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Abstract

We study the heat kernel associated with the Kohn-Rossi Laplacian on a compact

contact Riemannian manifold. We prove its unique existence and show that its every

differential at each diagonal point can be asymptotically expanded for small time,

and, by applying the general adiabatic expansion theory, we present a new formula

for the asymptotic coefficients. All the coefficients are described as certain universal

polynomials built from the curvature and the torsion of hermitian Tanno connection,

and we emphasize that, by using only a basic knowledge of calculus added to the

formula, one can describe the polynomials explicitly up to an arbitrarily high order.

Explicit description of an asymptotic coefficient of the pointwise trace in the strictly

pseudoconvex CR case is offered as an example.

Keywords: contact Riemannian structure; Kohn-Rossi Laplacian; hermitian Tanno

connection; asymptotic expansion; adiabatic expansion

0 Introduction

Let us take a compact manifold M of dimension 2n + 1 equipped with a contact

1-form θ, i.e., θ ∧ (dθ)n ̸= 0. We have hence the Reeb vector field ξ, which satisfies

θ(ξ) = 1 and Lξθ = 0, where Lξ is the Lie differentiation by ξ. Further let us equip
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M with a Riemannian metric g and a (1, 1)-tensor field J called an almost complex

structure satisfying g(ξ,X) = θ(X), g(X, JY ) = −dθ(X,Y ) and J2X = −X + θ(X)ξ

for any vector fields X, Y . (In the paper we will adopt such a notation as dθ(X,Y ) =

X(θ(Y ))−Y (θ(X))−θ([X,Y ]).) On the manifoldM = (M, θ, ξ, g, J) called the contact

Riemannian manifold, let us consider the Kohn-Rossi Laplacian

□H = ∂̄∗H ∂̄H + ∂̄H ∂̄
∗
H

acting on (p, q)-forms. Namely, we decompose the complexified contact subbundle

CHM = ker θ ⊗ C into CHM = H1,0M ⊕ H0,1M with H1,0M = {X ∈ CHM |

JX = iX}, etc., take the dual subbundle CH∗M = H1,0M ⊕H0,1M and set Hp,qM =

(∧pH1,0M) ∧ (∧qH0,1M), whose smooth cross-sections, called (p, q)-forms, gather to-

gether into the space Ωp,qM . For a (p, q)-form φ, ∂̄Hφ is defined to be the (p, q + 1)-

component of the exterior derivative dφ. We denote by ∂̄∗H the formal adjoint of ∂̄H with

respect to the hermitian inner product given as follows: We take a local unitary frame

ξ• = (ξ0, ξ1, . . . , ξn, ξ1̄, . . . , ξn̄) of CTM (ξ0 := ξ, ξᾱ := ξα ∈ H0,1M , g(ξα, ξβ̄) = δαβ ,

1 ≤ α, β ≤ n) and its dual frame θ• = (θ0, θ1, . . . , θn, θ1̄, . . . , θn̄) (θ0 := θ). Thus we

have g = θ ⊗ θ +
∑

(θα ⊗ θᾱ + θᾱ ⊗ θα) = θ ⊗ θ + 2
∑
θαθᾱ and the hermitian inner

product (φ,ψ)g for (p, q)-forms φ, ψ is defined by

(φ,ψ)g =

∫
M
φ ∧ ⋆̄gψ =

∫
M
dVg ⟨φ,ψ⟩g, ⟨φ,ψ⟩g =

∑
φIK̄ ψIK̄ ,

where we put φ =
∑
θIK̄ · φIK̄ locally (I = (i1 < i2 < · · · < ip) (i1 > 0), etc., and

θIK̄ := θi1 ∧ · · · ∧ θip ∧ θk̄1 ∧ · · · ∧ θk̄q) and denote by dVg the volume element, i.e.,

dVg = ⋆̄g1 = θ ∧ (dθ)n/n!. From now on, the local frames ξ•, θ
• are always assumed to

be unitary.

Let us suppose 0 < q < n and consider the initial value problem for the heat equation( ∂
∂t

+□H

)
ϕ = 0, lim

t→0
ϕ(t) = φ (φ ∈ Ωp,qM),(0.1)

where the convergence is in the L2-norm. Its fundamental solution or heat kernel e−t□H ,

expressed locally as

e−t□H (P, P ′) =
∑

θIK̄(P )⊠ θĪ
′K′

(P ′) ·
(
e−t□H

)(IK̄)(I′K̄′)
(P, P ′),(0.2)

is a smooth cross-section of Hp,qM ⊠Hq,pM over M ×M parameterized smoothly by

t ∈ R+ which solves (0.1). Namely, the (p, q)-form

(e−t□Hφ)(P ) =

∫
M
e−t□H (P, P ′) ∧ ⋆φ(P ′) =

∫
M
dVg(P

′) ⟨e−t□H (P, P ′), φ(P ′) ⟩g

=
∑

θIK̄(P ) ·
∫
M
dVg(P

′)
(
e−t□H

)(IK̄)(I′K̄′)
(P, P ′)φI′K̄′

(P ′)
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is the solution of (0.1). Note that the heat kernel is inevitably unique if it exists. The

operator □H is certainly not elliptic (see (1.15)). It is hypoelliptic when 0 < q < n (see

Remark 2.2(1)), however.

In particular, if J is integrable (i.e., [Γ(H1,0M),Γ(H1,0M)] ⊂ Γ(H1,0M)), that is, if

M is a strictly pseudoconvex CR manifold, it is well-known (Folland-Stein [9], Stanton-

Tartakoff [18]) that a heat kernel exists and when t→ 0 its pointwise trace at each point

P 0 ∈M can be asymptotically expanded as

tr e−t□H (P 0, P 0) ∼ t−(n+1)a0(P
0) + t−(n+1)+1a1(P

0) + · · ·(0.3)

with

a0(P
0) =

(
n

q

)(
n

p

)∫ ∞

−∞
dsΦn−2q(s), Φn−2q(s) :=

e−(n−2q)s

(2π)n+1

( s

sinh s

)n
(0.4)

(refer also to (5.12) in the case where J is not integrable). Note that Φn−2q(s) is rapidly

decreasing.

In this paper, we will show that, with no restriction on J , the heat kernel exists and

its every differential at each diagonal point can be expanded asymptotically (Theorems

2.1 and 2.3)，and, furthermore, there exists a new formula for the asymptotic coefficients

(Theorem 5.3). We wish to emphasize that, by using only a basic knowledge of calculus

added to the formula, one can describe the coefficients explicitly up to an arbitrarily high

order. The idea of describing them by applying the invariance theory of Gilkey, etc.,

([10, §4.8], [11, §4.1]) will readily occur to us. Indeed one can find such researches (e.g.

Beals-Greiner-Stanton [3, §8], Biquard-Herzlich-Rumin [4]). Such an attempt, however,

will be tough because our knowledge about non-elliptic Laplacian is too limited. Our

method exhibits its ability particularly for studying such an abnormal Laplacian. Similar

formula for the metric Laplacian ∆ exists as well and its asymptotic coefficients can be

calculated easily up to an arbitrarily high order (Nagase [15]).

We wish to present here, as an example, the explicit description of a1(P
0) in the case

where J is integrable, whose calculation will be given in §7. Let us set

S(t, s) =
tanh ts

2s
((t, s) ∈ (0, 1)× R),

Φ1(s) =

∫ 1

0
dt

s S(1− t, s)S(t, s)

S(1− t, s) + S(t, s)
=

s

sinh s

s cosh s− sinh s

4s2
,(0.5)

Φ2(s) =

∫ 1

0
dt
( s S(1− t, s)S(t, s)

S(1− t, s) + S(t, s)

)2
=
( s

sinh s

)2 2s cosh 2s− 3 sinh 2s+ 4s

64s3
.
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The functions Φj(s) are smooth and bounded on R. Each Φn−2q(s)Φj(s) is rapidly

decreasing.

Corollary of Theorem 5.3 Suppose J is integrable. Then, in (0.3) we have

a1(P
0) =

n∑
α,β=1

Rᾱαβ̄β(P
0) ·
{(n− 1

q − 1

)(
n− 1

p

)
(0.6)

+
((n− 1

p− 1

)
−
(
n− 1

q − 1

))(1
2
+

∫ ∞

−∞
dsΦn−2q(s)Φ1(s)

)
+

(
n

q

)(
n

p

)∫ ∞

−∞
dsΦn−2q(s)

(4
3
Φ2(s)−

1

12

)}
,

where RABCD denotes the curvature coefficient of the Tanaka-Webster connection ∇

(refer to §1), i.e., RABCD = g(F (∇)(ξC , ξD)ξB, ξA). We put
(
n−1
p−1

)
= 0 when p = 0.

The expression (0.6) is obtained by written calculation. With the aid of Mathematica,

we get also its concrete description with no restriction on J (Imai-Nagase [13]).

Accordingly our main purpose is to offer the enlightening formula (5.14) for the

asymptotic coefficients on the basis of the adiabatic expansion theory ([14]) (refer also

to the comment following the proof of Proposition 5.2). Indeed, almost all the arguments

in this paper will be devoted to ascertaining the formula. In §1 we propose utilizing a

new connection called hermitian Tanno connection to conduct researches into the con-

tact Riemannian structure. With the use of it, the Kohn-Rossi Laplacian is expressed

in the style of classical Weitzenböck formula (Proposition 1.3). We expand its connec-

tion coefficients, etc., into Taylor series, which can be expressed explicitly as universal

polynomials built from the curvature and the torsion up to an arbitrarily high order

(Proposition 2.4). Consequently, in §5 the adiabatic expansion theory can be applied to

draw the formula. The two ideas of hermitian Tanno connection and adiabatic expansion

theory will afford the keys to an understanding of the abnormal Laplacian □H .

1 Hermitian Tanno connection and Weitzenböck-type for-

mula for the Kohn-Rossi Laplacian

If J is integrable, the Laplacian □H possesses the Weitzenböck-type formula (acting

on (0, q)-forms) with the use of the Tanaka-Webster connection (Dragomir-Tomassini

[7, Theorem 1.19]). In this section we show that it still holds with the use of hermitian

Tanno connection introduced below even if J is not integrable.
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Let ∇g be the Levi-Civita connection associated with the metric g. Tanno ([19])

introduced a generalized Tanaka-Webster connection ∗∇ defined by

∗∇XY = ∇g
XY − 1

2
θ(X)JY − θ(Y )∇g

Xξ + (∇g
Xθ)(Y )ξ,(1.1)

which we will call the Tanno connection. By denoting its torsion tensor by T (∗∇)

and setting ∗τ(X) = T (∗∇)(ξ,X), the connection is characterized axiomatically ([19,

Proposition 3.1]) as a unique linear connection satisfying

∗∇θ = 0, ∗∇g = 0,

(∗∇Y J)(X) = Q(X,Y ) := (∇g
Y J)(X) + (∇g

Y θ)(JX) ξ + θ(X) J∇g
Y ξ,

T (∗∇)(Z,W ) = 0, T (∗∇)(Z,W ) = ig(Z,W )ξ (Z,W ∈ H1,0M),

∗τ ◦ J + J ◦ ∗τ = 0.

(1.2)

Since the Tanno tensor field Q vanishes if and only if J is integrable ([19, Proposition

2.1], (1.12)), the Tanno connection coincides with the Tanaka-Webster connection when

J is integrable. One could describe □H in the type of Weitzenböck formula by using

the Tanno connection, which will be, however, rather complicated. It is caused by the

fact that ∗∇J ̸= 0 when J is not integrable. To amend the situation, we consider the

connection ∇ defined by

∇XY = ∗∇XY − 1

2
JQ(Y,X) =


∗∇X(fξ) : Y = fξ,

1

2
(∗∇XY − J ∗∇XJY ) : Y ∈ Γ(HM),

(1.3)

which we will call the hermitian Tanno connection. This obviously satisfies ∇J = 0,

and the two connections ∇, ∗∇ and the Tanaka-Webster connection coincide when J

is integrable. The author found the connection ∇ to have already been referred to by

Seshadri [16, the proof of Lemma 4.2]. It seems, however, that its usefulness is not yet

become fully aware of.

We want to point out here that the concise characterization of the hermitian Tanno

connection stated at Lemma 1.1(1) coincides with that of the Tanaka-Webster connection

(refer to the remark at the final page of [7, §1.2]).

Lemma 1.1

(1) The connection ∇ is a unique linear connection satisfying the following:

∇θ = 0, ∇g = 0, ∇J = 0,(1.4)

π+T (∇)(Z,W ) = 0 (Z ∈ H1,0M, W ∈ CTM),(1.5)
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where π+ is the natural projection to the H1,0M -part.

(2) Let us set τ(X) = T (∇)(ξ,X) and consider the Nijenhuis tensor [J, J ], which

is defined by [J, J ](X,Y ) = −[X,Y ] + [JX, JY ] − J [JX, Y ] − J [X, JY ]. Under the

assumption that (1.4) holds, (1.5) is equivalent to the gathering of conditions

T (∇)(Z,W ) =
1

4
[J, J ](Z,W ), T (∇)(Z,W ) = ig(Z,W )ξ (Z,W ∈ H1,0M),(1.6)

τ ◦ J + J ◦ τ = 0.(1.7)

Proof. For Z,W ∈ Γ(H1,0M) we have

θ([Z,W ]) = 0, θ([Z,W ]) = −ig(Z,W ),(1.8)

[J, J ](Z,W ) = −2([Z,W ] + iJ [Z,W ]) ∈ Γ(H0,1M),(1.9)

and

T (∇)(Z,W ) = π+T (∇)(Z,W ) +
1

4
[J, J ](Z,W )(1.10)

for any ∇ satisfying ∇J = 0. (2) will be obvious because of (1.9) and (1.10). (1): The

uniqueness can be established in the same way as for the Tanaka-Webster one. The

equalities at (1.2), (1.9) (see also (1.11)) imply that the connection (1.3) satisfies (1.4),

(1.6) and (1.7).

Let us summarize here some properties of the connections ∇ and ∗∇. As usual

the Greek indices α, β, . . . vary from 1 to n, the block Latin indices A, B, . . . vary

in {0, 1, . . . , n, 1̄, . . . , n̄} and the symbol
∑

may be omitted (in an unusual manner).

Referring to [19, §6], [6, §2.1, §4], [16, §3], we obtain the following lemma.

Lemma 1.2 We have

∇ξ = 0, ∇ξβ = ξα · ωα
β , ∇ξβ̄ = ξᾱ · ωᾱ

β̄ , ωᾱ
β̄ = −ωβ

α,

∗∇ξγ̄ξβ̄ = ξα · ω(∗∇)α
β̄
(ξγ̄) +∇ξγ̄ξβ̄,

∗∇ξγξβ = ∇ξγξβ + ξᾱ · ω(∗∇)ᾱβ(ξγ),

∗∇ξCξB = ∇ξCξB (otherwise), ω(∗∇)Ā
B̄
= −ω(∗∇)BA ,

ω(∗∇)αβ̄(ξγ̄) =
i

2
Qα

β̄γ̄ , ω(∗∇)ᾱβ(ξγ) = − i

2
Qᾱ

βγ ,

Q = ξα ⊗ θβ̄ ⊗ θγ̄ · Qα
β̄γ̄

+ ξᾱ ⊗ θβ ⊗ θγ · Qᾱ
βγ , Qα

β̄γ̄
= Qᾱ

βγ = −Qβ̄
αγ

(1.11)

and

∗τ = τ = ξα ⊗ τα + ξᾱ ⊗ τ ᾱ = ξα ⊗ θγ̄ · ταγ̄ + ξᾱ ⊗ θγ · τ ᾱγ , τ ᾱγ = τ γ̄α ,
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[J, J ] = ξα ⊗ θβ̄ ⊗ θγ̄ · [J, J ]αβ̄γ̄ + ξᾱ ⊗ θβ ⊗ θγ · [J, J ]ᾱβγ

+ ξα ⊗ θ ∧ θγ̄ · 2ταγ̄ + ξᾱ ⊗ θ ∧ θγ · 2τ ᾱγ , [J, J ]α
β̄γ̄

= [J, J ]ᾱβγ ,

T (∗∇) = ξ ⊗ θβ ∧ θβ̄ · i+ ξα ⊗ θ ∧ θγ̄ · ταγ̄ + ξᾱ ⊗ θ ∧ θγ · τ ᾱγ ,

T (∇) = T (∗∇) +
1

4

{
ξα ⊗ θβ̄ ⊗ θγ̄ · [J, J ]αβ̄γ̄ + ξᾱ ⊗ θβ ⊗ θγ · [J, J ]ᾱβγ

}
,

[J, J ]ᾱβγ = −2iQᾱ
βγ + 2iQᾱ

γβ , 4iQα
β̄γ̄ = [J, J ]αβ̄γ̄ − [J, J ]βᾱγ̄ + [J, J ]γ

β̄ᾱ
.(1.12)

By setting F (∇)(ξC , ξD)ξB = ([∇ξC ,∇ξD ] − ∇[ξC ,ξD])ξB = ξA · F (∇)AB(ξC , ξD) = ξA ·

F (∇)ABCD, etc., the curvature coefficients are related to each other as

F (∇)αβγδ̄ = F (∗∇)αβγδ̄ +
Qα

ρ̄δ̄
Qρ̄

βγ

4
, F (∇)αβγ̄δ = F (∗∇)αβγ̄δ −

Qα
ρ̄γ̄ Q

ρ̄
βδ

4
,

F (∇)αβγδ = F (∗∇)αβγδ =
−iQγ̄

δβ,ᾱ

2
− iτ β̄γ δαδ + iτ β̄δ δαγ ,(1.13)

F (∇)αβγ̄δ̄ = F (∗∇)αβγ̄δ̄ =
−iQγ

δ̄ᾱ,β

2
+ iταδ̄ δβγ − iταγ̄ δβδ,

where we set Qγ

δ̄ᾱ,β
= θγ((∗∇ξβQ)(ξδ̄, ξᾱ)) = θγ((∇ξβQ)(ξδ̄, ξᾱ)), etc.

Now, with the use of the hermitian connection we obtain

Proposition 1.3 (Weitzenböck-type formula) We have

∂̄H =
∑

θᾱ ∧∇ξᾱ , ∂̄∗H = −
∑

θᾱ ∨∇ξα ,(1.14)

□H = −
∑(

∇ξα∇ξᾱ −∇∇ξαξᾱ

)
−

√
−1 q∇ξ(1.15)

−
∑

F (∇)CD(ξᾱ, ξβ) · θᾱ∧ θβ̄ ∨ θC̄∧ θD̄ ∨ (acting on Ωp,qM),

where θᾱ∧, θᾱ ∨ (= ιξᾱ = ξᾱ⌟) denote their exterior, interior products, respectively.

We may assume that the pair of indices (C,D) above runs only over the set of pairs

(γ, δ), (γ̄, δ̄) (1 ≤ γ, δ ≤ n). (Notice that the action of ∇ on forms is expressed as

∇ξα = ξα + ωB̄
C̄
(ξα) · θB ∧ θC ∨ .)

Proof. Since (1.6) and (1.9) imply

T (∇)(Z,W ) ∈ H0,1M (Z,W ∈ H1,0M),(1.16)

the proposition is proved in the same way as in the strictly pseudoconvex CR case ([7,

§1.7.6]). (In their book the proof is based on the property T (∇)(Z,W ) = 0 which the

integrable case has, but the property (1.16) is obviously enough for it.) Indeed, since

(1.16) and the second equality at (1.6) yield

∇ξβ̄i
ξβ̄j

−∇ξβ̄j
ξβ̄i

= π−[ξβ̄i
, ξβ̄j

], ∇ξβ̄i
ξαj = −π+[ξαj , ξβ̄i

],
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the first equality at (1.14) is certainly correct. Green’s formula and (1.16) imply the

second one. Accordingly we have

∂̄H ∂̄
∗
H =

∑
θᾱ ∧ θβ̄ ∨ · {∇∇ξᾱξβ −∇ξᾱ∇ξβ},

∂̄∗H ∂̄H = −
∑

{∇ξα∇ξᾱ −∇∇ξαξᾱ}+
∑

θᾱ ∧ θβ̄ ∨ · {∇ξβ∇ξᾱ −∇∇ξβ
ξᾱ},∑

θᾱ ∧ θβ̄ ∨ · {∇∇ξᾱξβ −∇ξᾱ∇ξβ +∇ξβ∇ξᾱ −∇∇ξβ
ξᾱ}

=
∑

θᾱ ∧ θβ̄ ∨ ·
(
∇T (∇)(ξᾱ,ξβ) − F (∇, θ•)(ξᾱ, ξβ)

)
= −

√
−1 q∇ξ −

∑
θᾱ∧ θβ̄ ∨ · θC̄∧ θD̄ ∨ · F (∇)CD(ξᾱ, ξβ),

which assert that the formula (1.15) holds. Note that the last line follows from (1.6)

and

(F (∇, θ•)(ξA, ξB)θD̄)(ξC̄) :=
(
∇ξA∇ξBθ

D̄ −∇ξB∇ξAθ
D̄ −∇[ξA,ξB ]θ

D̄
)
(ξC̄)

= −θD̄ (F (∇)(ξA, ξB)ξC̄) = −F (∇)D̄C̄ (ξA, ξB) = F (∇)CD(ξA, ξB).

