enough for constructing
the heat kernel by iteration method starting from the Heisenberg kernel (refer to [18,
§1]).

As stated, almost all the arguments in this paper are devoted to the investigation
on the asymptotic coefficients. As a step toward it, we will construct in §3 a contact
Riemannian manifold denoted by H,,(P°), which is H,, but with a neighborhood of the
origin replaced by that of P? in M naturally, and in §4 we will show that the initial
value problem on H,,(P?%) has a unique heat kernel and its every differential at the origin
can be expanded asymptotically. The argument in §4 will be more than enough for the

proofs of the theorems of this section.

Proof of Theorems 2.1 and 2.3. It owes to Theorem 5.3 that the coefficient in
(2.1) vanishes when m is odd. The argument in §4 (the proofs of Theorems 3.4 and 3.5)
will be readily altered so as to fit for Theorems 2.1 and 2.3. Some comments are in order
here. (1) As to the first approximation (4.1): We cover M by a finite number of small
open sets U; centered at PJ. Each Uj is equipped with unitary frames fz, 0]'- which are
V-parallel along the V-geodesics from P/ and the V-normal coordinate system ©; with
respect to fz. Let ¢; be nonnegative C*° functions such that {gb?} is a partition of unity
subordinate to the cover {U;}. We utilize

r(t, PPy =S 01K (PYROIE(P') - 6,(P) ) ~>1(0;(P', P)) 6;(P")

7 LK
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as a first approximation ([18, §2]). (2) As to Lemma 4.1: It holds with no change. (3)
As to Proposition 4.2: We set ‘(8/8t)m§A’p§A/7p/qk(t, P, P') (0/ot)™

é-jA’ng&QP/qk(ta Pa Pl)

g ZUjap, Y

, etc., and change the function §(2, z) = |w(z) 'w(z)|, into
9

i 0P, P ©,(P,P P .P)eU
(5(P/,P): jg}},neU?(’ ]( ) )‘H;’ ]( ) )|H) (( ) ) )7
1 (otherwise),
where U is a small neighborhood of the diagonal set of M x M ([18, Lemma 5.2]). (4)
As to Lemmas 4.3 and 4.4: On M, a kernel k(t, P, P’) is defined to be of type ¢ if it
is described as GJI-K(P) X «9][._'1(/ (P') - k§IK)(IIK/)(t, P, P') and each k:j(»IK)(I/K/)(t, P, P
is a finite sum of functions K, (¢, P, P') = =225 (P, P)K(11/,0;(P', P)) (b > £)
(see (4.13)), whose supports are contained in U; x U; ([18, Definition 3.1]). The lemmas
hold under the definition. (5) As to Proof of Theorem 3.4: There will be no need to
set up such a paragraph because, on M, the convergences at (4.12) yield readily their

convergences in the L%-norm. 1

3 Warped Heisenberg group H,(P°)

Let us construct carefully the Heisenberg group H, (PY) which is warped near the
origin. (Refer to the comment preceding the proof of Theorems 2.1 and 2.3.) We
denote the standard Heisenberg group by H, = (H,,w), whose standard structure is
expressed as (0g,&7, g%, J7 VH L). (The symbol of variable was changed and 0,
etc., denote Oy, etc., in the variable w: see (2.8) and (2.9).) Also we express the
structure of M as (07,&M,gM, JM VM Oy). Now, we will identify a neighborhood
U={P e M||0(P°P)| <rl}of P*with a neighborhood U = {w € H,, | |w| < 7}
of w = 0 by the diffeomorphism

Opo: U - U, P w(P)=0(P°P)(==z(P)).

Further let us fix a smooth function p(s) on [0, 00) which satisfies p(s) =1 (s < 1/2),
p(s) =0 (s >2/3),0 < p(s) <1, and, for every r € (0,7(], set po(w) = p(|w|/r), which
is a smooth function on H,. Then there exists a number ro € (0,r(] such that, for any

r € (0,79], the 1-form on (H,,w)

0 = po O + (1 — po) O
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is nondegenerate. In fact, Corollary 2.5 yields
O A (dO)™ = {1 +O(r)} 05 A (dO)™,

which means: The remainder term O(r), which is determined for each r € (0,7(], has
support contained in {w € H, | |w| < r} (r € (0,r(]), and, for every multi-index A there
exists a constant Cy > 0 such that |(8/6w)A©(T)} < Opr =B (w € Hy, r € (0,75)).
(Hence, the term O(r), regarded as a function of (r,w) € (0, (] x H,, can be extended
continuously up to » = 0 by claiming O(r) = 0 at » = 0.) By choosing ro > 0 so
small that Cyrg < 1, 0 is certainly nondegenerate when 0 < r < r¢. In general, we will
use the symbol (or a function) O(r*), which means that it satisfies [(9/0w)*O(r*)| <
C "4l with the other parts unchanged. Note that py = O(r%) = O(1) and, in general,
00(r*) /0w 4 = O(r¥~=1) according to the notation.

We obtain thus a contact manifold (H,,w,#). Let us set 0%, = po 0%, + (1 — po) 0%
(6%, = 0) and denote its dual frame by ¢MH = (MH M) = ((MH MH (M),

Then fJ‘A/I H is a frame of HH, ® C and the Reeb vector field can be described as
-1
§= 1 + el Cp 1= T + MM (— dB(ENT ENT)) T do(eh M, b1,

where Ch is a column vector. Next, let us search for an associated pair (g, J) of a metric

and an almost complex structure (refer to Blair [5, Theorem 4.4]). The frames
0" = (0°,0%) = (0, Oy — ‘Cabiyn), &= (é0,€n) = (€21

are dual to each other. The metric § = 0®60+23 6% 0% satisfies §(X,Y) = 0(X)0(Y)+
G(—X +0(X)E,—Y +0(Y)E), hence, g(&,Y) = 0(Y). We polarize the form —df with
respect to g-orthonormal frame éa = (e ,eﬁ/flA) induced from the g-unitary frame
En. Namely, let us set A = —df(én,én) = 0([én, éa]), which is a 2n x 2n nonsingular
symmetric matrix, and decompose it into A = FG, where F is an orthogonal matrix
and G is a positive definite symmetric matrix. Then the pair (g, J) is defined as

g =000+ G- é&we=g"+00?) 0%+ Y O(r)bf 07,

(3.1) (A,B)#(0,0)

Jép :=ép - F,

which coincides with (¢, JM) near the origin and with (¢, J#) apart from U. We
obtain thus a contact Riemannian manifold H,(P°) = (H,,w,0,¢,g,J). Referring to

(1.3), (1.1) and (3.1), we know, by straightforward computation, that the hermitian
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Tanno connection V, which also coincides with VM near the origin and with V7 apart

from U, provides

Vo)0u,0/0wa = 80w - O(r) + d/dwy - O(1),
Vo jou, 0/ 0wy = 8/ dw - O(r) + 0 /0wy - O(1),
Vo jou, 0/ 0wa = 0/dwg - O(1),

Voo, 0/0wa = 00wy 5M% +0/0ws - O(1).

(3.2)

Note that we have

53 Y 8)0ue0/0wa = V55, 0/0wy = V5, 80w, =0,
' Vo, 0/0wa = 00w - dar 5.

Next, let us investigate the V-geodesics from the origin. Namely, we want to consider
the curve c(s) = *(co(s), ca(s)) = c(s,2;7) or ca(s) = *(co(s), ca(s),ca(s)) (ca(s) =

ca(s)) satisfying

QC $ CB(S Cc\S
T | g (Voo Owp) () TED L) _ g
a0) =0, a(0):= 20 =,

(Recall that we have set |2]? 1= |ze|? = |20|* + |2a|? + |za|*.) Tt follows from (3.3) that,

near s = so with |c(sg, z;7)| > r, we have
(3.4) c(s, z;1) = c(so, z;7) + ¢(S0,2;7) (s — S0)-

We are, hence, mainly interested in its behavior when |c(s, z;7)| < r. We have ¢(s, z;r) =

sz (|sz| < r/2), which gently curls off the line after that.

Lemma 3.1 For a small ro > 0, there exists a constant C' > 0 such that

(3.5) (s, 2;7) — 52| < O[22, |é(s, z;7) — 2| < Cslz[%,

(3.6) (8/02p)(c(s, ;) — 52)| < Os®|z],  |(9/02p)(&ls,2;7) = 2)| < Cslz|
when 0 < r <71y and |sz| < ro.

Proof. Let us set

T(s,2) = Y _Tpalc(s)) éa(s)éc(s)
=Y dwe((V" = V) g/0000/0wp)(c(5)) B (s)éc(s).
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Then, obviously we have I'pc(w) = O(1) (by (3.2) and (3.3)), and

é(s)—z= / dsé(s) = / dsT'(s,z), c(s)—sz= / ds (¢(s) — z).
0 0 0
On the other hand, we have |¢(s)| < C|z| (0 <7 < rg). Indeed, we have g(¢(s), é(s)) =
9(¢(0),¢(0)) = |22 and (by (3.2)) there exists C' > 0 such that |¢(s)|? < Cg(é(s),é(s))
(0 <7 < rg). Thus we obtain the inequalities (3.5), which hold actually without the
assumption |sz| < rg. Next, let us show (3.6). We take ro > 0 sufficiently small and

assume 0 < r < rg, |sz| < 1o, so that (by (3.5)) we have C' > 0 satisfying
(3.7) Csz| < e(s)| < Clsz|, C7lz| < |é(s)| < C)z).

Considering the equality

ol (s, z) A(é(s) — z) B(és) — 2)
9y = Tl TG R tc) + el =25 =E )
d(c(s) — sz)p Ol pe ' .
" dzp - 35)9 (c(s)) eéB(s)éc(s)
Il'pc

s G22 (e(s)) é(s)éc(s) + Tpo(els))éc(s) + Tan(e(s))én(s)

and the obvious estimate 8FBC 2 (w) = O(r™ 1), we know that there is C; > 0 such that

‘ azD

/ ‘8F s, 2)
1 ax a(é(t) — 2) + Oy l2| max d(c(t) —tz) L Oylsel,
2 0zp 0<t<s 0zp
which yields
1]0(¢(s) — =) ae(t)—=2)| 1 a(¢(t) — =)
Z < _Z
2 ‘ 0zp | —o%iss|  0zp 2 08i%s | 92p
ae(t)—=2)] 1 A(e(t) — 2)
< I S A —
e e s =)
< C1]#| max Oelt) = t2) + Cy|sz|,
0<t<s 0zp
d(c(s) — s2) s d(c(t) —tz)
S SV P eSS
G <20 [ an{ie g [ )
< 20" |sz| max elt) ~ t2) + C15%)z).
0<t<s 0zp

If we take the rg > 0 furthermore so small that 2C 79 < 1/2, then the above estimates

imply
1]0(c(s) — sz) d(c(t) —tz)| 1 A(c(t') —t'z) 9
- < - T <
2 ! foa, (1 o1 s, |~ g |) S Ol
1|o(e¢ 9
— <
5 ’ 8213 C%|sz* + C1sz|.
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Thus we obtain (3.6). 1

Proposition 3.2 Suppose ro > 0 is sufficiently small and 0 < r < rq. Then the
V-geodesics from the origin do not intersect with each other (except at the origin) and

the V-normal coordinates centered at 0 can be taken globally,

(3.8) z: Hy(PY) = Hy,, wes z(w),  exp ((8/0we)o - 2e(w)) = w.
Further, letting z — w(z) be its inverse map, we have a constant C > 0 such that
(3.9) |lw(z) — z| < Clz|min(|z|,r), |Owa(z)/0zp —dap| < Cmin(|z|,r),
(3.10) |z(w) — w| < Clw|min(|w|,r), |0zp(w)/0was — dpa| < Cmin(|wl|,r),

(3.11) C~tmin(|z|,r) < min(|jwl|,) < Cmin(|z], 7).

