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Abstract

Based on the idea of adiabatic expansion theory, we will present a new formula
for the asymptotic expansion coefficients of every derivative of the heat kernel on a
compact Riemannian manifold. It will be very useful for having systematic under-
standing of the coefficients, and, furthermore, by using only a basic knowledge of
calculus added to the formula, one can describe them explicitly up to an arbitrarily

high order.
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1 Introduction

Let (M,g) be an n-dimensional compact oriented Riemannian manifold and A =
dd + dd be the Laplacian acting on g-forms, where § is the formal adjoint of the exterior
differentiation d. In terms of the Hodge operator %, it is given by 6 = (—1)natntl kg d g
on QIM :=T(AYT*M). The initial value problem for the heat equation

(L.1) (2+8)o=0, lmol)=¢ (o)

has a unique fundamental solution or heat kernel e~**(P, P’), where the convergence is
in the L?-norm. Near a point P? we will take a positively oriented orthonormal frame

e = (€1,...,e,) of TM and its dual frame e®* = (e!,...,e") which are parallel along the
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geodesics from PY. In addition, let us take normal coordinates = (1, ..., z,) centered
at PO with (0/0z;)0 = e;(P°) for any i, i.e., exp" (es(P°) - z(P)) = P, where V is the

Levi-Civita connection, and consider the local expression

e B (x Z ) Rel'(x (e*m)H, (z,2"),
where we set I = (iy < iy < -+ < i) and el = et A--- Aefa. (In this paper we
adopt such a notation as e!(Xy,...,X,) = det (¢’*(X,)).) Then, every differential of
the coefficient at the point (0,0) = (P, P) can be asymptotically expanded as
(1.2)  (9/0x) (0/02"Y¥ (™) (PO, PO ~ ST M2l (PO AN

m>—(|A[+|A])

when ¢ — 0, where for a multi-index A = (Ay,...,Aj5)) (1 < A; <n) we set (0/0x)h =
0/0xa, -+ 0[0x4a,,.

In this paper, we wish to present a new formula (1.24) for the asymptotic expansion
coefficients. It will be very useful for having systematic understanding of them, and,
furthermore, using only a basic knowledge of calculus added to the formula, one can
describe them explicitly up to an arbitrarily high order. Compare our calculation of
ago(P°) = Z%/g( PY : 0,0) following Theorem 1.1 with those by Gilkey ([4], [5,
Theorem 4.8.18 (b)]) and by Branson-Gilkey ([2], [6, Theorem 4.1.7 (b)]).

Only familiar sources are required for inducing the formula. First, due to Atiyah-
Bott-Patodi [1, Proposition 3.7 and Appendix II], the connection coefficients wg (0/0z5)
:= g(Vo/oe, iz, €ir ) are formally expanded as

> 'IF(V)(9/dx;,0/0x5,)
1.3 ) o 2 (0
( ) (/l'] Zz_;‘€+1 Z Lj1 Ljo axhax]é ()’

where we set F(V)g(@/&nj,@/@le) = g(F(V)(0/0x;,0/0x, ey, ei;) (F(V)(X,Y) =
[Vx,Vy] = Vixy]). Second, consider the frames (0/0x.) = (0/0x1,...), (dwe) =
(dzy,...) and set

(1.4) ee = (0/0x4) - Va(x) (ie., €5 =) Vji(x)0/0x;), e* = (dze) - V*(x).

Then, [1, Proposition 2.11 and Appendix II] says that the transition functions V7% are

formally expanded as

- 85_2F( ) (8/833],8/8%2)
(15)  Vi(x) = oy (0).
Hence, the coefficients of the Taylor expansions of w (0/0z;), V. ¢ Vj; are all expressed

as universal polynomials made of

o' =1g(F(V)(0/)0x,,0/02,,)0/0x;,,0/0x;,)
(1.6) R jojsjags JZ(PO) = ( axjg / 3;%) 2 = (PO),
15 Je




which can be concretely described easily. For example we have

i 1
wiy (0/0) (@) = =) 5 Riviagjs (P?) + O(|a]),

; 1
(1.7) VI (x) = 05 — lefszgRijljjz(Po) +0(|z]*),
1
Vii(z) = 0ji + lefﬂjzgRijlij(PO) +O(|z?).

Here the symbol > is omitted and so may be also in the following. What is required
last is the Weitzenbock formula (e.g. Wu [10, Chap. 2])

(1.8) A=— Z (veivei — Vv6i6i> ZF ez,e] ei A el etn ey,

where €A, €'V (= te, = e;1) denote the exterior, interior products, respectively. Note
that Ve, = e; + ng (€;) - €N e2 V.

Our formula is derived from them by applying the adiabatic expansion theory devel-
oped in [8]. In the following we will roughly explain how it is obtained. (Refer to [9], in
which similar sources and idea provide a similar formula for the Kohn-Rossi heat kernel

on contact Riemannian manifolds.)

For the sake of distinction, here we denote the metric, etc., on M by g™, etc. Let us
consider the n-dimensional Euclidean space E" = (E",y) with the standard metric g%,
and identify a small neighborhood U of the origin with a small neighborhood U° (C M)
of PY via the coordinate map U® > P +— y = x(P) € U. We will take and fix a metric
g on E™ which coincides with g™ near 0 (= P°) and with g% a little apart from 0. The
space E™ equipped with the metric g, denoted by E™(P°) and called a Euclidean space
warped near the origin, may be assumed to satisfy (refer to Lemma 2.1): The normal

coordinates centered at the origin are globally defined, i.e.,

(1.9) x: E"PY) = (E"2), y—a=ua(y), exp’((0/0y)o-z(y) =y,

where V is the associated Levi-Civita connection, which coincides with VM sufficiently
near 0. Thus E™(PY) has two kinds of global coordinates, y and z. The parallel frames
es, € are assumed to be given also globally. The problem (1.1) relative to the Laplacian
Ag(poy on E"(PY%) with ¢ € QIE(P°) (that is, ¢ is compactly supported) has a unique

fundamental solution (e.g. Dodziuk [3])
(110) eitAE(PO) .'1;' x Ze ‘Xel/ ) (eitAE(PD))II,("LHxI)
and, by Duhamel’s principle, we have the same asymptotic expansion as in (1.2), i.e.,

(8/8x)A(8/8m’)A’(e_mE(PO))I]'(()’()) N Z t_”/2+m/2a£{}2(P0 . A,A,>
m2—(|A[+|A])



(refer to Proposition 2.3 and the comment following Proposition 3.1). Thus, it suffices

to investigate the heat kernel on E™(P?).

Now, let us set e = £!/2¢,, €2 = e71/2¢* (0 < € < £¢) and consider the transformation
te 1z te(x) := e'/2x of E™(PY), which induces the global frames el = Liegs el =
tfe2 on E™(PY). Obviously (1.4) gives the relation
(111) = (0/0w2) Valie@), el = (dwa) - V(o))

To the metric ¢° := > el @ e, the Levi-Civita connection VE := V and the Laplacian
AE(PO) = EAE(pO) are attached. Those for the metric (¢ => e are V() =
VAN A(E()PO) = L;A%( poy- The coordinates = are then the g(¢ )—normal coordinates

centered at the origin with (0/0x)y = ess)(()) and eEE), ef.) are g'®)-parallel along the

g(®)-geodesics from the origin. Also there exist unique heat kernels

tAE !