One can find some investigation into ∂̄2H , which does not vanish in general (e.g.

Barletta-Dragomir [2, §5.1]). Here we offer its formula with the use of the connection

∇. We have

∂̄2H =
∑

θᾱ ∧ θβ̄ ∧· {∇ξᾱ∇ξβ̄
−∇∇ξᾱξβ̄

}

=
1

2

∑
θᾱ ∧ θβ̄ ∧· {−∇T (∇)(ξᾱ,ξβ̄)

+ F (∇, θ•)(ξᾱ, ξβ̄)}

= −1

8

∑
θᾱ ∧ θβ̄ ∧·∇[J,J ](ξᾱ,ξβ̄)

+
1

2

∑
θᾱ ∧ θβ̄ ∧· θC̄ ∧ θD̄ ∨ · F (∇)CD(ξᾱ, ξβ̄),

which, together with (1.13), implies the following formula.

Corollary 1.4 We have

∂̄2H = −1

8

∑
θᾱ ∧ θβ̄ ∧ ·∇[J,J ](ξᾱ,ξβ̄)

+
√
−1

∑
θᾱ∧ θβ̄∧ ·

{
−Qα

β̄γ̄,δ

4
θγ̄∧ θδ̄ ∨ +

Qα
β̄δ̄,γ

4
θγ∧ θδ ∨ + ταδ̄ θ

β∧ θδ ∨

}
.

2 Unique existence of the heat kernel and its asymptotic

expansion

In this section we will prove the assertions about the existence of heat kernel and the

possibility of its asymptotic expansion.
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Theorem 2.1 The initial value problem (0.1) has a unique heat kernel e−t□H (P, P ′).

As to the initial condition, added to limt→0

∫
e−t□H (P, P ′) ∧ ⋆φ(P ′) = φ(P ), we have

limt→0

∫
φ̄(P ) ∧ ⋆e−t□H (P, P ′) = φ̄(P ′).

We will prove the theorem by constructing the kernel according to the iteration

method of E. E. Levi so as to turn the result to the study of its asymptotic behavior,

but, in fact, we can prove it also by functional analysis method as below.

Remark 2.2 Most of the researches on contact Riemannian manifolds are focused

on the case where J is integrable. Careful assessment of their validity when J is not

integrable will be needed. We will state two valid assertions (cf. Folland-Stein [9, The-

orem 2.4]) related to this paper. Assume 0 < q < n and J may not be integrable.

Then we have: (1) □H is hypoelliptic. (2) There exists a constant C > 0 such that

∥φ∥s+1 ≤ C {∥□Hφ∥s + ∥φ∥0} (φ ∈ Ωp,qM), where ∥ · ∥s is the Sobolev norm of order

s. (These are easily ascertained by referring to Folland-Kohn [8, §5.4].) Hence, one can

show the unique existence of heat kernel certainly by functional analysis method.

Next, near a given point P 0, let us take local unitary frames ξ•, θ
• which are ∇-

parallel along the∇-geodesics from P 0. Further let z• = (z0, z1, · · · , zn, z1̄, · · · , zn̄) or z =

(z0, z1, · · · , zn) be the ∇-normal coordinates centered at P 0, i.e., exp∇(ξ•(P
0) · z•(P )) =

P : to be precise, first we set e0 = ξ, eα = (ξα + ξᾱ)/
√
2, en+α = Jeα = (ξᾱ − ξα)/

√
−2,

which together provide a ∇-parallel orthonormal frame e• along the ∇-geodesics from

P 0, next define the real ∇-normal coordinates x = (x0, x1, · · · , x2n) centered at P 0 by

exp∇(e•(P
0) ·x(P )) = P and then put z0 = x0, zα = (xα+ ixn+α)/

√
2, zᾱ = z̄α = (xα−

ixn+α)/
√
2. We define the frames (∂/∂z) = (∂/∂z•) = (∂/∂z0, ∂/∂z1, · · · , ∂/∂z1̄, · · ·),

(dz) = (dz•) = (dz0, dz1, · · · , dz1̄, · · ·) by

∂/∂z0 = ∂/∂x0, ∂/∂zα =
∂/∂xα − i∂/∂xn+α√

2
, dz0 = dx0, dzα =

dxα + idxn+α√
2

.

From now on, the unitary frames ξ•, θ
• are always assumed to be ∇-parallel and the

coordinates z are ∇-normal centered at P 0. So are the frames in the expression (0.2) of

e−t□H (P, P ′) = e−t□H (z, z′) (z := z(P ), z′ := z(P ′)).

Theorem 2.3 There is an asymptotic expansion

(∂/∂z)A(∂/∂z′)A
′(
e−t□H

)(IK̄)(I′K̄′)
(P 0, P 0)(2.1)

∼
∑

m≥−(|A|H+|A′|H)

t−(n+1)+m/2 a
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′)

9



when t → 0, and the asymptotic coefficient a
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′) vanishes when m is

odd. Here, for a multi-index A = (A1, . . . , A|A|), we set (∂/∂z)A = ∂/∂zA1 · · · ∂/∂zA|A|

and |A|H = 2#{Ai = 0}+#{Ai ̸= 0}.

These two theorems are the generalizations of Stanton-Tartakoff [18, Theorems 1.1,

4.10 and 6.4].

Let us provide here an assertion, which will suggest that near P 0 the structure of M

is approximated by the standard contact Riemannian structure the Heisenberg group

has.

Proposition 2.4 (cf. Atiyah-Bott-Patodi [1, Appendix II]) There exists a

formal series expansion

ωα
β (∂/∂zA)(z) = −

∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
zA1 · · · zAℓ

∂ℓ−1F (∇)αβ(∂/∂zA, ∂/∂zA1)

∂zA2 · · · ∂zAℓ

(0),(2.2)

and, by setting

ξA =
∑

VBA ∂/∂zB, θA =
∑

V BA dzB, hence V• =
t(V •)−1,(2.3)

there exists a formal series expansion

V BA(z) = δBA +
∞∑
ℓ=1

ℓ

(ℓ+ 1)!

∑
zA1 · · · zAℓ

∂ℓ−1T (∇)AA1
(∂/∂zB)

∂zA2 · · · ∂zAℓ

(0)(2.4)

+

∞∑
ℓ=2

ℓ− 1

(ℓ+ 1)!

∑
zA1 · · · zAℓ

∂ℓ−2F (∇)AA1
(∂/∂zA2 , ∂/∂zB)

∂zA3 · · · ∂zAℓ

(0),

where we set T (∇)(ξC , X) = ξA · T (∇)AC(X).

Proof. The proof is similar to that in [1, Appendix II]. Set R =
∑
xi∂/∂xi =∑

xiei =
∑
zA∂/∂zA =

∑
zAξA. Then we have LRdzA = dzA, which yields LR ω

α
β =∑

R
(
ωα
β (∂/∂zA)

)
dxA + ωα

β . Since ω
α
β (R) = 0, on the other hand we have

LR ω
α
β = R∨ dωα

β =
∑

zA′

{∂ ωα
β (∂/∂zA)

∂zA′
−
∂ ωα

β (∂/∂zA′)

∂zA

}
dzA

=
∑

zA′ F (∇)αβ(∂/∂zA′ , ∂/∂zA) dzA.

Thus we obtain the equality∑
R
(
ωα
β (∂/∂zA)

)
dxA + ωα

β =
∑

zA′ F (∇)αβ(∂/∂zA′ , ∂/∂zA) dzA,

10



which says, by putting ωα
β (∂/∂zA) =

∑
ωα
β (∂/∂zA)[ℓ] =

∑ 1
ℓ!zA1 · · · zAℓ

∂ℓωα
β (∂/∂zA)

∂zA1
···∂zAℓ

(0),∑
(ℓ+ 1)ωα

β (∂/∂zA)[ℓ] =
∑

zA′ F (∇)αβ(∂/∂zA′ , ∂/∂zA).

We have ωα
β (∂/∂zA)[0] = 0 , so that (2.2) can be ascertained by induction. Next, let

us prove (2.4). Consider the matrices ω = (ωA
B), T = (T (∇)AB), C = ω + T and set

C(θ•) = ω(θ•) + T (θ•) := −tC = −tω − tT . Then, referring to Lemma 1.2, we have

LRθ
• = −z• · C(θ•) + dz•(2.5)

and

LRC(θ•) = R∨
∑ ∂ C(θ•)(∂/∂zB)

∂zB′
dzB′ ∧ dzB + d(T (θ•)(R))

=
∑

zB′

{
F (∇, θ•)(∂/∂zB′ , ∂/∂zB) +

∂ T (θ•)(∂/∂zB)

∂zB′

}
dzB + T (θ•),

which yields, by setting r2 = |z|2 (:= |z•|2 = |z0|2 +
∑

|zα|2 +
∑

|zᾱ|2 =
∑
x2j = |x|2),

rLR

(
r−1LRθ

•) = −z• · LRC(θ•)(2.6)

= −z• · T (θ•)−
∑

zB′ z• ·
{
F (∇, θ•)(∂/∂zB′ , ∂/∂zB) +

∂ T (θ•)(∂/∂zB)

∂zB′

}
dzB.

Further we have

LRθ
• = LR((dz•) · V •) = (dz•) · (RV • + V •) ,

rLR

(
r−1LRθ

•) = rLR

{
(dz•) · r−1 (RV • + V •)

}
= (dz•) ·

(
R2V • + RV •) ,

which, together with (2.5) and (2.6), yield

RV BA + V BA =
∑

zA′ CAA′(∂/∂zB) + δBA,

R2V BA + RV BA =
∑

zA′ TA
A′(∂/∂zB)

+
∑

zB′zA′

{
F (∇)AA′(∂/∂zB′ , ∂/∂zB) +

∂ TA
A′(∂/∂zB)

∂zB′

}
.

Hence, we have

(ℓ+ 1)V BA[ℓ] = δBA +
∑

zA′ CAA′(∂/∂zB)[ℓ− 1],

(ℓ2 + ℓ)V BA[ℓ] =
∑

zA′ TA
A′(∂/∂zB)[ℓ− 1]

+
∑

zB′zA′

{
F (∇)AA′(∂/∂zB′ , ∂/∂zB) +

∂ TA
A′(∂/∂zB)

∂zB′

}
[ℓ− 2].

By induction we obtain (2.4).
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Proposition 2.4 says that the coefficients of the Taylor expansions of ωα
β (∂/∂zA), V

BA

and VBA at z = 0 are expressed as polynomials made of

RA1A2A3A4A5···Aℓ
=
∂ℓ−4g(F (∇)((∂/∂zA3 , ∂/∂zA4)∂/∂zA2 , ∂/∂zA1)

∂zA5 · · · ∂zAℓ

(P 0),

TA1A2A3A4···Aℓ
=
∂ℓ−3g(T (∇)(∂/∂zA2 , ∂/∂zA3), ∂/∂zA1)

∂zA4 · · · ∂zAℓ

(P 0)

(2.7)

and their expressions can be described explicitly up to an arbitrarily high order. For

example, we have

Corollary 2.5 We have

θ = dz0 + dzβ · zβ̄
−i
2

+ dzβ̄ · zβ
i

2
+O(|z|2),

θα = dzα + dz0 · zγ̄
−Tᾱ0γ̄

2
+ dzβ̄ ·

{
z0

Tᾱ0β̄
2

+ zγ̄
Tᾱγ̄β̄
2

}
+O(|z|2),

ξ = ∂/∂z0 + ∂/∂zα · zγ̄
Tᾱ0γ̄
2

+ ∂/∂zᾱ · zγ
Tα0γ
2

+O(|z|2),

ξβ = ∂/∂zβ + ∂/∂z0 · zβ̄
i

2
+ ∂/∂zᾱ ·

{
z0

−Tα0β
2

+ zγ
−Tαγβ

2

}
+O(|z|2).

The corollary asserts that the structure of M near P 0 is roughly approximated by

that of the Heisenberg group Hn = R×Cn near the origin. Let us adjust the notation to

check it. Hn is the Lie group, whose element is denoted by z = (z0, z1, . . . , zn) = (z0, z▲),

with the group action zz′ = (z0 + z′0 + Im
∑
zαz

′
ᾱ, z▲ + z′▲), and has a contact 1-form

and the Reeb vector field

θH = dz0 + dzβ · zβ̄
−i
2

+ dzβ̄ · zβ
i

2
, ξH = ∂/∂z0.(2.8)

We set

ξHβ = ∂/∂zβ + ∂/∂z0 · zβ̄
i

2
,(2.9)

which satisfies θH(ξHβ ) = 0. These vector fields canonically provide an almost complex

structure JH . Note that the dual frame of ξH• is θ•H = (θH , dz▲, dz▲̄). These equip-

ments, together with the Riemannian metric gH defined by gH(X,Y ) = θH(X)θH(Y )+

dθH(X,JHY ), provide a contact Riemannian structure to Hn, which, compared with

the results in Corollary 2.5, certainly approximates the structure of M near P 0.

The structure JH is integrable, hence Q = 0, so that the hermitian Tanno connection

∇H coincides with the Tanaka-Webster connection. Further we have ωα
β = 0, τ = 0 and

the Kohn-Rossi Laplacian is simplified to

L = −
∑

ξHα ξ
H
ᾱ −

√
−1 q ξH (acting on Ωp,qHn).
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Note that the left action of z′ on Hn preserves ξH• and also the Laplacian L. Now, on the

typical strictly pseudoconvex CR manifold Hn, the problem (0.1) has the fundamental

solution, which can be described explicitly as follows.

Lemma 2.6 (Stanton [17]) We suppose −n < a < n and consider the smooth

function

rat (z) =
1

(2πt)n+1

∫ ∞

−∞
ds
( s

sinh s

)n
exp

(
− i2s

z0
t
− |z▲|2s
t tanh s

− as
)

on (0,∞)×Hn (∋ (t, z)). Then we have:

(1) The smooth function (with parameter t)

Φa
t (s, z▲) =

1

(2πt)n+1

( s

sinh s

)n
exp

(
− |z▲|2s
t tanh s

− as
)

is rapidly decreasing and rat (z) is its Fourier transform relative to the variable s, i.e.,

rat (z) = F(s : 2z0/t)(Φ
a
t (s, z▲)) :=

∫∞
−∞ ds e−is·(2z0/t)Φa

t (s, z▲), which is also rapidly de-

creasing. (Note that we have Φn−2q
1 (s, 0) = Φn−2q(s): see (0.4).)

(2) Assume 0 < q < n, i.e., −n < n− 2q < n. Then the initial value problem on Hn( ∂
∂t

+ L
)
ϕ = 0, lim

t→0
ϕ(t) = φ (φ ∈ Ωp,q

0 Hn)(2.10)

has the unique fundamental solution

rH(t, z, z′) =
∑

θIK̄H (z)⊠ θĪKH (z′) · rn−2q
t (z′−1z),

which we call the Heisenberg kernel. As to the initial condition, we have limt→0∫
φ̄(z) ∧ ⋆rH(t, z, z′) = φ̄(z′) as well.

Proof. We wish to check the initial condition in (2.10). We have∫
rH(t, z, z′) ∧ ⋆gHφ(z′) =

∑
θIK̄H (z) ·

∫
dVgH (z

′) rn−2q
t (z′−1z)φIK̄(z′)

=
∑

θIK̄H (z) ·
∫
dVgH (z

′) rn−2q
1 (z′)φIK̄(z(−ιt(z′))),(2.11) ∫

dVgH (z
′) rn−2q

1 (z′) = 1,

where we set φ =
∑
θIK̄ ·φIK̄ and ιt(z0, z▲) = (tz0, t

1/2z▲). The two coordinates z′−1z,

z − z′ (near z′) are related by (z′−1z)• = E(z)(z − z′)• = E(z′)(z − z′)•,

E(z) :=

 1 z▲̄
−i
2 z▲

i
2

0 E 0

0 0 E

 ,(2.12)
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and we have

φIK̄(z(−ιt(z′))) = φIK̄(z) + t1/2
∫ 1

0
dσ

∂φIK̄(z(−ιt(z′)))
∂t1/2

∣∣∣
t1/2⇒σt1/2

= φIK̄(z)− t1/2
∫ 1

0
dσ

∂φIK̄

∂zB
(z(−ισ2t(z

′)))E(−z)BB′ |B′|H(σ2t)(|B
′|H−1)/2z′B′ ,

where E(−z)BB′ denotes the (B,B′)-entry of the matrix E(−z). Since z = ισ2t(z
′) +

E(ισ2t(z
′))(z(−ισ2t(z

′))), for each k ∈ N and multi-index B we can find a polynomial

P(· · ·) such that

(1 + |z|)k(∂/∂z)B
(
φIK̄(z(−ιt(z′)))− φIK̄(z)

)
= t1/2

∑∫ 1

0
dσ
(
(∂/∂z)CφIK̄

)
(z(−ισ2t(z

′)))P(σt1/2, z′, z(−ισ2t(z
′))).

Hence,
∫
rH(t, z, z′)∧⋆gHφ(z′)−φ(z) is rapidly decreasing. Choosing a semi-norm sn(φ)

(in general, sn(φ) := supz∈Hn,|B|≤ℓC
∣∣(1 + |z|)k(∂/∂z)Bφ(z)

∣∣
gH

with some k, ℓ ∈ N and

a constant C > 0), we have∥∥∥∥∫ rH(t, z, z′) ∧ ⋆gHφ(z′)− φ(z)

∥∥∥∥
L2
gH

(z)

≤ t1/2 sn(φ),(2.13)

where ∥·∥L2
gH

(z) denotes the L
2-norm with respect to the metric gH and the variable z.

In fact, the structure of Hn approximates that of M ever closer as follows: Let us

take the ∇-normal coordinate system with respect to the ∇-parallel frame ξ•

Θ : U × U → Hn, exp∇(ξ•(z
′) ·Θ•(z

′, z)) = z•,(2.14)

where U is a small neighborhood of P 0. Following the argument by Greiner-Stein [12,

Proposition 4.3] (also Stanton-Tartakoff [18, (6.4)]), we know that Corollary 2.5 yields

Θ0(z
′, z) = (z′−1z)0 +

k>0,ℓ>0∑
k+ℓ=3

O(|z′−1z|k · |z′|ℓ),

Θα(z
′, z) = (z′−1z)α + (z′−1z)0 · z′γ̄

−Tᾱ0γ̄
2

+ (z′−1z)β̄ ·
{
z′0

Tᾱ0β̄
2

+ z′γ̄
Tᾱγ̄β̄
2

}
+

k>0, ℓ>0∑
k+ℓ=3

O(|z′−1z|k · |z′|ℓ).

(2.15)

We could provide more detailed descriptions obtained by using the results in [13]. Now,

even if J is not integrable, the argument by Folland-Stein [9, Theorem 14.1] is still valid

because of (1.8). Setting |z|H = {z20 + |z▲|4 + |z▲̄|4}1/4, hence we have

14



Lemma 2.7 (cf. Folland-Stein [9, Theorem 14.1], Stanton-Tartakoff [18,

Theorem 1.2, Corollary 1.3]) The system Θ is admissible. Namely, setting O(Θ)kH =

O(|Θ(z′, z)|kH), we have

ξB =


∂

∂Θ0
+
∑

O(Θ)1H
∂

∂ΘA
(B = 0),

∂

∂Θβ
+

∂

∂Θ0
·Θβ̄

i

2
+
∑
A ̸=0

O(Θ)1H
∂

∂ΘA
+O(Θ)2H

∂

∂Θ0
(B = β).

Further, we have

□H = LΘ +
∑

A̸=0,B ̸=0

O(Θ)1H
∂

∂ΘA

∂

∂ΘB
+
∑
B ̸=0

O(Θ)2H
∂

∂Θ0

∂

∂ΘB

+O(Θ)1HO(Θ)2H
∂

∂Θ0

∂

∂Θ0
+
∑
B ̸=0

O(Θ)0H
∂

∂ΘB
+O(Θ)1H

∂

∂Θ0
+O(Θ)0H ,

where LΘ denotes L calculated in the coordinates Θ = Θ(z′, z).

Thus the structure of Hn approximates that of M closely enough for constructing

the heat kernel by iteration method starting from the Heisenberg kernel (refer to [18,

§1]).