Remark In fact, we may take ro > 0 so small that, if |w’| < rg, then the V-geodesics
from w’ do not intersect with each other and the V-normal coordinates centered at w’

can be taken globally. We have similar inequalities as well.
Proof. We set w(z) =¢(1,2) = ¢(1, z;r). Lemma 3.1 implies
(3.12)  |w(z) — 2| < C|z%, |0wa(2)/0zp —dap| < Clz| (0 <7 <o, |2| <ro).

Hence, via the inverse function theorem, for a small 7y > 0, the map z — w(z) provides
an into diffeomorphism w : {z € H, | |2| < 70} — H,(P") parameterized smoothly by
r € (0,70], whose image is a closed neighborhood of the origin, and (by (3.5), (3.7)),
for each r, |w(z)| increases as so does |z| (< rg). Let us take r; € (0,79] so small that
lw(z)] > rif 0 < r < ryand |z| = rg (see (3.7)). Now, we assume 0 < r < r; and
want to study the behavior of the ray from the point w(z) = ¢(1,2) with |z| = r¢ in
the direction ¢(1, z), that is, the V-geodesic w(sz) = c(s, z) (s > 1) (see (3.4)). Let 2!,
22 € {2 € H, | |z| = ro} be perpendicular to each other with respect to the standard
metric (, ). We put z(f) = z' cosf + 2%sinf and project the point c(1,z(6)) onto the
plane spanned by those two points and the origin. We want to show that the argument
9(0) of the image c(1,2(0), 21, 22) = S_{e(1, 2(0)), 27 /ro) 27 /ro from 2(0) = 2! increases

as so does #. It will be enough to check it near § = 0. Since Lemma 3.1 implies

ro(cosd + O(rg)) (j =1),

c(1,2(0)),2 /ro) =
(e(1, 2(0)), 27 /ro) ro(sin® + O(rg)) (j = 2),

ro(—=sind + O(ro)) (j =1),

9 .
—{c(1,2(0)),27 [rg) =
86’< (1,2(6)), 2" /ro) ro(cosf + O(rg)) (j = 2),
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we have % tand(0) = %, that is, if 7o > 0 is sufficiently small then 9(0) cer-

tainly increases (near § = 0). Similarly we know that the argument of ¢(1, z(6), 21, 2?) =
S(e(1, 2(8)), 27 /ro) 27 Jro from 2(0) = 2! increases as so does . Thus, the rays from
the points ¢(1, z(6), 21, 2?) in the directions ¢(1, 2(0), 2%, 22) do not intersect and so do
not the V-geodesics w(sz(6)) = ¢(s,z(f)) (s > 1). Consequently, if 7o > 0 is sufficiently
small and 0 < r < rq, then the V-geodesics from 0 do not intersect and we obtain the
global V-normal coordinates (3.8). Let us show the remaining inequalities. We assume
0<r<ry. If|z| <r' = (ro/r1)r (< 1rp), then the inequality (3.9) follows from (3.12).
If |z| > 7/, hence, |c(1,z)| > 7, then it follows from (3.4). With the use of the inverse
function theorem, (3.10) will follow readily. As to (3.11): If |2| < ro, then (3.7) yields
C~Yw| < |z| < C|w|, which implies (3.11). If |z| > 7o, then |c(s)| increases. Hence we

have |w| > r and min(|z|,7) = r = min(|w|, 7). 1

We will fix such a small number r € (0, 7] and assume that the warped Heisenberg
group H,,(P°) (associated with r) is equipped with the global V-normal coordinates z
centered at the origin. Note that its Kohn-Rossi Laplacian Up(poy coincides with [y
near the origin and with L apart enough from the origin. We will denote by &,, 6° the
global V-parallel unitary frames and, further, we regard Lemma 1.2, Proposition 2.4,

etc., as the assertions on H, (P?). Added to the global (2.3), we set
o =E Va(z), 02 =103, V*(2), hence V, =" (V)7L

(éffz denotes éffw(z) calculated in the coordinates z.) Notice that we have

OWe
0%

Val2) = B(w(2)) (5(2)) Val2),

where E(w) is the matrix given at (2.12).

Lemma 3.3 Suppose |w(z)| > r. Then Ve(2) is unitary and Vap = Vz5. Further
Voo is identically equal to 1 and Vap ((A, B) # (0,0)) vanishes unless A, B € {1,...,n}
nor A, B € {1,...,n}. For each multi-index B, there exists a constant Cg > 0 such that

|0/02)%Vu(2)| < Cals ™, |(0/02)%Va(2)| < Ca 1,
|(0/02)% det Va(2)| < G |21, |(0/02)%w(0/024)| < Ca o1
and so does also for V*(z), V*(z), det V*(z).

Proof. The first half follows from &, ., = 55{2 and g = g when |w(z)| > 7. As to the
second half: The point I*(z) on the ray sz (0 < s < oo) which satisfies |[I7(2)|y = 1
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1/2
is uniquely described as I (2) = z/a(z) := z/((zg + /28 + 4 zalt + 42z A )/2) and
(by (3.4)) we have

w(z) = 4y 2w 5o 0" @) (za = 1"(2)) ()] 2 7).
Since ‘(8/82)311{(2)’ <Cp \,2|7|B|7 hence we have
(3.13) (0/02)Pw(z)| < Ca 2P (jw(z)] = 7).

Further, since the two vector fields fﬂw(m) Ve(IH(2)), otz = Nfl|w(tz) -Ve(tz) along the
V-geodesic w(tz) (a(z)~! <t < 1) are V-parallel and coincide at t = a(z)~!, these are

the same. In particular, we have V,(z) = Vo(I"(2)). We obtain hence the inequalities.

Remind that we have w§(0/0z4) = 3_ Yple aavz—cf when |w(z)| > r. 1

Let us introduce here some kinds of normal coordinate systems. On M the VM-

normal coordinate system © has been defined (see (2.14)). On the standard Heisenberg
FH

o w!

group H, = (H,,w) we have the standard one oL . H, x H, - H,, exva(
oL (W', w)) =w, ie., @f‘(w’ w) = w'~w, which induces two kinds of normal coordinate

systems O, 01 : H, (P%) x H,(P") — (H,, z),

ex va(é’ -07(7,2)) = 2, e, OF(2, 2) = OF(w(2), w(2)) = w(z) "lw(2),
V(e - OH(Z,2)) = 2, ie., O(2 2) = Vo(2)1OL (2, 7).
It follows from Lemma 3.3 that we have
Ol (z',2) = (2,2, |0Y(7,2)| = |0%(= )],
O (Y 2) = 2O (Y, 2)).

The V-normal coordinate system with respect to the V-parallel frame &, defined on a

neighborhood V' of the diagonal set in H,,(P%) x H,(P°)
OV :V = H,, expY(&(?) -0Y(<,2) =7z

bears the relation

M2, z) on{(#,2) e V| |w(z)| <r/3},

(3.14) eV(Z, z) =
OH (2, 2z) on {(2,2) €V ||w)| >r}.

In the next section, we will ascertain the following two theorems.
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Theorem 3.4 (cf. Theorem 2.1) By assuming ¢ € Qb H,(PY), the initial value
problem (0.1) on H,(P") has a unique heat kernel eitDH(PO)(z,Z’). As to the initial
condition, added to lim;_, feftDH(P‘))(z,z’) Axp(2') = @(z), we have limy_o [ @(2) A
xe ) (2 21) = 3(2).

Remark Since H, (P") is not compact, it will be necessary to add even more con-
dition: The form gb(t z):= [ e ") (5, 2') A %p(2') belongs to the domain of O (poy,
the integral ®(t) := [dVy(2) |o(t, z)| is differentiable and the equality (0/0t)®(t) =
[ dVy(2)(8/0¢) |¢)(t,z)|g holds.

Theorem 3.5 (cf. Theorem 2.3) There is the asymptotic expansion

o (IR)(I'K")
(3.15) (0/02)2(8/)07 )" (e tDH(Pt))) (0,0)
N Z 4~ (nt1)+m/2 a%fg)(pk/)(Po LA, A)

m>—(|Alg+|A )

when t — 0.

4 Construction of the heat kernel on H,(P°) and the proofs
of Theorems 3.4 and 3.5

On the basis of the work by Stanton-Tartakoff [18], we will construct the heat kernel
on H,(PY) to prove Theorems 3.4 and 3.5. Rather exhaustive calculation, some results

of which are applied also to the proof of Theorem 5.3, will be required.

Let us set

Mtz 2) = 0K () RO () P OM (Y, 2))
(on Hy(P%) x {2" € UY | [w(2)| < ro}),
ri(t, 2,2") = r(t,w(z), w(2"))
=0 ROTE() - det(ViVir)(2) det(ViVierr) (7)) rf (08 (2 2)
(on H,(P°%) x H,(P%)),

where ©M (2, 2) denotes (not the original ©M(2/, 2) but) the system OV (2/, z) restricted
there. Notice that ©V, which (by (3.14)) really coincides with ©M sufficiently near the
origin, is certainly well-defined on the region because of Remark on Proposition 3.2. Let

pa(w), pr(w) be nonnegative C*° functions such that {p3,(w), p%(w)} is a partition of
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unity subordinate to {{w € H,(P°) | |w| < 2r},{w € Hy(P%) | |w| > r}} (0 < 2r < ro).

Setting par(2) = pamr(w(z)), ete., as a first approximation of heat kernel we wish to choose
(4.1) r(t,z,2") = pp(2)pa (2 rau(t, 2, 2') + pL(2)pL(2)) TL(t, 2, 27).
Lemma 4.1 (cf. [18, Proposition 2.1(ii)]) For any ¢ € Q5?H,,(P), we have
lim [ r(t,2,2') Axp(2) = ¢(2),  lim [ @(2) Awr(ts 2, 27) = ¢(2)

in the | - |g-norm and in the Lg—norm (1=1,2).