_ , _ I
e E(PO) (,I, ;E/) = Z eg(x) X €g (IE/) . €n/2 (6 tsAE(PO)) (.ZE, CE/),
©) ir

(112) e PR (@,af) = Yl (@) By (@) & (7HE0) T (refe).1ea))
Next, we consider the transformation I, : QIE" = QI(E™(PY),¢®), S (dz)! - ¢! —
> e{s) ! ((dx)! := dwyy A- -~ Nda;,), which provides the Laplacian Ay := AS?PO) (=
I71o A%g 0 © I.) on the standard Euclidean space E™ = (E™, z), called the adiabatic
Laplacian at PY. Obviously, the problem (1.1) relative to A() also has a unique
fundamental solution, which is described as

(1.13) e A6 (x,2') = Z(da:)f(a:) X (da)" (2)

Il

/2 (e*mm%)l (te(2), 1e(2)) det V*(1e(2)

because of (1.12) and dV ) (2) = dVye(2') - det V*(ic(2')). Here dV.), etc., denote the
volume elements with respect to ¢, etc., and ¢g¥ denotes the standard metric in the
coordinates x (not in y). In addition, by setting VEe) = I;V(E) and ess) = I;‘ese), the

formula (1.8) provides the adiabatic Weitzenbock formula

E E E
(1.14) Ay =-— Z(V(@g)v( % v(v@i) (s))

S F(VE)L (e, 55)) dai A da; V dag A dag,V

Notice that we have

v E)s &)y 251/2 " (e)(1e()) - dzg, A dai,V
(1.15) Vi 2)655) 281/2 I (e:) (e () eg )7
F(V(z—:));;( 55)’ 55)) _ 52/2F(V)i2(6i,Gj)(Lg(x)),
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which, together with (1.11), (1.3) and (1.5), imply that the differential operator A,

can be extended smoothly up to e'/2 = 0. As to the formal power series expansion
(1.16) A= "Dy Dgp=A0gi=—) 0/0x;0/0x;

which we call the adiabatic expansion of A at P, the coefficients can be described

explicitly up to an arbitrarily high order. Indeed, for example, by (1.7) we have
2/2 1 0
(1.17) Ay =Ap+e { — 25, 5 Rijrjjo (P7) 9/ 02 0/ O
2
+xj, gRijijl (PO) 9/0x; + xj, Riyigijy (PO) 0/0x; - dxiy A dxi,V

_Ri1i2i3i4 (PO) . d.’Eil A diL'iQ\/ d.’Eig/\ diL'i4\/ } + 0(63/2).

Suggested by the equality (% + A(E))e_m(f) = 0, let us construct now a formal power
series
[ee]
(118) p(a)(t,CL‘,CC/) = Z 5m/2 pm/Z(tvxvxl)

m=0

so as to satisfy (% + A(e))p) = 0. Namely, we define it inductively by
(119) pojalt,z,2') = ep(t, 2, 2')

= (do)/(x) B (da) (/) - ri(z — &), 1o(x) =
m1>0

(120) pm/2(t7x3$l) = _<p0/2# Z Am1/2pm2/2> (t,x,x/)

mi1+mo=m

6—|ﬂ£“2/4t

(4mt)n/2’

mi,...,mi >0

= Z (—1)k(130/2# Ay, j2bo)2# "‘#Amk/2130/2) (t,z,2') (m>0),
S me=m

where, in general, for double forms h;(t, z,2’) (i = 1,2) on E™, we define the convolution
hi#tho by (hi#tho)(t, 2, 2') = [§ ds [ hi(t—s, 2, 2" ) Axha(s, 2", 2') (x = %ym, # = #45).
It follows from Lemmas 3.2 and 3.9 that (1.20) is well-defined. Then it will be natural
to expect (1.18) is the formal power series expansion of the heat kernel (1.13). Thus,

setting

P(S)(t,x,fc') =pe(t, v, " det Ve (te(x Z gm/2 Prya(t, z,x "

m=0

and P, jo(t, 2, 2') = > (da)! (z) K (dx)"' (') - Pm/Q(t,x, z'), we must have

r
(1.21) en/? (e_tEAE@O)) (te(x Z gm/? Pm/2 (t,z,2').



If this is valid, then we have the asymptotic expansion
Ir i
(e—tAE(p0)> <07 0) ~ Z t_n/2+m/2 Prfr;[//2<17 O7 0)’
m=0
that is,

(1.22) Ay (P2 0,0) = Pyl (1,0,0) = py7s(1,0,0).

Further, if the differentials of the left hand side of (1.21) can be formally expanded into

the series of termwise differentials of the right hand side, that is, if

(1.23) en/Fr A <(3/8$) (9/02")¥ (e_taAE(PO))H/) (te(z), ("))
= Z ™2 (0/0x)" (00" ) PLLy(t, x,2),

then, by setting P{n[;Q(t,x,x’ : AA) = (8/0x)2(0)0x" NP /2(25 z,z'), the formula

(1.22) is generalized as follows:
Theorem 1.1 We have
o r
(1.24) o (PO A A") = Pl agsiar2(1,0,0 - AL AY),

which vanishes when m s odd. Moreover, this is expressed as a universal polynomial
made of (1.6), which can be described explicitly by using only a basic knowledge of cal-

culus.

Remark: Assume that M has boundary and a certain boundary condition is as-
signed to the Laplacian. Then we have also an asymptotic expansion at a point of the
boundary and it is easy to induce a similar formula, which will be discussed closely else-
where. Notice that some of the integrals over E™ having appeared in the convolutions
at (1.20) will be replaced by those over E"~! x [0, 00), so that the asymptotic expansion

coefficient may not vanish even if m is odd (refer to §.3.5).

Using (1.24) (or (1.22)), let us try to calculate some of the asymptotic expansion

coeflicients of the trace of the heat kernel. Obviously we have
1 n
0y . 1 p
P)im T (P :0.0) = otf1.0.0) = g ()

and the next coefficient a; (PY) := " alf(P° : ), 0) is calculated as follows: (1.17) implies

A2/2p0/2(57 xz, O)

1
= { — Tk Thy g Rjikigaky — Rivigiaia - dTiy N dTipV dgg A davi, V }p0/2(57 z,0)
2s 1
= { = = Bjikiihs 0/ 028, 0/ 0y — S Rijikajik

3 3
_Ri1i2i3i4 . dﬂf}il VAN d.%'z'z\/ dl‘i3 A dl‘u\/ }po/g(s, x, 0)

6



and, hence,
p2/2(1 0 0 / dS/po/Q 1—8 O LE)/\*AQ/QP()/Q(S CL' 0)

/ds/ J1k1]1k28/8xk18/8xk2+ RJ1/€1]11<31

+Ri1’i2i3i4 . d:ﬂil VAN dIEiQ\/ dCL',L'g VAN dl’u\/ }p0/2(1 —-Ss,Z, a:') VAN *pO/Q(Sa .ZE/, 0)

z=0

1
= {7Rj1j2j1j2 + Rijigiziy - dviy N\ dgyV dxgg A dwg, v }]3()/2(1, 0,0),

6
where we put Rj g, jiky = Rjikyjiks (PY), * = * & for short. Thus we obtain
1 1
a{I(PO : @79) ( n/g{ R]l]2]1]2 0) + Z Ri1i2i2i1<P0)}v

NI ELD

)
i () = G

Similarly those of higher orders can be calculated easily (with the aid of Mathematica).

a1 (P%) =

2 The warped Euclidean space E"(P") and the heat kernel

In this section we will discuss some of the property of the space E™(P°) and present

some estimates on the heat kernel (1.10) to be used in the proof of Theorem 1.1.