As stated, almost all the arguments in this paper are devoted to the investigation

on the asymptotic coefficients. As a step toward it, we will construct in §3 a contact

Riemannian manifold denoted by Hn(P
0), which is Hn but with a neighborhood of the

origin replaced by that of P 0 in M naturally, and in §4 we will show that the initial

value problem on Hn(P
0) has a unique heat kernel and its every differential at the origin

can be expanded asymptotically. The argument in §4 will be more than enough for the

proofs of the theorems of this section.

Proof of Theorems 2.1 and 2.3. It owes to Theorem 5.3 that the coefficient in

(2.1) vanishes when m is odd. The argument in §4 (the proofs of Theorems 3.4 and 3.5)

will be readily altered so as to fit for Theorems 2.1 and 2.3. Some comments are in order

here. (1) As to the first approximation (4.1): We cover M by a finite number of small

open sets Uj centered at P j . Each Uj is equipped with unitary frames ξj•, θ
•
j which are

∇-parallel along the ∇-geodesics from P j and the ∇-normal coordinate system Θj with

respect to ξj•. Let ϕj be nonnegative C
∞ functions such that {ϕ2j} is a partition of unity

subordinate to the cover {Uj}. We utilize

r(t, P, P ′) =
∑
j

∑
I,K

θIK̄j (P )⊠ θĪKj (P ′) · ϕj(P ) rn−2q
t

(
Θj(P

′, P )
)
ϕj(P

′)
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as a first approximation ([18, §2]). (2) As to Lemma 4.1: It holds with no change. (3)

As to Proposition 4.2: We set
∣∣∣(∂/∂t)mξA,P ξA′,P ′qk(t, P, P ′)

∣∣∣
g
=
∑

Uj∋P,Uj′∋P ′

∣∣∣(∂/∂t)m
ξjA,P ξ

j′

A′,P ′qk(t, P, P ′)
∣∣∣
g
, etc., and change the function δ(z′, z) =

∣∣w(z′)−1w(z)
∣∣
H

into

δ(P ′, P ) =

 min
j :P,P ′∈Uj

(
|Θj(P

′, P )|H , |Θj(P, P
′)|H

)
((P ′, P ) ∈ U),

1 (otherwise),

where U is a small neighborhood of the diagonal set of M ×M ([18, Lemma 5.2]). (4)

As to Lemmas 4.3 and 4.4: On M , a kernel k(t, P, P ′) is defined to be of type ℓ if it

is described as
∑
θIK̄j (P )⊠ θĪ

′K′
j (P ′) · k(IK̄)(I′K̄′)

j (t, P, P ′) and each k
(IK̄)(I′K̄′)
j (t, P, P ′)

is a finite sum of functions Kb
Uj
(t, P, P ′) = t−n−2+b/2ρUj (P

′, P )K(ι1/tΘj(P
′, P )) (b ≥ ℓ)

(see (4.13)), whose supports are contained in Uj ×Uj ([18, Definition 3.1]). The lemmas

hold under the definition. (5) As to Proof of Theorem 3.4: There will be no need to

set up such a paragraph because, on M , the convergences at (4.12) yield readily their

convergences in the L2-norm.

3 Warped Heisenberg group Hn(P
0)

Let us construct carefully the Heisenberg group Hn(P
0) which is warped near the

origin. (Refer to the comment preceding the proof of Theorems 2.1 and 2.3.) We

denote the standard Heisenberg group by Hn = (Hn, w), whose standard structure is

expressed as (θ̃H , ξ̃
H , gH , JH ,∇H , L̃). (The symbol of variable was changed and θ̃H ,

etc., denote θH , etc., in the variable w: see (2.8) and (2.9).) Also we express the

structure of M as (θM , ξ
M , gM , JM ,∇M ,□M ). Now, we will identify a neighborhood

U0 = {P ∈ M | |Θ(P 0, P )| < r′0} of P 0 with a neighborhood U = {w ∈ Hn | |w| < r′0}

of w = 0 by the diffeomorphism

ΘP 0 : U0 → U, P 7→ w(P ) = Θ(P 0, P ) (= z(P )).

Further let us fix a smooth function ρ(s) on [0,∞) which satisfies ρ(s) = 1 (s ≤ 1/2),

ρ(s) = 0 (s ≥ 2/3), 0 ≤ ρ(s) ≤ 1, and, for every r ∈ (0, r′0], set ρ0(w) = ρ(|w|/r), which

is a smooth function on Hn. Then there exists a number r0 ∈ (0, r′0] such that, for any

r ∈ (0, r0], the 1-form on (Hn, w)

θ = ρ0 θM + (1− ρ0) θ̃H
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is nondegenerate. In fact, Corollary 2.5 yields

θ ∧ (dθ)n = {1 +O(r)} θ̃H ∧ (dθ̃H)n,

which means: The remainder term O(r), which is determined for each r ∈ (0, r′0], has

support contained in {w ∈ Hn | |w| ≤ r} (r ∈ (0, r′0]), and, for every multi-index A there

exists a constant CA > 0 such that
∣∣(∂/∂w)AO(r)

∣∣ ≤ CAr
1−|A| (w ∈ Hn, r ∈ (0, r′0]).

(Hence, the term O(r), regarded as a function of (r, w) ∈ (0, r′0]×Hn, can be extended

continuously up to r = 0 by claiming O(r) = 0 at r = 0.) By choosing r0 > 0 so

small that C∅r0 < 1, θ is certainly nondegenerate when 0 < r ≤ r0. In general, we will

use the symbol (or a function) O(rk), which means that it satisfies
∣∣(∂/∂w)AO(rk)

∣∣ ≤
CAr

k−|A| with the other parts unchanged. Note that ρ0 = O(r0) = O(1) and, in general,

∂O(rk)/∂wA = O(rk−1) according to the notation.

We obtain thus a contact manifold (Hn, w, θ). Let us set θ
•
MH = ρ0 θ

•
M + (1− ρ0) θ̃

•
H

(θ0MH = θ) and denote its dual frame by ξMH
• = (ξMH

0 , ξMH
△ ) = (ξMH

0 , ξMH
▲ , ξMH

▲̄ ).

Then ξMH
△ is a frame of HHn ⊗ C and the Reeb vector field can be described as

ξ = ξMH
0 + ξMH

△ · C△ := ξMH
0 + ξMH

△ ·
(
− dθ(ξMH

△ , ξMH
△ )

)−1
dθ(ξMH

△ , ξMH
0 ),

where C△ is a column vector. Next, let us search for an associated pair (g, J) of a metric

and an almost complex structure (refer to Blair [5, Theorem 4.4]). The frames

θ̂• = (θ̂0, θ̂△) := (θ, θ△MH − tC△θ
0
MH), ξ̂• = (ξ̂0, ξ̂△) := (ξ, ξMH

△ )

are dual to each other. The metric ĝ = θ⊗θ+2
∑
θ̂α θ̂ᾱ satisfies ĝ(X,Y ) = θ(X)θ(Y )+

ĝ(−X + θ(X)ξ,−Y + θ(Y )ξ), hence, ĝ(ξ, Y ) = θ(Y ). We polarize the form −dθ with

respect to ĝ-orthonormal frame ê△ = (eMH
△ , eMH

n+△) induced from the ĝ-unitary frame

ξ̂△. Namely, let us set A = −dθ(ê△, ê△) = θ([ê△, ê△]), which is a 2n× 2n nonsingular

symmetric matrix, and decompose it into A = FG, where F is an orthogonal matrix

and G is a positive definite symmetric matrix. Then the pair (g, J) is defined as

g := θ ⊗ θ +
∑

Gij · ê∗i ⊗ ê∗j = gH +O(r2) θ̃0H ⊗ θ̃0H +
∑

(A,B)̸=(0,0)

O(r) θ̃AH ⊗ θ̃BH ,

Jê△ := ê△ · F,
(3.1)

which coincides with (gM , JM ) near the origin and with (gH , JH) apart from U . We

obtain thus a contact Riemannian manifold Hn(P
0) = (Hn, w, θ, ξ, g, J). Referring to

(1.3), (1.1) and (3.1), we know, by straightforward computation, that the hermitian
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Tanno connection ∇, which also coincides with ∇M near the origin and with ∇H apart

from U , provides

∇∂/∂w0
∂/∂wA = ∂/∂w0 ·O(r) + ∂/∂wb ·O(1),

∇∂/∂wγ
∂/∂w0 = ∂/∂w0 ·O(r) + ∂/∂wb ·O(1),

∇∂/∂wγ
∂/∂wα = ∂/∂wB ·O(1),

∇∂/∂wγ
∂/∂wᾱ = ∂/∂w0 · δαγ

i

2
+ ∂/∂wB ·O(1).

(3.2)

Note that we have

∇H
∂/∂w0

∂/∂wA = ∇H
∂/∂wγ

∂/∂w0 = ∇H
∂/∂wγ

∂/∂wα = 0,

∇H
∂/∂wγ

∂/∂wᾱ = ∂/∂w0 · δαγ
i

2
.

(3.3)

Next, let us investigate the ∇-geodesics from the origin. Namely, we want to consider

the curve c(s) = t(c0(s), c▲(s)) = c(s, z; r) or c•(s) = t(c0(s), c▲(s), c▲̄(s)) (c▲̄(s) =

c▲(s)) satisfying

d2cA(s)

ds2
+ dwA(∇∂/∂wC

∂/∂wB)(c•(s))
dcB(s)

ds

dcC(s)

ds
= 0,

c•(0) = 0, ċ•(0) :=
dc•
ds

(0) = z•.

(Recall that we have set |z|2 := |z•|2 = |z0|2 + |z▲|2 + |z▲̄|2.) It follows from (3.3) that,

near s = s0 with |c(s0, z; r)| ≥ r, we have

c(s, z; r) = c(s0, z; r) + ċ(s0, z; r)(s− s0).(3.4)

We are, hence, mainly interested in its behavior when |c(s, z; r)| ≤ r. We have c(s, z; r) =

sz (|sz| ≤ r/2), which gently curls off the line after that.

Lemma 3.1 For a small r0 > 0, there exists a constant C > 0 such that

|c(s, z; r)− sz| ≤ Cs2|z|2, |ċ(s, z; r)− z| ≤ Cs|z|2,(3.5)

|(∂/∂zD)(c(s, z; r)− sz)| ≤ Cs2|z|, |(∂/∂zD)(ċ(s, z; r)− z)| ≤ Cs|z|(3.6)

when 0 < r ≤ r0 and |sz| ≤ r0.

Proof. Let us set

Γ(s, z) =
∑

ΓBC(c(s)) ċB(s)ċC(s)

=
∑

dw•((∇H −∇)∂/∂wC
∂/∂wB)(c(s)) ċB(s)ċC(s).
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Then, obviously we have ΓBC(w) = O(1) (by (3.2) and (3.3)), and

ċ(s)− z =

∫ s

0
ds c̈(s) =

∫ s

0
dsΓ(s, z), c(s)− sz =

∫ s

0
ds (ċ(s)− z).

On the other hand, we have |ċ(s)| ≤ C|z| (0 < r ≤ r0). Indeed, we have g(ċ(s), ċ(s)) =

g(ċ(0), ċ(0)) = |z|2 and (by (3.2)) there exists C > 0 such that |ċ(s)|2 ≤ Cg(ċ(s), ċ(s))

(0 < r ≤ r0). Thus we obtain the inequalities (3.5), which hold actually without the

assumption |sz| ≤ r0. Next, let us show (3.6). We take r0 > 0 sufficiently small and

assume 0 < r ≤ r0, |sz| ≤ r0, so that (by (3.5)) we have C > 0 satisfying

C−1|sz| ≤ |c(s)| ≤ C|sz|, C−1|z| ≤ |ċ(s)| ≤ C|z|.(3.7)

Considering the equality

∂Γ(s, z)

∂zD
= ΓBC(c(s))

{∂(ċ(s)− z)B
∂zD

ċC(s) + ċB(s)
∂(ċ(s)− z)C

∂zD

}
+
∂(c(s)− sz)E

∂zD

∂ΓBC

∂wE
(c(s)) ċB(s)ċC(s)

+s
∂ΓBC

∂wD
(c(s)) ċB(s)ċC(s) + ΓDC(c(s))ċC(s) + ΓBD(c(s))ċB(s)

and the obvious estimate ∂ΓBC
∂wE

(w) = O(r−1), we know that there is C1 > 0 such that∣∣∣∣∂(ċ(s)− z)

∂zD

∣∣∣∣ ≤ ∫ s

0
ds

∣∣∣∣∂Γ(s, z)∂zD

∣∣∣∣
≤ 1

2
max
0≤t≤s

∣∣∣∣∂(ċ(t)− z)

∂zD

∣∣∣∣+ C1|z| max
0≤t≤s

∣∣∣∣∂(c(t)− tz)

∂zD

∣∣∣∣+ C1|sz|,

which yields

1

2

∣∣∣∣∂(ċ(s)− z)

∂zD

∣∣∣∣ ≤ max
0≤t≤s

∣∣∣∣∂(ċ(t)− z)

∂zD

∣∣∣∣− 1

2
max
0≤t≤s

∣∣∣∣∂(ċ(t)− z)

∂zD

∣∣∣∣
≤ max

0≤t≤s

( ∣∣∣∣∂(ċ(t)− z)

∂zD

∣∣∣∣− 1

2
max
0≤t′≤t

∣∣∣∣∂(ċ(t′)− z)

∂zD

∣∣∣∣ )
≤ C1|z| max

0≤t≤s

∣∣∣∣∂(c(t)− tz)

∂zD

∣∣∣∣+ C1|sz|,∣∣∣∣∂(c(s)− sz)

∂zD

∣∣∣∣ ≤ 2C1

∫ s

0
ds
{
|z| max

0≤t≤s

∣∣∣∣∂(c(t)− tz)

∂zD

∣∣∣∣+ |sz|
}

≤ 2C1|sz| max
0≤t≤s

∣∣∣∣∂(c(t)− tz)

∂zD

∣∣∣∣+ C1s
2|z|.

If we take the r0 > 0 furthermore so small that 2C1r0 < 1/2, then the above estimates

imply

1

2

∣∣∣∣∂(c(s)− sz)

∂zD

∣∣∣∣ ≤ max
0≤t≤s

( ∣∣∣∣∂(c(t)− tz)

∂zD

∣∣∣∣− 1

2
max
0≤t′≤t

∣∣∣∣∂(c(t′)− t′z)

∂zD

∣∣∣∣ ) ≤ C1s
2|z|,

1

2

∣∣∣∣∂(ċ(s)− z)

∂zD

∣∣∣∣ ≤ C2
1 |sz|2 + C1|sz|.
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Thus we obtain (3.6).

Proposition 3.2 Suppose r0 > 0 is sufficiently small and 0 < r ≤ r0. Then the

∇-geodesics from the origin do not intersect with each other (except at the origin) and

the ∇-normal coordinates centered at 0 can be taken globally,

z : Hn(P
0) ∼= Hn, w 7→ z(w), exp∇((∂/∂w•)0 · z•(w)) = w•.(3.8)

Further, letting z 7→ w(z) be its inverse map, we have a constant C > 0 such that

|w(z)− z| ≤ C|z|min(|z|, r), |∂wA(z)/∂zB − δAB| ≤ Cmin(|z|, r),(3.9)

|z(w)− w| ≤ C|w|min(|w|, r), |∂zB(w)/∂wA − δBA| ≤ Cmin(|w|, r),(3.10)

C−1min(|z|, r) ≤ min(|w|, r) ≤ Cmin(|z|, r).(3.11)

Remark In fact, we may take r0 > 0 so small that, if |w′| ≤ r0, then the ∇-geodesics

from w′ do not intersect with each other and the ∇-normal coordinates centered at w′

can be taken globally. We have similar inequalities as well.

Proof. We set w(z) = c(1, z) = c(1, z; r). Lemma 3.1 implies

|w(z)− z| ≤ C|z|2, |∂wA(z)/∂zB − δAB| ≤ C|z| (0 < r ≤ r0, |z| ≤ r0).(3.12)

Hence, via the inverse function theorem, for a small r0 > 0, the map z 7→ w(z) provides

an into diffeomorphism w : {z ∈ Hn | |z| ≤ r0} → Hn(P
0) parameterized smoothly by

r ∈ (0, r0], whose image is a closed neighborhood of the origin, and (by (3.5), (3.7)),

for each r, |w(z)| increases as so does |z| (≤ r0). Let us take r1 ∈ (0, r0] so small that

|w(z)| ≥ r if 0 < r ≤ r1 and |z| = r0 (see (3.7)). Now, we assume 0 < r ≤ r1 and

want to study the behavior of the ray from the point w(z) = c(1, z) with |z| = r0 in

the direction ċ(1, z), that is, the ∇-geodesic w(sz) = c(s, z) (s ≥ 1) (see (3.4)). Let z1,

z2 ∈ {z ∈ Hn | |z| = r0} be perpendicular to each other with respect to the standard

metric ⟨ , ⟩. We put z(θ) = z1 cos θ + z2 sin θ and project the point c(1, z(θ)) onto the

plane spanned by those two points and the origin. We want to show that the argument

ϑ(θ) of the image c(1, z(θ), z1, z2) =
∑

⟨c(1, z(θ)), z̄j/r0⟩ zj/r0 from z(0) = z1 increases

as so does θ. It will be enough to check it near θ = 0. Since Lemma 3.1 implies

⟨c(1, z(θ)), z̄j/r0⟩ =

 r0(cos θ +O(r0)) (j = 1),

r0(sin θ +O(r0)) (j = 2),

∂

∂θ
⟨c(1, z(θ)), z̄j/r0⟩ =

 r0(− sin θ +O(r0)) (j = 1),

r0(cos θ +O(r0)) (j = 2),
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we have ∂
∂θ tanϑ(θ) =

1+O(r0)
(cos θ+O(r0))2

, that is, if r0 > 0 is sufficiently small then ϑ(θ) cer-

tainly increases (near θ = 0). Similarly we know that the argument of ċ(1, z(θ), z1, z2) =∑
⟨ċ(1, z(θ)), z̄j/r0⟩ zj/r0 from z(0) = z1 increases as so does θ. Thus, the rays from

the points c(1, z(θ), z1, z2) in the directions ċ(1, z(θ), z1, z2) do not intersect and so do

not the ∇-geodesics w(sz(θ)) = c(s, z(θ)) (s ≥ 1). Consequently, if r0 > 0 is sufficiently

small and 0 < r ≤ r1, then the ∇-geodesics from 0 do not intersect and we obtain the

global ∇-normal coordinates (3.8). Let us show the remaining inequalities. We assume

0 < r ≤ r1. If |z| ≤ r′ := (r0/r1)r (≤ r0), then the inequality (3.9) follows from (3.12).

If |z| ≥ r′, hence, |c(1, z)| ≥ r, then it follows from (3.4). With the use of the inverse

function theorem, (3.10) will follow readily. As to (3.11): If |z| ≤ r0, then (3.7) yields

C−1|w| ≤ |z| ≤ C|w|, which implies (3.11). If |z| ≥ r0, then |c(s)| increases. Hence we

have |w| ≥ r and min(|z|, r) = r = min(|w|, r).

We will fix such a small number r ∈ (0, r0] and assume that the warped Heisenberg

group Hn(P
0) (associated with r) is equipped with the global ∇-normal coordinates z

centered at the origin. Note that its Kohn-Rossi Laplacian □H(P 0) coincides with □M

near the origin and with L̃ apart enough from the origin. We will denote by ξ•, θ
• the

global ∇-parallel unitary frames and, further, we regard Lemma 1.2, Proposition 2.4,

etc., as the assertions on Hn(P
0). Added to the global (2.3), we set

ξ•,z = ξ̃H•,z · V•(z), θ•z = θ̃•H,z · V•(z), hence V• =
t(V•)−1.

(ξ̃H•,z denotes ξ̃H•,w(z) calculated in the coordinates z.) Notice that we have

V•(z) = E(w(z))
(∂w•
∂z•

(z)
)
V•(z),

where E(w) is the matrix given at (2.12).

Lemma 3.3 Suppose |w(z)| ≥ r. Then V•(z) is unitary and VAB = VĀB̄. Further

V00 is identically equal to 1 and VAB ((A,B) ̸= (0, 0)) vanishes unless A,B ∈ {1, . . . , n}

nor A,B ∈ {1̄, . . . , n̄}. For each multi-index B, there exists a constant CB > 0 such that∣∣∣(∂/∂z)BV•(z)
∣∣∣ ≤ CB |z|−|B| ,

∣∣∣(∂/∂z)BV•(z)∣∣∣ ≤ CB |z|1−|B| ,∣∣∣(∂/∂z)B detV•(z)∣∣∣ ≤ CB |z|−|B| ,
∣∣∣(∂/∂z)Bωα

β (∂/∂zA)
∣∣∣ ≤ CB |z|−1−|B|

and so does also for V•(z), V •(z), detV •(z).