Proof. Let us prove the first convergence. It suffices to show

(42) lim [ par(2)oar () raa (b 2, 2) Awp() = pi(2) 9(2),
(43) g [ ) (0) it 0, 0') Aok G0) = ) 2,

where we set ¢(w) = p(z(w)). As to (4.2): The convergence in the |- |;-norm was shown
in [18, Proposition 2.1(ii)]. Since pys is compactly supported, it obviously implies the
convergences in the other norms. One finds (4.3) valid in the three kinds of norms by

referring to the proof of Lemma 2.6. 1

Let us set (¢, 2, 2') = (%+DH)T(25, z,2')and ¢! = q, ¢*> = q#¢*, ¢ = q#¢?, ... induc-
tively, where, in general, for double forms h;(t, z, 2') (i = 1,2) we define the convolution

(hl#hQ)(t, Z, Z/) by

t
(h1#tho)(t, z,2') = / ds/hl(t —5,2,2") Nxha(s, 2", 7).
0

We put

k=0 k>ko
o
Goo = > _(-1)F¢",  Riylgee) = D (-1)*¢"
k=1 k>ko

Proposition 4.2

(1) The forms ¢*, 144", Ry, (¢oo), Riy(p) are all well-defined and smooth on (0, 00) x
H,(P%) x Hy(P°) (3 (t,2,2"). The last two forms are termuwisely differentiable. For
every integer m > 0 and multi-indices A, A’, there exist constants b, = b, (m,a,a7) > 0,
etc., such that, on (0,Ty] x H,(P°) (3 (t,2')),

< by, tE— A=A 1) /2mm =1

m k /
@) (@ et ad ez
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@5) @00 n s a1 2.2 |, < a2,
(4.6) 1(8/0t)™€n 2€nr 20 Rieo (do0) (t, 2, 2) || 11 (2) < blko) (ko= |Aln— A1) /2-m—1
(4.7) 1(0/0t)"n 0,20 Rio (P) (8, 2, 2")|| 11y < ko) $(ko—lAl s —|4"| 1) /2=m

and so are H(@/@t)mﬁA,zﬁAgz/qk(t, z, Z/)HLl(z/)’ etc., where we set {ux = €Az €Ay 2
etc. (The estimates for Ri,(qso), Riky(p) are the ones for the sum of the termwise L'-
norms of their termwise differentials.) Further, for every £ =0 or £ > 2n+2, there exist

constants By({) = By, (4,41 (f) > 0, etc., such that, on (0,Tp] x H,(P°% x H,(PY),
(4.8) ‘(8/8t>m§A7zfA/7zlqk(t, 2, z/)’ < Bk(f) t(kfIA\H7|A’|H)/27m+f/2f(n+2)5(2/’ Z)fz,
g

(49) |(@/00)" € slu o (r#d ) (1.2,

< Oy (0) Al =18 ) /2=t /2= (1) 5 1yt

)

(410) ‘(8/at)m§A,z£A’,z’ Rko (qoo)(ta 2y Z,) ‘g
< Bk, £) t R0~ Al I8 ) 2=mt2=(nt2) 501 )=t

)

(411) ‘(8/8t>m§A7z5A/7zl Rk’O (p) (t, z, Z/) |g
< C(ko, ?) t(kofIAlH*|A'|H)/2*m+€/2*(n+1)5(zl’ Z)ié

where we set §(2',z) = }w(z/)_lw(z)‘H. (The last two estimates are the ones for the
sum of the termwise | - |g-norms of their termwise differentials.)

(2) The convolutions r#qso, q#qeo are well-defined and smooth on (0, 00) x H, (P°) x
H,(P°) and we have

0
(Q + DH(P0)> (r#400) = Qoo + qHGoos P =7+ TH#o0s  GFF oo = —4 — Goos
0
(& + DH(p0)>p(t, 2,2') =0.

Further, for any ¢ € Q5 H,(P°), we have

(4.12) }g% p(t,2,2") Axp(2') = p(2), lim [ @(2) A*p(t, z,2') = @(2)

t—0

in the | - |g-norm and in the L;—norm.

Some preparatory arguments will be necessary before proving the proposition. In
general, a smooth kernel k(t, z,2') = 3 07K (2) ROT'K' (/) - KUK (¢ 2 2') is said to
be of type £ if each coefficient EUE)I'KY) (t,z,2') is a finite sum of such smooth functions

as

K, (1, 2,2') = £ 220! 2) K110 (2, 2))
(4.13) M e b>0),
Klﬁ(t, 2,2") = t_”_2+b/2pL(2’, 2) ’C(Ll/t@L(Z/, 2))
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where K(©) is a rapidly decreasing smooth function on H, (3 ©) and py/(2/, 2), etc.,
are smooth functions with supp ppr C {(2/,2) | |w(2’)| < 2r, |w(z)| < 2r}, supp pr, C
{(Z,2) | lw(z")|] > r,|w(z)] > r} on which g = g¥. Further we assume that, for

every A and A/,

En26n (2 ,z)’ is bounded. The kernel whose coefficients consist
of the second type of functions is equivalently interpreted in the variable w as fol-
low: It is a smooth kernel kj (t,w',w) = Zé{f((w) X égK/(w’) : kgk)(llk,)(t,w,w’)
each coefficient of which is a finite sum of such smooth functions as K%(t,w,w’ ) =
22 s (w0 w)K (1140 (w', w)) (b > {), where p; (w',w) is a smooth function with
supp p;, C {(w',w) | |w'| > r,|w| > r} and ggwgg@,pi(w’,w) is bounded for every A
and A’

Lemma 4.3 (cf. [18, Propositions 3.2, 3.1, 3.3 and 3.4])

(1) The kernel r(t, z,2") is of type 2 and q(t, z,2') is of type 1.

(2) For a kernel k(t,z,2") of type £, Ep €nr »k(t, 2, 2") is a kernel of type £ — |Alg —
|A'|;r and (0/0t)k(t, z,2") is of type £ — 2.

(3) For a kernel k(t, z, 2") of type £, there exists a constant C' > 0 such that |k(t, z, 2')|
< Ct2=082) k(8 2, 2')|| oy < CHP71, ete., when 0 < t < T,

g

(4) For a kernel k(t, z,2") of type £, we have

ZfB,z’kB(tvzaz/) +k*(t,z,z/) (A# 0)7
Eazk(t,z,2') = B#0

ZfB,z'kB(t, 2, Z’) + k*(t, z, z’) (A=0),
where kp(t, z,2"), ki(t,z,2") are some kernels of type £: One could set kg = —k. Also

Ea,2k(t,z,2") can be described similarly.

Proof. Recall that ©M and O are both admissible. One finds the lemma valid for
the kernels whose coefficients consist of the type of Kl]’w by referring to [18] with some
further argument. The lemma will be obvious for the kernels whose coefficients consist

of the type of K%. I

Lemma 4.4 (cf. [18, §4 and §5]) Suppose that the kernels ki(t, z,2") are of types
m; (> 1). Then (ki# - - - #k;)(t, 2, 2") is well-defined and smooth on (0,00) x H,(P°) x
H,(P°), and there exist constants b > 0, B({) >0 (£ =0 or £ > 2n + 2) such that
(4.14) H(a/@t)m@&’z@&z,(kl# o #kj)(t, z, Z/)HLI(Z) < bt(zmﬁmlH*lA'lH)/mefl,

(4.15)  |(0/00)™En b o (Ratt -~ #ky) (8, 2, 2')]
< B(0) (O mi—|Alg—|A|g)/2—m~+£/2—(n+2) 67, Z)—f

)
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tc., when 0 <t <Tj.

Proof. Lemma 4.3(2)(3) assert that (4.14)’=! and (4.15)%:3 hold. The estimate
(4. 15)é>;n 4 (or, in fact, (4. 15)%;)) follows obviously from the fact that IC(©) is rapidly
decreasing (refer to [18, (5.10)]). Thus the lemma in the case j = 1 is valid. In general,
it is verified by an induction relative to j on the basis of the following formula (cf.
[18, (4.36), (5.3), etc.]) induced from Lemma 4.3(4) and integration by parts: Setting

k = kot - - - #k;, we have

(4.16) (0/0t)™Ep 2Enr o (ka# - - - F#k;j) (L, 2, 2')
- Y Cw / ((a/at)m’gA,zk;l)(%,z,z”)A*((a/at)m”gA,,Z,k)(g,z",z')

m/+m/'=m—1

t/2
+ / dS/ 8/815 mgA Z&B’ //k‘l)( S,Z,Z//) /\*kQB/(S,Z”,Z/)

IB’|H<|A’

+ //2d8/k:1]3 —5,2,2") N*((0/0t)"Ep éar k) (s, 2", 21),

Bl <|Alm
where kg is a kernel of type my, kop/ is a finite sum of convolutions of kernels of types

ml)

m; (i =2,---,7) and we put C,y = ( ). 1t implies

1(0/0)™n b o (Rt - - #s) (8,2, )|

< G H((a/at)m/wkl)(t/zz,z N
< (|10t €ur b (t/2,2", )

Ll(z”)

t/2
+ Z/o ds max [[(9/08)"€n,sEmr ok (t = 5.2, 2| oy ame (5, 2", 2 | s
t
+ Z //2 ds max Hk:mg(t — 8,2, Z”)HLI(Z)' H(8/83)”1&&2”5&,72/]?(3, 2", Z/)HLl(z”)
t z
and

‘(a/at)mgA,ng’,z/(kl# te #k‘j)(t, z, Z,) |g
< 37 Cor e (/00 g ) 1/2 22|,
< |[(@/0ty™ eur k) (1/2, 2", 2

t/2
+ Z/o ds H;%X |(8/8t)m§A7Z§B/7zuk1(t -8, 2, z")}g . Hkm/(s, 2", Z/)HLl(z”)

Ll(zll)

t
+ Z /t/? ds ||ki(t — s, 2, 2") HLl(z”)' max (0 0)™ & s ki(s5, 2", 2") ‘g :
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Hence, (4.14) and (4.15)y—o can be shown inductively. Next, let us prove (4.15)¢>2,+2.
We know ([7, Proposition 1.7]) that there exists a constant v > 1 such that the inequality
8(z,2") < v(6(z,2") + 6(2",2')) holds. Let us set Bsy, = Bjjo,(2) = { € Hy, |
5(z,2") < 6/2v} (6 :=6(7,2)) and denote by Bg/% its complement in H,(P°). Then,
referring to (4.16), we have

[ @100 ¢ k) (520 Ax((@/00) €1 ) 5, 2" 2)

g

(0/00)" € k) (5, ")

< / max
Z//

< (0/00)™ €0, -1) 5 2,2")
B¢

8/2v 9
/
B

/ t
((8/08)™ &n 2k1)(5, 2, 2")
etc. Hence, inductively we can prove (4.15)y>2,+2 as well. The condition ¢ > 2n + 2

Ll(z”)

(0/00)™ € h) (5, ")

max
L(2") 2"

)

g

5/2v

is required to guarantee the integrability of various integrals appearing in the inductive

argument. 1

Proof of Proposition 4.2. Lemma 4.4 implies that r#q¢*, ¢* are smooth and the
estimates (4.4), (4.5), (4.8), (4.9) hold. By exhaustive calculation such as that in [18,
§4 and §5], we know that there exist constants b > 0, ¢ >0, B(¢) >0, C({) >0 (£ =0
or £ > 2n + 2) and a large integer k' such that, if & > &', then the constants by > 0,

¢k > 0, etc., appearing in (4.4), (4.5), etc., may be determined as

bk ck
O = Al A2 —m) T T2 Al — N a))2—m)’
Bu() = B(0)*
STk Alg — [Am)/2 —m+ /2= (n+ 1))’
B C(o)
Ci(f) = T((k+2—|Alg —|A|g)/2—m+£/2—(n+1))

Hence we obtain the estimates (4.6), (4.7), (4.10) and (4.11). As to (2): It is an easy
consequence of (1) and Lemma 4.1 (cf. the proof of [18, Theorem 4.10]). 1

Now, let us prove Theorems 3.4 and 3.5.

Proof of Theorem 3.4. Since we have already proved Proposition 4.2(2) and

Lemma 4.1, it suffices to show

417)  lim / Ru)(t, 2, 2) Axp(2) =0, Tim | 3(2) A*Ry(p)(t, 2, 2) = 0
t—0 t—0
in the Lg—norm. We will prove the first convergence. Let D’ be a compact set which

contains the support of ¢ and let NV be a large integer. Then we have

[ B2, nxol) 2 |

2

= Rko (p) (tv 2, Z,) A *(P(Z,)
D’

(4.18) ‘

L%(2) L3(2)
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IN
©

Jav@( [ avie @+ 997 R0t 2], 0+ o), )
< [ ([ v a1 R o)), ) ey
<su(e [ av) T [ a0 R b)),
X (/ dVy(2') (1 + |z/|N)_1) - max ’Rko(p)(t,z,z')}g
D
2
<sn(@( [ v )
X max HRko(p)(t,z,z')HLl(z) - max ‘Rko(p)(t,z,z’)’g,

where sn(p) is a semi-norm of ¢. Hence, by (4.7) and (4.11), if ko is sufficiently large,

then we have || [ Ry, (p)(t, 2,2") Axp(2) < tY2sn(yp), where sn(yp) is a new one.