First, let us construct the space E™(P?) carefully. We set U? = {P € M | |z(P)| <
7(}, which is identified with U = {y € E™ | |y| < r(} via the map P — y = z(P), and fix
a smooth function p(s) on [0, 00) which satisfies p(s) =1 (s < 1/2), p(s) =0 (s > 2/3)
and 0 < p(s) < 1. For each r € (0, r(], setting po(y) = p(|Jy|/r), we consider the metric

(2.1) g(=9") =pog™ + (1= po)g” = {1+ 0(r*)}g"

on E". Note that (1.7) induces the second description. Here, in general, Q(r¥) =
O(y;7*) (k € Z) is defined to be a smooth function on E™ x (0,74] (> (y,r)) satisfying:
as a function of y, it has support contained in {y € E™ | |y| < r} for each r and, for every
multi-index A, there exists a constant Cy > 0 such that |(9/9y)*Q(r*)| < Cpr*~1A on
E™ x (0,7)]. Certainly we have pg = O(1) (= O(r?)), 90(r*)/dya = O(r*~1). The

associated connection V (= V") is thus described as
(2:2) Vojon0/0y; = Ty(yir) - 0/0i, - Tip(yir) = O(r).

Hence, Fék (y;r) can be extended continuously up to r = 0 by putting Fék(y; 0) =0 and
the extended one satisfies the Lipschitz condition, so that, as for the geodesic from the
origin, that is, the curve c(s) = c(s,x;r) satisfying é(s) + F;k(c(s);r) ¢i(s)éx(s) = 0,

c(0) = 0 and ¢(0) = =, both ¢(s, z;7) and ¢(s, z; ) are continuous on [0, c0) X E™ x [0, r(].



Lemma 2.1 Suppose rg > 0 is sufficiently small and 0 < r < rog. Then the g-
geodesics from the origin do not intersect with each other (except at the origin), that is,

we have the global normal coordinates (1.9).

Remark: In fact, we may take rg > 0 so small that, if 0 < r < r¢ and |y/| < ro,

then the g-geodesics from 3’ do not intersect with each other.

Proof. There exist a small g > 0 and a constant C' > 0 such that
(2.3) lc(1,z;7) — x| < Crlz)?,  (0/0xp)(c(1,z;7) — )| < Cr|z|

if 0 <7 <7y and |z| < ry. The proof is similar to [9, Lemma 3.1]. (In [9], ‘4, = O(1)
is the counterpart of F;k = O(r) of this paper. The estimates in [9, Lemma 3.1] are,

hence, weaker than (2.3).) For instance, we have

c'(s)—:v:/o dsé(s):/o dsT(s,z;7), c(s)—sa;—/o ds (¢(s) —x)
(s,x;7r) = — ngk ¢j(s)ex(s)

and, by (2.1) and (2.2), there are a small 7y > 0 and a constant C' > 0 such that
C7Yz| < |é(s)] < Clx| and, hence, |T'(s,z;7)] < Crlz? if 0 < r < ryg. Thus we
obtain the first estimate at (2.3). Now, let us fix such a number ro > 0. Then (2.3)
and the inverse function theorem imply that there exist constants ; > 0 (i = 1,2)
such that the map ¢(1,-;7) : {x € E" | |z| < 61} — E™ is an into diffeomorphism
and satisfies c(1,{x € E™ | |z| < é1};7) D {y € E" | |y| < &2} for any r € [0,7].
Hence, if 0 < r < 71 := min(rg, d2), the g"-geodesic c(s,x;r) = ¢(1,sz : r) (|x| = 01,
s > 0) is just a ray when s > 1, at least for a while, from ¢(1,z : r) in the direction
¢(1, ;7). Since (c(1,z :7),¢é(1, 2 : 7)) (|z| = 01) varies continuously with r € [0,7;] and
(c(1,2:0),¢é(1,2:0)) = (x,x), the g"-geodesics from 0 do not intersect with each other
if » > 0 is sufficiently small. 1

Thus we obtain the desired space E™(PY). Apart from the origin (precisely, if |y| >
2r/3) the global coordinates y, x are described as

g —_ ﬁ 0/0x B 7 " 1-[B]
(2.4) ¥() al'B |l‘| ’:L’|)’ ‘( /0z)"y( )‘ < Cp || ,
Y E _Yya 5100 1 1-JAl

Added to the canonical frames (0/0x.), (dze), we will consider the canonical ones

(0/0ys), (dye) and set

co(x) = (0/0ya)(x) - Va(z),  €*(x) = (dye)(z) - V*(2),



where (0/0y.)(x), etc., denote (0/0y.)(y(z)), etc., calculated in the coordinates z, i.e.,
(0/0ye)(x) = (0/0xe)(x) - g—fl:(y(:c)), etc. Hence we have V,(x) = (gg: (l’))V.(ZL‘)

Lemma 2.2  Apart from the origin, Ve(z) is an orthogonal matriz and, for each

multi-index B, there is a constant Cg > 0 such that
|(0/0)Vu(@)| < Calal T, |(0/02)"Va()| < Calal T,
|(0/00) det Va ()| < Calal ™, |(0/02)w(0/0w )| < Cila] T2
Also V*(x), V*(z), det V*(z) are estimated similarly.

Proof. V,.(z) is orthogonal because, apart from the origin, es(z) and (9/0ys)(z)
are both g¥-orthonormal. Since the vector fields (9/0ys)(sx) - Ve(z/|z|) and eqs(sz) =
(0/0ys)(52) - Ve(sx) along the geodesic y(sz) (|z|~! < s < 1) are parallel and coincide

when s = |z|71, they are the same ones, hence, we have Ve(x) = V,(z/|z|), which
provides the estimates on V,, V*, wg (0/0z;) = S yu 8182%' By using (2.4), also the
remaining estimates will be shown. 1

Next, following the argument by McKean-Singer [7], we will actually construct the
heat kernel (1.10) by applying Levi’s iteration method. Let us take a V-normal coordi-
nate system EM : W — E" i.e., exp" (es(2')-EM (', 2)) = x, where W is a neighborhood
of the diagonal set in E"(P") x E"(P"). On (E",y) we consider the V¥-normal coordi-
nate system £€ : E"(P%) x E"(P%) — E™, EE(y ,y) =y — ¢/, i.e., exp¥ ((8/0ys)(¥/) -
EE(y,y)) =y, and set EX(a/,z) = EL(y(a'), y(x)), i.e., exp¥" ((9/Dys)(2')-EF (2!, 7)) =

x. Then we put

ry(t, o, a’) = ZeI(m) Xel(z) - ri(EM(2, x))
(on E™(P) x {2’ € U” | [y()| < ro}),

TE(tv z, .’L'/) = tE'(ta Y, y/) ’ (9,9 =(y(2) (@)

= Z el(@)Re' (') - det Viy(z)det Vpy(a') r(EF (2, )
(on E"(P°) x E™(PY)).