Proof. The first half follows from ξ0,z = ξ̃H0,z and g = gH when |w(z)| ≥ r. As to the

second half: The point IH(z) on the ray sz (0 ≤ s < ∞) which satisfies |IH(z)|H = 1
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is uniquely described as IH(z) = z/a(z) := z/
((
z20 +

√
z40 + 4|z▲|4 + 4|z▲̄|4

)
/2
)1/2

and

(by (3.4)) we have

w(z) = w(IH(z)) +
∑ ∂w

∂zA
(IH(z))

(
zA − IH(z)A

)
(|w(z)| ≥ r).

Since
∣∣(∂/∂z)BIH(z)

∣∣ ≤ CB |z|−|B|, hence we have∣∣∣(∂/∂z)Bw(z)∣∣∣ ≤ CB |z|1−|B| (|w(z)| ≥ r).(3.13)

Further, since the two vector fields ξ̃H• |w(tz) ·V•(I
H(z)), ξ•,tz = ξ̃H• |w(tz) ·V•(tz) along the

∇-geodesic w(tz) (a(z)−1 ≤ t ≤ 1) are ∇-parallel and coincide at t = a(z)−1, these are

the same. In particular, we have V•(z) = V•(I
H(z)). We obtain hence the inequalities.

Remind that we have ωα
β (∂/∂zA) =

∑
VCα ∂VCβ

∂zA
when |w(z)| ≥ r.

Let us introduce here some kinds of normal coordinate systems. On M the ∇M -

normal coordinate system ΘM has been defined (see (2.14)). On the standard Heisenberg

group Hn = (Hn, w) we have the standard one ΘL̃ : Hn × Hn → Hn, exp
∇H

(ξ̃H•,w′ ·

ΘL̃
• (w

′, w)) = w, i.e., ΘL̃(w′, w) = w′−1w, which induces two kinds of normal coordinate

systems ΘL,ΘH : Hn(P
0)×Hn(P

0) → (Hn, z),

exp∇
H
(ξ̃H•,z′ ·ΘL

• (z
′, z)) = z, i.e., ΘL(z′, z) = ΘL̃(w(z′), w(z)) = w(z′)−1w(z),

exp∇
H
(ξ•,z′ ·ΘH

• (z′, z)) = z, i.e., ΘH(z′, z) = V•(z
′)−1ΘL

• (z, z
′).

It follows from Lemma 3.3 that we have

ΘH
0 (z′, z) = ΘL

0 (z, z
′),

∣∣ΘH
▲ (z′, z)

∣∣ = ∣∣ΘL
▲(z, z

′)
∣∣ ,

rn−2q
t (ΘH(z′, z)) = rn−2q

t (ΘL(z′, z)).

The ∇-normal coordinate system with respect to the ∇-parallel frame ξ• defined on a

neighborhood V of the diagonal set in Hn(P
0)×Hn(P

0)

Θ∇ : V → Hn, exp∇(ξ•(z
′) ·Θ∇

• (z
′, z)) = z•

bears the relation

Θ∇(z′, z) =

 ΘM (z′, z) on {(z′, z) ∈ V | |w(z′)| ≤ r/3},

ΘH(z′, z) on {(z′, z) ∈ V | |w(z′)| ≥ r}.
(3.14)

In the next section, we will ascertain the following two theorems.
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Theorem 3.4 (cf. Theorem 2.1) By assuming φ ∈ Ωp,q
0 Hn(P

0), the initial value

problem (0.1) on Hn(P
0) has a unique heat kernel e

−t□H(P0)(z, z′). As to the initial

condition, added to limt→0

∫
e
−t□H(P0)(z, z′) ∧ ⋆φ(z′) = φ(z), we have limt→0

∫
φ̄(z) ∧

⋆e
−t□H(P0)(z, z′) = φ̄(z′).

Remark Since Hn(P
0) is not compact, it will be necessary to add even more con-

dition: The form ϕ(t, z) :=
∫
e
−t□H(P0)(z, z′) ∧ ⋆φ(z′) belongs to the domain of □H(P 0),

the integral Φ(t) :=
∫
dVg(z) |ϕ(t, z)|2g is differentiable and the equality (∂/∂t)Φ(t) =∫

dVg(z)(∂/∂t) |ϕ(t, z)|2g holds.

Theorem 3.5 (cf. Theorem 2.3) There is the asymptotic expansion

(∂/∂z)A(∂/∂z′)A
′
(
e
−t□H(P0)

)(IK̄)(I′K̄′)
(0, 0)(3.15)

∼
∑

m≥−(|A|H+|A′|H)

t−(n+1)+m/2 a
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′)

when t→ 0.

4 Construction of the heat kernel on Hn(P
0) and the proofs

of Theorems 3.4 and 3.5

On the basis of the work by Stanton-Tartakoff [18], we will construct the heat kernel

on Hn(P
0) to prove Theorems 3.4 and 3.5. Rather exhaustive calculation, some results

of which are applied also to the proof of Theorem 5.3, will be required.

Let us set

rM (t, z, z′) =
∑

θIK̄(z)⊠ θĪK(z′) · rn−2q
t (ΘM (z′, z))

(on Hn(P
0)× {z′ ∈ U0 | |w(z′)| < r0}),

rL(t, z, z
′) = rH(t, w(z), w(z′))

=
∑

θIK̄(z)⊠ θĪ
′K′

(z′) · det(VIJVK̄L̄)(z) det(VĪ′J̄VK′L)(z
′) rn−2q

t (ΘL(z′, z))

(on Hn(P
0)×Hn(P

0)),

where ΘM (z′, z) denotes (not the original ΘM (z′, z) but) the system Θ∇(z′, z) restricted

there. Notice that Θ∇, which (by (3.14)) really coincides with ΘM sufficiently near the

origin, is certainly well-defined on the region because of Remark on Proposition 3.2. Let

ρ̃M (w), ρ̃L(w) be nonnegative C∞ functions such that {ρ̃2M (w), ρ̃2L(w)} is a partition of
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unity subordinate to
{
{w ∈ Hn(P

0) | |w| < 2r}, {w ∈ Hn(P
0) | |w| > r}

}
(0 < 2r < r0).

Setting ρM (z) = ρ̃M (w(z)), etc., as a first approximation of heat kernel we wish to choose

r(t, z, z′) = ρM (z)ρM (z′) rM (t, z, z′) + ρL(z)ρL(z
′) rL(t, z, z

′).(4.1)

Lemma 4.1 (cf. [18, Proposition 2.1(ii)]) For any φ ∈ Ωp,q
0 Hn(P

0), we have

lim
t→0

∫
r(t, z, z′) ∧ ⋆φ(z′) = φ(z), lim

t→0

∫
φ̄(z) ∧ ⋆r(t, z, z′) = φ̄(z′)

in the | · |g-norm and in the Li
g-norm (i = 1, 2).

Proof. Let us prove the first convergence. It suffices to show

lim
t→0

∫
ρM (z)ρM (z′) rM (t, z, z′) ∧ ⋆φ(z′) = ρ2M (z)φ(z),(4.2)

lim
t→0

∫
ρ̃L(w)ρ̃L(w

′) rH(t, w,w′) ∧ ⋆gH φ̃(w′) = ρ̃2L(w) φ̃(w),(4.3)

where we set φ̃(w) = φ(z(w)). As to (4.2): The convergence in the | · |g-norm was shown

in [18, Proposition 2.1(ii)]. Since ρM is compactly supported, it obviously implies the

convergences in the other norms. One finds (4.3) valid in the three kinds of norms by

referring to the proof of Lemma 2.6.

Let us set q(t, z, z′) = ( ∂
∂t+□H)r(t, z, z′) and q1 = q, q2 = q#q1, q3 = q#q2, . . . induc-

tively, where, in general, for double forms hi(t, z, z
′) (i = 1, 2) we define the convolution

(h1#h2)(t, z, z
′) by

(h1#h2)(t, z, z
′) =

∫ t

0
ds

∫
h1(t− s, z, z′′) ∧ ⋆h2(s, z′′, z′).

We put

p =

∞∑
k=0

(−1)kr#qk (r#q0 := r), Rk0(p) =
∑
k≥k0

(−1)kr#qk,

q∞ =
∞∑
k=1

(−1)kqk, Rk0(q∞) =
∑
k≥k0

(−1)kqk.

Proposition 4.2

(1) The forms qk, r#qk, Rk0(q∞), Rk0(p) are all well-defined and smooth on (0,∞)×

Hn(P
0) × Hn(P

0) (∋ (t, z, z′)). The last two forms are termwisely differentiable. For

every integer m ≥ 0 and multi-indices A, A′, there exist constants bk = bk,(m,A,A′) > 0,

etc., such that, on (0, T0]×Hn(P
0) (∋ (t, z′)),∥∥∥(∂/∂t)mξA,zξA′,z′q

k(t, z, z′)
∥∥∥
L1(z)

≤ bk t
(k−|A|H−|A′|H)/2−m−1,(4.4)
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∥∥∥(∂/∂t)mξA,zξA′,z′(r#q
k)(t, z, z′)

∥∥∥
L1(z)

≤ ck t
(k−|A|H−|A′|H)/2−m,(4.5) ∥∥(∂/∂t)mξA,zξA′,z′ Rk0(q∞)(t, z, z′)

∥∥
L1(z)

≤ b(k0) t
(k0−|A|H−|A′|H)/2−m−1,(4.6) ∥∥(∂/∂t)mξA,zξA′,z′ Rk0(p)(t, z, z

′)
∥∥
L1(z)

≤ c(k0) t
(k0−|A|H−|A′|H)/2−m,(4.7)

and so are
∥∥(∂/∂t)mξA,zξA′,z′q

k(t, z, z′)
∥∥
L1(z′)

, etc., where we set ξA,z = ξA1,z · · · ξA|A|,z,

etc. (The estimates for Rk0(q∞), Rk0(p) are the ones for the sum of the termwise L1-

norms of their termwise differentials.) Further, for every ℓ = 0 or ℓ ≥ 2n+2, there exist

constants Bk(ℓ) = Bk,(m,A,A′)(ℓ) > 0, etc., such that, on (0, T0]×Hn(P
0)×Hn(P

0),∣∣∣(∂/∂t)mξA,zξA′,z′q
k(t, z, z′)

∣∣∣
g
≤ Bk(ℓ) t

(k−|A|H−|A′|H)/2−m+ℓ/2−(n+2)δ(z′, z)−ℓ,(4.8) ∣∣∣(∂/∂t)mξA,zξA′,z′(r#q
k)(t, z, z′)

∣∣∣
g

(4.9)

≤ Ck(ℓ) t
(k−|A|H−|A′|H)/2−m+ℓ/2−(n+1)δ(z′, z)−ℓ,∣∣(∂/∂t)mξA,zξA′,z′ Rk0(q∞)(t, z, z′)

∣∣
g

(4.10)

≤ B(k0, ℓ) t
(k0−|A|H−|A′|H)/2−m+ℓ/2−(n+2)δ(z′, z)−ℓ,∣∣(∂/∂t)mξA,zξA′,z′ Rk0(p)(t, z, z

′)
∣∣
g

(4.11)

≤ C(k0, ℓ) t
(k0−|A|H−|A′|H)/2−m+ℓ/2−(n+1)δ(z′, z)−ℓ,

where we set δ(z′, z) =
∣∣w(z′)−1w(z)

∣∣
H
. (The last two estimates are the ones for the

sum of the termwise | · |g-norms of their termwise differentials.)

(2) The convolutions r#q∞, q#q∞ are well-defined and smooth on (0,∞)×Hn(P
0)×

Hn(P
0) and we have( ∂

∂t
+□H(P 0)

)
(r#q∞) = q∞ + q#q∞, p = r + r#q∞, q#q∞ = −q − q∞,( ∂

∂t
+□H(P 0)

)
p(t, z, z′) = 0.

Further, for any φ ∈ Ωp,q
0 Hn(P

0), we have

lim
t→0

∫
p(t, z, z′) ∧ ⋆φ(z′) = φ(z), lim

t→0

∫
φ̄(z) ∧ ⋆p(t, z, z′) = φ̄(z′)(4.12)

in the | · |g-norm and in the L1
g-norm.

Some preparatory arguments will be necessary before proving the proposition. In

general, a smooth kernel k(t, z, z′) =
∑
θIK̄(z)⊠ θĪ

′K′
(z′) · k(IK̄)(I′K̄′)(t, z, z′) is said to

be of type ℓ if each coefficient k(IK̄)(I′K̄′)(t, z, z′) is a finite sum of such smooth functions

as

Kb
M (t, z, z′) = t−n−2+b/2ρM (z′, z)K(ι1/tΘ

M (z′, z))

Kb
L(t, z, z

′) = t−n−2+b/2ρL(z
′, z)K(ι1/tΘ

L(z′, z))
(b ≥ ℓ),(4.13)
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where K(Θ) is a rapidly decreasing smooth function on Hn (∋ Θ) and ρM (z′, z), etc.,

are smooth functions with supp ρM ⊂ {(z′, z) | |w(z′)| < 2r, |w(z)| < 2r}, supp ρL ⊂

{(z′, z) | |w(z′)| > r, |w(z)| > r} on which g = gH . Further we assume that, for

every A and A′,
∣∣ξA,zξA′,z′ρL(z

′, z)
∣∣ is bounded. The kernel whose coefficients consist

of the second type of functions is equivalently interpreted in the variable w as fol-

low: It is a smooth kernel kL̃(t, w
′, w) =

∑
θ̃IK̄H (w) ⊠ θ̃Ī

′K′
H (w′) · k(IK̄)(I′K̄′)

L̃
(t, w,w′)

each coefficient of which is a finite sum of such smooth functions as Kb
L̃
(t, w,w′) =

t−n−2+b/2ρL̃(w
′, w)K(ι1/tΘ

L̃(w′, w)) (b ≥ ℓ), where ρL̃(w
′, w) is a smooth function with

supp ρL̃ ⊂ {(w′, w) | |w′| > r, |w| > r} and
∣∣∣ξ̃HA,wξ̃HA′,w′ρL̃(w

′, w)
∣∣∣ is bounded for every A

and A′.

Lemma 4.3 (cf. [18, Propositions 3.2, 3.1, 3.3 and 3.4])

(1) The kernel r(t, z, z′) is of type 2 and q(t, z, z′) is of type 1.

(2) For a kernel k(t, z, z′) of type ℓ, ξA,zξA′,z′k(t, z, z
′) is a kernel of type ℓ− |A|H −

|A′|H and (∂/∂t)k(t, z, z′) is of type ℓ− 2.

(3) For a kernel k(t, z, z′) of type ℓ, there exists a constant C > 0 such that |k(t, z, z′)|g
≤ Ctℓ/2−(n+2), ∥k(t, z, z′)∥L1(z) ≤ Ctℓ/2−1, etc., when 0 < t ≤ T0.

(4) For a kernel k(t, z, z′) of type ℓ, we have

ξA,zk(t, z, z
′) =


∑
B ̸=0

ξB,z′kB(t, z, z
′) + k∗(t, z, z

′) (A ̸= 0),∑
ξB,z′kB(t, z, z

′) + k∗(t, z, z
′) (A = 0),

where kB(t, z, z
′), k∗(t, z, z

′) are some kernels of type ℓ: One could set k0 = −k. Also

ξA,z′k(t, z, z
′) can be described similarly.

Proof. Recall that ΘM and ΘL̃ are both admissible. One finds the lemma valid for

the kernels whose coefficients consist of the type of Kb
M by referring to [18] with some

further argument. The lemma will be obvious for the kernels whose coefficients consist

of the type of Kb
L̃
.

Lemma 4.4 (cf. [18, §4 and §5]) Suppose that the kernels ki(t, z, z
′) are of types

mi (≥ 1). Then (k1# · · ·#kj)(t, z, z′) is well-defined and smooth on (0,∞)×Hn(P
0)×

Hn(P
0), and there exist constants b > 0, B(ℓ) > 0 (ℓ = 0 or ℓ ≥ 2n+ 2) such that∥∥(∂/∂t)mξA,zξA′,z′(k1# · · ·#kj)(t, z, z′)

∥∥
L1(z)

≤ b t(
∑

mi−|A|H−|A′|H)/2−m−1,(4.14) ∣∣(∂/∂t)mξA,zξA′,z′(k1# · · ·#kj)(t, z, z′)
∣∣
g

(4.15)

≤ B(ℓ) t(
∑

mi−|A|H−|A′|H)/2−m+ℓ/2−(n+2) δ(z′, z)−ℓ,
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etc., when 0 < t ≤ T0.

Proof. Lemma 4.3(2)(3) assert that (4.14)j=1 and (4.15)j=1
ℓ=0 hold. The estimate

(4.15)j=1
ℓ≥2n+2 (or, in fact, (4.15)j=1

ℓ>0) follows obviously from the fact that K(Θ) is rapidly

decreasing (refer to [18, (5.10)]). Thus the lemma in the case j = 1 is valid. In general,

it is verified by an induction relative to j on the basis of the following formula (cf.

[18, (4.36), (5.3), etc.]) induced from Lemma 4.3(4) and integration by parts: Setting

k = k2# · · ·#kj , we have

(∂/∂t)mξA,zξA′,z′(k1# · · ·#kj)(t, z, z′)(4.16)

=
∑

m′+m′′=m−1

Cm′

∫
((∂/∂t)m

′
ξA,zk1)(

t

2
, z, z′′) ∧ ⋆((∂/∂t)m′′

ξA′,z′k)(
t

2
, z′′, z′)

+
∑

|B′|H≤|A′|H

∫ t/2

0
ds

∫
((∂/∂t)mξA,zξB′,z′′k1)(t− s, z, z′′) ∧ ⋆k2B′(s, z′′, z′)

+
∑

|B|H≤|A|H

∫ t

t/2
ds

∫
k1B(t− s, z, z′′) ∧ ⋆ ((∂/∂t)mξB,z′′ξA′,z′k)(s, z

′′, z′),

where k1B is a kernel of type m1, k2B′ is a finite sum of convolutions of kernels of types

mi (i = 2, · · · , j) and we put Cm′ =
(
m−1
m′

)
. It implies

∥∥(∂/∂t)mξA,zξA′,z′(k1# · · ·#kj)(t, z, z′)
∥∥
L1(z)

≤
∑

Cm′ max
z′′

∥∥∥((∂/∂t)m′
ξA,zk1)(t/2, z, z

′′)
∥∥∥
L1(z)

×
∥∥∥((∂/∂t)m′′

ξA′,z′k)(t/2, z
′′, z′)

∥∥∥
L1(z′′)

+
∑∫ t/2

0
dsmax

z′′

∥∥(∂/∂t)mξA,zξB′,z′′k1(t− s, z, z′′)
∥∥
L1(z)

·
∥∥k2B′(s, z′′, z′)

∥∥
L1(z′′)

+
∑∫ t

t/2
dsmax

z′′

∥∥k1B(t− s, z, z′′)
∥∥
L1(z)

·
∥∥(∂/∂s)mξB,z′′ξA′,z′k(s, z

′′, z′)
∥∥
L1(z′′)

and

∣∣(∂/∂t)mξA,zξA′,z′(k1# · · ·#kj)(t, z, z′)
∣∣
g

≤
∑

Cm′ max
z′′

∣∣∣((∂/∂t)m′
ξA,zk1)(t/2, z, z

′′)
∣∣∣
g

×
∥∥∥((∂/∂t)m′′

ξA′,z′k)(t/2, z
′′, z′)

∥∥∥
L1(z′′)

+
∑∫ t/2

0
dsmax

z′′

∣∣(∂/∂t)mξA,zξB′,z′′k1(t− s, z, z′′)
∣∣
g
·
∥∥k2B′(s, z′′, z′)

∥∥
L1(z′′)

+
∑∫ t

t/2
ds
∥∥k1B(t− s, z, z′′)

∥∥
L1(z′′)

·max
z′′

∣∣(∂/∂t)mξB,z′′ξA′,z′k(s, z
′′, z′)

∣∣
g
.
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Hence, (4.14) and (4.15)ℓ=0 can be shown inductively. Next, let us prove (4.15)ℓ≥2n+2.