‘LQ(Z)
There remains the estimation of [(r#¢*)(t,2,2') A xp(2') (0 < k < ko). Let U be a

relatively compact open set containing D := D' U {z | |w(z)] < 2r} and let p be a
nonnegative C'*° function such that 4 =1 on D and supppu C U. Further, let V be a
relatively compact open set containing U and let v be a nonnegative C* function such
that v =1 on U and suppv C V. In addition, let us set §(t, z, 2’) = u(2)u(z")q(t, 2, 2),
w(ZNr(t, z, 2"y = v(2)u(Z)r(t, z,2") + (1 —v(2)u(2)r(t, z,2") = ro(t, 2, 2") + roo(t, 2, 2').
Then, recalling supp ¢(t) C {(z,2') | |w(z)| < 2r}, we have

/(T#qk)(taz,zl) Nxp(2') = /(r#qk)(t,z,z’) A *p(2)
= /(ro#cjk)(t,z,z’) Axp(2') + /(roo#(jk)(t,z,z’) A xp(2))
and

| [#atyie ) et

L2(2)
2

<{ /v Wy(2) [[ro#td) (e, 2, )

1/2
11 } max ’cp(z')’g < 12 vol(V)2sn(p).

On the other hand, since the supports of ro(t, 2, 2') relative to z, 2z’ do not intersect
with each other, the kernel ro, is of type ¢ for all £. Hence, an estimation similar
to (4.18) shows || [(rec#q")(t, 2, 2) /\*go(z’)HLQ(Z) < t%2sn(p). Thus we obtain the
first convergence at (4.17). The second one follows similarly by setting 7(t, z,2') =
() )r(t, 2, 2') and p(2)a(t, 7, 2') = p(2w()alt, 2 2') + p(z) (1 = v()alt, 2, ) =
6o(t, 2,2") + goo(t, 2, 2"). Note that (F#7"")#tq = (F#3  F#a0 + ((#7 N H#eee. 1

Proof of Theorem 3.5 (also refer to Remark 6.2). Refer to the proof of [18,
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Theorem 6.4(i)]. We wish to show that there is an asymptotic expansion

(IK)(I'K')

(4.19) (8/8z)A(8/8z/)A/ (e_tDH(PO)) (0,0)
N Z o~ (n+1)+m/2 bgg)(ﬂﬁ)(Po A A,

m>—(|Alg+|AH)

Since the two differential operators g poy and Up coincide sufficiently near the point

(IK)(I'K")

m/2
(IK)(I'K") . .

@y, o . To show (4.19) it will suffice to show that &a ,&ar (K17 - - - #k;)(t,0,0) can

m

0 = P, it follows immediately from the Duhamel principle that b is equal to
be expanded similarly, where k14 -- - #k; is the convolution given in Lemma 4.4. We

decompose it as

gA,z&A’,z’(kl# o #kj)(ta 07 O)

Jj Bla<|Alg

=3 Y (Rt 1w (G i k) R A A ) (1,0,0),

Pp=1|B'| g <|A|n
where k;g, kyp are kernels of types m;, m;. Here, in general, we set

(kadtt - oy by ok - K5 ) (£,0,0)

‘ §(s=2) sr=1) /2
— ds .. / ds(p—l)/ ds(P) / : /
t/2 s(P=2)/2 0 2V eH, (P%) 2(P)eH,, (PO)
kit —sD0,z2M) Ak
Ax by (sP7H — ) =1 Y A (k14 - #k5) (5P, 2P 0).

Thus it will be sufficient to show that this can be expanded similarly, under the assump-
tion that the kernels k; are of types m; with m, > 1 — |A|lg — |A'|g, m; > 1 (i # p)
and, further, under the assumption that the supports of k;(t, z, 2') (i > 2) relative to z
are contained in {z € H,(P°) | |w(z)| < 2r}. Since the coefficients of each kernel k; are
expressed as finite sums of Kl]’\i[ or K%' (b; > m;), eventually we know that it suffices to
examine, near t'/2 = 0, the behavior of the function

5(0) §(5-2) 5G-2)

s(P=1) /2 s(®)
(4.20) / ds(l).../ ds(p—l)/ ds(p)/ ds(pﬂ).../ dst—1
5(0) /2 s(P=2) /2 0 0 0

. (5(0) — 5(1))—("+2)+b1/2(8(1) — 8(2))—(n+2)+b2/2 . (S(j—l) — S(j))—(n+2)+bj/2

></ dVg(z(l))---/ AV, (207D 4py (2D, 20 g (20D 267D
Hy (PY) Hy (PO)
X ’Cl(bl/(s(OLS(l))@(z(l), 20y)... ’Cj(L1/(s<a‘—1>7s<j>)@(z(j)7 20=D)yy,

where © = OM or OF and s = ¢, sU) = 0, 20 = ;00 = 0. In fact, the domains of

integrations relative to the variables z(Y) may be reduced to {z( € H, (P°) | |w(z™)| <
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2r}. Now let us use ul® = ©(z®, 20-D) (i < p) and v = O(z(+D), 2()) (i > p) as
new coordinates. (We take the domains of the coordinate maps O(-, 2(=1), ©@(2(+D ) :
H,(P% — H, large enough.) The function v = u(u(V, ... ul0~D) := @z, 2(P-1) ig
smooth and (4.20) is equal to

5(0) §(5—2) s0=1) /9 5P $G-2)
/ ds .. / 25D / 2s® / 2sHD) L / PRE)
5(0)/2 5(1’*2)/2 0 0 0

(5O — syt 01/2( (1) @)y~ ba/2 L (5(-1) _ o)) ~(n2)+bs/2

S RGN AT (O, ),dV,)(u D)
H,3u@) Hnau(j 1)
< 1(z0, 20) (2, 20) - (2100, 207
X ’Cl(h/(s(m_s(l))u(l)) 1(¢1/ s 50y D) Kt (5t-1) gty 20)
(

X ’CpH(Ll/(S(p) srHU p)) K (Ll/(so 1) _g())U (‘_1))

5(0) §(5—2) $(-2)

s(pfl) 2 s(®) -
_ / g ... / 251 / 2s®) / 2P+ / 2561
5(0) /2 5(P=2)/2 0 0 0

(50 = D)= b1 /2 (1) _ @)D +ba/2 L (g(G1) )y~ (n2) /2
X/ dng(u<1>)-~/
H,>u® H
(1))..

X K1 (/50— sy u
X Kp1(by (st —stornyu

AV, u (w0 D) (™ - 4 0=D)
Su-n Y

=) K1 (st sty )

w1,

: ,Cp—l (L1/(5(p—2) _g(p—l))u

(p))_ -ICj (L1/( (G-1)— 5(]))

Here, the domain of integration relative to the set of variables (u(l), o ul _1)) may be
reduced to a certain compact set as well and w(u(l), e u(j_l)) is a smooth function on
the domain. Further let us change the variables: We set v = Ll/(s(i—l)_s(i))u(i) (i <p)

and v(®) = Ll/(su)_s(i“))u(i) (i > p), where s() := to()). Then the above is equal to

(s—2) o(i—2)

. 1 o 0.(1)—1)/2 o®) '
(4_21)753—1/ dg(l).../ da(p—l)/ dg(p)/ dg(p+1).../ doU—1)
1/2 a(P=2) /2 0 0 0

IS /2] _ (D) 2)401/2 (1))~ (n2)+5/2

x AUDEHD (] _ gyt (1) — o)yt .. (gDt

></ dVyn (v(l)) .. / AV, (U(J'*l))
Hyp30@) H,,5v(0—1)
(., Lt(o(P_Q)—o(P—l))(U(p_l))a Lt(g(p)_g(p+1>)(v(p))a )
X ICl (U(l)) M ,Cp_l(v(pil)) Kp(Ll/t(a(P*U_g(p))U) ]Cp_,’_l(v(p)) “ e ]C] (U(jfl))

— 4~ (n+2)+37bi/2

1 (s—2) oi—2)

o U(P—l)/z o)
x/ do) . / da(pl)/ da(p)/ da(pﬂ).../ doU=1)
1/2 o(P=2) /2 0 0 0
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(1= oWy/2=1 (=) G0y = (42 40p/2 (1)) /21

></ dng(v(l)).../ dng(v(j—l))
Hyp3v(M) H,3v0-1

o)

“P(e s o2 -1 ( s o) oty (0P), )

x Kl(”(l)) T ’Cp—l(”(p_l)) Kp+1(v(p)) K (”(j_l)) ]CP(LI/t(U(P_l)—U(m)u)'
Here the function

U (o1 =)t = b jy(ot-1 —gyu(ul), . uI ™)

= Ll/t(o’(pfl)—o'(p))u( SR Lt(g(P*Q)—U(Pfl))(v(p_l))7 Lt(g(p),,,(pﬂ))(v(p)), - )

is smooth up to t'/2 = 0. Indeed, checking ©4(2"), 2P~V carefully (see (2.15)),
we know that, if we expand ux ( - ,Lt(a(pfz)_a(pfl))(U(p_l)), Lt(a(p)_(,(erl))(v(p)), .. ) re-
garded as a function of ¢'/2 into Taylor series at t'/2 = 0, it starts from the term of
order |A|g. Thus (4.21) is asymptotically expanded as desired. It is easily examined

that the integrations appearing in the coefficients of the expansion are all integrable. j

5 Adiabatic expansion of the Kohn-Rossi Laplacian and a

formula for the asymptotic coefficients

We will introduce a new method of computing the asymptotic coefficients appearing
in (2.1), i.e., (3.15), on the basis of the adiabatic expansion theory ([14]).

Let us consider the transformation of H,,(P°) defined by z — 1.(2) = (e20,e/221,. ..,
e22,), 0 < & < g (see (2.11)), which induces a new contact Riemannian structure

(9(.5)7‘558)79(6)7 J(a)) = (L*H' L*gi, L:ge7 L:;Jg) with

eveEN"E
oA =Ml 2gA g = Aln2e, o gf =N 0d w0l It =g
Obviously (2.3) produces

67 = (9/020) - V&, VgA(z) = MBIV (1c(2),
07 = (dze) - V3, VB (2) i= eIBln-MImRy BAG ().

€

(5.1)

Note that lim_i/2_, V.(g)(z) = E(—2), lim_12_,g V(Z)

structure (62, €5, g%, J¢) the Kohn-Rossi Laplacian D‘}{(PO) := elg(poy and the hermitian

(2) = 'E(2) (see (2.12)). To the

Tanno connection V¢ := V are attached. Those for the structure (9{5)7 ££6)7 g®), Je))

are Dg)(p()) = L:D%(PO), V() := *Ve. The coordinates z are then the V()-normal
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coordinates centered at 0 with (9/0ze)0 = fse)(()) and fse) is V(©)-parallel along the
V(©)-geodesics sz (0 < s < o0) as well. The V(€)-normal coordinate system with respect
to 525) is defined by

()

OV VE = {(2,2) € Ho(P°) x Hp(P°) | (1c(2),1c(2)) € V} — Ha,

OV (2, 2) = 120 (1), 1e(2)).

Further, obviously the initial value problem (0.1) on (H,(P°),6|.)) has a unique heat
_®
kernel e " H(PO) (z,2"), which is described as follows.

Lemma 5.1 We have

o) _— _ (IK)(I'K")
s H(P) (7, ) ZQIK ”(( /) ettt (e taDH(P%) (te(2), c(2")).