Here, ry/(t,x,2") is well-defined on the region (that is, W can be assumed to contain
it) because of Remark to Lemma 2.1. Note that rg(t,z,2’) is tg(t,y,y’) (on (E™,y))

calculated in the coordinates (x,2), and Vi, is the matrix (Vij) (i jyerx. (refer to Lemma

(17]
2.2). In addition, we will take non-negative smooth functions gas(y), pr(y) such that
{p%,(v), p2(y)} is a partition of unity subordinated to the cover {{y € E"(P%) | |y| <

2r},{y € E"(P°) | |y| > r}}, where we assume that 7 > 0 has been taken so small that



0 < 2r < rg. We define the first approximation to the heat kernel by
r(t,z,2") = py(x)ppr () rag (8, 2, 2') + pr(2)pe(2)) re(t, =, '),

where we set par(z) = par(y(x)), etec. This is more geometric than that in [7] (given by
freezing the coefficients of the principal part of A at a point) and certainly satisfies: For
any ¢ € QIE"(PY),

(2.5) %ijlg)/r(t,x,x/) Axp(x') = ¢(z), }g% o(z) AN*r(t,z,2') = ¢(z))

in the | - [;-norm (the pointwise norm with respect to the metric g) and also in the Lg—
norm, where we put * = 4. Let us set ¢(t,z,2) = (% + Appoy)r(t,z,2') and ' =q,
@ = q#q', ¢ = q#>, . .. (# = #4). Then we define

0 k>ko

p=Y _(-Dfr#g" (r#q":=1),  Ri(p)= Y (—1)Fr#d",

Goo = > _(1)"¢",  Riy(gee) = Y _ (—1)F¢".
k=1 k>ko

Proposition 2.3 We have e_tAE(P‘))(m,:v’) = p(t,z,2"). To be precise:

(1) The forms q*, r#¢*, Ri,(¢s0) and Ry,(p) are all well-defined and smooth on
(0,00) x E"(PY) x E"(P®) (> (t,x,2')). The last two forms are termuwisely differen-
tiable. For every integer m > 0 and multi-indices A, A’, there exist constants By (=
Bm,a,an) > 0, etc., and exponentially decaying functions Ki(E) (= K m,a,a1(E)) on
E" (3 &), i.e., Cyexp(—Ca|E]?) with some C; > 0 (i = 1,2), such that, on (0,Tp] x
E™(PY) x E"(PY),

(26) |(0/00)" e sensa (. 2!)| < Btk DRI K 10— ),
(27)  [(@/00)™enpena(r#td )t 2,2')

(28)  [(8/00)™enwen ar Riy(a00) (1,2, 27)]
< B(kg) t(ko*IAI*IA/I)/%m*(nJrZ)/?KkO(Ll/t(x — '),
(2.9) ’ (a/at)memme&/@/ Rko (p) (t, xZ, a;’) g
< C(ko) t(kro—IAI—IA’I)/2—m—n/2KkO(Ll/t(x — ),

< th(k_|A|_|A/|)/2_m_n/2Kk(Ll/t(l' _ x/))’
g

where we set ey o = €4,z €A etc. The last two are the estimates of sums of the

| - |g-norms of their termwise differentials.

(2) The form p(t,z, ') is smooth on (0,00) x E"(P%) x E"(P°) and satisfies

9
(2.10) <§ + AE(pO))p(t,a?,aj/) —0.

10



In addition, for every p € QIE™(PY),

(211)  lim [ p(t.w.a’) Awxp(a) = @(z),  lim [ @(x) Axp(t,z,a’) = p(a))
t—0 t—0

in the | - |g-norm and in the Lg—norm. Further, ¢(t,z) == [ p(t,z,2') A *p(z’) belongs
to the domain of Appoy, the integral (t) := [ dVy(x) |¢(t,:n)|§ is differentiable and the
equality (0/0t)®(t) = [ dV,(x)(9/0t) \gb(t,a:)]; holds.

This is a generalization of the assertions in [7, §.3] and is shown similarly (see also
[9, §.4]). The proof will follow some preparatory arguments.

In general, a smooth kernel k(t,z,2') = S el (z) Ke!’ (x) - k' (t,2,2") on E™(P°) x
E™(PY) is said to be of type £ if each coefficient k’!" is a finite sum of such functions as
(2.12) iy (t,o.a') = 0 Rl a) K(Ll/th(x/7 *) (b=>1).

K%(t, x,7') = t_("+2)/2+b/2pE(x', x) /C(Ll/th(l‘,, x))

Here K() is an exponentially decreasing function, i.e., K(E) = C1E» exp(—Cs|E]?)
(A = Eay -+ Eap,y) with some A and C; > 0 (i = 1,2), and py(2',2), pp(a’,z) are
smooth functions such that supp ppr C {(2/,2) | |y(2')| < 2r,|y(z)| < 2r}, supp pr C
{(@',2) | ly(z")| > r,|y(x)| > r} and, for every A and A/, |ea zepr v pE(2’, x)| is bounded.
A kernel whose coefficients consist of the second type of functions is equivalently inter-
preted in the variable y as kg (t, i/, y) = 3. (dy)! (y) R (dy)" (/') l;:g, (t,y,y") whose coeffi-
cients are finite sums of such functions as t~("+2)/2+6/2 5,4/, y)IC(Ll/th(y', y)) (b> 1),
where pgp(y',y) is a smooth function with supp pg C {(v/,vy) | |¢'| > r, |y| > r} and, for
every A, A', |(8/9y)*(8/0y)* pr(y,y)| is bounded.

Lemma 2.4

(1) The kernel r(t,x,x") is of type 2 and q(t,z,z") is of type 1. The support of the
latter with respect to the variable x is contained in U<y, := {x € E"(PY) | || < 2r}.

(2) For a kernel k(t,x,x") of type £, ep zenr »k(t, x, 2") is a kernel of type {—|A|—|A/|
and (0/0t)k(t, z, ") is of type £ — 2.

(3) For a kernel k(t,x,x') of type £, there exist a constant C > 0 and an exponentially
decaying function K(E) such that, when 0 <t < Ty,

‘k(t,x,x/)‘g < Ctﬁ/Q*(n+2)/2K(L1/t(x — 7)), Hk(t,x,x’ < Ctg/g,l’

)HL;(ac)

where ||| 1) is the Lg-norm with respect to the variable x. Also ||k:(t,x,x’)HL£1](x/) is

estimated similarly.

(4) For a kernel k(t,x,x') of type €, we have e k(t,x,x') = —eak(t,z,2’) +
ko(t,z,x"), where ki(t,x,2") is a kernel of type £.

11



Proof. In the coordinates €M = M (', z), we have

_ 9 mpy 9 __ 0 M9
eA,x—agM +ZO(|5 |)85M7 €Az = 8€M +ZO(|5 |)8€Ma

o 0 )
Ay =— o(1EM)) o(|eM O(|eM
2 e e + 2200 |65M6€M+Z ( |)agM+ (7P

Hence, (1), (2), (4) are valid for the kernels kps consisting of K. We know immediately
that these hold for another type of kernels kr by examining them in the coordinates y.

As for (3): It is obvious for kjs in turn. We have

(2.13) |k(t,z,2')| < CtP~0RR (1,85l 2)),

1
QU) EFa) = yle) —yla) = Yen—ap) | ds

It follows from (2.4) and the argument in the proof of Lemma 2.1 that the matrix

Jy
Ozrp

(1 —s)z’ + sz).