We know ([7, Proposition 1.7]) that there exists a constant γ ≥ 1 such that the inequality

δ(z, z′) ≤ γ(δ(z, z′′) + δ(z′′, z′)) holds. Let us set Bδ̃/2γ = Bδ̃/2γ(z) = {z′′ ∈ Hn |

δ(z, z′′) < δ̃/2γ} (δ̃ := δ(z′, z)) and denote by Bc
δ̃/2γ

its complement in Hn(P
0). Then,

referring to (4.16), we have∣∣∣∣∫ ((∂/∂t)m
′
ξA,zk1)(

t

2
, z, z′′) ∧ ⋆((∂/∂t)m′′

ξA′,z′k)(
t

2
, z′′, z′)

∣∣∣∣
g

≤
∫
Bc

δ̃/2γ

max
z′′

∣∣∣∣((∂/∂t)m′
ξA,zk1)(

t

2
, z, z′′)

∣∣∣∣
g

∥∥∥∥((∂/∂t)m′′
ξA′,z′k)(

t

2
, z′′, z′)

∥∥∥∥
L1(z′′)

+

∫
Bδ̃/2γ

∥∥∥∥((∂/∂t)m′
ξA,zk1)(

t

2
, z, z′′)

∥∥∥∥
L1(z′′)

max
z′′

∣∣∣∣((∂/∂t)m′′
ξA′,z′k)(

t

2
, z′′, z′)

∣∣∣∣
g

,

etc. Hence, inductively we can prove (4.15)ℓ≥2n+2 as well. The condition ℓ ≥ 2n + 2

is required to guarantee the integrability of various integrals appearing in the inductive

argument.

Proof of Proposition 4.2. Lemma 4.4 implies that r#qk, qk are smooth and the

estimates (4.4), (4.5), (4.8), (4.9) hold. By exhaustive calculation such as that in [18,

§4 and §5], we know that there exist constants b > 0, c > 0, B(ℓ) > 0, C(ℓ) > 0 (ℓ = 0

or ℓ ≥ 2n + 2) and a large integer k′ such that, if k ≥ k′, then the constants bk > 0,

ck > 0, etc., appearing in (4.4), (4.5), etc., may be determined as

bk =
bk

Γ((k − |A|H − |A′|H)/2−m)
, ck =

ck

Γ((k + 2− |A|H − |A′|H)/2−m)
,

Bk(ℓ) =
B(ℓ)k

Γ((k − |A|H − |A′|H)/2−m+ ℓ/2− (n+ 1))
,

Ck(ℓ) =
C(ℓ)k

Γ((k + 2− |A|H − |A′|H)/2−m+ ℓ/2− (n+ 1))
.

Hence we obtain the estimates (4.6), (4.7), (4.10) and (4.11). As to (2): It is an easy

consequence of (1) and Lemma 4.1 (cf. the proof of [18, Theorem 4.10]).

Now, let us prove Theorems 3.4 and 3.5.

Proof of Theorem 3.4. Since we have already proved Proposition 4.2(2) and

Lemma 4.1, it suffices to show

lim
t→0

∫
R1(p)(t, z, z

′) ∧ ⋆φ(z′) = 0, lim
t→0

∫
φ̄(z) ∧ ⋆R1(p)(t, z, z

′) = 0(4.17)

in the L2
g-norm. We will prove the first convergence. Let D′ be a compact set which

contains the support of φ and let N be a large integer. Then we have∥∥∥∥∫ Rk0(p)(t, z, z
′) ∧ ⋆φ(z′)

∥∥∥∥2
L2(z)

=

∥∥∥∥∫
D′
Rk0(p)(t, z, z

′) ∧ ⋆φ(z′)
∥∥∥∥2
L2(z)

(4.18)
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≤
∫
dVg(z)

(∫
D′
dVg(z

′) (1 + |z′|N )−1
∣∣Rk0(p)(t, z, z

′)
∣∣
g
(1 + |z′|N )

∣∣φ(z′)∣∣
g

)2
≤
∫
dVg(z)

(∫
D′
dVg(z

′) (1 + |z′|N )−1
∣∣Rk0(p)(t, z, z

′)
∣∣
g

)2
· sn(φ)2

≤ sn(φ)2
∫
D′
dVg(z

′) (1 + |z′|N )−1

∫
dVg(z)

∣∣Rk0(p)(t, z, z
′)
∣∣
g

×
(∫

D′
dVg(z

′) (1 + |z′|N )−1
)
·max

∣∣Rk0(p)(t, z, z
′)
∣∣
g

≤ sn(φ)2
(∫

D′
dVg(z

′) (1 + |z′|N )−1
)2

× max
∥∥Rk0(p)(t, z, z

′)
∥∥
L1(z)

·max
∣∣Rk0(p)(t, z, z

′)
∣∣
g
,

where sn(φ) is a semi-norm of φ. Hence, by (4.7) and (4.11), if k0 is sufficiently large,

then we have
∥∥∫ Rk0(p)(t, z, z

′) ∧ ⋆φ(z′)
∥∥
L2(z)

≤ t1/2 sn(φ), where sn(φ) is a new one.

There remains the estimation of
∫
(r#qk)(t, z, z′) ∧ ⋆φ(z′) (0 < k < k0). Let U be a

relatively compact open set containing D := D′ ∪ {z | |w(z)| ≤ 2r} and let µ be a

nonnegative C∞ function such that µ = 1 on D and suppµ ⊂ U . Further, let V be a

relatively compact open set containing Ū and let ν be a nonnegative C∞ function such

that ν = 1 on Ū and supp ν ⊂ V . In addition, let us set q̃(t, z, z′) = µ(z)µ(z′)q(t, z, z′),

µ(z′)r(t, z, z′) = ν(z)µ(z′)r(t, z, z′) + (1− ν(z))µ(z′)r(t, z, z′) = r0(t, z, z
′) + r∞(t, z, z′).

Then, recalling supp q(t) ⊂ {(z, z′) | |w(z)| ≤ 2r}, we have∫
(r#qk)(t, z, z′) ∧ ⋆φ(z′) =

∫
(r#q̃k)(t, z, z′) ∧ ⋆φ(z′)

=

∫
(r0#q̃

k)(t, z, z′) ∧ ⋆φ(z′) +
∫

(r∞#q̃k)(t, z, z′) ∧ ⋆φ(z′)

and ∥∥∥∥∫ (r0#q̃
k)(t, z, z′) ∧ ⋆φ(z′)

∥∥∥∥
L2(z)

≤
{∫

V
dVg(z)

∥∥∥(r0#q̃k)(t, z, z′)∥∥∥2
L1(z′)

}1/2
max

∣∣φ(z′)∣∣
g
≤ t1/2 vol(V )1/2sn(φ).

On the other hand, since the supports of r∞(t, z, z′) relative to z, z′ do not intersect

with each other, the kernel r∞ is of type ℓ for all ℓ. Hence, an estimation similar

to (4.18) shows
∥∥∫ (r∞#q̃k)(t, z, z′) ∧ ⋆φ(z′)

∥∥
L2(z)

≤ t1/2 sn(φ). Thus we obtain the

first convergence at (4.17). The second one follows similarly by setting r̃(t, z, z′) =

µ(z)µ(z′)r(t, z, z′) and µ(z)q(t, z, z′) = µ(z)ν(z′)q(t, z, z′) + µ(z)(1 − ν(z′))q(t, z, z′) =

q0(t, z, z
′) + q∞(t, z, z′). Note that (r̃#q̃k−1)#q = (r̃#q̃k−1)#q0 + (r̃#q̃k−1)#q∞.

Proof of Theorem 3.5 (also refer to Remark 6.2). Refer to the proof of [18,
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Theorem6.4(i)]. We wish to show that there is an asymptotic expansion

(∂/∂z)A(∂/∂z′)A
′
(
e
−t□H(P0)

)(IK̄)(I′K̄′)
(0, 0)(4.19)

∼
∑

m≥−(|A|H+|A′|H)

t−(n+1)+m/2 b
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′).

Since the two differential operators □H(P 0) and □H coincide sufficiently near the point

0 = P 0, it follows immediately from the Duhamel principle that b
(IK̄)(I′K̄′)
m/2 is equal to

a
(IK̄)(I′K̄′)
m/2 . To show (4.19) it will suffice to show that ξA,zξA′,z′(k1# · · ·#kj)(t, 0, 0) can

be expanded similarly, where k1# · · ·#kj is the convolution given in Lemma 4.4. We

decompose it as

ξA,zξA′,z′(k1# · · ·#kj)(t, 0, 0)

=

j∑
p=1

|B|H≤|A|H∑
|B′|H≤|A′|H

(
k1B#

♯ · · ·#♯kp−1,B#
♯(ξB,zξB′,z′kp)#

♭kp+1,B′# · · ·#kjB′

)
(t, 0, 0),

where kiB, ki′B′ are kernels of types mi, mi′ . Here, in general, we set(
k1#

♯ · · ·#♯kp−1#
♯kp#

♭kp+1# · · ·#kj
)
(t, 0, 0)

=

∫ t

t/2
ds(1) · · ·

∫ s(s−2)

s(p−2)/2
ds(p−1)

∫ s(p−1)/2

0
ds(p)

∫
z(1)∈Hn(P 0)

· · ·
∫
z(p)∈Hn(P 0)

· k1(t− s(1), 0, z(1)) ∧ ⋆ · · ·

∧ ⋆ kp(s(p−1) − s(p), z(p−1), z(p)) ∧ ⋆ (kp+1# · · ·#kj)(s(p), z(p), 0).

Thus it will be sufficient to show that this can be expanded similarly, under the assump-

tion that the kernels ki are of types mi with mp ≥ 1 − |A|H − |A′|H , mi ≥ 1 (i ̸= p)

and, further, under the assumption that the supports of ki(t, z, z
′) (i ≥ 2) relative to z

are contained in {z ∈ Hn(P
0) | |w(z)| ≤ 2r}. Since the coefficients of each kernel ki are

expressed as finite sums of Kbi
M or Kbi

L (bi ≥ mi), eventually we know that it suffices to

examine, near t1/2 = 0, the behavior of the function∫ s(0)

s(0)/2
ds(1) · · ·

∫ s(s−2)

s(p−2)/2
ds(p−1)

∫ s(p−1)/2

0
ds(p)

∫ s(p)

0
ds(p+1) · · ·

∫ s(j−2)

0
ds(j−1)(4.20)

· (s(0) − s(1))−(n+2)+b1/2(s(1) − s(2))−(n+2)+b2/2 · · · (s(j−1) − s(j))−(n+2)+bj/2

×
∫
Hn(P 0)

dVg(z
(1)) · · ·

∫
Hn(P 0)

dVg(z
(j−1))ψ1(z

(1), z(0)) · · ·ψj(z
(j), z(j−1))

× K1(ι1/(s(0)−s(1))Θ(z(1), z(0))) · · · Kj(ι1/(s(j−1)−s(j))Θ(z(j), z(j−1))),

where Θ = ΘM or ΘL and s(0) = t, s(j) = 0, z(0) = z(j) = 0. In fact, the domains of

integrations relative to the variables z(i) may be reduced to {z(i) ∈ Hn(P
0) | |w(z(i))| ≤
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2r}. Now let us use u(i) = Θ(z(i), z(i−1)) (i < p) and u(i) = Θ(z(i+1), z(i)) (i ≥ p) as

new coordinates. (We take the domains of the coordinate maps Θ(·, z(i−1)),Θ(z(i+1), ·) :

Hn(P
0) → Hn large enough.) The function u = u(u(1), . . . , u(j−1)) := Θ(z(p), z(p−1)) is

smooth and (4.20) is equal to∫ s(0)

s(0)/2
ds(1) · · ·

∫ s(s−2)

s(p−2)/2
ds(p−1)

∫ s(p−1)/2

0
ds(p)

∫ s(p)

0
ds(p+1) · · ·

∫ s(j−2)

0
ds(j−1)

· (s(0) − s(1))−(n+2)+b1/2(s(1) − s(2))−(n+2)+b2/2 · · · (s(j−1) − s(j))−(n+2)+bj/2

×
∫
Hn∋u(1)

(Θ(·, z(0))∗dVg)(u(1)) · · ·
∫
Hn∋u(j−1)

(Θ(z(j), ·)∗dVg)(u(j−1))

· ψ1(z
(1), z(0))ψ2(z

(2), z(1)) · · ·ψj(z
(j), z(j−1))

× K1(ι1/(s(0)−s(1))u
(1)) · · · Kp−1(ι1/(s(p−2)−s(p−1))u

(p−1))Kp(ι1/(s(p−1)−s(p))u)

× Kp+1(ι1/(s(p)−s(p+1))u
(p)) · · · Kj(ι1/(s(j−1)−s(j))u

(j−1))

=

∫ s(0)

s(0)/2
ds(1) · · ·

∫ s(s−2)

s(p−2)/2
ds(p−1)

∫ s(p−1)/2

0
ds(p)

∫ s(p)

0
ds(p+1) · · ·

∫ s(j−2)

0
ds(j−1)

· (s(0) − s(1))−(n+2)+b1/2(s(1) − s(2))−(n+2)+b2/2 · · · (s(j−1) − s(j))−(n+2)+bj/2

×
∫
Hn∋u(1)

dVgH (u
(1)) · · ·

∫
Hn∋u(j−1)

dVgH (u
(j−1))ψ(u(1), · · · , u(j−1))

× K1(ι1/(s(0)−s(1))u
(1)) · · · Kp−1(ι1/(s(p−2)−s(p−1))u

(p−1))Kp(ι1/(s(p−1)−s(p))u)

× Kp+1(ι1/(s(p)−s(p+1))u
(p)) · · · Kj(ι1/(s(j−1)−s(j))u

(j−1)).

Here, the domain of integration relative to the set of variables (u(1), . . . , u(j−1)) may be

reduced to a certain compact set as well and ψ(u(1), · · · , u(j−1)) is a smooth function on

the domain. Further let us change the variables: We set v(i) = ι1/(s(i−1)−s(i))u
(i) (i < p)

and v(i) = ι1/(s(i)−s(i+1))u
(i) (i ≥ p), where s(i) := tσ(i). Then the above is equal to

tj−1

∫ 1

1/2
dσ(1) · · ·

∫ σ(s−2)

σ(p−2)/2
dσ(p−1)

∫ σ(p−1)/2

0
dσ(p)

∫ σ(p)

0
dσ(p+1) · · ·

∫ σ(j−2)

0
dσ(j−1)(4.21)

· t−j(n+2)+
∑

bi/2(1− σ(1))−(n+2)+b1/2 · · · (σ(j−1))−(n+2)+bj/2

× t(j−1)(n+1)(1− σ(1))n+1 · · · ̂(σ(p−1) − σ(p))n+1 · · · (σ(j−1))n+1

×
∫
Hn∋v(1)

dVgH (v
(1)) · · ·

∫
Hn∋v(j−1)

dVgH (v
(j−1))

· ψ(. . . , ιt(σ(p−2)−σ(p−1))(v
(p−1)), ιt(σ(p)−σ(p+1))(v

(p)), . . .)

× K1(v
(1)) · · · Kp−1(v

(p−1))Kp(ι1/t(σ(p−1)−σ(p))u)Kp+1(v
(p)) · · · Kj(v

(j−1))

= t−(n+2)+
∑

bi/2

×
∫ 1

1/2
dσ(1) · · ·

∫ σ(s−2)

σ(p−2)/2
dσ(p−1)

∫ σ(p−1)/2

0
dσ(p)

∫ σ(p)

0
dσ(p+1) · · ·

∫ σ(j−2)

0
dσ(j−1)

31



· (1− σ(1))b1/2−1 · · · (σ(p−1) − σ(p))−(n+2)+bp/2 · · · (σ(j−1))bj/2−1

×
∫
Hn∋v(1)

dVgH (v
(1)) · · ·

∫
Hn∋v(j−1)

dVgH (v
(j−1))

· ψ(. . . , ιt(σ(p−2)−σ(p−1))(v
(p−1)), ιt(σ(p)−σ(p+1))(v

(p)), . . .)

× K1(v
(1)) · · · Kp−1(v

(p−1))Kp+1(v
(p)) · · · Kj(v

(j−1))Kp(ι1/t(σ(p−1)−σ(p))u).

Here the function

ι1/t(σ(p−1)−σ(p))u = ι1/t(σ(p−1)−σ(p))u(u
(1), . . . , u(j−1))

= ι1/t(σ(p−1)−σ(p))u
(
. . . , ιt(σ(p−2)−σ(p−1))(v

(p−1)), ιt(σ(p)−σ(p+1))(v
(p)), . . .

)
is smooth up to t1/2 = 0. Indeed, checking ΘA(z

(p), z(p−1)) carefully (see (2.15)),

we know that, if we expand uA

(
. . . , ιt(σ(p−2)−σ(p−1))(v

(p−1)), ιt(σ(p)−σ(p+1))(v
(p)), . . .

)
re-

garded as a function of t1/2 into Taylor series at t1/2 = 0, it starts from the term of

order |A|H . Thus (4.21) is asymptotically expanded as desired. It is easily examined

that the integrations appearing in the coefficients of the expansion are all integrable.

5 Adiabatic expansion of the Kohn-Rossi Laplacian and a

formula for the asymptotic coefficients

We will introduce a new method of computing the asymptotic coefficients appearing

in (2.1), i.e., (3.15), on the basis of the adiabatic expansion theory ([14]).

Let us consider the transformation of Hn(P
0) defined by z 7→ ιε(z) = (εz0, ε

1/2z1, . . . ,

ε1/2zn), 0 < ε ≤ ε0 (see (2.11)), which induces a new contact Riemannian structure

(θ•(ε), ξ
(ε)
• , g(ε), J (ε)) := (ι∗εθ

•
ε , ι

∗
εξ

ε
•, ι

∗
εg

ε, ι∗εJ
ε) with

θAε := ε−|A|H/2θA, ξεA := ε|A|H/2ξA, gε :=
∑

θAε ⊗ θĀε , Jεξεα := iξεα.

Obviously (2.3) produces

ξ
(ε)
• = (∂/∂z•) · V (ε)

• , V
(ε)
BA(z) := ε(|A|H−|B|H)/2VBA(ιε(z)),

θ•(ε) = (dz•) · V •
(ε), V BA

(ε) (z) := ε(|B|H−|A|H)/2V BA(ιε(z)).
(5.1)

Note that limε1/2→0 V
(ε)
• (z) = E(−z), limε1/2→0 V

•
(ε)(z) = tE(z) (see (2.12)). To the

structure (θ•ε , ξ
ε
•, g

ε, Jε) the Kohn-Rossi Laplacian □ε
H(P 0) := ε□H(P 0) and the hermitian

Tanno connection ∇ε := ∇ are attached. Those for the structure (θ•(ε), ξ
(ε)
• , g(ε), J (ε))

are □(ε)
H(P 0)

:= ι∗ε□ε
H(P 0), ∇

(ε) := ι∗ε∇ε. The coordinates z are then the ∇(ε)-normal
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coordinates centered at 0 with (∂/∂z•)0 = ξ
(ε)
• (0) and ξ

(ε)
• is ∇(ε)-parallel along the

∇(ε)-geodesics sz (0 ≤ s <∞) as well. The ∇(ε)-normal coordinate system with respect

to ξ
(ε)
• is defined by

Θ∇(ε)
: V (ε) := {(z′, z) ∈ Hn(P

0)×Hn(P
0) | (ιε(z′), ιε(z)) ∈ V } → Hn,

Θ∇(ε)
(z′, z) = ι1/εΘ

∇(ιε(z
′), ιε(z)).

Further, obviously the initial value problem (0.1) on (Hn(P
0), θ(ε)) has a unique heat

kernel e
−t□(ε)

H(P0)(z, z′), which is described as follows.

Lemma 5.1 We have

e
−t□(ε)

H(P0)(z, z′) =
∑

θIK̄(ε) (z)⊠ θĪ
′K′

(ε) (z′) · εn+1
(
e
−tε□H(P0)

)(IK̄)(I′K̄′)
(ιε(z), ιε(z

′)).

Proof. It follows immediately from the fact that the heat kernel on (Hn(P
0), θε) is

given as

e
−t□ε

H(P0)(z, z′) =
∑

θIK̄ε (z)⊠ θĪ
′K′

ε (z′) · εn+1
(
e
−tε□H(P0)

)(IK̄)(I′K̄′)
(z, z′).

Next, we consider the transformation

Iε : Ω
p,qHn

∼= Ωp,q(Hn(P
0), θ(ε)),

∑
θIK̄H · φIK̄ 7→

∑
θIK̄(ε) · φIK̄ ,

which provides the Laplacian □(ε) = I∗ε□
(ε)
H(P 0)

(:= I−1
ε ◦ □(ε)

H(P 0)
◦ Iε) on the standard

Heisenberg group Hn = (Hn, z), which we call the adiabatic Kohn-Rossi Laplacian

at P 0. (Refer to [14] for more information about (generalized) adiabatic operation.)

Obviously, also the initial value problem (0.1) relative to □(ε) on Hn has a unique heat

kernel e−t□(ε)(z, z′), which can be described as

e−t□(ε)(z, z′) =
∑

θIK̄H (z)⊠ θĪ
′K′

H (z′)(5.2)

· εn+1
(
e
−tε□H(P0)

)(IK̄)(I′K̄′)
(ιε(z), ιε(z

′)) detV •(ιε(z
′))

because of Lemma 5.1 and dVg(ε)(z
′) = dVgH (z

′) detV •
(ε)(z

′) = dVgH (z
′) detV •(ιε(z

′)).