Proof. It follows immediately from the fact that the heat kernel on (H,(P?),6.) is

given as

, IK)(I'K'
C H(PO) Z Z ZQIK &QI'K( ) EnJrl(e*tSDH(pO))( ) )(Z,Z/).

Next, we consider the transformation
L QP = QPO (PY),0), DD 0o F o 301 IR

which provides the Laplacian [, = I&TDS)(PO) (=1I71o DS)(PO)

Heisenberg group H,, = (H,, z), which we call the adiabatic Kohn-Rossi Laplacian

I.) on the standard

at P°. (Refer to [14] for more information about (generalized) adiabatic operation.)
Obviously, also the initial value problem (0.1) relative to U on Hy, has a unique heat

kernel et (z, 2), which can be described as

(52) tD(E Ze I’K’(Z/)

IR)(I'K")

_ (
5"+1<e Dceo) ) (1e(2), 12(21)) det Vo (1e(2'))
because of Lemma 5.1 and dV () (2') = dVyu (2') det V(;)(z’) = dVyu (') det V*(1e(2)).

In addition, by setting V(e = I;‘V(a), fﬁg) =17 SE), etc., Proposition 1.3 yields the
adiabatic Weitzenbock-type formula

_ (He)g(He) _ olHe) 1
(53) O = _Z (Vggf V5<s> -V <§ £<s)) LqVi: <s>
SRV (S € ) 03 A 0% VOGN 0DV (acting on QPIH,,).
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Notice that we have

Vi) =€)+ 30 B Ea) () - 0 A0

(5:4) Vel = D7 e g (a) (tel)) €5,
F(VOG(ED,e5)) = e22F(V)$ (€a, €9) (1e(2)),

which, together with (5.1) and Proposition 2.4, imply the following.

Proposition 5.2 The differential operator Uy can be extended smoothly up to

el/2 = 0. As to the formal series expansion
oo
Uy = Z em/? Ury2, Uoje =L
m=0

which we call the adiabatic expansion of Oy at P°, the coefficients are described as

|B|=0,1,2

(55) Dm/2 - Z Dm/2(Bv (C) ) ZC(a/aZ)B (Z(C =20y sz)a
2+|Cla=[B|g+m

where each U, /5(B,C) is a finite sum of operators which are the composites of such

operators as 0% N 91@ vV, 02[ A 9% V multiplied by constants. If we express its action as

$ Kl ¥l IK)(I'K’ K
Omp2(B,C) 055 = >~ 00" ®,0)- 04,
[a=I"lu

(IR)(I'R")
m/2

then the coefficients [ (B,C) are all expressed as universal polynomials made

of (2.7). Further, one can describe the polynomials explicitly up to an arbitrarily high

order.

Proof. When £!/2 — 0, U(e) tends to

-3 ((a/az.) : E(—z))a((ﬁ/az-) - E(—Z))
= - &lel —v-T1qg" =L

V=14 ((0/02) - B(-))

0

a

It follows from (5.3), (5.4) that we have

|B|=0,1,2
0

) Do = Y Onp () 259/02)%,
24+|Clg>|B|lg+m

(

ABO(E2, 1u(2)) = eCHCln—Bla-m2 OB ()

from which we draw the expression (5.5). 1
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The adiabatic series Uy 9, [ /9, ... will reveal various infinitesimal details of M at

0 which are so condensed that we cannot perceive clearly. The following argument

tells us that the series certainly reveal an infinitesimal behavior of the heat kernel at
PO

Now, suggested by the formula (% —i—D(E))e*tD(E) = 0, let us construct a formal power

series
(5.6) )(t,2,2) Zs pm/Qtzz)
so as to satisfy (% + Oe))p(e) = 0. Namely, we define it inductively by

(57) pO/Q(t7Z72I) = TH(tszZ/)?
m1>0

(58) pm/Q(tvzvz/) = _(pO/Q# Z Dm1/2pm2/2)(t7272/)

mi1+meo=m
mi,...,mg>0

= Z (1) (PO/Q# Uy j2P0/27 -~-#Dmk/2p0/2)(t,z,z’) (m > 0),
S me=m
where we put # = #,u. Then it will be natural to expect (5.6) is a formal series

expansion of the heat kernel (5.2). Thus, by setting

Ploy(t,z,2') i=p(e)(t, 2, 2) det Vo (1e(2 Z em2p Prna(t, z,2")
m=0
and Py, /9(t, 2,2') = 3 Hf{K( )X GI/K/( - 73(1/[;)([ K )(t, 2,2'), it will be expected that
_ (IK)(I'K") > 1<
(5.9) entl (e taDHuvw) (te(2), (=) = 3 W?p”j;)“ Kt 2, 2.

m=0

If it is valid, then we have the asymptotic expansion

(5.10) (e_th(P()))UK)(FK’)(O 0) ~ i -t/ pURIIRY (g ),
that is, "

(5.11) ol (E0 - 9,0) = PLOTE (1,0,0) = pE(1,0,0),
Hence, the following formulas must be valid:

(5.12) aél/é{)(l K/)(PO 0,0) =6 ryr iy TH(1,0,0) = 01y R /OO ds ®" 2 (s),

(5.13) aﬁii)(llﬁ)(Po :0,0)

m1,...,mk>0

Je=1) fr(e— 1) 700 ()
— Z Z H fnm ) )( 0, c®)

> me=m (>0)

x (a4 25" (8/0z)B( w22 (0/02)% ra ) (1,0,0),
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—2q/ - : >0
where we set ry = ry(t,2,2') = r;” “%(2’~'2). Here, the summation Zgléw’gff means

to sum up all the terms with indices (my, ..., my) satisfying the condition, and the next
> means, for each (mq,...,my), to sum up all the terms determined by the indices
(B®,C) and the sequences of indices (1K) = (IO K©) (1IWKM) (IR KFE) =
(I'K') appearing in O,z (1 < £ < k). The term appearing in the third line of
(5.13) is the value at (¢, z,2") = (1,0,0) of the convolution of the functions rg(t, z, 2’),
zc(l)(ﬁ/az)B(l)rH(t, z,2"),... with respect to the metric g”.

Further, if the differentials of the left hand side of (5.9) can be formally expanded
into the series of termwise differentials of the right hand side, that is, if

gD+ (Al +A1)/2 ((8/0z)A(3/82')A, (e_tamH(P())) UK)U/KU)

(te(2), e (2))

= 3" e (9/02)4 (00 ) PULD T (1,2, 2),

m=0

then, by setting ng)(llkl)(t, z, 2 AJA) = (8/8z)A(8/82’)A/ng)(llkl)(t,z,z’), the

formula (5.11) is generalized as follows.

Theorem 5.3 We have

a(If()(I’K’)

WUEI (PO a7 = D (1,0,0: A, A'),

(5.14) (m+|Alg+A 1) /2

which vanishes when m s odd. Moreover, this is expressed as a universal polynomial
made of (2.7), which can be described explicitly by using only a basic knowledge of cal-

culus.

6 Proof of Theorem 5.3

We wish to prove the following assertion in this section.

Proposition 6.1 The double form p(g)(t,z,z’) = e_tD<E>(z,z’) can be extended

smoothly up to /2 = 0. As to the Taylor expansion

p(a)(t7zyz/) = Z 5m/2pm/2(t,z,z/) + Em*/me*/Q(gl/Qataz7zl)a
0<m<ms

we have

(61) pm/?(ta Zs Z/) = pm/?(ta Zs Z/) (0 <m< m*)
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If this is valid, then certainly we have the formal series expansion (5.9). Further, the
formula (5.14) holds because the proposition asserts that (5.9) is termwisely differen-

tiable.

Remark 6.2 Consequently, Proposition 6.1 provides the asymptotic expansion (5.10)

and also that of every differential. Namely, it ascertains Theorems 3.5 and 2.3 as well.

We start our discussion with some preparations needed for its proof. We set # = #n,

dV(z) =dVyu(2), || = | lgu, | |i = | |Liey = |- |L;H(z)7 etc., if no confusion occurs.

6.1 Standard kernels on H,

The argument in §4 holds good for the standard (H,, z) because it may be regarded
naturally as a warped Heisenberg group. A kernel on H,, whose coefficients consist of
tn2H0/2 (5 2) K(11/:(2'~'2)) will be called a standard kernel, where |§§Z£g7z,p(z’, 2)|
is assumed to be bounded for any (A, A’) (see (4.13)). Obviously Lemma 4.4 holds also

for the standard kernels on H,, and we have:

Lemma 6.3 Let k; be standard kernels of types m; (> 1). Then the convolution
(2C1(0/02)Brky# - - - #2595 (0/02)Bi k) (¢, 2, 2') is well-defined and smooth on (0,00) x
H, x H,, and there exist constants b’ > 0, B'({) > 0 ({ =0 or £ > 2n+ 2) and an
integer N > 0 such that

(6.2) H(3/6t)d(6/az)A(8/8zf)A’ <Z(C1 (a/@z)ﬁl kl# - #Z(Cj (8/82)BJ' kj) (t, ., Z/)
< 2= mi/2—N—d-1 Z ’Z/CI"

(6.3) ‘(8/8t)d(8/82)A(8/8z’)A/ (z(cl (9/02)B k14 - - 4253 (8/92)Bs kj) (t,2,2)
< BI(E) tz m¢/2fod+€/27(n+2)‘2/—1z|;{€ Z ‘Z/(C/|

Li(z)

on (0, To] x Hy, x Hy,, where 3_ |2'C'| which is a finite sum depends on (A, A") and (C;, B;)
(1 < i < j) and so do the constants b/ > 0, etc., and the integer N. Moreover, for
every ¢ € Q5T H,, the integral [ (251(0/02)B1ki# - #2591 (0/02)Bik;)(t, 2, 2') A xp(2')
is well-defined and rapidly decreasing, and there exists a semi-norm sn(-) such that, for

any ¢ € Q' H,,, we have

< 4272 e (),

| / (252 0/02)% k- #2500k ) (1. 2. #) A xo()

)

(6.4) H / (z(cl (0/02)B ke - - 253 (8)02)B kj) (t, 2, 2') A xp(2')

L <t mi/z*lsn(go)
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where k =1, 2.

Proof. Lemma 4.3(4) for H,, implies
(6.5) 2£(0/02)B2C(0/02" )t 22K (14 (2 7 2))
= Y R0 K 1y (2 )
[BI<|(B.B)]

= Y SHO0) e R (),
|B/|<|(B,B)|

where the rapidly decreasing functions K(©) appearing in the second and third lines,
which differ from that in the first line, depend on the respective indices (B, C, ¢), etc. It

follows from (6.5) and integration by parts that we have
(8/0t)%(8/92)*(8/0")* (ZCI (0)02)Brky# - - #2591 (0/0z)Bs kj) (t,z 2"
= XY @ @/0) (ks #hy ) (02, 2)
B <] (A,A7) [+ B

- Z (8/8t)dZC”£I§{’,z’ (kl# e #kj> (tv 2, Z/)a

B | <|(A,A7) |43 Bi
where, again, the kernels k; appearing in the second and third lines, which differ from
that in the first line, depend on the respective indices, but are of the same types as those
of the original k;. Hence, with the use of Lemma 4.4 for H,, and the argument in the

proof of Lemma 2.6, we obtain the lemma. 1

From now on, as above, all the rapidly decreasing functions are usually expressed as
K(O) with no distinction to simplify the description.
6.2 Rough estimation of remainder term

Let us set r(t, z,2') = 3. 07K (2)ROTE' (/). p UK ) (¢ 5 21y = 3 01K (2)ROTE' (7).
po(2,2) 1" 2(0°(2,2)) (o = M or L) (see (4.1)) and

ro(t 2, 2) Ze () - e TR (1, 1(2), 10(2)) det V (1e(2)
= 01 ( I’K'( ) polte(2), 12(2)) P 2O (2, 2)) det Vo (12(2')),
where we put ©°6) (2, 2) = /g@oug(z/) t-(2)). Further, let us set q)(t, z,2') = (& +
O(e))r o) (t, 2, 2') and q(ls) = 4@, @&y = 8)#(1 = q() #q ... inductively. Then
we have
(6.6) Py (t,z,2') = kz (ro#al))(t,2,2)  (ro#aly == re)-
=0
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Notice that the coefficient of the remainder term Ry, (p(.)) = ZkaO(—l)kr(s)#q’é) can

be described as
(6.7) Ry (p(e)) TOUEN (1, 2,2") = e Ry (p) TOTED (82, 10(2), 10(2')) det Vo (e ().