(Oya/0xp)(x) (x € E™"(PY)) stays sufficiently near the identity matrix. Hence one may
replace £¥(2/,x) by x — 2’ at (2.13). We obtain thus the first estimate for kg, which

certainly implies the second. I

Lemma 2.5 Let ki(t,z,2") be kernels of types m; (> 1). Then (ki# - - - #k;)(t, z,2')
is well-defined and smooth. In addition, there exist a constant C (= Cya 7)) > 0 and
an exponentially decaying function K(E) (= K a an(E)) such that, when 0 <t < Ty,

(2.15) ‘(8/6t>m€A7z€A/7xl(k‘1# s #k‘j)(t, Z, .27’) ‘g
< CHEm A2 m /2 () (0 a)),

Proof. Let us prove the lemma by induction. It holds when j = 1 because of Lemma
2.4(2)(3). Assume j > 1 and set k = ko# - - - #k;. Then, by Lemma 2.4(4), etc.,

(2.16) (8/at)m6A’$€A/7x/(k1# cee #k‘j)(t, x, :E/)

= > (") e

m/4+m’'=m—1

* ((8/815)”1//6&/@/]?)(%’ 2’z

t/2
+ Z / ds/ (0/0t) " ep wew k1) (t — s, 2, 2") A xkop (s, 2", 2")

B <|A|

/ ds/k‘mg (t—s,z,2") ANx((0/0t)"ep wrear k) (s, 2", 2),
|IB|<\A| /2
where ki is a kernel of type m; and kops is a finite sum of convolutions of kernels of

types m; (i =2,---,7). We suppose (2.15) holds for k, kop/, etc. Then we have

€010 ch )G A 4((@100) ) 5",

g
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(000 enuhr) ()| (000 exrab) (52”2

< [av@ g

< Ko(ujulw — ') mayx | CL0m A2 0D/ By (1 (0 — )

< [ avia”)
< Ko(tgpu(x — 2')) OIS mi—|Al |4 ) 2=m—(n+2)/2

g

C iy minN/2om=(42)/2 () (o — x/))‘

where Ky, K1, K are exponentially decaying. Further we have

t/2
/ ds /((8/8t)m6A,zeB/Juk1)(t —s,2,2") A xkopi (s, 2", 2)
0

g
t2

< / ds / AVy(a") |((0/00) e mem wrky)(t — s,,")] [hwr (5,2
0

< Ko(typ(x — 2'))

t/2
X / ds max
0 ZE”

« / 4V (")

t/2
< Ko(up(z —a') / % s €1t — D  2 m2
0

C (t o S)(m1—|A|—|]B’|)/2—m—(n+2)/2 Kl(bl/(t_s) (x — 1,//))’

C 52z 2= (2 oy, (t1/s(2" — SC/))‘

< Koty (o — ') ¢ mim A=A D/2mm—(nt2)/2

1/2
« / 2 C'(1 — o) (== IB ) /2-m—(n42)/2, 51y mi/2-1
0

and the third term is estimated similarly. 1

Proof of Proposition 2.3. Lemma 2.5 implies (2.6) and (2.7). Let us prove (2.9).
Assume that kg > 0 is sufficiently large. Then there exists an exponentially decaying
function K, (€) (= K(g,m,a,a(E)) such that, for any £ > 1,

(2.17) ‘(8/&)7"6,&@%/@/(]%0 (t,z,2") ,

< iko—n)/2—(|Al+A'])/2=m~1 Ko (014(x — 2'))
-1 D((ko — n — |A[)/2 = m)T((ko — n — |A'])/2)
L(l(ko —n)/2 — (JA] + [A'])/2 = m)

x By vol(Ucar)

Indeed, we have

’ (8/8t)meA7$eA/7z/q2k° (t,x, )

- ‘ ((8/at)m€A,qu0#CA/,I’ko) (t,z,2')

g g

t
/ ds/ (8/8t)meA7mqk° (t—s,z,2") A *eA/’x/ko (s,2",2")
0 U<or g

< Kko([‘l/t(x - I’l)) Bl%o
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/ ds/ _ 5)(ho=n=2)/2-[Al/2=m y(ko—n~2)/2-|'|/2
U<or
< tlhomn D2 (AHIE D 2om g, (11— of)) B, vol(Uscay)
1
X/ dor (1 — o) (ko—n=2)/2-IAl/2=m ; (ko—n—2)/2-|'|/2
0
_ t(ko*an)/QJrlf(\A\HA")/Q—kaO (Ll/t(x . l’/)) Blzo VOI(U<2T)
T((ko —n—2)/2+1— |A]/2 — m)T((ko — n — 2)/2 + 1 — |A/]/2)
I'(2(ko—n—2)/24+2— (|A| + |A])/2 —m) ’
(0100 enwen g™ (t,2,2)| = |((0/0)"enaq™ten g™ ) t,,2')
g
< Ko (L1 4(z — ') B,Z’O vol(Uc<ay)

T((ko —n —2)/2+1— |A]/2 — m)T((ko —n — 2)/2 + 1 — |A/|/2)
T(2(ky —n — 2)/2+ 2 — |A/]/2)

/ds/ _ 5)(ho—n=2)/2-[A1/2-m (2(ko—n—2)/2+1-|A/2
U<2'r
< t3 (ko—n—2)/2+2—(|A|+|A/])/2— ka (01/15(56’ . $/)) Bi’OV01<U<2r)2

L((ko —n—2)/2+1—|A]/2 = m)’T((ko —n —2)/2+ 1 — |A']/2)
I'3(ko —n—2)/2+3 — (JA[+|A])/2 = m) ’

X

g

etc. Assuming 0 < k < ko, in a way similar to (2.16) we write

(0/0t)"ep zens z (T#quréko)(t, z, x/)
=30 (") [0 st G

* ((8/8t)m"em,mrq€k°)(%7 ", x')

/2
+/t ds/((@/@t)meA,x(r#qk))(t s,z ") /\*eA/7x/q[k°)(s,x",$’)
/ ds/r#q Jia(t — 5,,2") A x ((0/00) g greps a0 (5,0, 2')
|B|<\A| /2

and, using (2.7), (2.17), etc., we obtain

(0/0) " ehzea a0 (12, 0') |

ko ALK /2-m=n/2 g,

L(C(ko —mn)/2 — (|A[+ [A])/2 —m)

< Ko iy (1 (x — 2))

Hence, (0/0t)™ep zenr o Ry (p) = gifgko (G/Gt)me&we&/@/(r#q’”eko) is estimated as
at (2.9). Similarly (2.8) can be shown. Next, let us show (2). By (1), the convolutions
T#(00, §F#(so are well-defined and smooth and

0
((% + Ap(po )(T#qoo) = Qoo + H#HGoos P=T+TH#G0r  (HFHdoo = —q — Goo-
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Thus (2) certainly holds up to (2.10). As to the first convergence at (2.11): By (2.9),
for any ¢ > 0,

(2.18) '(1 + \x|e) /Rko (p)(t,x,2") A xp(z')

g
< / dVy(a) (L + [0 (@ — &) + ') C ko)t 02 Ky (114 (= 7)) [0()

< COnR Y [ ava) 2 Ry (uapta = )1+ 1) el
<l

< t*/sn(p),

where sn(¢p) is a semi-norm of ¢ € QEE"(PY). (In general, we set sn(yp) = SUPge g, B|<k
C|(1+ |2|)*(0/0x)Bp(x)| with some ¢,k € N and a constant C > 0.) Hence, the
integral [ Ry(p)(t,x,2") A xp(x') is bounded in the |- [-norm and in the L7 norm, and
limy, [ Ri(p)(t,z,2") A xp(2’) = 0 in both norms, which, together with (2.5), implies

the first convergence at (2.11). The remaining assertions will be obvious now. 1

3 The proof of Theorem 1.1

In the section, we will prove:

Proposition 3.1 The heat kernel p(s)(t,:c,x’) = e_tA(E>(a;,:z:’) can be extended
smoothly up to [0, 6(1]/2] x (0,Tp) x E" x E™ (3 (eY/2,t,,1")). As to the Taylor expansion

P(e) (t, €, $/) = Z 5m/2 pm/Z(t, z, lj) + 5m*/2 pm*/2(51/27 t,z, x/)a
O§m<m*

we have
(31) pm/g(t,$,$/) :pm/Q(taxwrl) (0§m<m*)

If this is valid, then we have the formal power series expansion (1.21) and also (1.23).
Consequently we obtain the formula (1.24). (Note that thus Proposition 3.1 also implies
that every differential of (1.10) can be asymptotically expanded at (0,0).) Let us start
our discussion with some preparations needed for the proof. We set # = # 5, dv(z) =

AVye(z), || = |e. |- =1l HLiE($)7 etc., for short.