In addition, by setting ∇(H,ε) = I∗ε∇(ε), ξ
(ε)
• = I∗ε ξ

(ε)
• , etc., Proposition 1.3 yields the

adiabatic Weitzenböck-type formula

□(ε) = −
∑(

∇(H,ε)

ξ
(ε)
α

∇(H,ε)

ξ
(ε)
ᾱ

−∇(H,ε)

∇(ε)

ξ
(ε)
α

ξ
(ε)
ᾱ

)
−

√
−1 q∇(H,ε)

ξ(ε)
(5.3)

−
∑

F (∇(ε))CD(ξ
(ε)
ᾱ , ξ

(ε)
β ) · θᾱH∧ θβ̄H ∨ θC̄H∧ θD̄H ∨ (acting on Ωp,qHn).
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Notice that we have

∇(H,ε)

ξ
(ε)
A

= ξ
(ε)
A +

∑
ε|A|H/2ωB̄

C̄ (ξA)(ιε(z)) · θ
B
H ∧ θCH ∨ ,

∇(ε)

ξ
(ε)
α

ξ
(ε)
ᾱ =

∑
ε1/2ωβ̄

ᾱ(ξα)(ιε(z)) ξ
(ε)

β̄
,

F (∇(ε))CD(ξ
(ε)
ᾱ , ξ

(ε)
β ) = ε2/2F (∇)CD(ξᾱ, ξβ)(ιε(z)),

(5.4)

which, together with (5.1) and Proposition 2.4, imply the following.

Proposition 5.2 The differential operator □(ε) can be extended smoothly up to

ε1/2 = 0. As to the formal series expansion

□(ε) =

∞∑
m=0

εm/2□m/2, □0/2 = L

which we call the adiabatic expansion of □H at P 0, the coefficients are described as

□m/2 =

|B|=0,1,2∑
2+|C|H=|B|H+m

□m/2(B,C) · zC(∂/∂z)B (zC := zC1 · · · zC|C|),(5.5)

where each □m/2(B,C) is a finite sum of operators which are the composites of such

operators as θαH ∧ θβH ∨ , θγ̄H ∧ θδ̄H ∨ multiplied by constants. If we express its action as

□m/2(B,C) θI
′K̄′

H =

|K|H=|K′|H∑
|I|H=|I′|H

□(IK̄)(I′K̄′)
m/2 (B,C) · θIK̄H ,

then the coefficients □(IK̄)(I′K̄′)
m/2 (B,C) are all expressed as universal polynomials made

of (2.7). Further, one can describe the polynomials explicitly up to an arbitrarily high

order.

Proof. When ε1/2 → 0, □(ε) tends to

−
∑(

(∂/∂z•) · E(−z)
)
α

(
(∂/∂z•) · E(−z)

)
ᾱ
−

√
−1 q

(
(∂/∂z•) · E(−z)

)
0

= −
∑

ξHα ξ
H
ᾱ −

√
−1 q ξH = L.

It follows from (5.3), (5.4) that we have

(
∂

∂ε1/2
)m□(ε) =

|B|=0,1,2∑
2+|C|H≥|B|H+m

□(B,C)
m/2 (ε1/2, ιε(z)) z

C(∂/∂z)B,

□(B,C)
m/2 (ε1/2, ιε(z)) = ε(2+|C|H−|B|H−m)/2□(B,C)

m/2 (ιε(z)),

from which we draw the expression (5.5).
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The adiabatic series □0/2, □1/2, . . . will reveal various infinitesimal details of M at

P 0 which are so condensed that we cannot perceive clearly. The following argument

tells us that the series certainly reveal an infinitesimal behavior of the heat kernel at

P 0.

Now, suggested by the formula ( ∂
∂t +□(ε))e

−t□(ε) = 0, let us construct a formal power

series

p(ε)(t, z, z
′) =

∞∑
m=0

εm/2 pm/2(t, z, z
′)(5.6)

so as to satisfy ( ∂
∂t +□(ε))p(ε) = 0. Namely, we define it inductively by

p0/2(t, z, z
′) = rH(t, z, z′),(5.7)

pm/2(t, z, z
′) = −(p0/2#

m1>0∑
m1+m2=m

□m1/2pm2/2)(t, z, z
′)(5.8)

=

m1,...,mk>0∑
∑

mℓ=m

(−1)k
(
p0/2#□m1/2p0/2# · · ·#□mk/2p0/2

)
(t, z, z′) (m > 0),

where we put # = #gH . Then it will be natural to expect (5.6) is a formal series

expansion of the heat kernel (5.2). Thus, by setting

P(ε)(t, z, z
′) := p(ε)(t, z, z

′) detV•(ιε(z
′)) =

∞∑
m=0

εm/2 Pm/2(t, z, z
′)

and Pm/2(t, z, z
′) =

∑
θIK̄H (z)⊠ θĪ

′K′
H (z′) · P(IK̄)(I′K̄′)

m/2 (t, z, z′), it will be expected that

εn+1
(
e
−tε□H(P0)

)(IK̄)(I′K̄′)
(ιε(z), ιε(z

′)) =
∞∑

m=0

εm/2 P(IK̄)(I′K̄′)
m/2 (t, z, z′).(5.9)

If it is valid, then we have the asymptotic expansion(
e
−t□H(P0)

)(IK̄)(I′K̄′)
(0, 0) ∼

∞∑
m=0

t−(n+1)+m/2 P(IK̄)(I′K̄′)
m/2 (1, 0, 0),(5.10)

that is,

a
(IK̄)(I′K̄′)
m/2 (P 0 : ∅, ∅) = P(IK̄)(I′K̄′)

m/2 (1, 0, 0) = p
(IK̄)(I′K̄′)
m/2 (1, 0, 0).(5.11)

Hence, the following formulas must be valid:

a
(IK̄)(I′K̄′)
0/2 (P 0 : ∅, ∅) = δ(IK̄)(I′K̄′) rH(1, 0, 0) = δ(IK̄)(I′K̄′)

∫ ∞

−∞
dsΦn−2q(s),(5.12)

a
(IK̄)(I′K̄′)
m/2 (P 0 : ∅, ∅)(5.13)

=

m1,...,mk>0∑
∑

mℓ=m (>0)

(−1)k
∑ k∏

ℓ=1

□(I(ℓ−1)K̄(ℓ−1))(I(ℓ)K̄(ℓ))
mℓ/2

(B(ℓ),C(ℓ))

×
(
rH # zC

(1)
(∂/∂z)B

(1)
rH # · · ·# zC

(k)
(∂/∂z)B

(k)
rH

)
(1, 0, 0),
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where we set rH = rH(t, z, z′) = rn−2q
t (z′−1z). Here, the summation

∑m1,...,mk>0∑
mℓ=m means

to sum up all the terms with indices (m1, . . . ,mk) satisfying the condition, and the next∑
means, for each (m1, . . . ,mk), to sum up all the terms determined by the indices

(B(ℓ),C(ℓ)) and the sequences of indices (IK̄) = (I(0)K̄(0)), (I(1)K̄(1)), . . . , (I(k)K̄(k)) =

(I ′K̄ ′) appearing in □mℓ/2 (1 ≤ ℓ ≤ k). The term appearing in the third line of

(5.13) is the value at (t, z, z′) = (1, 0, 0) of the convolution of the functions rH(t, z, z′),

zC
(1)
(∂/∂z)B

(1)
rH(t, z, z′), . . . with respect to the metric gH .

Further, if the differentials of the left hand side of (5.9) can be formally expanded

into the series of termwise differentials of the right hand side, that is, if

ε(n+1)+(|A|H+|A′|H)/2
(
(∂/∂z)A(∂/∂z′)A

′
(
e
−tε□H(P0)

)(IK̄)(I′K̄′))
(ιε(z), ιε(z

′))

=
∞∑

m=0

εm/2 (∂/∂z)A(∂/∂z′)A
′P(IK̄)(I′K̄′)

m/2 (t, z, z′),

then, by setting P(IK̄)(I′K̄′)
m/2 (t, z, z′ : A,A′) = (∂/∂z)A(∂/∂z′)A

′P(IK̄)(I′K̄′)
m/2 (t, z, z′), the

formula (5.11) is generalized as follows.

Theorem 5.3 We have

a
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′) = P(IK̄)(I′K̄′)

(m+|A|H+|A′|H)/2(1, 0, 0 : A,A′),(5.14)

which vanishes when m is odd. Moreover, this is expressed as a universal polynomial

made of (2.7), which can be described explicitly by using only a basic knowledge of cal-

culus.

6 Proof of Theorem 5.3

We wish to prove the following assertion in this section.

Proposition 6.1 The double form p(ε)(t, z, z
′) := e−t□(ε)(z, z′) can be extended

smoothly up to ε1/2 = 0. As to the Taylor expansion

p(ε)(t, z, z
′) =

∑
0≤m<m∗

εm/2 pm/2(t, z, z
′) + εm∗/2 pm∗/2(ε

1/2, t, z, z′),

we have

pm/2(t, z, z
′) = pm/2(t, z, z

′) (0 ≤ m < m∗).(6.1)
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If this is valid, then certainly we have the formal series expansion (5.9). Further, the

formula (5.14) holds because the proposition asserts that (5.9) is termwisely differen-

tiable.

Remark 6.2 Consequently, Proposition 6.1 provides the asymptotic expansion (5.10)

and also that of every differential. Namely, it ascertains Theorems 3.5 and 2.3 as well.

We start our discussion with some preparations needed for its proof. We set # = #gH ,

dV (z) = dVgH (z), | · | = | · |gH , | · |Li = | · |Li(z) = | · |Li
gH

(z), etc., if no confusion occurs.

6.1 Standard kernels on Hn

The argument in §4 holds good for the standard (Hn, z) because it may be regarded

naturally as a warped Heisenberg group. A kernel on Hn whose coefficients consist of

t−n−2+b/2ρ(z′, z)K(ι1/t(z
′−1z)) will be called a standard kernel, where |ξHA,zξHA′,z′ρ(z

′, z)|

is assumed to be bounded for any (A,A′) (see (4.13)). Obviously Lemma 4.4 holds also

for the standard kernels on Hn and we have:

Lemma 6.3 Let ki be standard kernels of types mi (≥ 1). Then the convolution

(zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj)(t, z, z
′) is well-defined and smooth on (0,∞) ×

Hn × Hn, and there exist constants b′ > 0, B′(ℓ) > 0 (ℓ = 0 or ℓ ≥ 2n + 2) and an

integer N > 0 such that∥∥∥(∂/∂t)d(∂/∂z)A(∂/∂z′)A′
(
zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(t, z, z′)

∥∥∥
L1(z)

(6.2)

≤ b′t
∑

mi/2−N−d−1
∑

|z′C′ |,∣∣∣(∂/∂t)d(∂/∂z)A(∂/∂z′)A′
(
zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(t, z, z′)

∣∣∣(6.3)

≤ B′(ℓ) t
∑

mi/2−N−d+ℓ/2−(n+2)|z′−1z|−ℓ
H

∑
|z′C′ |

on (0, T0]×Hn×Hn, where
∑

|z′C′ | which is a finite sum depends on (A,A′) and (Ci,Bi)

(1 ≤ i ≤ j) and so do the constants b′ > 0, etc., and the integer N . Moreover, for

every φ ∈ Ωp,q
0 Hn, the integral

∫
(zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj)(t, z, z

′) ∧ ⋆φ(z′)

is well-defined and rapidly decreasing, and there exists a semi-norm sn(·) such that, for

any φ ∈ Ωp,q
0 Hn, we have∣∣∣∫ (zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(t, z, z′) ∧ ⋆φ(z′)

∣∣∣ ≤ t
∑

mi/2−1sn(φ),∥∥∥∫ (zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(t, z, z′) ∧ ⋆φ(z′)

∥∥∥
Lk

≤ t
∑

mi/2−1sn(φ),(6.4)
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where k = 1, 2.

Proof. Lemma 4.3(4) for Hn implies

zC(∂/∂z)Bz′C
′
(∂/∂z′)B

′
t−n−2+b/2K(ι1/t(z

′−1z))(6.5)

=
∑

|B̃|≤|(B,B′)|

zC̃(∂/∂z)B̃ t−n−2+b/2+ℓ/2K(ι1/t(z
′−1z))

=
∑

|B̃′|≤|(B,B′)|

z′C̃
′
(∂/∂z′)B̃

′
t−n−2+b/2+ℓ′/2K(ι1/t(z

′−1z)),

where the rapidly decreasing functions K(Θ) appearing in the second and third lines,

which differ from that in the first line, depend on the respective indices (B̃, C̃, ℓ), etc. It

follows from (6.5) and integration by parts that we have

(∂/∂t)d(∂/∂z)A(∂/∂z′)A
′
(
zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(t, z, z′)

=
∑

|B′|≤|(A,A′)|+
∑

|Bi|

(∂/∂t)dzC
′
(∂/∂z′)B

′
(
k1# · · ·#kj

)
(t, z, z′)

=
∑

|B′′|≤|(A,A′)|+
∑

|Bi|

(∂/∂t)dzC
′′
ξHB′′,z′

(
k1# · · ·#kj

)
(t, z, z′),

where, again, the kernels ki appearing in the second and third lines, which differ from

that in the first line, depend on the respective indices, but are of the same types as those

of the original ki. Hence, with the use of Lemma 4.4 for Hn and the argument in the

proof of Lemma 2.6, we obtain the lemma.

From now on, as above, all the rapidly decreasing functions are usually expressed as

K(Θ) with no distinction to simplify the description.

6.2 Rough estimation of remainder term

Let us set r(t, z, z′) =
∑
θIK̄(z)⊠θĪ′K′

(z′)·r(IK̄)(I′K̄′)(t, z, z′) =
∑
θIK̄(z)⊠θĪ′K′

(z′)·

ρ◦(z
′, z) rn−2q

t (Θ◦(z′, z)) (◦ =M or L) (see (4.1)) and

r(ε)(t, z, z
′) =

∑
θIK̄H (z)⊠ θĪ

′K′
H (z′) · εn+1r(IK̄)(I′K̄′)(tε, ιε(z), ιε(z

′)) detV •(ιε(z
′))

=
∑

θIK̄H (z)⊠ θĪ
′K′

H (z′) · ρ◦(ιε(z′), ιε(z)) rn−2q
t (Θ◦(ε)(z′, z)) detV •(ιε(z

′)),

where we put Θ◦(ε)(z′, z) = ι1/εΘ
◦(ιε(z

′), ιε(z)). Further, let us set q(ε)(t, z, z
′) = ( ∂

∂t +

□(ε))r(ε)(t, z, z
′) and q1(ε) = q(ε), q

2
(ε) = q(ε)#q

1
(ε), q

3
(ε) = q(ε)#q

2
(ε), . . . inductively. Then

we have

p(ε)(t, z, z
′) =

∞∑
k=0

(−1)k(r(ε)#q
k
(ε))(t, z, z

′) (r(ε)#q
0
(ε) := r(ε)).(6.6)
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Notice that the coefficient of the remainder term Rk0(p(ε)) :=
∑

k≥k0
(−1)kr(ε)#q

k
(ε) can

be described as

Rk0(p(ε))
(IK̄)(I′K̄′)(t, z, z′) = εn+1Rk0(p)

(IK̄)(I′K̄′)(tε, ιε(z), ιε(z
′)) detV •(ιε(z

′)).(6.7)

Lemma 6.4 There exists a constant C ′(k0, ℓ) > 0 (ℓ = 0 or ℓ ≥ 2n+ 2) such that∣∣∣∣(∂/∂t)d(∂/∂z)A(∂/∂z′)A′
(

∂

∂ε1/2
)mRk0(p(ε))(t, z, z

′)

∣∣∣∣
≤ εk0/2−m/2+ℓ/2C ′(k0, ℓ) t

k0/2−d−|(A,A′)|H/2−m+ℓ/2−(n+1)δ(ε)(z′, z)−ℓ
∑

|zCz′C′ |

on (0, ε
1/2
0 ] × (0, T0] ×Hn ×Hn, where we set δ(ε)(z′, z) = ι1/εδ(ιε(z

′), ιε(z)). Here the

finite sum
∑

|zCz′C′ | depends on the choice of (d,A,A′).

Proof. The differential of the right hand side of (6.7) but with εn+1 removed by the

differentiation (∂/∂t)d(∂/∂z)A(∂/∂z′)A
′
( ∂
∂ε1/2

)m
′
can be described as∑

d′+|(B,B′)|H/2≤d+|(A,A′)|H/2+m′

εd
′+|(B,B′)|H/2−m′/2h(ε1/2, t, z, z′)B(ιε(z′), ιε(z))

×
(
(∂/∂t)d

′
ξB,zξB′,z′Rk0(p)

)(IK̄)(I′K̄′)
(tε, ιε(z), ιε(z

′)),

where h(ε1/2, t, z, z′) is a polynomial and the absolute value of the function B(w′, w) is

bounded on Hn ×Hn (refer to Lemma 3.3). Hence, (4.11) implies the lemma.

6.3 Detailed investigation of the term (−1)k(r(ε)#gHq
k
(ε))(t, z, z

′)

We wish to investigate each term (−1)kr(ε)#gHq
k
(ε) appearing in (6.6) closely.

Lemma 6.5 The system ΘM(ε)(z′, z) (= Θ∇(ε)
(z′, z)) can be extended smoothly up

to the domain domΘM(•) := {(ε1/2, z′, z) ∈ [0, ε
1/2
0 ] ×Hn ×Hn | (z′, z) ∈ V (ε)} and so

can be the system ΘL(ε)(z′, z) up to the domain domΘL(•) := [0, ε
1/2
0 ]×Hn ×Hn. The

extended ones provide

Θ
◦(ε)
B

∣∣∣
ε1/2=0

= (z′−1z)B,(6.8)

(
∂

∂ε1/2
)mΘ

◦(ε)
B =

(finite)∑
|(C′,D)|H≥m+|B|H , |D|>0

z′C
′
(z′−1z)DΘ

◦,m/2
B (ε1/2, ιε(z

′), ιε(z)),

Θ
◦,m/2
B (ε1/2, ιε(z

′), ιε(z)) = ε(|(C
′,D)|H−m−|B|H)/2Θ

◦,m/2
B (ιε(z

′), ιε(z)),

(6.9)

where the coefficients Θ
◦,m/2
B (ε1/2, ιε(z

′), ιε(z))(= Θ
◦,m/2
(C′,D);B(ε

1/2, ιε(z
′), ιε(z))) are smooth

on domΘ◦(•) and bounded in the sense: In the case Θ◦(ε) = ΘM(ε), their differen-

tials by every (high order) differentiation relative to the variables (z′, z) are bounded on
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domr Θ
M(•) := {(ε1/2, z′, z) ∈ domΘM(•) | |w(ιε(z′))| ≤ 2r, |w(ιε(z))| ≤ 2r} and, in the

case Θ◦(ε) = ΘL(ε), so are their differentials on domΘL(•).

Proof. The function Θ◦(ιε(z
′), ιε(z)) is obviously smooth on domΘ◦(•). As ε1/2 → 0,

ΘM(ε)(z′, z) tends to z′−1z (by (2.15)) and also ΘL(ε)(z′, z) = ι1/ε(w(ιε(z
′))−1w(ιε(z)))

tends to z′−1z. Thus Θ◦(ε)(z′, z) can be extended smoothly up to domΘ◦(•) and (6.8)

holds. It follows readily from the differentiation rule and the property Θ
◦(ε)
B (z′, z′) = 0

that (6.9) but with the boundedness condition ignored holds. In the case Θ◦(ε) = ΘL(ε),

we will need to further expand the coefficients into finite Taylor series (with remainder

terms ) so as to satisfy the boundedness condition (see (3.13)).

The lemma asserts that one can express Θ
◦(ε)
B as a finite sum of functions of the

variables (z′, z′−1z), and, conversely, express (z′−1z)D as a finite sum of functions of the

variables (z′,Θ◦(ε)) as follows:

Θ
◦(ε)
B =

∑
|(C′,D)|H≥|B|H , |D|>0

z′C
′
(z′−1z)D BB(ε

1/2, ιε(z
′), ιε(z

′−1z)),

BB(ε
1/2, ιε(z

′), ιε(z
′−1z)) = ε(|(C

′,D)|H−|B|H)/2BB(ιε(z
′), ιε(z

′−1z)),

(z′−1z)D =
∑

|(C′,B)|H≥|D|H , |B|>0

z′C
′
(Θ◦(ε))B BD(ε

1/2, ιε(z
′), ιεΘ

◦(ε)),

BD(ε
1/2, ιε(z

′), ιεΘ
◦(ε)) = ε(|(C

′,B)|H−|D|H)/2BD(ιε(z
′), ιεΘ

◦(ε)).