Lemma 6.4 There exists a constant C'(kg,¢) >0 ({ =0 or £ > 2n + 2) such that

(9/0t)%(8/92)"(0/02" Y ( 5oz Bk (o)) (12, )

< 6k0/2—m/2+€/20/(k07 f) tk0/2_d_|(AA')\H/Q—m+€/2_(n+1)6(5) (Zl, Z)—E Z ’Z(CZ/(C/’

on (O,eé/z] x (0,Tp] x Hy, x Hy,, where we set §©)(2',2) = 11/0(te(2'),1e(2)). Here the
finite sum 3" |2C2'C'| depends on the choice of (d, A, A").

Proof. The differential of the right hand side of (6.7) but with "*! removed by the

differentiation ((9/815)51(8/82)‘&(8/82’)‘&/(af_:‘?/2 )™ can be described as

Z Ed/+|(B7B,)IH/2_m//2h(€1/2,t,Z,Z,) B(LE(Z,>, LE(Z))

d'+|(BB) 1 /2<d+|(AA") | /2+m!

X ((a/at)d/flﬁﬁ,zfﬁ’,z’Rko (p)

(IK)I'K")
) (te, 1e(2), 1e(2)),

where h(c'/2,t, 2, 2') is a polynomial and the absolute value of the function B(w',w) is

bounded on H,, x H,, (refer to Lemma 3.3). Hence, (4.11) implies the lemma. 1

6.3 Detailed investigation of the term (—1)*(r#4nq(,))(t 2, 2')
We wish to investigate each term (—1)]“7“(5) #ggqé‘;) appearing in (6.6) closely.

Lemma 6.5 The system ©M©) (2 2) (= GV<S>(2’,2)) can be extended smoothly up
to the domain dom ©@M(®) .= {(1/2 2/ 2) € [0,6(1)/2] x Hy x Hy | (2,2) € VY and so
can be the system OVE) (2| 2) up to the domain dom O = [0,5(1)/2] x H, x Hy,. The

extended ones provide

(68) 57|, = "2)s
9 () (finite) I =1 \D 0m/2_1/2 ,
(6.9) (851/2) Op " = Z 2727 2) 05 (€7, (7)), te(2)),

I(C"D)|r =2m+|B|u, D[>0

@Em/2(61/2’ LE(Z/), LE(Z)) _ 8(|(C’,D)|H_m—|B|H)/2 @gm/2(LE(zl)’ LE(Z)),

where the coefficients @Emﬂ(slﬂ, te(2),1:(2)) (= @?81]{»2),3(81/2, te(2),1:(2))) are smooth
on dom ©°®) and bounded in the sense: In the case ©°C) = OME)  their differen-

tials by every (high order) differentiation relative to the variables (2',z) are bounded on
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dom, ©M(®) .= {(£1/2 2 2) € dom OM(®) | |w(ie(2"))| < 27, |w(te(2))| < 2r} and, in the

case ©°) = QL) | 50 are their differentials on dom OH(®).

Proof. The function ©°(1.(2’), t.(z)) is obviously smooth on dom ©°(*). As /2 — 0,
OME) (2, 2) tends to 2/~ 1z (by (2.15)) and also L) (2, 2) = b /e (w(ee(2') " tw(ee(2)))
tends to 2/~'z. Thus ©°() (2, 2) can be extended smoothly up to dom ©°(*) and (6.8)
holds. It follows readily from the differentiation rule and the property @OB(E)(Z’ ,2') =10
that (6.9) but with the boundedness condition ignored holds. In the case ©°() = QL)
we will need to further expand the coefficients into finite Taylor series (with remainder

terms ) so as to satisfy the boundedness condition (see (3.13)). 1

(€)

The lemma asserts that one can express @OBE as a finite sum of functions of the
variables (z',2/~12), and, conversely, express (2/~12)p as a finite sum of functions of the

variables (z',©°)) as follows:

eoB(a) _ Z Z/C’(Z/—lz)]D) 33(51/2, e (2), 12 (2712),
I(C"D)| =Bl a, [D[>0

Bu(e?,1.('), 1e(z'712)) = U CDNa=IBI 2B L, (), 1.(2 1 2)),
(6.10)
(2 12)p = Z 2 (%) By (2, 1.(2), 1.0°E)),
I(C’' B)|g>|Dlu, [B[>0

BD(51/27 Ls(zl)a Lsgo(a)) = 5(|((C/7B)|H_|D|H)/2BD(L€(Z,)a Lzs@O(g))'

Here, the coefficients Bg(e'/?,1(2'), te(2'"12)) (= B(@D);B(el/z,Lg(z’),LE(z’_lz))) are
smooth on dom©°®) and quasi-bounded in the sense: Their differentials by every
(high order) differentiation relative to the variables (£'/2,2',2) are described as fi-
nite sum of such functions as 2/'C" (2/~12)Y B(e'/2, 1.(2'), 1.(2'~'2)), where the functions
B(e'/2,1.(2"), 1c(#712)) are bounded on dom, ©M(®) when ©°¢) = M) and bounded
on dom O%®) when ©°¢) = QM) Also the coefficients Bp(e'/2,1.(2'),1.0°¢)) are
smooth on dom ©°®) and quasi-bounded in similar sense.

1/2 -1
)

te(Z'),1e(2'72)) naturally

In general, if we regard a quasi-bounded function B(e
as a function of (£'/2,1.(2'),1.0°), a function of (€%/2,1.(2),1.(2712')) and a function
of (e1/2,1.(2),1.0°E)) (U°()(z,2") := —0°E)(2/, 2)), then the respective functions are
quasi-bounded in the respective senses. Similar assertions are valid also for the other
quasi-bounded functions B(e'/2,1.(2),1.0°)), etc. In the following we may express a

quasi-bounded function simply as B(el/ 2) if no confusion occurs.
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Now, for a kernel k(t, z,2/) = S 075 (2) K HI'K'( N -K(t,2,2") (see (4.13)), we set
Kot 2, 2') = S 0HE(2) ROK' (1) - KO (1,2, 2') with

o(e

Koo (t2,2') = 772020 (10(21), 12(2)) K(1100°O (), 2)),

which we call an (g)-kernel of type b. Note that by Lemma 3.3 the kernel r(¢, z, 2’)
multiplied by det V*(2') is still of type 2, so that r((t, z,2) is an (¢)-kernel of type 2.

Lemma 6.6

(1) The function Kg(a) (t,z,2') can be extended smoothly up to €'/ = 0 and has a
Taylor expansion
Kg(s) = Z m/2 Kb o,m/2 + €m*/2 Ki m*/2(€1/2)7
(6.11) 0<m<m.
KIJ)\4,0/2 = t_n_2+b/2PM(07 0) ’C(Ll/t(zl_lz))a KL 0/2 = =0.

Further, there exist finite sum expressions (¢ > 0)

(6.12) Ky, 0= 25(0/02)P 1 HPHE (1 (211 2)), KY e =0,
el/2

(6.13) KL, (%)= 2C(0/02)P 2+b/2+f/2[3(51/2)/cu/@<>)]

MM

Here, in general, we set [f(6,...)]°, = fol doy--- [ " dom f(omd, .. .)poly (o), where
poly(om,) is a polynomial of o,,. (At (6.13) we may set poly(opm,) = 1.) The functions
K(©) (= Kucp)(©)) are rapidly decreasing and B(e'/?) (= B(K’Q]B)(Elﬂ)) are quasi-
bounded.

(2) (cf. (6.5)) We have

e1/2

(6.14)  25(0/02) (0/0=')F (9/0M )™ 172 [B(V2) K(11,0°)]

*
el1/2

_ Z @(a/az)E t—n—2+b/2+€/2 [6(61/2)K(L1/t®o(5))]
|B|<|(B,B")|+m

MMy
1/2

~ B, ’ ° €
= Y FHONT R B K, 009)]

M

B/ <|(B,B)|-+m

where B(e'/?), K(©) appearing in the second and third lines depend on the respective

ndices.

Proof. By Lemma 6.5, certainly Kg(e) can be extended smoothly. Further, by
recalling the location of supp p,, the second line of (6.11) and the second identity
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at (6.12) will be obvious. Let us show the first one at (6.12). We assume m >
0. Lemma 6.5 says that K?\J’m /2 can be expressed as a finite sum of such functions
as t_”_2+b/2z’(c1(z’_lz)D(8/8w)BlC(L1/t(w)) (w := 2'7'2). We can alter the function

2O 2)P(0/0w)EK (11 /1 (w)) successively as follow:

SO TP (0/0w)EK (1 u (w)) = 2% (0/0w)® (0P (11 (w)) )

= t|D1|H/22/C1(a/aw)BlKQ(Ll/t(w)) = t|D1|H/22/CQ(a/az)%’cﬂh/t(z/*lz))
= P20 92 (20 (71 2P (11 (27 12))

= tCBI2584(0/02) a1 021 2)).

(6.15)

Thus we obtain (6.12). Next, let us show (6.13). Taylor’s integral formula implies that

the remainder term Kg — (¢1/2) can be expressed as a finite sum of such functions as
) e1/2

tnm2Hb/2 [z’(c (@O(E))AB(SUZ)(8/8@0(5))BIC(L1/75@°(5))} . In the successive alterations
MM

at (6.15), the change of variables (2, 2'712) < (2/, z) was used. Here, using the changes

of variables (2/,0°)) & (2/,2/"12) & (¢, 2) (see (6.10)), similarly we obtain (6.13). As

to (2): By Lemma 4.3(4) (for 51(4672), we have

Z(C(a/az)lﬂi tfnf2+b/28(51/2) K(Ll/t@o(e))
_ Z Z/@’(a/azl)@’ t—n—2+b/2+£’/28(61/2) K;(Ll/t@o(e))_

|B|<|B|
In addition, obviously we have

c1/2 1/2

£

(0/01%)|B(e"?) K(110°)| = [(9/06")B(e"?) K(11/00°9))]

* M

Thus, recalling the action of 9/9¢'/? on B(¢'/?) and ©°) (Lemma 6.5 and (6.10)), we
obtain (6.14). 1

Lemma 6.7 Let us set

ki = > O (2) OGN (2/) 47220 (1 (21 2)),
(6.16)

7 Tyt el/2
Ki(e!/2) = SO0 () RO () - 472 (B2 K1 0°)]
where m; > 1 and n; > 0. Then, Lemma 6.3 still holds even if we change each stan-
dard kernel k; into k; or k;(e'/?) arbitrarily. Further, the estimates (6.2), (6.3) can be

generalized to

|@/00y%@/02)* /02" (9/0 /%)™
(z(cl (9/02)B k1 - - - 4253 (8/92)Bs /.sj) (2,2, |

42



< plgmi/2—N—d—1 Z ’ch'|’
(6.17) ‘(8/8t)d(8/8z)A(8/8z')A/(8/8&71/2)’”
(zﬁ (0/02)B ki - - #2591 (9/02)Bs k;j) (€/2,¢,2,2")
< B’(ﬁ) tz mi/27Nfd+€/2f(n+2)5(.)(Z/7 z))—f Z ‘Z/(C/ ”

where k; = k; or k;(€'/?), and 6 (¢, z) := min 5G) (2, 2).