3.1 Standard kernels on E"

The argument in §.2 holds good for the standard E™ = (E™, x) because it may be

regarded as a warped one. A kernel on E" whose coefficients consist of ¢~ (7+2)/2+b/2
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p(x',x) (11 )¢ (x — 2")) will be called a standard one, where 1(0/0)2(8/0x" )~ p(a', )] is
assumed to be bounded for any (A, A’) (see (2.12) around). Obviously Lemma 2.5 holds

also for the standard kernels on E™ and we have:

Lemma 3.2 Let k; be standard kernels of types m; (> 1). Then the convolution
(2C1(0/0x)Brky # - - #25(0/02)Bi k) (t, 2, 2") is well-defined and smooth on (0,00) x
E"™ x E™, and there exist a constant B’ > 0, an integer N > 0 and an exponentially

decaying function K(E) such that, when 0 < t < Ty,

(3.2)  [(8/01)%(0/0x) (00" )X (451 (8)0x)Br k1 # - - - #2C9 (8)02)Bi k) (¢, 2, )
< B/tzmi/z_N_d_(n+2)/2K(L1/t(x N 113/)) Z ‘.%',(C/’.

Here B' >0, N > 0 and 3" |2'C'|, which is a finite sum, depend only on (C;,B;), (A, A').
In addition, for every ¢ € QIE™, the integral [ (xC1(0/0x)Brhy# - - #a%i (0/0x)Bik;)
(t,z,2") A *p(2") is well-defined and rapidly decreasing, and there exists a semi-norm

sn(-) such that, when 0 < t < Ty, for any ¢ € QLE™,

< 2 mi/27 g ()

)

‘/ (a1 (0/0m)F ke - #0(D/0)Pky) (1,0, ') A wip(a)

(3.3) H/(:L‘Cl(ﬁ/ﬁx)&k:l#---#xcj(a/ax)Bjkj)(t,x,x’) Axp())|| < t2=mi/2len(p).

Proof. By Lemma 2.4(4) for E™ or by direct calculation,

(3.4) € (8/6:1:)131:'@(6/837’)3/15*("+2)/2+b/21C(L1/t(:c )
_ Z x(:(a/ax)@ t—(n+2)/2+b/2+é/2K(L1/t(x — 7))
|B|<|B|+B/|
= Y. 2C(0f0a!yF T IR 1y (),
|BY|<|B|+[B|

where the exponentially decreasing functions K appearing in the second and third lines,
which differ from that in the first line, depend on the respective indices (B, C), etc. By

integration by parts, hence we have

(8/0t)%(8/9x)"(9/ 0" Y¥ (%1 (8/02)* kr 9t - - - #2™ (9/0) B ) (t, w, 2')
= > (0/0t)*2'C(0/0x')B (ka#t - - - #4k;) (t, 2, 2"),

BI<|A|+A+3 Bi
where, again, the kernels k; appearing in the second line, which differ from those in the
first line, depend on the respective indices, but are of the same types as those of the
original k;. Hence, Lemma 2.5 for E™ implies (3.2) and the others can be shown by

integration by parts. I
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3.2 Rough estimation of remainder term

Putting r(t,z,2') = Y. el (z) R e’ () - po(2,2) re(E°(2, ) (0 = M or E), let us
define
etz ) =Y (dr)!(z) ¥ (dz)" (2')
- polte(a’), e(@)) ro (€29 (@', ) det V* (1e(a))
with £°6) (/) z) == 117E°(Le(2"), te(2)), and g (t, z,2") = ((‘% +Ag))re)(t, z,2"). Then

we have

[e.9]

(3.5) Ptz a) = (—DFre#al) b r,a!)  (reo#ay =)

k=0

(cf. (1.13)). The coefficient of the remainder term R, (p(c)) = D _psp, (— )kr(a)#qé) is

described as
Ry (po) ™' (t,2,2") = "2 Ryyy ()1 (te, 1 (@), 1 (2”)) det V* (1e(2')).

Lemma 3.3 There exist a constant C'(kg) > 0 and an exponentially decaying func-
tion K(&) such that, on (0,5(1)/2] x (0,Tp] x E™ x E™,

(0/0t)(0/0x)"(2/02")* (8/0"*)™ Riy (pe)) (¢, , a:’))

< C/(ko) E(ko—m)/Q t(kzo—|A|—|A’|)/2—d—m—n/2K(61/t(x - I'/)) Z ’$/C’|'

Proof. The differential of 6*”/2Rk0(p(8))n/(t,af,w’) by (9/0t)%(d/8z) (09" )Y
(0/8eY/2)™ is described as

Z Ed/Jr(‘B‘JF‘BI|)|/2*m//2h(51/27 t, , .’El) B(Lg(fl’/), Lg(%))
d'+(|B|+|B'|)|/2<d+(|A|+[A])]/2+m!

< ((0/00)" €5 ez o Ry () T e (@), e (),

where h(e'/2,t,2,2') is a polynomial and |B(y',y)| is bounded on E™ x E™ (refer to
Lemma 2.2). Hence (2.9) implies the lemma. 1

3.3 Detailed investigation of the term (—1)’“(7’(6)#qé))(t,x,x’)

We will investigate closely the terms (—1)k(r(s)#qé“8))(t,x,x’) appearing in (3.5).

First, let us consider the coordinate transformation (z/,z — z) « (', £°0)).

Lemma 3.4 The coordinate system EME) (z/, x) can be extended smoothly up to the
domain dom EM(®) .= {(c1/2 2/ z) € [0, 51/2] X E™ x E™ | (1e(2),1e(x)) € W} and so
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can be the system EPE) (¢! x) up to dom EF(®) .= [0,6(1)/2] x E™ x E™. The coordinate

transformation is then extended smoothly up to /2 =0 and

|D|>0
5;(8)(30', x) = Z /% (z — 2P BE’C,D);B(sl/Q, te(2), te(z — 2'))
|C’'|+|D|=1,2
D|>0
—@—a)p+ Y %@ —a)P Bl s (@), oo — '),
|C’|+|D|=2
B?(C/VD);B(SI/Z, La(ﬂj/), Lg_‘($ — xl)) = 5(|C/|+‘D|_1)/26E(C’,D);B(La(x/)7 LE(SU — ﬂj/))7
|B|>0
(CL’ _ -T/)D _ Z .T/(C/ (50(5))3 B?@’,B);D(€1/2a LE(SE/), Lsgo(a))
|C’|+|B|=1,2
[B|>0
= B(E) + Z x/C (80(6))B B?C’,B);D(€1/27 le (CC/), Lago(a))a
|C’|+[B|=2

B(OC/JD));B(&J/Q, L5($/), L580(8)> = €(|C/|+‘D|_l)/QB(O(C/7ID));B(La(x,>7 Lego(a)).

Here, each coefficient B?C,,D);B(el/z, te(2'), te(x — ")) is smooth on dom £°(®) and quasi-
bounded in the sense: Every (high order) differential relative to the variables (eY/%, 2! x—
x') is described as a finite sum of such functions as ' (x — x’)D/BE’C/,,D,)(El/Q,Lg(az/),
te(x —2')), where ]B?C,,VD,)(al/Q, te(2'), 1e(z — 2'))| are bounded on dom, EM(®) .= {(1/2,
o' x) € domEM®) | Jy(ee(2))] < 2r, |y(ee(z))| < 2r} if o = M, and on dom EF®) if
o= E. Also each coefficient B?(C,’B);D(é‘lﬂ,LE(.’L‘/),LagO(E)) is smooth and quasi-bounded
in a similar sense.