(6.10)

Here, the coefficients BB(ε
1/2, ιε(z

′), ιε(z
′−1z)) (= B(C′,D);B(ε

1/2, ιε(z
′), ιε(z

′−1z))) are

smooth on domΘ◦(•) and quasi-bounded in the sense: Their differentials by every

(high order) differentiation relative to the variables (ε1/2, z′, z) are described as fi-

nite sum of such functions as z′C
′′
(z′−1z)D

′B̃(ε1/2, ιε(z′), ιε(z′−1z)), where the functions

B̃(ε1/2, ιε(z′), ιε(z′−1z)) are bounded on domr Θ
M(•) when Θ◦(ε) = ΘM(ε), and bounded

on domΘL(•) when Θ◦(ε) = ΘL(ε). Also the coefficients BD(ε
1/2, ιε(z

′), ιεΘ
◦(ε)) are

smooth on domΘ◦(•) and quasi-bounded in similar sense.

In general, if we regard a quasi-bounded function B(ε1/2, ιε(z′), ιε(z′−1z)) naturally

as a function of (ε1/2, ιε(z
′), ιεΘ

◦(ε)), a function of (ε1/2, ιε(z), ιε(z
−1z′)) and a function

of (ε1/2, ιε(z), ιεΨ
◦(ε)) (Ψ◦(ε)(z, z′) := −Θ◦(ε)(z′, z)), then the respective functions are

quasi-bounded in the respective senses. Similar assertions are valid also for the other

quasi-bounded functions B(ε1/2, ιε(z′), ιεΘ◦(ε)), etc. In the following we may express a

quasi-bounded function simply as B(ε1/2) if no confusion occurs.
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Now, for a kernel k(t, z, z′) =
∑
θIK̄(z) ⊠ θĪ

′K′
(z′) · Kb

◦(t, z, z
′) (see (4.13)), we set

k(ε)(t, z, z
′) =

∑
θIK̄H (z)⊠ θĪ

′K′
H (z′) ·Kb

◦(ε)(t, z, z
′) with

Kb
◦(ε)(t, z, z

′) = t−n−2+b/2ρ◦(ιε(z
′), ιε(z))K(ι1/tΘ

◦(ε)(z′, z)),

which we call an (ε)-kernel of type b. Note that by Lemma 3.3 the kernel r(t, z, z′)

multiplied by detV •(z′) is still of type 2, so that r(ε)(t, z, z
′) is an (ε)-kernel of type 2.

Lemma 6.6

(1) The function Kb
◦(ε)(t, z, z

′) can be extended smoothly up to ε1/2 = 0 and has a

Taylor expansion

Kb
◦(ε) =

∑
0≤m<m∗

εm/2Kb
◦,m/2 + εm∗/2Kb

◦,m∗/2
(ε1/2),

Kb
M,0/2 = t−n−2+b/2ρM (0, 0)K(ι1/t(z

′−1z)), Kb
L,0/2 = 0.

(6.11)

Further, there exist finite sum expressions (ℓ ≥ 0)

Kb
M,m/2 =

∑
zC(∂/∂z)B t−n−2+b/2+ℓ/2K(ι1/t(z

′−1z)), Kb
L,m/2 = 0,(6.12)

Kb
◦,m∗/2

(ε1/2) =
∑

zC(∂/∂z)B t−n−2+b/2+ℓ/2
[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

.(6.13)

Here, in general, we set [f(δ, . . .)]δm =
∫ 1
0 dσ1 · · ·

∫ σm−1

0 dσmf(σmδ, . . .)poly(σm), where

poly(σm) is a polynomial of σm. (At (6.13) we may set poly(σm∗) = 1.) The functions

K(Θ) (= K(ℓ,C,B)(Θ)) are rapidly decreasing and B(ε1/2) (= B(ℓ,C,B)(ε
1/2)) are quasi-

bounded.

(2) (cf. (6.5)) We have

zC(∂/∂z)Bz′C
′
(∂/∂z′)B

′
(∂/∂ε1/2)m t−n−2+b/2

[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

(6.14)

=
∑

|B̃|≤|(B,B′)|+m

zC̃(∂/∂z)B̃ t−n−2+b/2+ℓ/2
[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

=
∑

|B̃′|≤|(B,B′)|+m

z′C̃
′
(∂/∂z′)B̃

′
t−n−2+b/2+ℓ′/2

[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

,

where B(ε1/2), K(Θ) appearing in the second and third lines depend on the respective

indices.

Proof. By Lemma 6.5, certainly Kb
◦(ε) can be extended smoothly. Further, by

recalling the location of supp ρ◦, the second line of (6.11) and the second identity
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at (6.12) will be obvious. Let us show the first one at (6.12). We assume m >

0. Lemma 6.5 says that Kb
M,m/2 can be expressed as a finite sum of such functions

as t−n−2+b/2z′C1(z′−1z)D(∂/∂w)BK(ι1/t(w)) (w := z′−1z). We can alter the function

z′C1(z′−1z)D(∂/∂w)BK(ι1/t(w)) successively as follow:

z′C1(z′−1z)D(∂/∂w)BK(ι1/t(w)) ⇒ z′C1(∂/∂w)B1

(
wD1K1(ι1/t(w))

)
⇒ t|D1|H/2z′C1(∂/∂w)B1K2(ι1/t(w)) ⇒ t|D1|H/2z′C2(∂/∂z)B2K2(ι1/t(z

′−1z))

⇒ t|D1|H/2(∂/∂z)B2

(
zC3(z−1z′)D3K2(ι1/t(z

′−1z))
)

⇒ t|(D1,D3)|H/2zC4(∂/∂z)B3K4(ι1/t(z
′−1z)).

(6.15)

Thus we obtain (6.12). Next, let us show (6.13). Taylor’s integral formula implies that

the remainder term Kb
◦,m∗/2

(ε1/2) can be expressed as a finite sum of such functions as

t−n−2+b/2
[
z′C

′
(Θ◦(ε))AB(ε1/2)(∂/∂Θ◦(ε))BK(ι1/tΘ

◦(ε))
]ε1/2
m∗

. In the successive alterations

at (6.15), the change of variables (z′, z′−1z) ⇔ (z′, z) was used. Here, using the changes

of variables (z′,Θ◦(ε)) ⇔ (z′, z′−1z) ⇔ (z′, z) (see (6.10)), similarly we obtain (6.13). As

to (2): By Lemma 4.3(4) (for ξ
(ε)
A,z), we have

zC(∂/∂z)B t−n−2+b/2B(ε1/2)K(ι1/tΘ
◦(ε))

=
∑

|B̃′|≤|B|

z′C̃
′
(∂/∂z′)B̃

′
t−n−2+b/2+ℓ′/2B(ε1/2)K(ι1/tΘ

◦(ε)).

In addition, obviously we have

(∂/∂ε1/2)
[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

=
[
(∂/∂ε1/2)B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
m∗

.

Thus, recalling the action of ∂/∂ε1/2 on B(ε1/2) and Θ◦(ε) (Lemma 6.5 and (6.10)), we

obtain (6.14).

Lemma 6.7 Let us set

ki =
∑

θIK̄H (z)⊠ θĪ
′K′

H (z′) · t−n−2+mi/2K(ι1/t(z
′−1z)),

ki(ε
1/2) =

∑
θIK̄H (z)⊠ θĪ

′K′
H (z′) · t−n−2+mi/2

[
B(ε1/2)K(ι1/tΘ

◦(ε))
]ε1/2
ni

,
(6.16)

where mi ≥ 1 and ni ≥ 0. Then, Lemma 6.3 still holds even if we change each stan-

dard kernel ki into ki or ki(ε
1/2) arbitrarily. Further, the estimates (6.2), (6.3) can be

generalized to∥∥∥(∂/∂t)d(∂/∂z)A(∂/∂z′)A′
(∂/∂ε1/2)m(

zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(ε1/2, t, z, z′)

∥∥∥
L1
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≤ b′t
∑

mi/2−N−d−1
∑

|z′C′ |,∣∣∣(∂/∂t)d(∂/∂z)A(∂/∂z′)A′
(∂/∂ε1/2)m(6.17) (

zC1(∂/∂z)B1k1# · · ·#zCj (∂/∂z)Bjkj

)
(ε1/2, t, z, z′)

∣∣∣
≤ B′(ℓ) t

∑
mi/2−N−d+ℓ/2−(n+2)δ(•)(z′, z))−ℓ

∑
|z′C′ |,

where ki = ki or ki(ε
1/2), and δ(•)(z′, z) := min

ε1/2∈[0,ε1/20 ]
δ(ε)(z′, z).

Proof. Added to (6.5), we have (6.14). Hence the lemma will be proved in the same

way as Lemma 6.3.

Lemma 6.8 Suppose ki,(ε) are (ε)-kernels of types bi (≥ 1). Then, the convolution

k1,(ε)# · · ·#kj,(ε) can be extended smoothly up to ε1/2 = 0.

Proof. By Lemma 6.6, each ki,(ε) is extended smoothly up to ε1/2 = 0. Let us de-

note its expansion by ki,(ε) (= ki,0/2(ε
1/2)) =

∑
0≤m<m∗

εm/2 ki,m/2+ ε
m∗/2 ki,m∗/2(ε

1/2),

where ki,m/2, ki,m∗/2(ε
1/2) are expressed as (6.16) with (mi, ni) replaced by (bi+ ℓi,m∗)

(ℓi ≥ 0). Then, k#,(ε) := k1,(ε)# · · ·#kj,(ε) is described as

k#,(ε) =
∑

0≤m<m∗

εm/2k#,m/2 + εm∗/2k#,m∗/2(ε
1/2)

=
∑

0≤m<m∗

εm/2

∑
mi=m∑

k1,m1/2# · · ·#kj,mj/2

+εm∗/2

∑
mi=m∗∑

mi>0=mi+1=···=mj

k1,m1/2# · · ·#ki−1,mi−1/2#ki,mi/2(ε
1/2)# · · ·#kj,mj/2(ε

1/2),

where, by Lemma 6.3, k#,m/2(t, z, z
′) is well-defined and smooth on (0,∞)×Hn ×Hn.

Further, it follows from (6.17) with ℓ = 0 that also k#,m∗/2(ε
1/2, t, z, z′) is well-defined

and smooth on (0, ε
1/2
0 ]× (0,∞)×Hn ×Hn, and is estimated as∣∣∣(∂/∂t)d(∂/∂z)A(∂/∂z′)A′

(∂/∂ε1/2)mk#,m∗/2(ε
1/2, t, z, z′)

∣∣∣
≤ B′ t

∑
bi/2−N−d−(n+2)

∑
|z′C′ |

on (0, ε
1/2
0 ]× (0, T0]×Hn×Hn. Hence, the term εm∗/2k#,m∗/2(ε

1/2) can be extended up

to ε1/2 = 0 so as to be of class Cm∗−1 by claiming that its differentials up to the order

m∗ − 1 relative to the variables (ε1/2, t, z, z′) are equal to 0 at ε1/2 = 0. Namely, k#,(ε)

can be extended up to ε1/2 = 0 so as to be of class Cm∗−1. Since m∗ can be chosen

arbitrarily large, certainly it can be extended smoothly up to ε1/2 = 0.

Now we can show the desired assertion.
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Lemma 6.9 Each term (−1)k(r(ε)#q
k
(ε))(t, z, z

′) can be extended smoothly up to

ε1/2 = 0 and has a series expansion

(−1)kr(ε)#q
k
(ε) =

∑
k≤m<m∗

εm/2pkm/2 + εm∗/2pkm∗/2
(ε1/2), p00/2 = rH .(6.18)

Further, for every φ ∈ Ωp,q
0 Hn, the integrals

∫
pkm/2(t, z, z

′)∧⋆φ(z′),
∫
pkm∗/2

(ε1/2, t, z, z′)

∧ ⋆ φ(z′) are well-defined and smooth on [0, ε
1/2
0 ] × [0,∞) × Hn (∋ (ε1/2, t1/2, z)), and

there exists a semi-norm sn(·) such that, for any φ ∈ Ωp,q
0 Hn, we have∥∥∥∥∫ p00/2(t, z, z

′) ∧ ⋆φ(z′)− φ(z)

∥∥∥∥
L2

≤ t1/2 sn(φ),(6.19) ∥∥∥∥∫ p0m/2(t, z, z
′) ∧ ⋆φ(z′)

∥∥∥∥
L2

≤ t1/2 sn(φ) (m > 0),(6.20) ∥∥∥∥∫ pkm/2(t, z, z
′) ∧ ⋆φ(z′)

∥∥∥∥
L2

≤ tk/2 sn(φ) (k > 0)(6.21)

when 0 ≤ t1/2 ≤ T
1/2
0 .

Proof. Note that r(ε) is an (ε)-kernel of type 2 and q(ε) has a finite sum expression

q(ε) =
∑
εb/2 q̃b,(ε), where each q̃b,(ε) is an (ε)-kernel of type b (≥ 1). Thus we have

(−1)k r(ε)#q
k
(ε) = (−1)k

∑
bi≥1

ε
∑

bi/2 r(ε)#q̃b1,(ε)# · · ·#q̃bk,(ε),

which, together with Lemma 6.8, ascertains the first half of the lemma. Next, let us

examine the integrals
∫
p0m/2(t, z, z

′) ∧ ⋆φ(z′) (m ≥ 0). It suffices to consider (6.18)

with k = 0, i.e., r(ε) =
∑

0≤m<m∗
εm/2rm/2 + εm∗/2rm∗/2(ε

1/2). The coefficients of

rm/2, rm∗/2(ε
1/2) consist of such functions as K2

◦,m/2, K
2
◦,m∗/2

(ε1/2) (see Lemma 6.6(1)),

respectively. Hence, with reference to (6.5) and Lemma 6.6(2), using integration by

parts and then changing the variables in the same way as (2.11), we obtain the finite

sum expressions∫
dV (z′) r

(IK̄)(I′K̄′)
m/2 (t, z, z′)φI′K̄′

(z′)

=
∑
ℓ≥0

tℓ/2
∫
dV (z′)K(z′) (∂/∂w)B

′
(
wC′

φI′K̄′
(w)
)∣∣∣

w=z(−ιt(z′))
,

∫
dV (z′) r

(IK̄)(I′K̄′)
m∗/2

(ε1/2, t, z, z′)φI′K̄′
(z′) =

∑
ℓ≥0

tℓ/2

×
∫
dV (z′)

[
B(ε1/2)K(z′) (∂/∂w)B

′
(
wC′

φI′K̄′
(w)
)∣∣∣

w=Θ(ε)(·,z)−1(ιt(z′))

]ε1/2
m∗

.
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The argument similar to the proof of Lemma 2.6 claims that these are smooth on

[0, ε
1/2
0 ]× [0,∞)×Hn and, setting φm/2(z) = limt1/2→0

∫
rm/2(t, z, z

′)∧ ⋆φ(z′), we have∥∥∥∥∫ rm/2(t, z, z
′) ∧ ⋆φ(z′)− φm/2(z)

∥∥∥∥
L2

≤ t1/2 sn(φ)

when 0 ≤ t1/2 ≤ T
1/2
0 . Further we have φ0/2(z) = φ(z) (see (2.13)) and φm/2(z) = 0

(m > 0). Indeed, since Lemma 4.1 implies limt1/2→0

∫
r(ε)(t, z, z

′) ∧ ⋆φ(z′) = φ(z) for

every (ε1/2, z) ∈ [0, ε
1/2
0 ] ×Hn, setting φm∗/2(ε

1/2, z) = limt1/2→0

∫
rm∗/2(ε

1/2, t, z, z′) ∧

⋆φ(z′) as well, we know that the form
∑

0≤m<m∗
εm/2φm/2(z) + εm∗/2φm∗/2(ε

1/2, z) on

[0, ε
1/2
0 ]×Hn is identically equal to φ(z). Thus (6.19) and (6.20) were proved. Similarly

the form
∫
pkm/2(t, z, z

′)∧ ⋆φ(z′) (k > 0) is smooth on [0,∞)×Hn and (6.4) implies the

estimate (6.21).

6.4 The proof of Proposition 6.1

Now, let us prove Proposition 6.1.

Lemma 6.9 says that
∑

0≤k<k0
(−1)kr(ε)#q

k
(ε) can be extended smoothly up to the

domain [0, ε
1/2
0 ]× (0,∞)×Hn ×Hn, and Lemma 6.4 with ℓ = 0 says that Rk0(p(ε)) can

be extended up to the domain so as to be of class Ck0−1 (by claiming that its differentials

up to the order k0 − 1 relative to the variables (ε1/2, t, z, z′) are equal to 0 at ε1/2 = 0).

Since k0 can be chosen arbitrarily large, certainly p(ε)(t, z, z
′) is extended smoothly up

to ε1/2 = 0 and we have

pm/2(t, z, z
′) =

∑
0≤k≤m

pkm/2(t, z, z
′).(6.22)

Let us show (6.1) by induction. When m = 0, it is valid because of (6.18) and (5.7). We

fix m′ > 0 and assume that it is valid when m < m′. Then, certainly we have( ∂
∂t

+□0/2

)
(pm′/2 − pm′/2) = 0.

Further, since
∥∥∫ pm′/2(t, z, z

′) ∧ ⋆φ(z′)
∥∥
L2 ≤ t1/2sn(φ) (by (6.22), (6.20), (6.21)) and∥∥∫ pm′/2(t, z, z

′) ∧ ⋆φ(z′)
∥∥
L2 ≤ t2/2sn(φ) (by (5.8), (6.4)), we have

lim
t→0

∥∥∥∥∫ (pm′/2(t, z, z
′)− pm′/2(t, z, z

′)
)
∧ ⋆φ(z′)

∥∥∥∥
L2

= 0 (φ ∈ Ωp,q
0 Hn).

Hence, by the uniqueness of the solution of the initial value problem relative to □0/2 = L

(refer to Lemma 2.6), (6.1) with m = m′ is valid.
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6.5 (5.14) vanishes when m is odd

For its proof, it will suffice to show the following.

Lemma 6.10 For z = (z0, z▲), we set z̃ = (z0,−z▲). Then we have

P(IK̄)(I′K̄′)
m/2 (t, z, z′ : A,A′) = (−1)m+|A|H+|A′|HP(IK̄)(I′K̄′)

m/2 (t, z̃, z̃′ : A,A′).(6.23)

Proof. Let us expand detV•(ιε(z
′)) into the series

∑
m≥0 ε

m/2detm/2(z
′). Then we

have (∂/∂z′)A
′
detm/2(z

′) = (−1)m+|A′|H (∂/∂z′)A
′
detm/2(z

′)|z′=z̃′ . Hence, it will suffice

to ascertain the formula (6.23) with P replaced by p. With the use of the notation at

(5.13), further it will suffice to show(
(∂/∂z)ArH#zC

(1)
(∂/∂z)B

(1)
rH# · · ·#zC(k)

(∂/∂z)B
(k)
(∂/∂z′)A

′
rH

)
(t, z, z′)(6.24)

= (−1)
∑

mℓ+|A|H+|A′|H

×
(
(∂/∂z)ArH#zC

(1)
(∂/∂z)B

(1)
rH# · · ·#zC(k)

(∂/∂z)B
(k)
(∂/∂z′)A

′
rH

)
(t, z̃, z̃′).

Now, since 2 + |C(ℓ)|H = |B(ℓ)|H +mℓ (refer to (5.5)), we have

(∂/∂z)ArH(t, z, z′) = (∂/∂z)ArH(t, z̃, z̃′) = (−1)|A|H (∂/∂z̃)ArH(t, z̃, z̃′),

zC
(ℓ)
(∂/∂z)B

(ℓ)
rH(t, z, z′) = (−1)|(B

(ℓ),C(ℓ))|H z̃C
(ℓ)
(∂/∂z̃)B

(ℓ)
rH(t, z̃, z̃′)

= (−1)mℓ z̃C
(ℓ)
(∂/∂z̃)B

(ℓ)
rH(t, z̃, z̃′),

etc. In addition, we have dV (z) = dV (z̃). Thus we obtain the equality (6.24).

7 The proof of the formula (0.6)

In this section, we assume that J is integrable, that is, M is a strictly pseudo-

convex CR manifold. Hence, the hermitian Tanno connection ∇ coincides with the

Tanaka-Webster connection and the asymptotic coefficients a
(IK̄)(I′K̄′)
m/2 (P 0 : A,A′) can

be described as universal polynomials made of

RA1A2A3A4A5···Aℓ
=
∂ℓ−4g(F (∇)((∂/∂zA3 , ∂/∂zA4)∂/∂zA2 , ∂/∂zA1)

∂zA5 · · · ∂zAℓ

(P 0),

TA1A3A4···Aℓ
= TA10A3A4···Aℓ

=
∂ℓ−3g(T (∇)(∂/∂z0, ∂/∂zA3), ∂/∂zA1)

∂zA4 · · · ∂zAℓ

(P 0),

(cf. (2.7)). The purpose in this section is to show the formula (0.6) for a1(P
0) =∑

I,K a
(IK̄)(IK̄)
2/2 (P 0) :=

∑
I,K a

(IK̄)(IK̄)
2/2 (P 0 : ∅, ∅).
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Proposition 7.1 We have

a
(IK̄)(IK̄)
2/2 (P 0)(7.1)

=

β ̸∈I∑
α∈K

Rᾱαβ̄β +
{∑

α∈I
Rᾱαβ̄β −

∑
α∈K

Rᾱαβ̄β

}{1
2
+

∫ ∞

−∞
dsΦn−2q(s)Φ1(s)

}
+Rᾱαβ̄β

∫ ∞

−∞
dsΦn−2q(s)

{
− 1

12
+

4

3
Φ2(s)

}
.