51/26[0,5(1)/2}

Proof. Added to (6.5), we have (6.14). Hence the lemma will be proved in the same

way as Lemma 6.3. 1

Lemma 6.8 Suppose k; .y are (¢)-kernels of types b; (> 1). Then, the convolution
k1, # - - #kj ) can be extended smoothly up to el/2 = 0.

Proof. By Lemma 6.6, each k; (.) is extended smoothly up to el/2 = 0. Let us de-
note its expansion by k; (o) (= ki70/2(51/2)) = 0<m<m, gm/? Kim/2+ gm/? kiﬁm*ﬂ(elﬂ),
where k; ,,, /2, ki,m*/g(sl/Q) are expressed as (6.16) with (m;,n;) replaced by (b; + £;, m.)
(¢; > 0). Then, ky (o) := k1 (o)# - - #k; () is described as

k#v(f) = Z 5m/2k#,m/2 + <(':T’M/Ql'i'#,rn*/2 (51/2)

0<m<ms
>omi=m
— Z /2 Z kl,m1/2# .. #kj,mj/Q
0<m<ms
Zmi:m*
+€m*/2 Z k17m1/2# N #k‘i—l,mi71/2#ki7mi/2(61/2)# - #kj,mj/Z(gl/Q),
m;>0=m;11="-=m;

where, by Lemma 6.3, ky ,/o(t, 2, 2") is well-defined and smooth on (0,00) x Hy x Hy.
Further, it follows from (6.17) with £ = 0 that also k ,,, /2(51/ 2 t,z,2') is well-defined

and smooth on (0,5(1)/2] x (0,00) X Hyp, x Hy, and is estimated as

(0/01)(0/02)4(0/02")* (8) 0"/ *) "k . ja (€12, 2, 2)
< B’ tz bi/2—N—d—(n+2) Z |Z/(C”
on (0, 53/2] x (0,Tp] x Hy, x Hy,. Hence, the term 5m*/2k#,m*/2(51/2) can be extended up
to €1/2 = 0 so as to be of class C™+~1 by claiming that its differentials up to the order
my — 1 relative to the variables (51/2, t,z,2') are equal to 0 at £1/2 = 0. Namely, ky (o)

can be extended up to el/2 = 0 so as to be of class C"™*~ 1. Since m, can be chosen

arbitrarily large, certainly it can be extended smoothly up to e'/2 = 0. 1

Now we can show the desired assertion.
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Lemma 6.9 Fach term (—1)k(r(€)#qé))(t,z,z’) can be extended smoothly up to

e1/2 = 0 and has a series expansion

(6.18) (D re#taly = Y €™k +e™ PPk 5 V), Pl =ra
Further, for every ¢ € Qb1 H, , the integrals fpm/2 (t,2,2") A*p(z fp (eV2t,2,2")

A x @(2') are well-defined and smooth on [0,50/2] x [0, 00) X Hn( (e 1/2,t1/2,z)), and

there exists a semi-norm sn(-) such that, for any ¢ € Q5YH,, we have

(6.19) [ yattiz) nnple) = ()| < s,
L2
(6.20) /pgl/z(t, 2, 2)Ao(2)||  <tY%sn(p)  (m > 0),
L2
(6.21) [ttt ) nvple)| < 2sn(0) (>0
L2

when 0 < t1/2 < Tl/2
Proof. Note that r(.) is an (¢)-kernel of type 2 and q(.) has a finite sum expression

)= S eb/2 Gb,(c)> Where each G, () is an (g)-kernel of type b (> 1). Thus we have

(D re#taly = (18 Y X" #ay, o # - Finy o)

bi>1
which, together with Lemma 6.8, ascertains the first half of the lemma. Next, let us
examine the integrals fp?n/Q(t,z,z’) A *p(2') (m > 0). It suffices to consider (6.18)
me/2p. /2(51/2). The coefficients of
(£'/2) (see Lemma 6.6(1)),

Wlth k; — 07 i'e T(E — Zo<m<m €m/27‘ /2 + g
K2

Tim /25 rm*/2(51/2) consist of such functions as K? —_—

o,m/2’
respectively. Hence, with reference to (6.5) and Lemma 6.6(2), using integration by
parts and then changing the variables in the same way as (2.11), we obtain the finite

sum expressions

Jave rﬁff?“’“(tww’) o ()

= Yot [ v k) @/ouf (v K w)|
= w=z(—1:())
/dV(z’)rgf%([lf{,)(el/z,t,z,z IR, ZtZ/Q

>0

e1/2

x/dV(z’) [6(61/2)’@2/) (5/3w)B,<wC‘PI/R,(w))‘w_ew( ) (! )Jm*'
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The argument similar to the proof of Lemma 2.6 claims that these are smooth on

[0, 5(1)/2] x [0,00) x Hy and, setting ¢y, j2(2) = limy/2_q [ 7y,/2(t, 2, 2') Axp(2'), we have

<t sn(p)
L2

H / raya(ts 22 2) Axp(2) — pmya(2)

when 0 < t1/2 < T01/2. Further we have ¢g/2(2) = ¢(2) (see (2.13)) and ¢y, /2(2) = 0
(m > 0). Indeed, since Lemma 4.1 implies limy1/2_,o [ 7()(t, 2, 2") A xp(2) = @(2) for
every (e1/2,2) € [0, 61/2] x H,, setting @m*/2(€1/272) = limyi/2_, f’l“m*/g(ffl/Q,t,Z,Z/) A

12 2) on

*p(2') as well, we know that the form >, .- Em/2Q0m/2(Z) + sm*/Qgpm*/Q(s
[0, 61/2] x H, is identically equal to ¢(z). Thus (6.19) and (6.20) were proved. Similarly
the form fpfn/Q(t, z, 2"y Axp(2") (k > 0) is smooth on [0,00) x H,, and (6.4) implies the

estimate (6.21). 1

6.4 The proof of Proposition 6.1

Now, let us prove Proposition 6.1.

Lemma 6.9 says that Zogk<ko(_1)kr(s)#qu) can be extended smoothly up to the
domain [0, 5(1)/2] x (0,00) X Hyp X Hp, and Lemma 6.4 with £ = 0 says that Ry, (p()) can
be extended up to the domain so as to be of class C*0~1 (by claiming that its differentials
up to the order kg — 1 relative to the variables (£!/2,t, z, 2') are equal to 0 at £'/2 = 0).
Since ko can be chosen arbitrarily large, certainly py) (t,2,2") is extended smoothly up

to /2 = (0 and we have

(6.22) Pmy2(t, 2, 2') Z pm/2 (t,2,2))
0<k<m

Let us show (6.1) by induction. When m = 0, it is valid because of (6.18) and (5.7). We

fix m’ > 0 and assume that it is valid when m < m/. Then, certainly we have

(% + Do/2> (P 2 = Pt j2) = 0

Further, since prm//Q (t,2,2") Axp(z HL t1/2sn(y) (by (6.22), (6.20), (6.21)) and

prm//Q (t,2,2) Axp(z HL2 < t*%sn(p) (by (5.8), (6.4)), we have

lim
t—0

/ (pm’/Q(ta Zs 2/) - pm//Q(ty Zs Z/)) A *(P(Z,) =0 (30 € ngHn)

L2

Hence, by the uniqueness of the solution of the initial value problem relative to Ly, = L

(refer to Lemma 2.6), (6.1) with m = m/ is valid.
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6.5 (5.14) vanishes when m is odd
For its proof, it will suffice to show the following.

Lemma 6.10 For z = (29, za), we set Z = (29, —za). Then we have

(623)  PUDTE ¢ 2,2 A, &) = (1) HAHR I UTIOEED ¢ 2 o1 A7),

Proof. Let us expand det V4 (ic(2')) into the series 3 -, 5m/2detm/2(z’). Then we
have (6/8z’)A/detm/2(z’) = (—l)mﬂA/'H(6/8z’)A/detm/2(z’)\Z,:g/. Hence, it will suffice
to ascertain the formula (6.23) with P replaced by p. With the use of the notation at
(5.13), further it will suffice to show

(6.24)((3/82)%,,#2@(” /02 egt - 4257 (9/02)8% (8 /82/)A/rH) (t, 2, 2')

= (=1)ZmetAlnHA 1
X ((8/82)ArH#zC(l) (0/02)F et - %257 (9/02)B (8/82’)A/rH) (t,2, 7).
Now, since 2 + |CO |y = [BO|g + my (refer to (5.5)), we have

(8/82)ArH(t, = Z/) = (8/82)ArH(t7 27 Z/) = (_1)‘A|H(a/8£)ArH(tv 2? 2,)7
2C0/02 8 ey (t, 2, 2) = (—1)IEVLCDEzCY 5/95B L (8, 2, )

= (—=1)™ 2 (9/02)B vy (t, 5, ),

etc. In addition, we have dV'(z) = dV(Z). Thus we obtain the equality (6.24). 1

7 The proof of the formula (0.6)

In this section, we assume that J is integrable, that is, M is a strictly pseudo-

convex CR manifold. Hence, the hermitian Tanno connection V coincides with the

(U_{)(I,R/)(PO : AyA') can

Tanaka-Webster connection and the asymptotic coefficients a, /2

be described as universal polynomials made of
0" *g(F(V)((9/0245,0/024,)0/02p5,0/024,)
0za5 -+ 024,

8" 3g(T(V)(9/020,0/9z24,),0/Dza,)
8ZA4 cee 8ZAZ

RA1A2A3A4A5"~A4 = (PO)7

0
Taya344-4, = Ta10454,--4, = (P%),

(cf. (2.7)). The purpose in this section is to show the formula (0.6) for ai(P°) =
IK)(IK IK)(IK
Z[,K aé/z )( )(PO) = ZI,K a;/Q ) )(PO . @, @)
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Proposition 7.1 We have

(71) ([K)(IK)(PD)

Ay /9
BEI

=D RaaBﬁJF{ZR&aBﬂ > Raaﬁﬁ}{ +/ ds ®"%1(s )‘1)1(8)}
acK aecl acK -

1 4
n— 2q o =
If this is valid, then we have
-1\ /n—-1
PO — n -
) (q—1)< P >RMB5
+{ n—1 R n—1 R }{1+/Ood3(1)n2q(8)(1)1(8)}
p—1 aafp q—1 aafp [ 9 C
n\ (n e 1 4
+(Q> (p)RC“"Bﬁ/ ds 8" (s ){ N ﬁ+§¢’2(3)}‘

Thus we obtain the formula (0.6). Hence, the purpose in the following is to prove

Proposition 7.1. First, advancing such a calculation as in Corollary 2.5, we get

Lemma 7.2 We have

b )

T 1
i + Zﬁ,z(g 6

0 =dz - {1 +ZVZ5_26

- 1T —Ts T.5
+ dzg - {zﬁ 5 + 202y Gﬁ + 252y 25— —i-zﬁz7 2

24 %704
—iTpsTs5 T iR5584
+ ZoZoZ:YT’Y + 20224 1’2 + 252524 ;2’5 + O(|z] )}
+ dzg - {z5§ + 2025 5 T+ zgzvz(; 24 o4 o e 24
ZT’STg ZT = R 5BA
+ zozozv% + ZOZ:’ZATM + 27252,417;6 +0O(|z |4)},
T ~T T — Ty ~Ra
0% = dzp - {zﬁTw + Zoz'y%w + Zﬁ/ZATa,Y‘A + zsz%OA}