Proof. The convergence lim_i/2_,, 8;(8)(95’,3;) = (x — 2/)p will be obvious. Quasi-
boundedness in the case o = E will come from (2.4) and such an expansion as at (2.14).
Note that also x — 2’ = (£5)71(y) — (EE)71(0) = (', EF) — z(2/,0) (y = EF(2/,2) =

EE(z)) can be expanded similarly. 1

In general, if we regard a quasi-bounded function B(e'/2, 1.(z'), 1c(x — 2')) naturally
as a function of ('/2,1.(x'),1.£°®)) then it is quasi-bounded, and the converse is also
true. Accordingly one may express a quasi-bounded function simply as B(c'/2) in the
following.

Now, for a kernel k(t,z,2') = . el (z) K el (/) - KU(t, x, 2') (of type £) (see (2.12)),

' () . Kb

we set ko) (t,2,2') = 3 (da)! (z) R (da)"' (') - Kb (¢, 2,2") with
KZ(E) (t,z,2') =t~ D22, (1 (1)), () IC(Ll/tEO(E) (2, x)),

which we call an (g)-kernel (of type ¢). For example, since the kernel r(¢, x, z’) det V'*(z')

is of type 2 (by Lemma 2.2), r()(t,z,2') is an (¢)-kernel of type 2.
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Lemma 3.5

(1) The function Kg(e) (t,z,2') can be extended smoothly up to /> = 0 and has a

Taylor expansion

Kbo= Y "PKY, o, +e™ KL, h(E?),

0,My /2
0<m<ms

KZJ)M,O/Q = ti(nﬁ)/%b/ZPM(Oa 0) K(e1¢(z — '), K%,0/2 =0.

Further there exist finite sum expressions (£ > 0)

(3:6) Kby, 0= at(0/0x)Pt- TR (2 — o)), K, =0,
cl/2

(3.7) Kb 1/2 Zx 8/895 —(n+2)/2+b/2+£/2 [8(51/2) K(Ll/tgo(a))

Here, in general, we set [f(0, .. )]fn = fol doy--- [ dom f(om0, . . .)poly(om), where
poly(om,) is a polynomial of op,. (At (3.7) we may set poly(om,,) = 1.) The functions
K(E) are exponentially decreasing and B(e'/?) are quasi-bounded.

(2)(ct. (3.4)) We have

1/2
(3.8)  «(0/0w)Pa'® (9/0a'¥ (902 (A2 B2 (1 °0)) |
el/2
= > a0 om) P 2 B2 K )|
[BI<[BI+[B|+m ’
, c1/2
_ Z a/ax) (n+2)/2+b/2+€/2[3(81/2)K:(L1/t50(5))}m ,

IE/IS\BIHB’Hm

where 8(51/2), K(E) appearing in the second and third lines depend on the respective

ndices.

Proof. Lemma 3.4 implies that Kg( o) is extended smoothly and the coefficient

Kym/2 (m > 0) can be described as a finite sum of such functions as = (n+2)/2+b/2
/€1 (x — 2)P(0/0y)BKC (11 4 (y)) . We can alter the function 2/© (z — 2/)P(9/0y)B
y=x—zx’

K(t1/¢(y)) successively as follows:

2 (@ = )00y PR (1 ju) = ' - (0/0y)® (4P Ka(au(v) )
= P20/ (0 /0y B a1 () = L (0/02) K (114w — 2'))
= tP1/2(0/0w)% (2% (2 — /Py (e — o)) )
= P02 Cs (9 0) B K (11 4 — '),

(3.9)

Thus we obtain the first formula at (3.6). Obviously we have Kg ,,,/o = 0. Taylor’s inte-

gration formula yields that the remainder term K, ,,, /2(51/ 2) can be expressed as a finite
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sum of such functions as ¢~ ("+2)/2+6/2 [m’cl (50(5))AB(€1/2)(8/850(5))BK(L1/255°(5))} :/2
In the successive alterations at (3.9), the change of variables (z/,x — 2’) +> (2, ) was
used. Here, using the changes of variables (2, £°¢)) < (2/,2 —2') < (2/,z) (see Lemma
3.4), similarly we obtain (3.7). Next, let us show (2). By Lemma 2.4(4) (for ef?x), we
have

2©(0/0w) (17 DERB(2) (100
_ Zx/cfl (8/92')Br (tf(n+2)/2+b/2+€/261 (51/2) ’Cl(b1/t5°(€)))-

In addition, obviously we have

1/2

(0/0/%)[BE?) K(11/u€°@)] = [(0/01/)B(?) K(11/,€°)]

M Mx

el1/2

Recalling the actions of 9/9¢'/? on B(e!/?) and £°() (see Lemma 3.4), we obtain (3.8).
1

Lemma 3.6 Let us set

ki =Y (de)!(x) R (do)" (2f) - ¢~ HRPPE (1 (2 - '),
(3.10)

1/2
Ki(=/2) = S (dn)! (@) B (da) (') - 42 2 (1) (8 50)]

ng

where m; > 1, n; > 0. Ewven if we change each standard kernel k; into k; or ki(sl/Q)

arbitrarily, Lemma 3.2 still holds and (3.2) can be generalized into
|(0/0t)(0/02)" (002" (09"
(251 (8/0x) B ky# - - - #2590/ 0x)Bi k) (/2 t, 2, o)

< B/tzmi/Z_N_d_(n+2)/2K(L1/t(SC _ .’L’,)) Z |£C,(C/|

on (0,65 x (0,Ty] x E™ x E™.

Proof. Added to (3.4), we have (3.8). The lemma will be proved in the same way

as Lemma 3.2. ]

Lemma 3.7 If k; () are (¢)-kernels of types bi (> 1), then the convolution (ki )#
- #kj (o)) (t, ,2") can be extended smoothly up to gl/2 = 0.

Proof. Lemma 3.5 asserts that each k; () is extended smoothly up to el/2 =

0. Let us denote its expansion by k; ) (= ki’0/2(51/2)) = D 0<m<m. gm/? Kims2 +

20



g/ |, may2(e £1/2), where ki /2, kiym*/Q(El/Q) are such forms as at (3.10) with (m;, n;)

replaced by (b; + £i,my) (¢; > 0). Then, ky (o) := ki (o)# - - #k; (o) is described as

kg = Y. €k ™ kg, p(e?)

0<m<msx
S mi=m
Z em/? Z kl,ml/Q# T #kj,mj/z
0<m<m
S mi=ms
+5m*/2 Z k17m1/2# T #ki—l,mi,l/Z#ki,mi/Q (61/2)# T #kj,mj/2 (61/2)7
m;>0=m;1="=m;

where, by Lemma 3.6, Ky ,,/2(t, z,2") and k#7m*/2(51/2,t,x,x’) are well-defined and
smooth on (0,6(1)/2] x (0,Tp] x E™ x E™. Further, there exist a constant B’ > 0, an

integer N > 0 and an exponentially decaying function K (&) such that

(0/0t)4(9/9x)™ (99" Y™ (8 *) kg . 2 (€2, 8, 2, 2
S BI tzbi/27N7d7(n+2)/2K(L1/t(x . IL’/)) Z ’Zﬂ/(cl|.