If this is valid, then we have

a1(P
0) =

(
n− 1

q − 1

)(
n− 1

p

)
Rᾱαβ̄β

+
{(n− 1

p− 1

)
Rᾱαβ̄β −

(
n− 1

q − 1

)
Rᾱαβ̄β

}{1
2
+

∫ ∞

−∞
dsΦn−2q(s)Φ1(s)

}
+

(
n

q

)(
n

p

)
Rᾱαβ̄β

∫ ∞

−∞
dsΦn−2q(s)

{
− 1

12
+

4

3
Φ2(s)

}
.

Thus we obtain the formula (0.6). Hence, the purpose in the following is to prove

Proposition 7.1. First, advancing such a calculation as in Corollary 2.5, we get

Lemma 7.2 We have

θ = dz0 ·
{
1 + zγzδ

−iTγδ

6
+ zγ̄zδ̄

iTγ̄δ̄

6
+O(|z|3)

}
+ dzβ ·

{
zβ̄

−i
2

+ z0zγ
iTβγ

6
+ zβ̄zγzδ

−Tγδ

24
+ zβ̄zγ̄zδ̄

Tγ̄δ̄

24

+ z0z0zγ̄
−iTβδTδ̄γ̄

24
+ z0zγzA

iTβγA

12
+ zγ̄zδzA

iRγ̄δβA

12
+O(|z|4)

}
+ dzβ̄ ·

{
zβ
i

2
+ z0zγ̄

−iTβ̄γ̄

6
+ zβzγ̄zδ̄

−Tγ̄δ̄

24
+ zβzγzδ

Tγδ

24

+ z0z0zγ
iTβ̄δ̄Tδγ

24
+ z0zγ̄zA

−iTβ̄γ̄A

12
+ zγzδ̄zA

−iRγδ̄β̄A

12
+O(|z|4)

}
,

θα = dz0 ·
{
zγ̄

−Tᾱγ̄

2
+ z0zγ

−Tᾱδ̄Tγδ

6
+ zγ̄zA

−Tᾱγ̄A

3
+ zγzA

−Rᾱγ0A

6

}
+ dzβ ·

{
δβα + zβ̄zγ̄

iTᾱγ̄

6
+ z0z0

Tᾱγ̄Tβγ

6
+ zγzA

−RᾱγβA

6

}
+ dzβ̄ ·

{
z0

Tᾱβ̄

2
+ zβzγ̄

−iTᾱγ̄

6
+ z0zA

Tᾱβ̄A

3
+ zγzA

−Rᾱγβ̄A

6

}
+O(|z|3)

and

ξ = ∂/∂z0 ·
{
1 + zγzδ

−iTγδ

12
+ zγ̄zδ̄

iTγ̄δ̄

12

}
+ ∂/∂zα ·

{
zγ̄

Tᾱγ̄

2
+ z0zγ

−Tᾱδ̄Tγδ

12
+ zγ̄zA

Tᾱγ̄A

3
+ zγzA

Rᾱγ0A

6

}
+ ∂/∂zᾱ ·

{
zγ

Tαγ

2
+ z0zγ̄

−TαδTγ̄δ̄

12
+ zγzA

TαγA

3
+ zγ̄zA

Rαγ̄0A

6

}
+O(|z|3),
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ξβ = ∂/∂z0 ·
{
zβ̄
i

2
+ z0zγ

iTβγ

12
+ z0zγzA

iTβγA

12
+ zγ̄zδzA

iRγ̄δβA

12
+O(|z|4)

}
+ ∂/∂zα ·

{
δαβ + zβ̄zγ̄

iTᾱγ̄

12
+ z0z0

Tᾱγ̄Tβγ

12
+ zγzA

RᾱγβA

6
+O(|z|3)

}
+ ∂/∂zᾱ ·

{
z0

−Tαβ

2
+ zβ̄zγ

iTαγ

12
+ z0zA

−TαβA

3
+ zγ̄zA

Rαγ̄βA

6
+O(|z|3)

}
.

In addition, we have

ωα
β (∂/∂zA) = zA1

−RᾱβAA1

2
+O(|z|2), Rᾱβγ̄δ̄ = −iTᾱγ̄ δδβ + iTᾱδ̄ δγβ .

Corollary 7.3 We have

□1/2 = 0,(7.2)

□2/2 =
{
z0

Tᾱβ̄

2
+ zγzγ̄

iTᾱβ̄

6
+ zαzγ̄

−iTβ̄γ̄

12
+ zγzδ

−Rᾱγβ̄δ

6

}
∂/∂zα∂/∂zβ(7.3)

+
{
z0

Tαβ

2
+ zγzγ̄

−iTαβ

6
+ zᾱzγ

iTβγ

12
+ zγ̄zδ̄

−Rγ̄αδ̄β

6

}
∂/∂zᾱ∂/∂zβ̄

+
{
zβ̄zγ̄

−iTᾱγ̄

4
+ zαzγ

iTβγ

4

+ δαβ ·zγzδ
−iTγδ

6
+ δαβ ·zγ̄zδ̄

iTγ̄δ̄

6
+ zγ̄zδ

Rᾱβγ̄δ

3

}
∂/∂zα∂/∂zβ̄

+
{
z0zγ̄

iTᾱγ̄

3
+ zγ̄zδzδ̄

−Tᾱγ̄

6
+ zαzγ̄zδ̄

Tγ̄δ̄

12
+ zγzδ̄zρ

−iRᾱγδ̄ρ

4

}
∂/∂z0∂/∂zα

+
{
z0zγ

−iTαγ

3
+ zγzδzδ̄

−Tαγ

6
+ zᾱzγzδ

Tγδ

12
+ zγ̄zδ̄zρ

iRγ̄αδ̄ρ

4

}
∂/∂z0∂/∂zᾱ

+
{
z0zγzδ

−Tγδ

24
+ z0zγ̄zδ̄

−Tγ̄δ̄

24
+ zγ̄zδzρ̄zσ

Rγ̄δρ̄σ

12

}
∂/∂z0∂/∂z0

+
{
zγ̄
i(−n+ 5− 6q)Tᾱγ̄

12
+ zγ

−Rᾱγδ̄δ

3

+
(
zµ̄

−iTᾱν̄

2
+ δαµ ·zδ̄

iTδ̄ν̄

2
+ zδ

Rᾱδν̄µ

2

)
θν̄H ∧ θµ̄H ∨

+
(
zν̄
iTᾱµ̄

2
+ δαν ·zδ̄

−iTδ̄µ̄

2
+ zδ

−Rᾱδµ̄ν

2

)
θνH ∧ θµH ∨

}
∂/∂zα

+
{
zγ
i(7n− 5− 6q)Tαγ

12
+ zγ̄

−Rγ̄αδ̄δ

3

+
(
zν

−iTαµ

2
+ δαν ·zδ

iTδµ

2
+ zδ̄

−Rδ̄αν̄µ

2

)
θν̄H ∧ θµ̄H ∨

+
(
zµ
iTαν

2
+ δαµ ·zδ

−iTδν

2
+ zδ̄

Rδ̄αµ̄ν

2

)
θνH ∧ θµH ∨

}
∂/∂zᾱ

+
{
zγzδ

(2n− 2− q)Tγδ

12
+ zγ̄zδ̄

(n− 2 + q)Tγ̄δ̄

12

+ zγ̄zδ
iRγ̄δν̄µ

2
θν̄H ∧ θµ̄H ∨ + zγ̄zδ

−iRγ̄δµ̄ν

2
θνH ∧ θµH ∨

}
∂/∂z0

+
{Rγ̄γν̄µ

2
θν̄H ∧ θµ̄H ∨ +

−Rγ̄γµ̄ν

2
θνH ∧ θµH ∨

− Rᾱβν̄µ θ
ᾱ
H∧ θβ̄H ∨ θν̄H∧ θµ̄H ∨ +Rᾱβµ̄ν θ

ᾱ
H∧ θβ̄H ∨ θνH∧ θµH ∨

}
.
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By (7.2), the formula (5.13) with m = 2 is reduced to

a
(IK̄)(IK̄)
2/2 (P 0) = −

∑
□(IK̄)(IK̄)

2/2 (P 0 : C,B) rH(C : B),(7.4)

rH(C : B) :=
(
rH#(z)C(∂/∂z)BrH

)
(1, 0, 0)

=

∫ 1

0
dt

∫
Hn

dV (z) ra1−t(−z) (z)C(∂/∂z)Brat (z) (a = n− 2q).

We will investigate these closely. Referring to Lemma 2.6(1), we set

rat (z) = F(s : 2z0/t)

{
c(t, s) e(T, z▲)

}
,

c(t, s) =
e−as

2πt

( 1

cosh s

)n
, T = T (t, s) =

t tanh s

2s
,

e(T, z▲) =
1

(4πT )n
exp

(
− |z▲|2

2T

)
.

Note that e(T, z▲) is the Gaussian kernel on (Cn, z▲) (|z▲|2 =
∑
x2i /2) and

(z)C(∂/∂z)Brat (z) = F(s : 2z0/t)

{
P (C : B) c(t, s)e(T, z▲ − z′▲)

}∣∣∣
z′▲=0

,

P (C : B) = P ((C : B) : t, s, ∂/∂s : z′▲, ∂/∂z′▲)

:= (∂/∂s)|C
0| ◦ (t/2i)|C0|−|B0|(−s)|B0|(−∂/∂z′)BH

(2T∂/∂z′ + z̄′)C
H
,

where C = C0 ⊔ CH with CH = {Cj ∈ C | Cj ̸= 0}, etc. Hence, the Parseval formula

implies that rH(C : B) is equal to the value when z′▲ = 0 of∫ 1

0
dt

∫
Hn

dV (z)F(s1 : 2z0/(1−t))

{
c(1− t, s1) e(T (1− t, s1), z▲)

}
×F(s2 : 2z0/t)

{
P ((C : B) : t, s2, ∂/∂s2 :) c(t, s2)e(T (t, s2), z▲ − z′▲)

}
=

∫ 1

0
dt
(1− t)t

4

∫
Cn

dV (z▲)

·
∫ ∞

−∞
dz0F(u1 : z0)

{
c(1− t,

(1− t)u1
2

) e(T (1− t,
(1− t)u1

2
), z▲)

}
×F(u2 : z0)

{
P ((C : B) : t,

tu2
2
,
2

t
∂/∂u2 :) c(t,

tu2
2

)e(T (t,
tu2
2

), z▲ − z′▲)
}

=

∫ 1

0
dt

(1− t)t

4

∫
Cn

dV (z▲) 2π

∫ ∞

−∞
du c(1− t,

(1− t)u

2
) e(T (1− t,

(1− t)u

2
), z▲)

×P ((C : B) : t,
tu

2
,
2

t
∂/∂u :) c(t,

tu

2
)e(T (t,

tu

2
), z▲ − z′▲)

= 4π

∫ 1

0
dt

(1− t)t

4

∫
Cn

dV (z▲)

∫ ∞

−∞
ds c(1− t, (1− t)s) e(T (1− t, (1− t)s), z▲)

×P ((C : B) : t, ts,
1

t
∂/∂s :) c(t, ts)e(T (t, ts), z▲ − z′▲)
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= 4π

∫ 1

0
dt

∫
Cn

dV (z▲)

·
∫ ∞

−∞
dsD(1− t, s)e(S(1− t, s), z▲) P̃ (C : B)D(t, s)e(S(t, s), z▲ − z′▲)

with

D(t, s) =
tc(t, ts)

2
=
e−ats

4π

( 1

cosh ts

)n
,

P̃ (C : B) = P ((C : B) : t, ts,
1

t
∂/∂s : z′▲, ∂/∂z

′
▲)

= (∂/∂s)|C
0| ◦ s|B0|(−1)|B|(2i)|B

0|−|C0|(∂/∂z′)B
H
(2S(t, s)∂/∂z′ + z̄′)C

H
.

In particular, if |C0| = 0 then we have

P̃ (C : B) = P̃ ((C : B) : t, s : z▲, ∂/∂z▲)

= s|B
0|(−1)|B|(2i)|B

0|(∂/∂z)B
H
(2S(t, s)∂/∂z + z̄)C

H
,

rH(C : B) = 4π

∫ 1

0
dt

∫ ∞

−∞
dsD(1− t, s)D(t, s)(7.5)

× P̃ (C : B)
∣∣∣
z▲=0

∫
Cn

dV (z′▲) e(S(1− t, s), z′▲) e(S(t, s), z
′
▲ − z▲)

= 4π

∫ 1

0
dt

∫ ∞

−∞
dsD(1− t, s)D(t, s) P̃ (C : B)

∣∣∣
z▲=0

e(S(1− t, s) + S(t, s), z▲)

and, if |C0| = 1 then we have

P̃ (C : B) = (∂/∂s) ◦ P̃0(C : B)

= (∂/∂s) ◦ s|B0|(−1)|B|(2i)|B
0|−1(∂/∂z)B

H
(2S(t, s)∂/∂z + z̄)C

H
,

rH(C : B) = 4π

∫ 1

0
dt

∫
Cn

dV (z′▲)

∫ ∞

−∞
dsD(1− t, s)e(S(1− t, s), z′▲)

×
{
(∂/∂s)

(
P̃0(C : B)D(t, s)

)
e(S(t, s), z′▲ − z▲)

+P̃0(C : B)D(t, s)(∂/∂s)e(S(t, s), z′▲ − z▲)
}∣∣∣

z▲=0

= 4π

∫ 1

0
dt

∫ ∞

−∞
dsD(1− t, s)

∂D(t, s)P̃0(C : B)
∂s

∣∣∣
z▲=0

e(S(1− t, s) + S(t, s), z▲)

+4π

∫ 1

0
dt

∫ ∞

−∞
dsD(1− t, s)D(t, s) 2

∂S(t, s)

∂s
P̃0(C : B)(∂/∂zα)(∂/∂zᾱ)

∣∣∣
z▲=0

×
∫
Cn

dV (z′▲) e(S(1− t, s), z′▲) e(S(t, s), z
′
▲ − z▲)

= 4π

∫ 1

0
dt

∫ ∞

−∞
dsD(1− t, s)

{∂D(t, s)P̃0(C : B)
∂s

+2D(t, s)
∂S(t, s)

∂s
P̃0(C : B) (∂/∂zα)(∂/∂zᾱ)

}∣∣∣
z▲=0

e(S(1− t, s) + S(t, s), z▲).

50



Notice that (by (7.3)) only the multi-indices C with |C0| = 0, 1 appear in (7.4), and,

from the above researches, for example we know the following and so forth.

Lemma 7.4 As to rH(C : B) appearing in (7.4), we have: (1) it vanishes if there

exists a number k > 0 such that #{A ∈ C ⊔ B | A = k} ̸= #{A ∈ C ⊔ B | A = k̄}. (2)

We have rH(C : B) = rH(C : B), rH(C : B) = (−1)|C
0|+|B0|rH(C : B).

Consequently, (7.4) is reduced to

a
(IK̄)(IK̄)
2/2 (P 0) = Rᾱαᾱα

{−rH(111̄1̄ : 00)

12
+

rH(11̄22̄ : 00)

6

}
(7.6)

+Rᾱαβ̄β

{rH(1 : 1)

3
+

−rH(11̄22̄ : 00)

6

}
+
{∑

α∈I
Rᾱαβ̄β −

∑
α∈K

Rᾱαβ̄β

} irH(11̄ : 0)

2

+
1

2

{∑
α∈I

Rᾱαβ̄β −
∑
α∈K

Rᾱαβ̄β

}
+

β ̸∈I∑
α∈K

Rᾱαβ̄β .

Proof of Proposition 7.1. We set S(t) = S(t, s) for short. Only the multi-indices

C with |C0| = 0 appear in (7.6) and, referring to (7.5), we have

a
(IK̄)(IK̄)
2/2 (P 0)− 1

2

{∑
α∈I

Rᾱαβ̄β −
∑
α∈K

Rᾱαβ̄β

}
−

β ̸∈I∑
α∈K

Rᾱαβ̄β(7.7)

=

∫ ∞

−∞
ds

∫ 1

0
dt 4πD(1− t, s)D(t, s)

(
Rᾱαᾱα

{−P̃ (111̄1̄ : 00)

12
+
P̃ (11̄22̄ : 00)

6

}
+Rᾱαβ̄β

{ P̃ (1 : 1)

3
+

−P̃ (11̄22̄ : 00)

6

}
+
{∑

α∈I
Rᾱαβ̄β −

∑
α∈K

Rᾱαβ̄β

} iP̃ (11̄ : 0)

2

)
e(S(1− t) + S(t), z▲)

∣∣∣
z▲=0

.

Further, we have

P̃ (1 : 1)
∣∣∣
z▲=0

e(S(1− t) + S(t), z▲)

=
{
− 2S(t)(∂/∂z1)(∂/∂z1̄)− 1

}
e(S(1− t) + S(t), z▲)

∣∣∣
z▲=0

= −
( 1

4π(S(1− t) + S(t))

)n S(1− t)

S(1− t) + S(t)
,

iP̃ (11̄ : 0)
∣∣∣
z▲=0

e(S(1− t) + S(t), z▲)

= 4sS(t)(∂/∂z1)(2S(t)∂/∂z1̄ + z1)e(S(1− t, s) + S(t), z▲)
∣∣∣
z▲=0

= 4s
( 1

4π(S(1− t) + S(t))

)n S(1− t)S(t)

S(1− t) + S(t)
,

P̃ (11̄22̄ : 00)
∣∣∣
z▲=0

e(S(1− t) + S(t), z▲)
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= −16s2S(t)2(∂/∂z1)(2S(t)∂/∂z1̄ + z1)

· (∂/∂z2)(2S(t)∂/∂z2̄ + z2)e(S(1− t) + S(t), z▲)
∣∣∣
z▲=0

= −16s2
( 1

4π(S(1− t) + S(t))

)n( S(1− t)S(t)

S(1− t) + S(t)

)2
,

P̃ (11̄11̄ : 00)
∣∣∣
z▲=0

e(S(1− t) + S(t), z▲)

= −16s2S(t)2(∂/∂z1)(∂/∂z1)z
2
1

( S(1− t)

S(1− t) + S(t)

)2
e(S(1− t) + S(t), z▲)

∣∣∣
z▲=0

= −32s2
( 1

4π(S(1− t) + S(t))

)n( S(1− t)S(t)

S(1− t) + S(t)

)2
and, added to (0.5), we have∫ 1

0
dt

S(1− t)

S(1− t) + S(t)
=

1

2
,

4πD(1− t, s)D(t, s)

(4π(S(1− t) + S(t)))n
=

1

2
Φn−2q(s).

Hence, (7.7) is equal to∫ ∞

−∞
ds

∫ 1

0
dt

4πD(1− t, s)D(t, s)

(4π(S(1− t) + S(t)))n

×

{
Rᾱαᾱα

{8
3

( s S(1− t)S(t)

S(1− t) + S(t)

)2
− 8

3

( s S(1− t)S(t)

S(1− t) + S(t)

)2}
+Rᾱαβ̄β

{
− 1

3

S(1− t)

S(1− t) + S(t)
+

8

3

( s S(1− t)S(t)

S(1− t) + S(t)

)2}
+
{∑

α∈I
Rᾱαβ̄β −

∑
α∈K

Rᾱαβ̄β

} 2s S(1− t)S(t)

S(1− t) + S(t)

}

= Rᾱαβ̄β

∫ ∞

−∞
dsΦn−2q(s)

{
− 1

12
+

4

3
Φ2(s)

}
+
{∑

α∈I
Rᾱαβ̄β −

∑
α∈K

Rᾱαβ̄β

}∫ ∞

−∞
dsΦn−2q(s)Φ1(s).

Thus we obtain (7.1).
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in Math. 203, Birkhäuser, Boston-Basel-Stuttgart, 2002.

[6] D. E. Blair and S. Dragomir, Pseudohermitian geometry on contact Riemannian

manifolds, Rend. Mat. Appl. (7) 22(2002), 275-341.

[7] S. Dragomir and G. Tomassini, Differential geometry and analysis on CR manifolds,
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