Home page

Professional web page of Jean-Baptiste Campesato - Research.
JSPS Postdoctoral Fellow at Saitama Universty, Japan.
jbcampesato [at] mail.saitama-u.ac.jp


Keywords : real algebraic geometry, motivic integration, singularity theory, motivic zeta functions, motivic Milnor fiber, toric varieties, Nash functions, arc-analytic functions, arc-symmetric sets, virtual Poincaré polynomial, polynomials non-degenerate with respect to their Newton polyhedra, classification of real singularities with no continuous moduli (blow-analytic equivalence of T.-C. Kuo, blow-Nash equivalence of G. Fichou and arc-analytic equivalence).


Full list on HAL

5. J.-B. Campesato. Complete classification of Brieskorn polynomials up to the arc-analytic equivalence. (Submitted)
    [ arXiv:1708.04425 ]

4. J.-B. Campesato. On the arc-analytic type of some weighted homogeneous polynomials. (Submitted)
    [ arXiv:1612.08269 ]

3. J.-B. Campesato. From the blow-analytic equivalence to the arc-analytic equivalence: a survey. Saitama Math. J., 31 (2017), pp. 35-78. Proceedings of the Sixth Japanese-Australian Workshop on Real and Complex Singularities.
    [ Preprint | Article at SMJ ]

2. J.-B. Campesato. On a motivic invariant of the arc-analytic equivalence. Annales de l'institut Fourier, 67 no. 1 (2017), pp. 143-196.
    [ arXiv:1512.07145DOI:10.5802/aif.3078 | Article at AIF ]

1. J.-B. Campesato. An inverse mapping theorem for blow-Nash maps on singular spaces. Nagoya Mathematical Journal, volume 223, issue 01 (2016), pp. 162-194.
    [ arXiv:1406.6637 | DOI:10.1017/nmj.2016.29 ]

PhD Thesis (French)

Une fonction zêta motivique pour l'étude des singularités réelles
under the supervision of Adam Parusiński.
The defense was held on December 11, 2015 at the mathematics department J. A. Dieudonné of Nice Sophia Antipolis University.
Manuscript on theses.fr - Slides
Referees: Georges Comte, Goulwen Fichou and Satoshi Koike.
Jury members: Georges Comte, Goulwen Fichou, Krzysztof Kurdyka, François Loeser (President), Michel Merle and Adam Parusiński.