Hence, the term Em*/2k#’m*/2(al/2) can be extended up to /2 = 0 so as to be of class
C™~! by claiming that its differentials up to the order m, — 1 relative to the variables
(81/2,t,x,x/) are equal to 0 at e%/2 = 0. Namely, ky (o) can be extended up to el/2 =
so as to be of class C" 1. Since m, can be chosen arbitrarily large, certainly it can be

extended smoothly up to £'/2 = 0. 1

Now we will show:

Lemma 3.8 FEach term (fl)k(r(e)#qé))(t,x,x’) can be extended smoothly up to

el/2 = 0 and has a series expansion

(611 D're#aly = DL P+ W p @) e =
For every p € QIE™, the integrals fpm/2 (t,z,2") Axp(x fp (eV2t,x,2") Axp(!)
are well-defined and smooth on [0, 50/2] [0,T01/2] x E™. In addztwn, there exists a

semi-norm sn(-) such that, on |0, T1/2] x E™, for any ¢ € QLE™,

(3.12) [ Pattia) nxpla!) = ()| < 12 sn(e),
(313) [ Bualtiaa) nrplal) | < 2sn(e) (> 0),
(3.14) /p’fn/Q(t,a:,x’) Axp(z)|| < t*2sn(p) (k> 0).
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Proof. Note that r(.) is an (¢)-kernel of type 2 and q(. has a finite sum expression

ey = Zeb/26b7(a), where each g, ) is an (¢)-kernel of type b (> 1). Thus we have

(1P r#taly = (“DF > e e #ay, o # - #lb o),
bi>1
which, together with Lemma 3.7, ascertains the first half of the lemma. Next, considering
(3.11) with k = 0, i.e., ri) = ZO<m<m* /2y m/2 T gm=/2y */2(51/2), we examine the

integrals [ p? o (t, 2, 3") A xp(x') = [rp9(t,z,2") A xp(x’). The coefficients of 7,2,

m/2
T, j2(€ /2 consist of such functlons as K2 , = Y K? 2 ete., (see Lemma 3.5(1)).
Hence, with reference to (3.4) and (3.8), usmg 1ntegrat10n by parts and then changing

the variables, we obtain finite sum expressions

[ vttty o @)

=St [avie k@) @ (W)
>0
/dV(x’)r,{{;/ (2, t, 2, 2") o' (2)
/ PR c1/2
= ;#/2/&/(1’/) [5(51/2)/C(£CI) (0/0y)* (y(c o! (y)) ’yzg(s)(.w)il(tl/%,)}m* .

These are smooth on [0,50/ | x [0, T1/2] x E™ and, setting @, /o(x) = limy2_q [ 7 /2(t,
') A xp(z'), we know

<12 (p)

H / Faya(ts 2, 2) Ap(a) — ()

(refer to the argument at (2.18)). Further we have ¢g/y(7) = ¢(x) and @, /9(7) =
0 (m > 0). Indeed, since (2.5) implies lim,i/a_,q [ 7o) (¢, z,2") A *p(2’) = @(x) for

every (/2

x) € [0,6(1)/2] x E", setting ¢, jo(e¥/2,2) = limyjo_g [ 1y, 2(€V2 t, 2, 27) A
*p(z') as well, we know that the form > 5., .. €m/2g0m/2(x) + Em*/2<pm*/2(€1/2, x) on
[0, 61/2] x E™ is identically equal to ¢(x). The estimates (3.12) and (3.13) are thus
mya(t ,x,x') A xp(x') (k > 0) is smooth on [0,00) x E™

and (3.3) implies the estimate (3.14). 1

proved. Similarly the form [ p*

3.4 The proof of Proposition 3.1

Lemma 3.8 says that Z(]Sk<k0(_1)kr(€)#qé€a) can be extended smoothly up to the

domain [0, 50/2] x (0,00) x E™ x E™, and Lemma 3.3 says that, by taking ky > 0 large,

Ry, (p(e)) can be extended up to the domain so as to be of class C*o=1 (by claiming that

1/2

its differentials up to the order kg — 1 relative to the variables (e'/% ¢, z, 2’) are equal to
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0 at /2 = 0). Since kg can be chosen arbitrarily large, certainly p(e)(t, =, 2) is extended

smoothly up to e'/2 = 0 and we have
(3.15) Pmy2(t, T, 2') Z pm/2 (t,x, )
0<k<m

Let us show (3.1) by induction. When m = 0, it is valid because of (3.11) and (1.19).
We fix m’ > 0 and assume that it is valid for m smaller than m’. Then, certainly we

have

(c’?t + AO/Q) (P2 = Pmry2) = 0.

In addition, since prm//2 (t,x,2") A xp(z H < t2sn(p) (by (3.15), (3.13), (3.14)) and
IS s st m,2") A xp(a) || < t2/2sn(p) (by (1.20), (3.3)), we have

=0.

lim
t—0

/ (pm//g(t,:(},l'/) - pm//2<t,$,$/)> /\*(p(xl)

Hence, by the uniqueness of the solution of the initial value problem relative to Ag/ =
Apg, (3.1) with m = m’ is valid.

3.5 (1.24) vanishes if m is odd

Lemma 3.9 The coefficients in the expansion (1.16) are described as

|B|=0,1,2

(3.16) Am/2 = Z Am/Q(I& C)- xc(a/ax)Ba
24 |C|=[B|+m

where each Ay, 5(B,C) is a finite sum of operators which are the composites of such

operators as dx; A dxjV multiplied by constants. Thus, we have A, »(B,C) (dz)!" =
21— Aﬁ}Q(B,@) - (dz)".

Proof. Since (1.14) and (1.15) yield

5 |B|=0,1,2
(651/2 )m A(E) = Z Am/2(187 C: 51/27 Ls(x)) : $C(8/8$)B
2+|C|=B[+m

Apa(B,C:e¥/?, 1 () = eFHEBImM2Z AL o(B,C 1 1e(2)),
we obtain the expression (3.16). 1

Recalling the definition of p, /5(t, z, 2" : A, A") (m > 0), we have

ml,...,mk>0

(317) pi{;Q(t,x,x/ . A,A/) _ Z Z H A[(Z 1)[(5) Z) C(Z))

25:1 me=m

X ((G/Ox)ArE#me (0/02)2 vt - - #2 (9/02)B" (8/83}')AlrE) (t,z, 1),
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where we set rg(t,x,2') = r(z — 2’). Here, the second summation ) means, for each
(m1,...,myg), to sum up all the terms determined by the indices (B(),C()) and the
sequences of indices I = I, 1M ... [®) — [’ appearing in Apyo (<0< k).
The term appearing in the second line is the value at (¢, z,2’) of the convolution of the

functions (9/0x)*rg(t, z, x'), 2 (8/8x)B(1)rE(t, x,x'),. ..

To prove that (1.24) vanishes if m is odd, it will suffice to show:
Lemma 3.10 We have
(3.18) Ptz 2 A A) = (1) HAFRIPIT (¢~ —a' AL A).

Proof. We put £ = —z. If we expand det V4 (to(2)) into >0 5m/2detm/2(x’), then
(8/83:’)Aldetm/2(ac’) = (—1)m+|A/|(8/8@’)A/detm/2(i’). Hence, it suffices to ascertain
(3.18) with P replaced by p. With the use of the notation at (3.17), further it will

suffice to show

((8/8x)ArE#xC(l> (0/02)E et - - #2°" (8 )02)EY (a/a$')A’rE) (t,z,2)

— (—1)Smetal ]
x ((0/02) rp#a" (0/0w) gt 42" (0/02)%" (0/02) ¥ xp ) (1,3,7).
Since 2 + |CO| = [BO)| + my (see (3.16)) and rp(t, =, 2') = rp(t, &,i'), we have
(8/0x) rp(t,z,2') = (8)0x) rp(t, 2,&) = (—1)(8/82) rp(t, 2, &),
2©7(0)02) B v (t, x,2') = (1) BIHCNZCY (5/07) B r g (t, 2, )

— (=1 (9/08)® v (t, 7, &),

etc. In consideration of the change of orientation, we obtain the equality. 1
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