TayTsy Yo —RMBA}

1Tas
+ dzg - {55a + Zgz:y% + 2020 6 ZnZA 6

T, ; —iTas Tas —Ranp
+ dzs - {zoﬂ + 2p25 T 4 29224 4 ZWZAﬂ} +0(l2I)

2 6 6
and
& =0/0z {1 + 2y25 21’27 + 2525 er;é}
+ 0/0zq - {Zﬁ/% + 202y T‘i“; LA 32A— — + zyzARngA}
+ 0078 {2720 zoszié;TW + 292 2a=204 L 4+ O(ls),



T

+0/0z4 - {zo

«
2
In addition, we have

—RapAa, n

w5(0/0za) = 24, 5

Corollary 7.3 We have

(7.2) D=0,
T. -

1T 55
(7.3) Oy = {ona + zyzﬁTa'B + Za 2y
~Tap

6

_ ~iTay
+ {zﬁz7 1 + 2a%

+ 242

Y

T
+ {207065 Y

2 12
1T,
-

«

+ 0aB 2y 25

L R 252525

=il + 242525

24
( n+5—6q)Ts

7‘4 + 25257 A
a5 T
zoiﬁ7 + zZy24

— + 2924

O(l=%),

—1Tp5
12

T
+ 2% 72 By

—iT 1T
LA 5a5~z§z5—676
_ T
—7 4 ZOLZ:YZSJ + 2y252)
12
—|— ZaRyR5 =

—T.-
g 0
—_— 2027257247 + 23252p%0

iR558A
204 1 0(ls1 )

Ra
P4+ 0(2) )

6
Ras
B 4 o~ 4+ 0(2P) .

5

-T,
3

Rapss = —iTasy 0sp + iT55 4.

_R&'y,éd
6

~Riass

o6

+ 22 }0/0200/025

+ 252

}a/azda/azﬁ-

Rapzs
3

+ ZNZ§

}a/azaa/azB

—iR~5
avydp
— ke }a/azoa/aza

"R5asp
4

}a/azoa/azo

}8/8208/62@

12 —|— ZyZ§%p

Rv pCf

_R&'ygé

Y
1T
u‘ZSigy
2
—1T5;
£y Z5

12
ZTCW

3
+ z5

+

zTa”

(s
(z + - 25————
i(Tn — 5 —6¢)T

R@éﬂu
2
—Rasuw

)ey}AeI@v

)ey{ N/ }8/8za

—R5065

z ¥
;' T
+ 50”/‘252%

K 3

+

12
8

—iTq, -
1T o —
+ (ZM 2 +50¢N 25—

2
=+ 25

(Qn —2— Q)T'yé (n -

_Rgaﬁu
2
R(Sa;uz

. )GH/\G“ }8/&2@
2+q)Ty;

)G%Aeﬁlv

+ {z,yz(; 9 2525

Ry

) _ _
+ 2525 07 N OV + 2325

Ry
2

Riyyop

5 0% N0V +

1

—iR'ngﬁV

12

S N Ol v }a/azo

0% NG v

— Reapop 05 A OV 07N O + Raagg, 03N 05\ 0% A 0L v }
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By (7.2), the formula (5.13) with m = 2 is reduced to

(74) o MOP0) = =3 OO (PO ¢ B (C - B,
ru(C:B) = (rH#(z) (8/02) rH>(1,O,O)
1
= [Lat | v (-2 (%0021 ) (@=n-20)
0 n

We will investigate these closely. Referring to Lemma 2.6(1), we set

() = Fssamg{elt.s) e(T.2) |,

as

e~ 1 n ttanh s
ts) = ( ) T =T(ts) = ,
olt, ) 27t \cosh s (t, 5) 2s
1 |2a?
e(T,z) = (4xT)n P ( -7 )

Note that (T, z,) is the Gaussian kernel on (C", 2,) (|za]? = 3" 2?/2) and

(2)5(9/02)P11(2) = Fiaazg p{ P(C: B) clt, s)e(T, 24 — 2}) }
P(C:B)=P((C:B):ts,0/0s:2,,0/02})
= (8/05)! o (£/20)/C° -l 5)IB°l(_9/0."\B" (278 /02" + )C",

’ Y
23=0

where C = C° U CH with CH = {C; € C | C; # 0}, etc. Hence, the Parseval formula
implies that ry(C : B) is equal to the value when 2}, = 0 of

1
[t [ v P vagamg (et =t e - ). z0)}

X f(sg:?zo/t){P((C : B) i t, s2, a/852 :) C(ta 52)e(T(t7 ‘92)a ZA Z/A)}

:/01 dt(ljlt)t/ndV(zA)

[ s Fua fei -t B0 o -1, T2 2}

< Fupea [ PUCB) 6, 52 00w ) et 20e(T0,750), 2 =)

1 o oo — tu —1l)u
:/0 ar 4t)t/ndV(zA)27r/ duc( —t, & 2t) )e(T(l—t,(l;)),zA)

—00

tu tu ,

) 7)e(T(t’ 7)7 Za — ZA)

tu 2
P((C:B) .t,?,ga/ﬁu De(t 5 5

_ o=t > _ _ _ _
_47/0 a7 /ndV(zA)/ dsc(l—t,(1—1)s)e(T(1 —t, (1—1)s), za)

—00

x P((C:B) :t,ts, %8/83 Dt ts)e(T(t,ts), za — 24)
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_ 477/01dt/ndV(zA)

-/_OO ds D(1 —t,s)e(S(1 —t,s),za) P(C:B)D(t,s)e(S(t,s), za — 2,)

with

te(t,ts) e 9ts 1 n
D(t,s) = 2028 ( ) :
(t, 5) 2 47 \coshts

P(C:B) = P((C:B) :t,ts, %8/63 1 24,0/02,)

= (8/05)IC o sIE°l(—1) Bl (2) Bl (9 /9" \B" (25 (¢, 5)8 /02" + )C".
In particular, if |C°| = 0 then we have

P(C:B)=P((C:B):t,5:24,0/02a)

= sIB(—1)Bl(27)B(9/92)B" (25(t, 5)8 /D= + 5)C",
(7.5) ru(C:B) = 4n 1dt/oo ds D(1—t,$)D(t, )

0 0o

x P(C :B)

- / AV () e(S(1— t.5).24) e(S(L,5), 74 — za)

1 o) _
:47r/0 dt/_oodsD(l—t, Dt s) PC:B)|  e(S(—t,5) + S(t,5), 2a)

za=0
and, if |C%) = 1 then we have
P(C :B) = (9/9s) o Py(C : B)
= (9/8s) o sB°I(—1)Bl(20)B°1-1(5/92)B" (25(t, $)0/0z + £)C",
1 o)
ry(C : B) :47r/0 dt/ndV(zA)/_oodsD(l—t, (S —t,5), 24)
X {(a/as)(ﬁo(c . B)D(t, s))e(S(t, s), 2\ — za)

+Ey(C  B)D(t, 5)(9/03)e(S(t,5), %4 — =)}

1 [es) » .
_47r/ dt/ dsD(l—t,s)aD(t’sgio(C’B)
0 —0o0

ZAZO

ZA:Oe(S(l —t,s)+ S(t,s),za)
1 0 s) -
+47r/0 dt/oodsD(l—t,s)D(t,s)ZaSéi’ ) By(C + BY(9/020)(8)023)

ZA=—

></ dV(z,)e(S(1 —t,s),2,)e(S(t,s), 24 — 2a)

Cn
1 00 D .
_47r/ dt/ dsD(l—t,s){aD(t’S)P‘)(C'B)
0 —0o0 ds

+an(t, 522 g; s)

Py(C : B) (a/aza)@/az@)}

e(S(1—t,s)+S(t,s),za).

ZA:(]
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Notice that (by (7.3)) only the multi-indices C with |C°| = 0,1 appear in (7.4), and,

from the above researches, for example we know the following and so forth.

Lemma 7.4 As tory(C : B) appearing in (7.4), we have: (1) it vanishes if there
exists a number k > 0 such that #{A € CUB | A=k} # #{A € CUB | A=k}. (2)
We have rg(C : B) = rg(C : B), rg(C: B) = (—1)IC"HB e (C : B).

Consequently, (7.4) is reduced to

$ —ry (1111 : 00 ry (1122 : 00
(7.6) ol (P) = R { LT 1 T2 D

12 6
ri(1:1) —rH(1122 00) irg (11 : 0)
+Ro‘za§ﬁ{ 3 T } {ZRaaﬂﬁ > Raaﬁﬁ} 5
acl aceK
. pgI
5 Ras — 3 Raasa) + . Raais
acl aceK acK

Proof of Proposition 7.1. We set S(t) = S(¢, s) for short. Only the multi-indices

C with |CY| = 0 appear in (7.6) and, referring to (7.5), we have

BeI
(IR)(IK)  poy _ L ] _ ]
(7.7) ay,y 7 (P7) — 5{ > Raais — D R@aﬁﬁ} =D Raaps
a€cl acK acK
o 1 —P(1111:00)  P(1122:00)
= ds/ dtdnD(1 —t,s)D(t, s)| Raaaa +
[ it -t (R (P 20y
P(1:1) —P(1122:00)
+R°7a35{ 5 6 }
iP(11:0
H Y Rawss ~ X Raam}(z)>e<s<1 ~+50.7)|_,
ael aceK

Further, we have

P(1:1) e(S(1—1t)+ S(t), za)

ZAZO

- { —28(£)(9/021)(8/27) — 1}e(5<1 — )+ S(t), za)

1 no S(1—t)
(47r(5(1 —t)+ S(t))) S(I—t)+5(t)

iP(11:0)|  e(S(1—1t)+ S(t), za)

ZA:O

ZA—O

=455(t)(0/021)(25(t)0/0z1 + z1)e(S(1 — t,s) + S(t), za)

za=0
_4 ( 1 )” S(A—1)S()
~ P \msa -+ s@)) SA-t+SE)

P(1122 : 00) e8I =)+ 5(t),2)

ZA—

o1



= —16525(t)%(0/021)(25(t)0/d21 + 1)
(0/022)(25(t)0/0z5 + z2)e(S(1 —t) + S(t), za)

1 ns S(1—1)S(t) \2
An(S(1—1t) + S(t))) (5(1 —t)+ S(t)) ’

e(S(1—1)+5(t),2a)

Z‘:O

- —1632(

P(1111 : 00)

— _16525(£)2(8/021)(D/021) 2 (5 1 _175_:5@ ) e(s(1— 1) + (). 22)

1 ns S(1—1)S(t) \2
An(S(1—t) + S(t ))) (5(1—75) S(t))

ZAZO

= —3232<

and, added to (0.5), we have

/1 Y M 1 4rD(1 —t,s)D(t,s) 1(1)"*2‘1(3)_
o S

1—t)+S@) 2 (4r(S(1 —t) + S@)" 2

Hence, (7.7) is equal to

47TD t,s)D(t,s)
/dS/ U IS0 ) + SO

x {{<<<)>ag><<<>>%>}

1 St 8/ sS(1—1)S(t) \2
+R&aﬁﬁ{_§m+§(m> }

2sS(1—1)S(t
+{2Raa5ﬁ ZRaaﬁﬁ}()JgSEt;}

a€el acK

:Raaﬁﬁ/ ds "2 (s ){—%Jrg@z( )}

o Ruais = 3 Rass} [ ds®H)).

acl acK

Thus we obtain (7.1). 1
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